Sketching Sampled Data Streams

Size: px
Start display at page:

Download "Sketching Sampled Data Streams"

Transcription

1 Sketchng Sampled Data Streams Florn Rusu and Aln Dobra CISE Department Unversty of Florda March 31, 2009

2 Motvaton & Goal Motvaton Multcore processors How to use all the processng power? Parallel algorthms Sde tasks (analytcal, exploratory) Goal Analyze data at wre speed sngle pass, small memory Skew of a relaton read from the dsk Correlaton between flows passng through a hgh-speed router 2

3 Class of Queres Aggregates over Jons Equ-jon J between relatons F and G wth the jon constrant F.a = G.a Queres specfed by a jon and an aggregate: COUNT, SUM sze of jon (dot product), self-jon sze (second frequency moment) Example Stream F: a , frequency vector f: Stream G: a , frequency vector g: f g COUNT(F a G) = fg T = f g = [ ] 3 0 =

4 Man Idea: Basc Sketchng Technque [AGMS99] Summarze frequency table by projectng t onto a random vector sketch Use sketches to recover query result Random vectors: ξ = [ ξ 1...ξ n ] random vector of ±1 values, called ξ famly Sketches: Sketch of F, X F = fξ T Sketch of G, X G = gξ T X = X F X G estmates COUNT(F a G) snce E[X] = E[fξ T ξ g T ] = fe[ξ T ξ ]g T = fig T = fg T f E[ξ T ξ ] = I. dstnct elements of ξ must be par-wse ndependent, ξ 2 = 1, E[ξ ξ ] = 0 4

5 Basc Sketchng Technque Example: ξ = [ ξ 1 ξ 2 ξ 3 ] = [ ] Error of estmate X due to ts varance X F = fξ T = [ ] 1 +1 = 4 1 X G = gξ T = [ ] 1 +1 = 5 1 X = X F X G = ( 4)( 5) = Var[X] = f 2 j I g 2 j + ( ) 2 f g 2 f 2 g 2 Var(X) 2ff T gg T = 2 SJ(F) SJ(G) ξ s a famly of 4-wse ndependent random varables 5

6 Sketch Mantenance over Streams Choose seed s that generates ξ Stream F: a , frequency vector f: f X F = fξ T = f ξ = (ξ + + ξ ) = ξ t.a = ξ 1 + ξ 1 + ξ 2 + ξ 3 + ξ 1 + ξ 3 t F = h(s,1) + h(s,1) + h(s,2) + h(s,3) + h(s,1) + h(s,3) Stream G: a , frequency vector g: X G = gξ T = g ξ = (ξ + + ξ ) ξ t.a = ξ 3 + ξ 1 + ξ 3 + ξ 1 + ξ 1 = t G = h(s,3) + h(s,1) + h(s,3) + h(s,1) + h(s,1) g Counters X F and X G need only log space n the sze of the stream 6

7 !!,-,- () () % %$ Sketch Error Reducton Estmaton of COUNT(F a G) from sngle sketches of F and G s too nosy Soluton: Average 8Var(X) ε 2 E 2 [X] ndependent copes of X to reduce error to ε Compute medan of 2log1/δ such averages to ncrease confdence to 1 δ Stream F Sketches of F Seeds Stream G ξ ξ Sketches of G Independent copes of X Average Medan COUNT(F G)(1 ± ε) wth prob (1 δ) Memory requred ndependent of the sze of the stream 7

8 Speed-Up Methods Hashng Fast-AGMS sketches are faster and have better accuracy Pseudo-random number generatng schemes EH3 s as good as any 4-wse scheme + faster and denser 8

9 Fast-AGMS Sketches [CG05] Randomzaton Vector h of 2-unversal hash functons, h : I B Vector ξ of 4-wse ndependent ±1 random varables, ξ : I { 1,+1} Update Tme no. of rows m x x h (k) = x h (k) + w ξ (k) h ξ (k,w) 9

10 Sze of Jon Estmator Fast-AGMS Sketches [CG05] E [Z] = f ḡ = F G, Z ( f ḡ ± ε f 2 ḡ 2 ) wth probablty at least 1 δ f 2 = f f = f 2, ḡ 2 = ḡ ḡ = g 2 Sketch sze: B = n = O( 1 ε 2 ) and m = O(log 1 δ ) x(f) X j = x j (F) x j (G) h ξ x(g) Sum Z Y j = n =1 X j Medan 10

11 Update Tme Setup: sketch sze (row=1), Xeon 2.8 GHz, 512 KB cache, 4 GB man memory Tme / sketch update (ns) F-AGMS FC CM e+06 1e+07 1e+08 Bucket sze (log scale) 100 ns / sketch 10 sketches 1 µs 1 mllon ntegers / second 4 MB / second Desred rate 100 MB / second = 25X 11

12 Samplng Stream F: a , frequency vector f: Sample F : a 1 3 1, sampled frequency vector f : f f Stream G: a , frequency vector g: g Sample G : a 3 1, sampled frequency vector g : X = C f g T = C [2 0 1 ] 1 0 = C g

13 Samplng Sample at the tuple level Analyze n the frequency doman Random frequency vector (moment generatng functon) Bernoull Bnomal WR Multnomal WOR Multvarate hypergeometrc Var[X] = C 2 X = C f g E [X] = C E [ f ] E [ g ] E [ ( f f j] [ E g g ] j j I E [ f ] [ ] ) 2 E g 13

14 Sketches over Sampled Streams Stream F: a , frequency vector f: Sample F : a 1 3 1, sampled frequency vector f : f f Stream G: a , frequency vector g: g Sample G : a 3 1, sampled frequency vector g : ξ = [ ] [ ] ξ 1 ξ 2 ξ 3 = X F = f ξ T = [ ] 1 +1 = 3 1 X = C X FX G = C ( 3)( 2) = C g X G = g ξ T = [ ] 1 +1 =

