Lecture 6 More on Complete Randomized Block Design (RBD)

Size: px
Start display at page:

Download "Lecture 6 More on Complete Randomized Block Design (RBD)"

Transcription

1 Lecture 6 More on Complete Randomzed Block Desgn (RBD)

2 Multple test

3 Multple test The multple comparsons or multple testng problem occurs when one consders a set of statstcal nferences smultaneously. For a levels and ther means,, a, testng the followng a, hypotheses: H : 0,,,,,, a

4 Fsher Least Sgnfcant Dfferent (LSD) Method Ths method bulds on the equal varances t-test of the dfference between two means. The test statstc s mproved by usng MS ε rather than s p. It s concluded that y and y dffer at α sgnfcance level f y > LSD, where y LSD t, df MS ( r r )

5 LSD Where r and r are number of observatons under level and. a And df r a

6 Experment-wse Type I error rate (α E ) (the effectve Type I error) The Fsher s method may result n an ncreased probablty of commttng a type I error. The experment-wse Type I error rate s the probablty of commttng at least one Type I error at sgnfcance level of α. It s calculated by α E = -( α) C where C s the number of parwse comparsons (all: C = a(a-)/) The Bonferron adustment determnes the requred Type I error probablty per parwse comparson (α), to secure a pre-determned overall α E.

7 Bonferron adustment The procedure: Compute the number of parwse comparsons (C) [all: C=a(a-)/], where a s the number of populatons. Set α = α E /C, where α E s the true probablty of makng at least one Type I error (called expermentwse Type I error). It s concluded that y and y dffer at α/c sgnfcance level f y y t (C ), df MS ( r ) r

8 Duncan s multple range test The Duncan Multple Range test uses dfferent Sgnfcant Dfference values for means next to each other along the real number lne, and those wth,,, a means n between the two means beng compared. The Sgnfcant Dfference or the range value: R p r, p, MS where r α,p, ν s the Duncan s Sgnfcant Range Value wth parameters p (= range-value) and v (= MS ε degree-of-freedom), and expermentwse alpha level α (= α ont ). n

9 Duncan s Multple Range Test MS ε s the mean square error from the ANOVA table and n s the number of observatons used to calculate the means beng compared. The range-value s: f the two means beng compared are adacent 3 f one mean separates the two means beng compared 4 f two means separate the two means beng compared

10 Sgnfcant ranges for Duncan s Multple Range Test

11 Tukey Kramer method A procedure whch controls the expermentwse error rate s Tukey s honestly sgnfcant dfference test. It s used for levels wth the same replcatons. Assume r =r = =r a =r. Basc dea: f H 0 s true, the value y - y should not be large. W: the reecton regon of multple tests (.e. at least one s reected ) W= y - y c H 0

12 Tukey Kramer method We need to determne c s.t. when all the are true, the probablty of type I error s α,.e. P(W)=α r MS c r MS y r MS y P r MS c r MS y y P r MS c r MS y y P c y y P c y y P c y y c y y P hypothesses are true all - mn - - max ) - ) - ( - ( max - max - max - max - - P - - P (W) H 0

13 Tukey Kramer method MSε s mean square of errors n ANOVA, and s unbased estmator of σ. It s ndependent wth y, so y - MS r ~ t(fε) t (r) max They are the largest and smallest order statstcs from a sample (a observatons, obey t(fε)). Denote q a,f ) t - y - MS r t () mn ( ( a) t() y - MS r

14 Tukey Kramer method Then c P(W) Pq( a,f ) MS r c. e. q - ( a,f ), c q MS r - ( a,f ) MS r So the reecton regon of these multple tests wth sgnfcant level α s y - y q - ( a,f ) MS r,,,,,,a

15 Scheffe method For dfferent number of replcatons Under ~ N(0, ) Replace σ by MSε, and MSε s ndependent wth y, so y - y ~ F(, fε) If F y - y r H 0 r H MS 0 : r r s true, F should not be large.

16 Scheffe method When all the H 0 are true, the reecton regon of multple tests s W F c P( W ) P max F Scheffe proved that approxmately a - obeys F(a-, fε). Gven sgnfcant level α, then c ( a -)F ( a - -,f ) The reecton regon s F c Pmax F c y - y ( a -)F - ( a -,f )( )MS,,, r r,,,a

17 Test of normalty

18 Test of normalty Many test procedures that we have developed rely on the assumpton of Normalty. There are several methods of assessng whether data are normally dstrbuted or not (H 0 : the data obeys Normal dstrbuton; H : not obey Normal dstrbuton).

19 Test of normalty They fall nto two broad categores: graphcal and statstcal. The most common are:.graphcal Q-Q probablty plots Cumulatve frequency (P-P) plots. Statstcal Kolmogorov-Smrnov test Shapro-Wlk test

20 Normal quantle Normal quantle Q-Q probablty plots Q-Q plots dsplay the observed values aganst normally dstrbuted data (represented by the lne). Normal Q-Q plot: Normally dstrbuton data Normal Q-Q plot: Non-normally dstrbuton data Observaton Observaton Normally dstrbuted data fall along the lne.