15 Sketchng a Sample Buld the sketch over the non-materalzed sample [ [ Var[X] = C 2 E X = C f E [X] = C [ 2 E ] [ ] f 2 E g 2 j j I ] [ f 2 E ξ g jξ j j I E [ f ] [ ] E g g ( ] E [ f f [ j] E g g ] j j I E [ f ] [ ] ) 2 E g 15

16 Averagng Multple Sketches Sketches share the same sample correlaton Var [ 1 n n k=1 Var X k ] = C n ( [ 1 n E n k=1 X k ] = 1 n [ Var[Xk ] + (n 1) Cov k l [X k,x l ] ] E [ ( f f j] [ E g g ] j j I [ ] [ ] f 2 E g 2 j j I + E [ f j I E [ f ] [ ] ) 2 E g f j] [ [ E g g j] 2 E ] [ f 2 E g 2 ] )] Var sketch over samples = Var sketch + Var samplng + Var nteracton 16

17 p, q are samplng probabltes n F, G Bernoull Samplng Var [ 1 n n k=1 X k ] = 1 n f p p + 1 n j I g 2 j + [ 1 p p ( ) 2 f g 2 f 2 g 2 f g q q f g 2 j + 1 q j I, j q f 2 (1 p)(1 q) g + pq f g f 2 (1 p)(1 q) g j + j I, j pq ] f g j j I, j 17

18 Varance for Bernoull Samplng Term sgnfcance as a functon of the frequency dstrbuton 1 Interacton Samplng Sketch 1 Interacton Samplng Sketch Varance terms dstrbuton Varance terms dstrbuton Zpf coeffcent / p Zpf coeffcent / p Sze of Jon Self-Jon Sze 18

19 Error for Bernoull Samplng Settngs 100 mllon tuples F-AGMS sketches wth 5, 000 buckets 10 1 p= p= p= p=1.0 Relatve error (log scale) 1e-04 1e-05 1e ZIPF coeffcent 19

20 Error for WOR Samplng Settngs TPC-H scale 1, lnetem l orderkey = o orderkey orders 10 Relatve error (log scale) 1 1 Samplng rate (log scale) 20

21 Conclusons Sketches over sampled data Generc moment analyss Samplng n frequency doman Combned estmator Three types of samplng Bernoull Wth replacement Wthout replacement Expermental evaluaton 2 orders of magntude speed-up wthout sgnfcant error degradaton = Fast-AGMS sketches wth EH3 random varables over a sample 21

22 Questons 22

Mining Data Streams-Estimating Frequency Moment

Mining Data Streams-Estimating Frequency Moment Mnng Data Streams-Estmatng Frequency Moment Barna Saha October 26, 2017 Frequency Moment Computng moments nvolves dstrbuton of frequences of dfferent elements n the stream. Frequency Moment Computng moments

More information

18.1 Introduction and Recap

18.1 Introduction and Recap CS787: Advanced Algorthms Scrbe: Pryananda Shenoy and Shjn Kong Lecturer: Shuch Chawla Topc: Streamng Algorthmscontnued) Date: 0/26/2007 We contnue talng about streamng algorthms n ths lecture, ncludng

More information

Processing Aggregate Queries over Continuous Data Streams

Processing Aggregate Queries over Continuous Data Streams Processing Aggregate Queries over Continuous Data Streams Alin Dobra Computer Science Department Cornell University April 15, 2003 Relational Database Systems did dname 15 Legal 17 Marketing 3 Development

More information

First Year Examination Department of Statistics, University of Florida

First Year Examination Department of Statistics, University of Florida Frst Year Examnaton Department of Statstcs, Unversty of Florda May 7, 010, 8:00 am - 1:00 noon Instructons: 1. You have four hours to answer questons n ths examnaton.. You must show your work to receve

More information

Parametric fractional imputation for missing data analysis. Jae Kwang Kim Survey Working Group Seminar March 29, 2010

Parametric fractional imputation for missing data analysis. Jae Kwang Kim Survey Working Group Seminar March 29, 2010 Parametrc fractonal mputaton for mssng data analyss Jae Kwang Km Survey Workng Group Semnar March 29, 2010 1 Outlne Introducton Proposed method Fractonal mputaton Approxmaton Varance estmaton Multple mputaton

More information

Lecture 3: Probability Distributions

Lecture 3: Probability Distributions Lecture 3: Probablty Dstrbutons Random Varables Let us begn by defnng a sample space as a set of outcomes from an experment. We denote ths by S. A random varable s a functon whch maps outcomes nto the

More information

Notes on Frequency Estimation in Data Streams

Notes on Frequency Estimation in Data Streams Notes on Frequency Estmaton n Data Streams In (one of) the data streamng model(s), the data s a sequence of arrvals a 1, a 2,..., a m of the form a j = (, v) where s the dentty of the tem and belongs to

More information

Statistics for Managers Using Microsoft Excel/SPSS Chapter 14 Multiple Regression Models

Statistics for Managers Using Microsoft Excel/SPSS Chapter 14 Multiple Regression Models Statstcs for Managers Usng Mcrosoft Excel/SPSS Chapter 14 Multple Regresson Models 1999 Prentce-Hall, Inc. Chap. 14-1 Chapter Topcs The Multple Regresson Model Contrbuton of Indvdual Independent Varables

More information

Linear Approximation with Regularization and Moving Least Squares

Linear Approximation with Regularization and Moving Least Squares Lnear Approxmaton wth Regularzaton and Movng Least Squares Igor Grešovn May 007 Revson 4.6 (Revson : March 004). 5 4 3 0.5 3 3.5 4 Contents: Lnear Fttng...4. Weghted Least Squares n Functon Approxmaton...

More information

Lecture 4: Universal Hash Functions/Streaming Cont d

Lecture 4: Universal Hash Functions/Streaming Cont d CSE 5: Desgn and Analyss of Algorthms I Sprng 06 Lecture 4: Unversal Hash Functons/Streamng Cont d Lecturer: Shayan Oves Gharan Aprl 6th Scrbe: Jacob Schreber Dsclamer: These notes have not been subjected

More information

Stat 642, Lecture notes for 01/27/ d i = 1 t. n i t nj. n j

Stat 642, Lecture notes for 01/27/ d i = 1 t. n i t nj. n j Stat 642, Lecture notes for 01/27/05 18 Rate Standardzaton Contnued: Note that f T n t where T s the cumulatve follow-up tme and n s the number of subjects at rsk at the mdpont or nterval, and d s the

More information

Stanford University CS254: Computational Complexity Notes 7 Luca Trevisan January 29, Notes for Lecture 7

Stanford University CS254: Computational Complexity Notes 7 Luca Trevisan January 29, Notes for Lecture 7 Stanford Unversty CS54: Computatonal Complexty Notes 7 Luca Trevsan January 9, 014 Notes for Lecture 7 1 Approxmate Countng wt an N oracle We complete te proof of te followng result: Teorem 1 For every

More information

Negative Binomial Regression

Negative Binomial Regression STATGRAPHICS Rev. 9/16/2013 Negatve Bnomal Regresson Summary... 1 Data Input... 3 Statstcal Model... 3 Analyss Summary... 4 Analyss Optons... 7 Plot of Ftted Model... 8 Observed Versus Predcted... 10 Predctons...

More information

Regression Analysis. Regression Analysis

Regression Analysis. Regression Analysis Regresson Analyss Smple Regresson Multvarate Regresson Stepwse Regresson Replcaton and Predcton Error 1 Regresson Analyss In general, we "ft" a model by mnmzng a metrc that represents the error. n mn (y

More information

Lecture 6 More on Complete Randomized Block Design (RBD)

Lecture 6 More on Complete Randomized Block Design (RBD) Lecture 6 More on Complete Randomzed Block Desgn (RBD) Multple test Multple test The multple comparsons or multple testng problem occurs when one consders a set of statstcal nferences smultaneously. For

More information

Chapter 15 Student Lecture Notes 15-1

Chapter 15 Student Lecture Notes 15-1 Chapter 15 Student Lecture Notes 15-1 Basc Busness Statstcs (9 th Edton) Chapter 15 Multple Regresson Model Buldng 004 Prentce-Hall, Inc. Chap 15-1 Chapter Topcs The Quadratc Regresson Model Usng Transformatons

More information

Lecture 5 September 17, 2015

Lecture 5 September 17, 2015 CS 229r: Algorthms for Bg Data Fall 205 Prof. Jelan Nelson Lecture 5 September 7, 205 Scrbe: Yakr Reshef Recap and overvew Last tme we dscussed the problem of norm estmaton for p-norms wth p > 2. We had

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com PhscsAndMathsTutor.com phscsandmathstutor.com June 005 5. The random varable X has probablt functon k, = 1,, 3, P( X = ) = k ( + 1), = 4, 5, where k s a constant. (a) Fnd the value of k. (b) Fnd the eact

More information

Resource Allocation and Decision Analysis (ECON 8010) Spring 2014 Foundations of Regression Analysis

Resource Allocation and Decision Analysis (ECON 8010) Spring 2014 Foundations of Regression Analysis Resource Allocaton and Decson Analss (ECON 800) Sprng 04 Foundatons of Regresson Analss Readng: Regresson Analss (ECON 800 Coursepak, Page 3) Defntons and Concepts: Regresson Analss statstcal technques

More information

7.1. Single classification analysis of variance (ANOVA) Why not use multiple 2-sample 2. When to use ANOVA

7.1. Single classification analysis of variance (ANOVA) Why not use multiple 2-sample 2. When to use ANOVA Sngle classfcaton analyss of varance (ANOVA) When to use ANOVA ANOVA models and parttonng sums of squares ANOVA: hypothess testng ANOVA: assumptons A non-parametrc alternatve: Kruskal-Walls ANOVA Power

More information

Maximum Likelihood Estimation of Binary Dependent Variables Models: Probit and Logit. 1. General Formulation of Binary Dependent Variables Models

Maximum Likelihood Estimation of Binary Dependent Variables Models: Probit and Logit. 1. General Formulation of Binary Dependent Variables Models ECO 452 -- OE 4: Probt and Logt Models ECO 452 -- OE 4 Maxmum Lkelhood Estmaton of Bnary Dependent Varables Models: Probt and Logt hs note demonstrates how to formulate bnary dependent varables models

More information

CIS 700: algorithms for Big Data

CIS 700: algorithms for Big Data CIS 700: algorthms for Bg Data Lecture 5: Dmenson Reducton Sldes at htt://grgory.us/bg-data-class.html Grgory Yaroslavtsev htt://grgory.us Today Dmensonalty reducton AMS as dmensonalty reducton Johnson-Lndenstrauss

More information

UNIVERSITY OF TORONTO Faculty of Arts and Science. December 2005 Examinations STA437H1F/STA1005HF. Duration - 3 hours

UNIVERSITY OF TORONTO Faculty of Arts and Science. December 2005 Examinations STA437H1F/STA1005HF. Duration - 3 hours UNIVERSITY OF TORONTO Faculty of Arts and Scence December 005 Examnatons STA47HF/STA005HF Duraton - hours AIDS ALLOWED: (to be suppled by the student) Non-programmable calculator One handwrtten 8.5'' x

More information

Maximum Likelihood Estimation of Binary Dependent Variables Models: Probit and Logit. 1. General Formulation of Binary Dependent Variables Models

Maximum Likelihood Estimation of Binary Dependent Variables Models: Probit and Logit. 1. General Formulation of Binary Dependent Variables Models ECO 452 -- OE 4: Probt and Logt Models ECO 452 -- OE 4 Mamum Lkelhood Estmaton of Bnary Dependent Varables Models: Probt and Logt hs note demonstrates how to formulate bnary dependent varables models for

More information

MLE and Bayesian Estimation. Jie Tang Department of Computer Science & Technology Tsinghua University 2012