21 Normal cumulatve probablty Normal cumulatve probablty P-P plots P-P (cumulatve) plot dsplays the cumulatve probabltes aganst normally dstrbuted data (represented by the lne). Normal P-P plot: Normally dstrbuton data Normal P-P plot: Non-normally dstrbuton data Observed cumulatve probablty Observed cumulatve probablty Normally dstrbuted data fall along the lne.

22 Statstcal tests Statstcal tests for normalty are more precse snce actual probabltes are calculated. The Kolmogorov-Smrnov and Shapro-Wlks tests for normalty calculate the probablty that the sample was drawn from a normal populaton. The hypotheses used are: H 0 : The sample data are not sgnfcantly dfferent than a normal populaton. H a : The sample data are sgnfcantly dfferent than a normal populaton.

23 Statstcal tests Typcally, we are nterested n fndng a dfference between groups. When we are, we look for small probabltes. If the probablty of fndng an event s rare (less than 5%) and we actually fnd t, that s of nterest. When testng normalty, we are not lookng for a dfference. In effect, we want our data set to be no dfferent than normal. So when testng for normalty: Probabltes > 0.05 mean the data are normal. Probabltes < 0.05 mean the data are NOT normal.

24 Based on comparng the observed frequences and the expected frequences Let F (x) dstrbuton. Kolmogorov-Smrnov Normalty Test P(X x) In the unform(0,) case: be the cdf for the F(x) Compare ths to the emprcal dstrbuton functon : Fˆ n (x) n (number of X x, 0 n the sample x) x

25 Kolmogorov-Smrnov If X, X,, X n really come from the dstrbuton wth cdf F, the dstance D D should be small. Example: Suppose we have 7 observatons: Put them n order: Normalty Test n max (x) F(x) x Fˆ n -

26 Kolmogorov-Smrnov Normalty Test Now the emprcal cdf s: ˆ F 7 (x) 0 for x 0. ˆ F 7 ˆ F 7 ˆ F 7 ˆ (x) (x) (x) (x) Fˆ7 F 7 ˆ F 7 (x) (x) for 0. for 0. for 0.4 x 0. x 0.4 x 0.5 for 0.5 x 0.6 for 0.6 for x 0.9 x 0.9 D

27 Kolmogorov-Smrnov Normalty Test Let X (), X (),,X (n) be the ordered sample. Then D n can be estmated by Dn Where D D n n max max n max n D n (assumng non-repeatng values) n, D - F(X F(X () ) - n () - ) - n

28 Kolmogorov-Smrnov Normalty Test We reect that ths sample came from the proposed dstrbuton f the emprcal cdf s too far from the true cdf of the proposed dstrbuton.e.: We reect f D n s too large.

29 Kolmogorov-Smrnov Normalty Test In the 930 s, Kolmogorov and Smrnov / - - t showed that lm P n Dn t - (-) e n So, for large sample szes, you could assume P(n D n t) - and fnd the value of t that makes the rght hand sde -α for an α level test. (-) - e - t

30 Kolmogorov-Smrnov Normalty Test For small samples, people have worked out and tabulated crtcal values, but there s no nce closed form soluton. J. Pomeranz (973) J. Durbn (968) Good approxmatons for n>40: α CV.0730 n.39 n.358 n.574 n.676 n

31 Kolmogorov-Smrnov Normalty Test From a table, the crtcal value for a 0.05 level test for n=7 s D So we cannot reect H 0,.e. the data obeys Normal dstrbuton.

32 Shapro-Wlk test The test statstc s: Where x () s the th order statstc The constants a are gven by W m,..., m n are the expected values of the order statstcs of ndependent and dentcally dstrbuted random varables sampled from the standard normal dstrbuton, and V s the covarance matrx of those order statstcs. ( [n/] m V (a (m V V m ) a n x (n-) (x T - T,,a n), where m (m T - - T,,mn) - - x) x () )

33 Shapro-Wlk test The user may reect the null hypothess f s too small W should be closed to under H 0. The reecton regon s {W c} Where P(W c)

34 Example The data from FDP actvtes of mce. Obs x Put the data n order and dvde them nto two. Obs n order x

35 So Example Order a x (n+-) x () d =x (n+-) - a d x () Total.5805 W ( [n/] a n x (n-) (x - - x) x () ) (.5805) From the reference table of W, W (8.0.05) =0.88<W, so we cannot reect H 0.

36 Choosng the methods Whch normalty test should I use? Kolmogorov-Smrnov: More sutable for large samples. Shapro-Wlk: Works best for small data sets

37 Test of homogenety

38 Test of homogenety If we have varous groups or levels of a varable, we want to make sure that the varance wthn these groups or levels s the same. It s the basc assumpton for ANOVA. H 0 : H : not H 0 a

39 Test of homogenety Some common methods:. Hartley test: only used for the same sample sze for each level.. Bartlett test: sample sze may be dfferent, but each sze>=5 3. Adusted Bartlett test: sample sze may be dfferent, and no restrcton on sze

40 Hartley test The numbers of replcatons are the same for each level,.e. r r r a r Hartley proposed the statstc: max{s mn{s,s,s,,s,,s a H a The values of H under H 0 can be smulated, and denote the dstrbuton as H(a, f), f=r- } }