MLE and Bayesian Estimation. Jie Tang Department of Computer Science & Technology Tsinghua University 2012 MLE and Bayesan Estmaton Je Tang Department of Computer Scence & Technology Tsnghua Unversty 01 1 Lnear Regresson? As the frst step, we need to decde how we re gong to represent the functon f. One example:

More information

CS 2750 Machine Learning. Lecture 5. Density estimation. CS 2750 Machine Learning. Announcements

CS 2750 Machine Learning. Lecture 5. Density estimation. CS 2750 Machine Learning. Announcements CS 750 Machne Learnng Lecture 5 Densty estmaton Mlos Hauskrecht mlos@cs.ptt.edu 539 Sennott Square CS 750 Machne Learnng Announcements Homework Due on Wednesday before the class Reports: hand n before

More information

experimenteel en correlationeel onderzoek

experimenteel en correlationeel onderzoek expermenteel en correlatoneel onderzoek lecture 6: one-way analyss of varance Leary. Introducton to Behavoral Research Methods. pages 246 271 (chapters 10 and 11): conceptual statstcs Moore, McCabe, and

More information

[ ] λ λ λ. Multicollinearity. multicollinearity Ragnar Frisch (1934) perfect exact. collinearity. multicollinearity. exact

[ ] λ λ λ. Multicollinearity. multicollinearity Ragnar Frisch (1934) perfect exact. collinearity. multicollinearity. exact Multcollnearty multcollnearty Ragnar Frsch (934 perfect exact collnearty multcollnearty K exact λ λ λ K K x+ x+ + x 0 0.. λ, λ, λk 0 0.. x perfect ntercorrelated λ λ λ x+ x+ + KxK + v 0 0.. v 3 y β + β

More information

Motion Perception Under Uncertainty. Hongjing Lu Department of Psychology University of Hong Kong

Motion Perception Under Uncertainty. Hongjing Lu Department of Psychology University of Hong Kong Moton Percepton Under Uncertanty Hongjng Lu Department of Psychology Unversty of Hong Kong Outlne Uncertanty n moton stmulus Correspondence problem Qualtatve fttng usng deal observer models Based on sgnal

More information

Statistics for Business and Economics

Statistics for Business and Economics Statstcs for Busness and Economcs Chapter 11 Smple Regresson Copyrght 010 Pearson Educaton, Inc. Publshng as Prentce Hall Ch. 11-1 11.1 Overvew of Lnear Models n An equaton can be ft to show the best lnear

More information

THE ROYAL STATISTICAL SOCIETY 2006 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE

THE ROYAL STATISTICAL SOCIETY 2006 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE THE ROYAL STATISTICAL SOCIETY 6 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE PAPER I STATISTICAL THEORY The Socety provdes these solutons to assst canddates preparng for the eamnatons n future years and for

More information

Global Sensitivity. Tuesday 20 th February, 2018

Global Sensitivity. Tuesday 20 th February, 2018 Global Senstvty Tuesday 2 th February, 28 ) Local Senstvty Most senstvty analyses [] are based on local estmates of senstvty, typcally by expandng the response n a Taylor seres about some specfc values

More information

CIS526: Machine Learning Lecture 3 (Sept 16, 2003) Linear Regression. Preparation help: Xiaoying Huang. x 1 θ 1 output... θ M x M

CIS526: Machine Learning Lecture 3 (Sept 16, 2003) Linear Regression. Preparation help: Xiaoying Huang. x 1 θ 1 output... θ M x M CIS56: achne Learnng Lecture 3 (Sept 6, 003) Preparaton help: Xaoyng Huang Lnear Regresson Lnear regresson can be represented by a functonal form: f(; θ) = θ 0 0 +θ + + θ = θ = 0 ote: 0 s a dummy attrbute

More information

xp(x µ) = 0 p(x = 0 µ) + 1 p(x = 1 µ) = µ

xp(x µ) = 0 p(x = 0 µ) + 1 p(x = 1 µ) = µ CSE 455/555 Sprng 2013 Homework 7: Parametrc Technques Jason J. Corso Computer Scence and Engneerng SUY at Buffalo jcorso@buffalo.edu Solutons by Yngbo Zhou Ths assgnment does not need to be submtted and

More information

Linear regression. Regression Models. Chapter 11 Student Lecture Notes Regression Analysis is the

Linear regression. Regression Models. Chapter 11 Student Lecture Notes Regression Analysis is the Chapter 11 Student Lecture Notes 11-1 Lnear regresson Wenl lu Dept. Health statstcs School of publc health Tanjn medcal unversty 1 Regresson Models 1. Answer What Is the Relatonshp Between the Varables?.

More information

Retrieval Models: Language models

Retrieval Models: Language models CS-590I Informaton Retreval Retreval Models: Language models Luo S Department of Computer Scence Purdue Unversty Introducton to language model Ungram language model Document language model estmaton Maxmum

More information

Propagation of error for multivariable function

Propagation of error for multivariable function Propagaton o error or multvarable uncton ow consder a multvarable uncton (u, v, w, ). I measurements o u, v, w,. All have uncertant u, v, w,., how wll ths aect the uncertant o the uncton? L tet) o (Equaton

More information

An R implementation of bootstrap procedures for mixed models

An R implementation of bootstrap procedures for mixed models The R User Conference 2009 July 8-10, Agrocampus-Ouest, Rennes, France An R mplementaton of bootstrap procedures for mxed models José A. Sánchez-Espgares Unverstat Poltècnca de Catalunya Jord Ocaña Unverstat

More information

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module 3 LOSSY IMAGE COMPRESSION SYSTEMS Verson ECE IIT, Kharagpur Lesson 6 Theory of Quantzaton Verson ECE IIT, Kharagpur Instructonal Objectves At the end of ths lesson, the students should be able to:

More information

Simulation and Probability Distribution

Simulation and Probability Distribution CHAPTER Probablty, Statstcs, and Relablty for Engneers and Scentsts Second Edton PROBABILIT DISTRIBUTION FOR CONTINUOUS RANDOM VARIABLES A. J. Clark School of Engneerng Department of Cvl and Envronmental

More information

Machine learning: Density estimation

Machine learning: Density estimation CS 70 Foundatons of AI Lecture 3 Machne learnng: ensty estmaton Mlos Hauskrecht mlos@cs.ptt.edu 539 Sennott Square ata: ensty estmaton {.. n} x a vector of attrbute values Objectve: estmate the model of

More information

Statistics for Managers Using Microsoft Excel/SPSS Chapter 13 The Simple Linear Regression Model and Correlation

Statistics for Managers Using Microsoft Excel/SPSS Chapter 13 The Simple Linear Regression Model and Correlation Statstcs for Managers Usng Mcrosoft Excel/SPSS Chapter 13 The Smple Lnear Regresson Model and Correlaton 1999 Prentce-Hall, Inc. Chap. 13-1 Chapter Topcs Types of Regresson Models Determnng the Smple Lnear

More information

CIS587 - Artificial Intellgence. Bayesian Networks CIS587 - AI. KB for medical diagnosis. Example.

CIS587 - Artificial Intellgence. Bayesian Networks CIS587 - AI. KB for medical diagnosis. Example. CIS587 - Artfcal Intellgence Bayesan Networks KB for medcal dagnoss. Example. We want to buld a KB system for the dagnoss of pneumona. Problem descrpton: Dsease: pneumona Patent symptoms (fndngs, lab tests):

More information

Statistics for Economics & Business

Statistics for Economics & Business Statstcs for Economcs & Busness Smple Lnear Regresson Learnng Objectves In ths chapter, you learn: How to use regresson analyss to predct the value of a dependent varable based on an ndependent varable

More information

Durban Watson for Testing the Lack-of-Fit of Polynomial Regression Models without Replications

Durban Watson for Testing the Lack-of-Fit of Polynomial Regression Models without Replications Durban Watson for Testng the Lack-of-Ft of Polynomal Regresson Models wthout Replcatons Ruba A. Alyaf, Maha A. Omar, Abdullah A. Al-Shha ralyaf@ksu.edu.sa, maomar@ksu.edu.sa, aalshha@ksu.edu.sa Department

More information

Detecting Attribute Dependencies from Query Feedback

Detecting Attribute Dependencies from Query Feedback Detectng Attrbute Dependences from Query Feedback Peter J. Haas 1, Faban Hueske 2, Volker Markl 1 1 IBM Almaden Research Center 2 Unverstät Ulm VLDB 2007 Peter J. Haas The Problem: Detectng (Parwse) Dependent

More information

Introduction to Algorithms

Introduction to Algorithms Introducton to Algorthms 6.046J/8.40J Lecture 7 Prof. Potr Indyk Data Structures Role of data structures: Encapsulate data Support certan operatons (e.g., INSERT, DELETE, SEARCH) Our focus: effcency of

More information

Provable Security Signatures

Provable Security Signatures Provable Securty Sgnatures UCL - Louvan-la-Neuve Wednesday, July 10th, 2002 LIENS-CNRS Ecole normale supéreure Summary Introducton Sgnature FD PSS Forkng Lemma Generc Model Concluson Provable Securty -

More information

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4)

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4) I. Classcal Assumptons Econ7 Appled Econometrcs Topc 3: Classcal Model (Studenmund, Chapter 4) We have defned OLS and studed some algebrac propertes of OLS. In ths topc we wll study statstcal propertes

More information

3D Estimates of Analysis and Short-Range Forecast Error Variances

3D Estimates of Analysis and Short-Range Forecast Error Variances 3D Estmates of Analyss and Short-Range Forecast Error Varances Je Feng, Zoltan Toth Global Systems Dvson, ESRL/OAR/NOAA, Boulder, CO, USA Malaquas Peña Envronmental Modelng Center, NCEP/NWS/NOAA, College

More information

Probability, Statistics, and Reliability for Engineers and Scientists SIMULATION

Probability, Statistics, and Reliability for Engineers and Scientists SIMULATION CHATER robablty, Statstcs, and Relablty or Engneers and Scentsts Second Edton SIULATIO A. J. Clark School o Engneerng Department o Cvl and Envronmental Engneerng 7b robablty and Statstcs or Cvl Engneers

More information

IRO0140 Advanced space time-frequency signal processing

IRO0140 Advanced space time-frequency signal processing IRO4 Advanced space tme-frequency sgnal processng Lecture Toomas Ruuben Takng nto account propertes of the sgnals, we can group these as followng: Regular and random sgnals (are all sgnal parameters determned

More information

Basically, if you have a dummy dependent variable you will be estimating a probability.

Basically, if you have a dummy dependent variable you will be estimating a probability. ECON 497: Lecture Notes 13 Page 1 of 1 Metropoltan State Unversty ECON 497: Research and Forecastng Lecture Notes 13 Dummy Dependent Varable Technques Studenmund Chapter 13 Bascally, f you have a dummy

More information

STAT 405 BIOSTATISTICS (Fall 2016) Handout 15 Introduction to Logistic Regression

STAT 405 BIOSTATISTICS (Fall 2016) Handout 15 Introduction to Logistic Regression STAT 45 BIOSTATISTICS (Fall 26) Handout 5 Introducton to Logstc Regresson Ths handout covers materal found n Secton 3.7 of your text. You may also want to revew regresson technques n Chapter. In ths handout,

More information

Department of Quantitative Methods & Information Systems. Time Series and Their Components QMIS 320. Chapter 6

Department of Quantitative Methods & Information Systems. Time Series and Their Components QMIS 320. Chapter 6 Department of Quanttatve Methods & Informaton Systems Tme Seres and Ther Components QMIS 30 Chapter 6 Fall 00 Dr. Mohammad Zanal These sldes were modfed from ther orgnal source for educatonal purpose only.