41 Hartley test Under H 0, the value of H should be close to. Gven sgnfcance level α, the reecton regon should be W {H H - ( a,f)} Where H - ( a, dstrbuton. f ) s the - α quantle of H

42 Bartlett test The th sample varance s S Where r - We know that r r (y -,,,, a It s the (average) arthmetc mean of y ) Q f Q (y - y),f r S MS f, S,, Sa -(degree of freedom) a Q a f f S

43 Bartlett test Denote geometrc mean GMS Where It s true that GMS f f S S S MS f a f GMS S So under H 0, GMS should be close to. If t s too large, reect H 0. Reecton regon s a MS S f a f a S a MS MS W {ln d} GMS ( r -) n - a

44 Bartlett test Bartlett proved that: for large sample, one MS functon of approxmately obeys ( a.e. B f C ln -) GMS (ln MS - ln GMS ) ~ ( a -) Where C 3( a -) a - f f s always larger than.

45 Bartlett test Takng the statstc B a (f ln MS - f lns C The reecton regon s W { B - ( a -)} ) ~ ( a -) Here B approxmately obeys. So the method s more sutable for data wth more than 5 replcatons n each level.

46 Adusted Bartlett test Box proposed the adusted Bartlett statstc B' fbc (A - BC) B and C are gven above. And f f a -, f a (C -), A - C f f Under H 0, B approxmately obeys F(f, f )

47 Adusted Bartlett test The reecton regon s W { B' F (f,f - )} Sometmes, f s not an nteger. We can use Interpolaton method of the quantles for F dstrbuton.

48 Example Testng folc acd content for teas from 4 locatons. Level Data Rep Sum Mean SS wthn groups A r 7 T Q. 83 A r 5 T Q. 30 A r 6 T Q A r 6 T Q r 4 T S 4.77

49 Example For Bartlett test, And MS ε =.09. Then..4,.83,.4, 4 3 S S S S f f a C a ln. 5 ln.4 5 ln.83 4 ln.4 6 ln ln ln a f S MS f C B

50 Example Gven α=0.05, a 4 7. B So we cannot reect H 0,.e. we agree wth that a

51 Example For Adusted Bartlett test, f 4 3 f C A B Gven α=0.05, F, 68.4 We cannot reect H F 3,.60 ' B

52 Data transformaton Data transformaton s used to make your data obey Normal dstrbuton. Three normal transformaton methods: a) No need for transformaton b) Use square root transformaton c) Use logarthmc transformaton d) Use recprocal transformaton

53 Let s work on the prevous example together Mutants Rep I Rep II Rep III A B C D E F G H Do the randomzaton of the three blocks Buld the ANOVA table for the observed data Multple test by LSD Normalty test by Q-Q and P-P plot What else do we want? Orthogonal contrasts

Topic- 11 The Analysis of Variance

Topic- 11 The Analysis of Variance Topc- 11 The Analyss of Varance Expermental Desgn The samplng plan or expermental desgn determnes the way that a sample s selected. In an observatonal study, the expermenter observes data that already

More information

Modeling and Simulation NETW 707

Modeling and Simulation NETW 707 Modelng and Smulaton NETW 707 Lecture 5 Tests for Random Numbers Course Instructor: Dr.-Ing. Magge Mashaly magge.ezzat@guc.edu.eg C3.220 1 Propertes of Random Numbers Random Number Generators (RNGs) must

More information

Chapter 11: I = 2 samples independent samples paired samples Chapter 12: I 3 samples of equal size J one-way layout two-way layout

Chapter 11: I = 2 samples independent samples paired samples Chapter 12: I 3 samples of equal size J one-way layout two-way layout Serk Sagtov, Chalmers and GU, February 0, 018 Chapter 1. Analyss of varance Chapter 11: I = samples ndependent samples pared samples Chapter 1: I 3 samples of equal sze one-way layout two-way layout 1

More information

UNIVERSITY OF TORONTO Faculty of Arts and Science. December 2005 Examinations STA437H1F/STA1005HF. Duration - 3 hours

UNIVERSITY OF TORONTO Faculty of Arts and Science. December 2005 Examinations STA437H1F/STA1005HF. Duration - 3 hours UNIVERSITY OF TORONTO Faculty of Arts and Scence December 005 Examnatons STA47HF/STA005HF Duraton - hours AIDS ALLOWED: (to be suppled by the student) Non-programmable calculator One handwrtten 8.5'' x

More information

Lecture 4 Hypothesis Testing

Lecture 4 Hypothesis Testing Lecture 4 Hypothess Testng We may wsh to test pror hypotheses about the coeffcents we estmate. We can use the estmates to test whether the data rejects our hypothess. An example mght be that we wsh to

More information

BOOTSTRAP METHOD FOR TESTING OF EQUALITY OF SEVERAL MEANS. M. Krishna Reddy, B. Naveen Kumar and Y. Ramu

BOOTSTRAP METHOD FOR TESTING OF EQUALITY OF SEVERAL MEANS. M. Krishna Reddy, B. Naveen Kumar and Y. Ramu BOOTSTRAP METHOD FOR TESTING OF EQUALITY OF SEVERAL MEANS M. Krshna Reddy, B. Naveen Kumar and Y. Ramu Department of Statstcs, Osmana Unversty, Hyderabad -500 007, Inda. nanbyrozu@gmal.com, ramu0@gmal.com

More information

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Analyss of Varance and Desgn of Experment-I MODULE VIII LECTURE - 34 ANALYSIS OF VARIANCE IN RANDOM-EFFECTS MODEL AND MIXED-EFFECTS EFFECTS MODEL Dr Shalabh Department of Mathematcs and Statstcs Indan

More information

4.1. Lecture 4: Fitting distributions: goodness of fit. Goodness of fit: the underlying principle

4.1. Lecture 4: Fitting distributions: goodness of fit. Goodness of fit: the underlying principle Lecture 4: Fttng dstrbutons: goodness of ft Goodness of ft Testng goodness of ft Testng normalty An mportant note on testng normalty! L4.1 Goodness of ft measures the extent to whch some emprcal dstrbuton

More information

Statistics for Economics & Business

Statistics for Economics & Business Statstcs for Economcs & Busness Smple Lnear Regresson Learnng Objectves In ths chapter, you learn: How to use regresson analyss to predct the value of a dependent varable based on an ndependent varable

More information

x = , so that calculated

x = , so that calculated Stat 4, secton Sngle Factor ANOVA notes by Tm Plachowsk n chapter 8 we conducted hypothess tests n whch we compared a sngle sample s mean or proporton to some hypotheszed value Chapter 9 expanded ths to

More information

LINEAR REGRESSION ANALYSIS. MODULE VIII Lecture Indicator Variables

LINEAR REGRESSION ANALYSIS. MODULE VIII Lecture Indicator Variables LINEAR REGRESSION ANALYSIS MODULE VIII Lecture - 7 Indcator Varables Dr. Shalabh Department of Maematcs and Statstcs Indan Insttute of Technology Kanpur Indcator varables versus quanttatve explanatory

More information

Simulated Power of the Discrete Cramér-von Mises Goodness-of-Fit Tests

Simulated Power of the Discrete Cramér-von Mises Goodness-of-Fit Tests Smulated of the Cramér-von Mses Goodness-of-Ft Tests Steele, M., Chaselng, J. and 3 Hurst, C. School of Mathematcal and Physcal Scences, James Cook Unversty, Australan School of Envronmental Studes, Grffth

More information

ISQS 6348 Final Open notes, no books. Points out of 100 in parentheses. Y 1 ε 2

ISQS 6348 Final Open notes, no books. Points out of 100 in parentheses. Y 1 ε 2 ISQS 6348 Fnal Open notes, no books. Ponts out of 100 n parentheses. 1. The followng path dagram s gven: ε 1 Y 1 ε F Y 1.A. (10) Wrte down the usual model and assumptons that are mpled by ths dagram. Soluton:

More information

1. Inference on Regression Parameters a. Finding Mean, s.d and covariance amongst estimates. 2. Confidence Intervals and Working Hotelling Bands

1. Inference on Regression Parameters a. Finding Mean, s.d and covariance amongst estimates. 2. Confidence Intervals and Working Hotelling Bands Content. Inference on Regresson Parameters a. Fndng Mean, s.d and covarance amongst estmates.. Confdence Intervals and Workng Hotellng Bands 3. Cochran s Theorem 4. General Lnear Testng 5. Measures of

More information

Department of Statistics University of Toronto STA305H1S / 1004 HS Design and Analysis of Experiments Term Test - Winter Solution

Department of Statistics University of Toronto STA305H1S / 1004 HS Design and Analysis of Experiments Term Test - Winter Solution Department of Statstcs Unversty of Toronto STA35HS / HS Desgn and Analyss of Experments Term Test - Wnter - Soluton February, Last Name: Frst Name: Student Number: Instructons: Tme: hours. Ads: a non-programmable

More information

7.1. Single classification analysis of variance (ANOVA) Why not use multiple 2-sample 2. When to use ANOVA

7.1. Single classification analysis of variance (ANOVA) Why not use multiple 2-sample 2. When to use ANOVA Sngle classfcaton analyss of varance (ANOVA) When to use ANOVA ANOVA models and parttonng sums of squares ANOVA: hypothess testng ANOVA: assumptons A non-parametrc alternatve: Kruskal-Walls ANOVA Power

More information

BETWEEN-PARTICIPANTS EXPERIMENTAL DESIGNS

BETWEEN-PARTICIPANTS EXPERIMENTAL DESIGNS 1 BETWEEN-PARTICIPANTS EXPERIMENTAL DESIGNS I. Sngle-factor desgns: the model s: y j = µ + α + ε j = µ + ε j where: y j jth observaton n the sample from the th populaton ( = 1,..., I; j = 1,..., n ) µ

More information

ANSWERS. Problem 1. and the moment generating function (mgf) by. defined for any real t. Use this to show that E( U) var( U)

ANSWERS. Problem 1. and the moment generating function (mgf) by. defined for any real t. Use this to show that E( U) var( U) Econ 413 Exam 13 H ANSWERS Settet er nndelt 9 deloppgaver, A,B,C, som alle anbefales å telle lkt for å gøre det ltt lettere å stå. Svar er gtt . Unfortunately, there s a prntng error n the hnt of