More information

x = , so that calculated

x = , so that calculated Stat 4, secton Sngle Factor ANOVA notes by Tm Plachowsk n chapter 8 we conducted hypothess tests n whch we compared a sngle sample s mean or proporton to some hypotheszed value Chapter 9 expanded ths to

More information

Continuous vs. Discrete Goods

Continuous vs. Discrete Goods CE 651 Transportaton Economcs Charsma Choudhury Lecture 3-4 Analyss of Demand Contnuous vs. Dscrete Goods Contnuous Goods Dscrete Goods x auto 1 Indfference u curves 3 u u 1 x 1 0 1 bus Outlne Data Modelng

More information

Multivariate Ratio Estimator of the Population Total under Stratified Random Sampling

Multivariate Ratio Estimator of the Population Total under Stratified Random Sampling Open Journal of Statstcs, 0,, 300-304 ttp://dx.do.org/0.436/ojs.0.3036 Publsed Onlne July 0 (ttp://www.scrp.org/journal/ojs) Multvarate Rato Estmator of te Populaton Total under Stratfed Random Samplng

More information

Linear Regression Analysis: Terminology and Notation

Linear Regression Analysis: Terminology and Notation ECON 35* -- Secton : Basc Concepts of Regresson Analyss (Page ) Lnear Regresson Analyss: Termnology and Notaton Consder the generc verson of the smple (two-varable) lnear regresson model. It s represented

More information

Economics 130. Lecture 4 Simple Linear Regression Continued

Economics 130. Lecture 4 Simple Linear Regression Continued Economcs 130 Lecture 4 Contnued Readngs for Week 4 Text, Chapter and 3. We contnue wth addressng our second ssue + add n how we evaluate these relatonshps: Where do we get data to do ths analyss? How do

More information

Lecture 3 Stat102, Spring 2007

Lecture 3 Stat102, Spring 2007 Lecture 3 Stat0, Sprng 007 Chapter 3. 3.: Introducton to regresson analyss Lnear regresson as a descrptve technque The least-squares equatons Chapter 3.3 Samplng dstrbuton of b 0, b. Contnued n net lecture

More information

Computation of Higher Order Moments from Two Multinomial Overdispersion Likelihood Models

Computation of Higher Order Moments from Two Multinomial Overdispersion Likelihood Models Computaton of Hgher Order Moments from Two Multnomal Overdsperson Lkelhood Models BY J. T. NEWCOMER, N. K. NEERCHAL Department of Mathematcs and Statstcs, Unversty of Maryland, Baltmore County, Baltmore,

More information

Predictive Analytics : QM901.1x Prof U Dinesh Kumar, IIMB. All Rights Reserved, Indian Institute of Management Bangalore

Predictive Analytics : QM901.1x Prof U Dinesh Kumar, IIMB. All Rights Reserved, Indian Institute of Management Bangalore Sesson Outlne Introducton to classfcaton problems and dscrete choce models. Introducton to Logstcs Regresson. Logstc functon and Logt functon. Maxmum Lkelhood Estmator (MLE) for estmaton of LR parameters.

More information

See Book Chapter 11 2 nd Edition (Chapter 10 1 st Edition)

See Book Chapter 11 2 nd Edition (Chapter 10 1 st Edition) Count Data Models See Book Chapter 11 2 nd Edton (Chapter 10 1 st Edton) Count data consst of non-negatve nteger values Examples: number of drver route changes per week, the number of trp departure changes

More information

Chapter 13: Multiple Regression

Chapter 13: Multiple Regression Chapter 13: Multple Regresson 13.1 Developng the multple-regresson Model The general model can be descrbed as: It smplfes for two ndependent varables: The sample ft parameter b 0, b 1, and b are used to

More information

Copyright 2017 by Taylor Enterprises, Inc., All Rights Reserved. Adjusted Control Limits for P Charts. Dr. Wayne A. Taylor

Copyright 2017 by Taylor Enterprises, Inc., All Rights Reserved. Adjusted Control Limits for P Charts. Dr. Wayne A. Taylor Taylor Enterprses, Inc. Control Lmts for P Charts Copyrght 2017 by Taylor Enterprses, Inc., All Rghts Reserved. Control Lmts for P Charts Dr. Wayne A. Taylor Abstract: P charts are used for count data

More information

where I = (n x n) diagonal identity matrix with diagonal elements = 1 and off-diagonal elements = 0; and σ 2 e = variance of (Y X).

where I = (n x n) diagonal identity matrix with diagonal elements = 1 and off-diagonal elements = 0; and σ 2 e = variance of (Y X). 11.4.1 Estmaton of Multple Regresson Coeffcents In multple lnear regresson, we essentally solve n equatons for the p unnown parameters. hus n must e equal to or greater than p and n practce n should e

More information

Department of Statistics University of Toronto STA305H1S / 1004 HS Design and Analysis of Experiments Term Test - Winter Solution

Department of Statistics University of Toronto STA305H1S / 1004 HS Design and Analysis of Experiments Term Test - Winter Solution Department of Statstcs Unversty of Toronto STA35HS / HS Desgn and Analyss of Experments Term Test - Wnter - Soluton February, Last Name: Frst Name: Student Number: Instructons: Tme: hours. Ads: a non-programmable

More information

Algebraic properties of polynomial iterates

Algebraic properties of polynomial iterates Algebrac propertes of polynomal terates Alna Ostafe Department of Computng Macquare Unversty 1 Motvaton 1. Better and cryptographcally stronger pseudorandom number generators (PRNG) as lnear constructons

More information

Basic Business Statistics, 10/e

Basic Business Statistics, 10/e Chapter 13 13-1 Basc Busness Statstcs 11 th Edton Chapter 13 Smple Lnear Regresson Basc Busness Statstcs, 11e 009 Prentce-Hall, Inc. Chap 13-1 Learnng Objectves In ths chapter, you learn: How to use regresson