More information

/ n ) are compared. The logic is: if the two

/ n ) are compared. The logic is: if the two STAT C141, Sprng 2005 Lecture 13 Two sample tests One sample tests: examples of goodness of ft tests, where we are testng whether our data supports predctons. Two sample tests: called as tests of ndependence

More information

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Analyss of Varance and Desgn of Experments- MODULE LECTURE - 6 EXPERMENTAL DESGN MODELS Dr. Shalabh Department of Mathematcs and Statstcs ndan nsttute of Technology Kanpur Two-way classfcaton wth nteractons

More information

Joint Statistical Meetings - Biopharmaceutical Section

Joint Statistical Meetings - Biopharmaceutical Section Iteratve Ch-Square Test for Equvalence of Multple Treatment Groups Te-Hua Ng*, U.S. Food and Drug Admnstraton 1401 Rockvlle Pke, #200S, HFM-217, Rockvlle, MD 20852-1448 Key Words: Equvalence Testng; Actve

More information

Chapter 12 Analysis of Covariance

Chapter 12 Analysis of Covariance Chapter Analyss of Covarance Any scentfc experment s performed to know somethng that s unknown about a group of treatments and to test certan hypothess about the correspondng treatment effect When varablty

More information

experimenteel en correlationeel onderzoek

experimenteel en correlationeel onderzoek expermenteel en correlatoneel onderzoek lecture 6: one-way analyss of varance Leary. Introducton to Behavoral Research Methods. pages 246 271 (chapters 10 and 11): conceptual statstcs Moore, McCabe, and

More information

Durban Watson for Testing the Lack-of-Fit of Polynomial Regression Models without Replications

Durban Watson for Testing the Lack-of-Fit of Polynomial Regression Models without Replications Durban Watson for Testng the Lack-of-Ft of Polynomal Regresson Models wthout Replcatons Ruba A. Alyaf, Maha A. Omar, Abdullah A. Al-Shha ralyaf@ksu.edu.sa, maomar@ksu.edu.sa, aalshha@ksu.edu.sa Department

More information

Two-factor model. Statistical Models. Least Squares estimation in LM two-factor model. Rats

Two-factor model. Statistical Models. Least Squares estimation in LM two-factor model. Rats tatstcal Models Lecture nalyss of Varance wo-factor model Overall mean Man effect of factor at level Man effect of factor at level Y µ + α + β + γ + ε Eε f (, ( l, Cov( ε, ε ) lmr f (, nteracton effect

More information

Statistics II Final Exam 26/6/18

Statistics II Final Exam 26/6/18 Statstcs II Fnal Exam 26/6/18 Academc Year 2017/18 Solutons Exam duraton: 2 h 30 mn 1. (3 ponts) A town hall s conductng a study to determne the amount of leftover food produced by the restaurants n the

More information

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Analyss of Varance and Desgn of Experment-I MODULE VII LECTURE - 3 ANALYSIS OF COVARIANCE Dr Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur Any scentfc experment s performed

More information

Topic 23 - Randomized Complete Block Designs (RCBD)

Topic 23 - Randomized Complete Block Designs (RCBD) Topc 3 ANOVA (III) 3-1 Topc 3 - Randomzed Complete Block Desgns (RCBD) Defn: A Randomzed Complete Block Desgn s a varant of the completely randomzed desgn (CRD) that we recently learned. In ths desgn,

More information

ANOVA. The Observations y ij

ANOVA. The Observations y ij ANOVA Stands for ANalyss Of VArance But t s a test of dfferences n means The dea: The Observatons y j Treatment group = 1 = 2 = k y 11 y 21 y k,1 y 12 y 22 y k,2 y 1, n1 y 2, n2 y k, nk means: m 1 m 2

More information

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4)

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4) I. Classcal Assumptons Econ7 Appled Econometrcs Topc 3: Classcal Model (Studenmund, Chapter 4) We have defned OLS and studed some algebrac propertes of OLS. In ths topc we wll study statstcal propertes

More information

First Year Examination Department of Statistics, University of Florida

First Year Examination Department of Statistics, University of Florida Frst Year Examnaton Department of Statstcs, Unversty of Florda May 7, 010, 8:00 am - 1:00 noon Instructons: 1. You have four hours to answer questons n ths examnaton.. You must show your work to receve

More information

Chapter 11: Simple Linear Regression and Correlation

Chapter 11: Simple Linear Regression and Correlation Chapter 11: Smple Lnear Regresson and Correlaton 11-1 Emprcal Models 11-2 Smple Lnear Regresson 11-3 Propertes of the Least Squares Estmators 11-4 Hypothess Test n Smple Lnear Regresson 11-4.1 Use of t-tests

More information

Answers Problem Set 2 Chem 314A Williamsen Spring 2000

Answers Problem Set 2 Chem 314A Williamsen Spring 2000 Answers Problem Set Chem 314A Wllamsen Sprng 000 1) Gve me the followng crtcal values from the statstcal tables. a) z-statstc,-sded test, 99.7% confdence lmt ±3 b) t-statstc (Case I), 1-sded test, 95%