More information

PROBABILITY PRIMER. Exercise Solutions

PROBABILITY PRIMER. Exercise Solutions PROBABILITY PRIMER Exercse Solutons 1 Probablty Prmer, Exercse Solutons, Prncples of Econometrcs, e EXERCISE P.1 (b) X s a random varable because attendance s not known pror to the outdoor concert. Before

More information

Markov Chain Monte Carlo (MCMC), Gibbs Sampling, Metropolis Algorithms, and Simulated Annealing Bioinformatics Course Supplement

Markov Chain Monte Carlo (MCMC), Gibbs Sampling, Metropolis Algorithms, and Simulated Annealing Bioinformatics Course Supplement Markov Chan Monte Carlo MCMC, Gbbs Samplng, Metropols Algorthms, and Smulated Annealng 2001 Bonformatcs Course Supplement SNU Bontellgence Lab http://bsnuackr/ Outlne! Markov Chan Monte Carlo MCMC! Metropols-Hastngs

More information

Statistics II Final Exam 26/6/18

Statistics II Final Exam 26/6/18 Statstcs II Fnal Exam 26/6/18 Academc Year 2017/18 Solutons Exam duraton: 2 h 30 mn 1. (3 ponts) A town hall s conductng a study to determne the amount of leftover food produced by the restaurants n the

More information

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Analyss of Varance and Desgn of Exerments-I MODULE III LECTURE - 2 EXPERIMENTAL DESIGN MODELS Dr. Shalabh Deartment of Mathematcs and Statstcs Indan Insttute of Technology Kanur 2 We consder the models

More information

Comparison of Regression Lines

Comparison of Regression Lines STATGRAPHICS Rev. 9/13/2013 Comparson of Regresson Lnes Summary... 1 Data Input... 3 Analyss Summary... 4 Plot of Ftted Model... 6 Condtonal Sums of Squares... 6 Analyss Optons... 7 Forecasts... 8 Confdence

More information

Expectation Maximization Mixture Models HMMs

Expectation Maximization Mixture Models HMMs -755 Machne Learnng for Sgnal Processng Mture Models HMMs Class 9. 2 Sep 200 Learnng Dstrbutons for Data Problem: Gven a collecton of eamples from some data, estmate ts dstrbuton Basc deas of Mamum Lelhood

More information

Hydrological statistics. Hydrological statistics and extremes

Hydrological statistics. Hydrological statistics and extremes 5--0 Stochastc Hydrology Hydrologcal statstcs and extremes Marc F.P. Berkens Professor of Hydrology Faculty of Geoscences Hydrologcal statstcs Mostly concernes wth the statstcal analyss of hydrologcal

More information

THE CHINESE REMAINDER THEOREM. We should thank the Chinese for their wonderful remainder theorem. Glenn Stevens

THE CHINESE REMAINDER THEOREM. We should thank the Chinese for their wonderful remainder theorem. Glenn Stevens THE CHINESE REMAINDER THEOREM KEITH CONRAD We should thank the Chnese for ther wonderful remander theorem. Glenn Stevens 1. Introducton The Chnese remander theorem says we can unquely solve any par of

More information

Boostrapaggregating (Bagging)

Boostrapaggregating (Bagging) Boostrapaggregatng (Baggng) An ensemble meta-algorthm desgned to mprove the stablty and accuracy of machne learnng algorthms Can be used n both regresson and classfcaton Reduces varance and helps to avod

More information

Ensemble Methods: Boosting

Ensemble Methods: Boosting Ensemble Methods: Boostng Ncholas Ruozz Unversty of Texas at Dallas Based on the sldes of Vbhav Gogate and Rob Schapre Last Tme Varance reducton va baggng Generate new tranng data sets by samplng wth replacement

More information

Methods in Epidemiology. Medical statistics 02/11/2014. Estimation How large is the effect? At the end of the lecture students should be able

Methods in Epidemiology. Medical statistics 02/11/2014. Estimation How large is the effect? At the end of the lecture students should be able Methods n Epdemology Estmaton How large s the effect? Medcal statstcs At the end of the lecture students should be able to llustrate the prncples of statstcal nference to nterpret confdence ntervals Methods

More information

Chapter 11: I = 2 samples independent samples paired samples Chapter 12: I 3 samples of equal size J one-way layout two-way layout

Chapter 11: I = 2 samples independent samples paired samples Chapter 12: I 3 samples of equal size J one-way layout two-way layout Serk Sagtov, Chalmers and GU, February 0, 018 Chapter 1. Analyss of varance Chapter 11: I = samples ndependent samples pared samples Chapter 1: I 3 samples of equal sze one-way layout two-way layout 1

More information

Why Monte Carlo Integration? Introduction to Monte Carlo Method. Continuous Probability. Continuous Probability

Why Monte Carlo Integration? Introduction to Monte Carlo Method. Continuous Probability. Continuous Probability Introducton to Monte Carlo Method Kad Bouatouch IRISA Emal: kad@rsa.fr Wh Monte Carlo Integraton? To generate realstc lookng mages, we need to solve ntegrals of or hgher dmenson Pel flterng and lens smulaton

More information

j) = 1 (note sigma notation) ii. Continuous random variable (e.g. Normal distribution) 1. density function: f ( x) 0 and f ( x) dx = 1

j) = 1 (note sigma notation) ii. Continuous random variable (e.g. Normal distribution) 1. density function: f ( x) 0 and f ( x) dx = 1 Random varables Measure of central tendences and varablty (means and varances) Jont densty functons and ndependence Measures of assocaton (covarance and correlaton) Interestng result Condtonal dstrbutons

More information

Chapter 3. Two-Variable Regression Model: The Problem of Estimation

Chapter 3. Two-Variable Regression Model: The Problem of Estimation Chapter 3. Two-Varable Regresson Model: The Problem of Estmaton Ordnary Least Squares Method (OLS) Recall that, PRF: Y = β 1 + β X + u Thus, snce PRF s not drectly observable, t s estmated by SRF; that