More information

F statistic = s2 1 s 2 ( F for Fisher )

F statistic = s2 1 s 2 ( F for Fisher ) Stat 4 ANOVA Analyss of Varance /6/04 Comparng Two varances: F dstrbuton Typcal Data Sets One way analyss of varance : example Notaton for one way ANOVA Comparng Two varances: F dstrbuton We saw that the

More information

Basic Business Statistics, 10/e

Basic Business Statistics, 10/e Chapter 13 13-1 Basc Busness Statstcs 11 th Edton Chapter 13 Smple Lnear Regresson Basc Busness Statstcs, 11e 009 Prentce-Hall, Inc. Chap 13-1 Learnng Objectves In ths chapter, you learn: How to use regresson

More information

1-FACTOR ANOVA (MOTIVATION) [DEVORE 10.1]

1-FACTOR ANOVA (MOTIVATION) [DEVORE 10.1] 1-FACTOR ANOVA (MOTIVATION) [DEVORE 10.1] Hgh varance between groups Low varance wthn groups s 2 between/s 2 wthn 1 Factor A clearly has a sgnfcant effect!! Low varance between groups Hgh varance wthn

More information

Chapter 3 Describing Data Using Numerical Measures

Chapter 3 Describing Data Using Numerical Measures Chapter 3 Student Lecture Notes 3-1 Chapter 3 Descrbng Data Usng Numercal Measures Fall 2006 Fundamentals of Busness Statstcs 1 Chapter Goals To establsh the usefulness of summary measures of data. The

More information

4 Analysis of Variance (ANOVA) 5 ANOVA. 5.1 Introduction. 5.2 Fixed Effects ANOVA

4 Analysis of Variance (ANOVA) 5 ANOVA. 5.1 Introduction. 5.2 Fixed Effects ANOVA 4 Analyss of Varance (ANOVA) 5 ANOVA 51 Introducton ANOVA ANOVA s a way to estmate and test the means of multple populatons We wll start wth one-way ANOVA If the populatons ncluded n the study are selected

More information

Statistics for Managers Using Microsoft Excel/SPSS Chapter 13 The Simple Linear Regression Model and Correlation

Statistics for Managers Using Microsoft Excel/SPSS Chapter 13 The Simple Linear Regression Model and Correlation Statstcs for Managers Usng Mcrosoft Excel/SPSS Chapter 13 The Smple Lnear Regresson Model and Correlaton 1999 Prentce-Hall, Inc. Chap. 13-1 Chapter Topcs Types of Regresson Models Determnng the Smple Lnear

More information

Chapter 13 Analysis of Variance and Experimental Design

Chapter 13 Analysis of Variance and Experimental Design Chapter 3 Analyss of Varance and Expermental Desgn Learnng Obectves. Understand how the analyss of varance procedure can be used to determne f the means of more than two populatons are equal.. Know the

More information

STATISTICS QUESTIONS. Step by Step Solutions.

STATISTICS QUESTIONS. Step by Step Solutions. STATISTICS QUESTIONS Step by Step Solutons www.mathcracker.com 9//016 Problem 1: A researcher s nterested n the effects of famly sze on delnquency for a group of offenders and examnes famles wth one to

More information

Lecture 6: Introduction to Linear Regression

Lecture 6: Introduction to Linear Regression Lecture 6: Introducton to Lnear Regresson An Manchakul amancha@jhsph.edu 24 Aprl 27 Lnear regresson: man dea Lnear regresson can be used to study an outcome as a lnear functon of a predctor Example: 6

More information

4.3 Poisson Regression

4.3 Poisson Regression of teratvely reweghted least squares regressons (the IRLS algorthm). We do wthout gvng further detals, but nstead focus on the practcal applcaton. > glm(survval~log(weght)+age, famly="bnomal", data=baby)

More information

UCLA STAT 13 Introduction to Statistical Methods for the Life and Health Sciences. Chapter 11 Analysis of Variance - ANOVA. Instructor: Ivo Dinov,

UCLA STAT 13 Introduction to Statistical Methods for the Life and Health Sciences. Chapter 11 Analysis of Variance - ANOVA. Instructor: Ivo Dinov, UCLA STAT 3 ntroducton to Statstcal Methods for the Lfe and Health Scences nstructor: vo Dnov, Asst. Prof. of Statstcs and Neurology Chapter Analyss of Varance - ANOVA Teachng Assstants: Fred Phoa, Anwer

More information

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Analyss of Varance and Desgn of Exerments-I MODULE II LECTURE - GENERAL LINEAR HYPOTHESIS AND ANALYSIS OF VARIANCE Dr. Shalabh Deartment of Mathematcs and Statstcs Indan Insttute of Technology Kanur 3.

More information

Here is the rationale: If X and y have a strong positive relationship to one another, then ( x x) will tend to be positive when ( y y)

Here is the rationale: If X and y have a strong positive relationship to one another, then ( x x) will tend to be positive when ( y y) Secton 1.5 Correlaton In the prevous sectons, we looked at regresson and the value r was a measurement of how much of the varaton n y can be attrbuted to the lnear relatonshp between y and x. In ths secton,

More information

Department of Quantitative Methods & Information Systems. Time Series and Their Components QMIS 320. Chapter 6

Department of Quantitative Methods & Information Systems. Time Series and Their Components QMIS 320. Chapter 6 Department of Quanttatve Methods & Informaton Systems Tme Seres and Ther Components QMIS 30 Chapter 6 Fall 00 Dr. Mohammad Zanal These sldes were modfed from ther orgnal source for educatonal purpose only.

More information

Chapter 13: Multiple Regression

Chapter 13: Multiple Regression Chapter 13: Multple Regresson 13.1 Developng the multple-regresson Model The general model can be descrbed as: It smplfes for two ndependent varables: The sample ft parameter b 0, b 1, and b are used to

More information

# c i. INFERENCE FOR CONTRASTS (Chapter 4) It's unbiased: Recall: A contrast is a linear combination of effects with coefficients summing to zero:

# c i. INFERENCE FOR CONTRASTS (Chapter 4) It's unbiased: Recall: A contrast is a linear combination of effects with coefficients summing to zero: 1 INFERENCE FOR CONTRASTS (Chapter 4 Recall: A contrast s a lnear combnaton of effects wth coeffcents summng to zero: " where " = 0. Specfc types of contrasts of nterest nclude: Dfferences n effects Dfferences

More information

Chapter 8 Indicator Variables

Chapter 8 Indicator Variables Chapter 8 Indcator Varables In general, e explanatory varables n any regresson analyss are assumed to be quanttatve n nature. For example, e varables lke temperature, dstance, age etc. are quanttatve n

More information

Comparison of Regression Lines

Comparison of Regression Lines STATGRAPHICS Rev. 9/13/2013 Comparson of Regresson Lnes Summary... 1 Data Input... 3 Analyss Summary... 4 Plot of Ftted Model... 6 Condtonal Sums of Squares... 6 Analyss Optons... 7 Forecasts... 8 Confdence

More information

Chapter 14 Simple Linear Regression

Chapter 14 Simple Linear Regression Chapter 4 Smple Lnear Regresson Chapter 4 - Smple Lnear Regresson Manageral decsons often are based on the relatonshp between two or more varables. Regresson analss can be used to develop an equaton showng

More information

Regression Analysis. Regression Analysis

Regression Analysis. Regression Analysis Regresson Analyss Smple Regresson Multvarate Regresson Stepwse Regresson Replcaton and Predcton Error 1 Regresson Analyss In general, we "ft" a model by mnmzng a metrc that represents the error. n mn (y

More information

Stat 642, Lecture notes for 01/27/ d i = 1 t. n i t nj. n j

Stat 642, Lecture notes for 01/27/ d i = 1 t. n i t nj. n j Stat 642, Lecture notes for 01/27/05 18 Rate Standardzaton Contnued: Note that f T n t where T s the cumulatve follow-up tme and n s the number of subjects at rsk at the mdpont or nterval, and d s the

More information

Definition. Measures of Dispersion. Measures of Dispersion. Definition. The Range. Measures of Dispersion 3/24/2014

Definition. Measures of Dispersion. Measures of Dispersion. Definition. The Range. Measures of Dispersion 3/24/2014 Measures of Dsperson Defenton Range Interquartle Range Varance and Standard Devaton Defnton Measures of dsperson are descrptve statstcs that descrbe how smlar a set of scores are to each other The more

More information

Interval Estimation in the Classical Normal Linear Regression Model. 1. Introduction

Interval Estimation in the Classical Normal Linear Regression Model. 1. Introduction ECONOMICS 35* -- NOTE 7 ECON 35* -- NOTE 7 Interval Estmaton n the Classcal Normal Lnear Regresson Model Ths note outlnes the basc elements of nterval estmaton n the Classcal Normal Lnear Regresson Model

More information

A nonparametric two-sample wald test of equality of variances

A nonparametric two-sample wald test of equality of variances Unversty of Wollongong Research Onlne Centre for Statstcal & Survey Methodology Workng Paper Seres Faculty of Engneerng and Informaton Scences 0 A nonparametrc two-sample wald test of equalty of varances

More information

STAT 511 FINAL EXAM NAME Spring 2001

STAT 511 FINAL EXAM NAME Spring 2001 STAT 5 FINAL EXAM NAME Sprng Instructons: Ths s a closed book exam. No notes or books are allowed. ou may use a calculator but you are not allowed to store notes or formulas n the calculator. Please wrte

More information

j) = 1 (note sigma notation) ii. Continuous random variable (e.g. Normal distribution) 1. density function: f ( x) 0 and f ( x) dx = 1

j) = 1 (note sigma notation) ii. Continuous random variable (e.g. Normal distribution) 1. density function: f ( x) 0 and f ( x) dx = 1 Random varables Measure of central tendences and varablty (means and varances) Jont densty functons and ndependence Measures of assocaton (covarance and correlaton) Interestng result Condtonal dstrbutons