More information

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X Statstcs 1: Probablty Theory II 37 3 EPECTATION OF SEVERAL RANDOM VARIABLES As n Probablty Theory I, the nterest n most stuatons les not on the actual dstrbuton of a random vector, but rather on a number

More information

A New Method for Estimating Overdispersion. David Fletcher and Peter Green Department of Mathematics and Statistics

A New Method for Estimating Overdispersion. David Fletcher and Peter Green Department of Mathematics and Statistics A New Method for Estmatng Overdsperson Davd Fletcher and Peter Green Department of Mathematcs and Statstcs Byron Morgan Insttute of Mathematcs, Statstcs and Actuaral Scence Unversty of Kent, England Overvew

More information

Introduction to Algorithms

Introduction to Algorithms Introducton to Algorthms 6.046J/18.401J Lecture 7 Prof. Potr Indyk Data Structures Role of data structures: Encapsulate data Support certan operatons (e.g., INSERT, DELETE, SEARCH) What data structures

More information

Engineering Risk Benefit Analysis

Engineering Risk Benefit Analysis Engneerng Rsk Beneft Analyss.55, 2.943, 3.577, 6.938, 0.86, 3.62, 6.862, 22.82, ESD.72, ESD.72 RPRA 2. Elements of Probablty Theory George E. Apostolaks Massachusetts Insttute of Technology Sprng 2007

More information

4 Analysis of Variance (ANOVA) 5 ANOVA. 5.1 Introduction. 5.2 Fixed Effects ANOVA

4 Analysis of Variance (ANOVA) 5 ANOVA. 5.1 Introduction. 5.2 Fixed Effects ANOVA 4 Analyss of Varance (ANOVA) 5 ANOVA 51 Introducton ANOVA ANOVA s a way to estmate and test the means of multple populatons We wll start wth one-way ANOVA If the populatons ncluded n the study are selected

More information

+, where 0 x N - n. k k

+, where 0 x N - n. k k CO 745, Mdterm Len Cabrera. A multle choce eam has questons, each of whch has ossble answers. A student nows the correct answer to n of these questons. For the remanng - n questons, he checs the answers

More information

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction ECONOMICS 5* -- NOTE (Summary) ECON 5* -- NOTE The Multple Classcal Lnear Regresson Model (CLRM): Specfcaton and Assumptons. Introducton CLRM stands for the Classcal Lnear Regresson Model. The CLRM s also

More information

Biostatistics. Chapter 11 Simple Linear Correlation and Regression. Jing Li

Biostatistics. Chapter 11 Simple Linear Correlation and Regression. Jing Li Bostatstcs Chapter 11 Smple Lnear Correlaton and Regresson Jng L jng.l@sjtu.edu.cn http://cbb.sjtu.edu.cn/~jngl/courses/2018fall/b372/ Dept of Bonformatcs & Bostatstcs, SJTU Recall eat chocolate Cell 175,

More information

RELIABILITY ASSESSMENT

RELIABILITY ASSESSMENT CHAPTER Rsk Analyss n Engneerng and Economcs RELIABILITY ASSESSMENT A. J. Clark School of Engneerng Department of Cvl and Envronmental Engneerng 4a CHAPMAN HALL/CRC Rsk Analyss for Engneerng Department

More information

Evaluation for sets of classes

Evaluation for sets of classes Evaluaton for Tet Categorzaton Classfcaton accuracy: usual n ML, the proporton of correct decsons, Not approprate f the populaton rate of the class s low Precson, Recall and F 1 Better measures 21 Evaluaton

More information

Average Decision Threshold of CA CFAR and excision CFAR Detectors in the Presence of Strong Pulse Jamming 1

Average Decision Threshold of CA CFAR and excision CFAR Detectors in the Presence of Strong Pulse Jamming 1 Average Decson hreshold of CA CFAR and excson CFAR Detectors n the Presence of Strong Pulse Jammng Ivan G. Garvanov and Chrsto A. Kabachev Insttute of Informaton echnologes Bulgaran Academy of Scences

More information

Answers Problem Set 2 Chem 314A Williamsen Spring 2000

Answers Problem Set 2 Chem 314A Williamsen Spring 2000 Answers Problem Set Chem 314A Wllamsen Sprng 000 1) Gve me the followng crtcal values from the statstcal tables. a) z-statstc,-sded test, 99.7% confdence lmt ±3 b) t-statstc (Case I), 1-sded test, 95%

More information

TAIL BOUNDS FOR SUMS OF GEOMETRIC AND EXPONENTIAL VARIABLES

TAIL BOUNDS FOR SUMS OF GEOMETRIC AND EXPONENTIAL VARIABLES TAIL BOUNDS FOR SUMS OF GEOMETRIC AND EXPONENTIAL VARIABLES SVANTE JANSON Abstract. We gve explct bounds for the tal probabltes for sums of ndependent geometrc or exponental varables, possbly wth dfferent

More information

Copyright 2017 by Taylor Enterprises, Inc., All Rights Reserved. Adjusted Control Limits for U Charts. Dr. Wayne A. Taylor

Copyright 2017 by Taylor Enterprises, Inc., All Rights Reserved. Adjusted Control Limits for U Charts. Dr. Wayne A. Taylor Taylor Enterprses, Inc. Adjusted Control Lmts for U Charts Copyrght 207 by Taylor Enterprses, Inc., All Rghts Reserved. Adjusted Control Lmts for U Charts Dr. Wayne A. Taylor Abstract: U charts are used

More information

As is less than , there is insufficient evidence to reject H 0 at the 5% level. The data may be modelled by Po(2).

As is less than , there is insufficient evidence to reject H 0 at the 5% level. The data may be modelled by Po(2). Ch-squared tests 6D 1 a H 0 : The data can be modelled by a Po() dstrbuton. H 1 : The data cannot be modelled by Po() dstrbuton. The observed and expected results are shown n the table. The last two columns

More information