More information

MD. LUTFOR RAHMAN 1 AND KALIPADA SEN 2 Abstract

MD. LUTFOR RAHMAN 1 AND KALIPADA SEN 2 Abstract ISSN 058-71 Bangladesh J. Agrl. Res. 34(3) : 395-401, September 009 PROBLEMS OF USUAL EIGHTED ANALYSIS OF VARIANCE (ANOVA) IN RANDOMIZED BLOCK DESIGN (RBD) ITH MORE THAN ONE OBSERVATIONS PER CELL HEN ERROR

More information

STAT 3008 Applied Regression Analysis

STAT 3008 Applied Regression Analysis STAT 3008 Appled Regresson Analyss Tutoral : Smple Lnear Regresson LAI Chun He Department of Statstcs, The Chnese Unversty of Hong Kong 1 Model Assumpton To quantfy the relatonshp between two factors,

More information

where I = (n x n) diagonal identity matrix with diagonal elements = 1 and off-diagonal elements = 0; and σ 2 e = variance of (Y X).

where I = (n x n) diagonal identity matrix with diagonal elements = 1 and off-diagonal elements = 0; and σ 2 e = variance of (Y X). 11.4.1 Estmaton of Multple Regresson Coeffcents In multple lnear regresson, we essentally solve n equatons for the p unnown parameters. hus n must e equal to or greater than p and n practce n should e

More information

Introduction to Analysis of Variance (ANOVA) Part 1

Introduction to Analysis of Variance (ANOVA) Part 1 Introducton to Analss of Varance (ANOVA) Part 1 Sngle factor The logc of Analss of Varance Is the varance explaned b the model >> than the resdual varance In regresson models Varance explaned b regresson

More information

Statistics for Managers Using Microsoft Excel/SPSS Chapter 14 Multiple Regression Models

Statistics for Managers Using Microsoft Excel/SPSS Chapter 14 Multiple Regression Models Statstcs for Managers Usng Mcrosoft Excel/SPSS Chapter 14 Multple Regresson Models 1999 Prentce-Hall, Inc. Chap. 14-1 Chapter Topcs The Multple Regresson Model Contrbuton of Indvdual Independent Varables

More information

Correlation and Regression. Correlation 9.1. Correlation. Chapter 9

Correlation and Regression. Correlation 9.1. Correlation. Chapter 9 Chapter 9 Correlaton and Regresson 9. Correlaton Correlaton A correlaton s a relatonshp between two varables. The data can be represented b the ordered pars (, ) where s the ndependent (or eplanator) varable,

More information

Statistics Chapter 4

Statistics Chapter 4 Statstcs Chapter 4 "There are three knds of les: les, damned les, and statstcs." Benjamn Dsrael, 1895 (Brtsh statesman) Gaussan Dstrbuton, 4-1 If a measurement s repeated many tmes a statstcal treatment

More information

Reduced slides. Introduction to Analysis of Variance (ANOVA) Part 1. Single factor

Reduced slides. Introduction to Analysis of Variance (ANOVA) Part 1. Single factor Reduced sldes Introducton to Analss of Varance (ANOVA) Part 1 Sngle factor 1 The logc of Analss of Varance Is the varance explaned b the model >> than the resdual varance In regresson models Varance explaned

More information

Tests of Single Linear Coefficient Restrictions: t-tests and F-tests. 1. Basic Rules. 2. Testing Single Linear Coefficient Restrictions

Tests of Single Linear Coefficient Restrictions: t-tests and F-tests. 1. Basic Rules. 2. Testing Single Linear Coefficient Restrictions ECONOMICS 35* -- NOTE ECON 35* -- NOTE Tests of Sngle Lnear Coeffcent Restrctons: t-tests and -tests Basc Rules Tests of a sngle lnear coeffcent restrcton can be performed usng ether a two-taled t-test

More information

Predictive Analytics : QM901.1x Prof U Dinesh Kumar, IIMB. All Rights Reserved, Indian Institute of Management Bangalore

Predictive Analytics : QM901.1x Prof U Dinesh Kumar, IIMB. All Rights Reserved, Indian Institute of Management Bangalore Sesson Outlne Introducton to classfcaton problems and dscrete choce models. Introducton to Logstcs Regresson. Logstc functon and Logt functon. Maxmum Lkelhood Estmator (MLE) for estmaton of LR parameters.

More information

Unit 8: Analysis of Variance (ANOVA) Chapter 5, Sec in the Text

Unit 8: Analysis of Variance (ANOVA) Chapter 5, Sec in the Text Unt 8: Analyss of Varance (ANOVA) Chapter 5, Sec. 13.1-13. n the Text Unt 8 Outlne Analyss of Varance (ANOVA) General format and ANOVA s F-test Assumptons for ANOVA F-test Contrast testng Other post-hoc

More information

x i1 =1 for all i (the constant ).

x i1 =1 for all i (the constant ). Chapter 5 The Multple Regresson Model Consder an economc model where the dependent varable s a functon of K explanatory varables. The economc model has the form: y = f ( x,x,..., ) xk Approxmate ths by

More information

Hydrological statistics. Hydrological statistics and extremes

Hydrological statistics. Hydrological statistics and extremes 5--0 Stochastc Hydrology Hydrologcal statstcs and extremes Marc F.P. Berkens Professor of Hydrology Faculty of Geoscences Hydrologcal statstcs Mostly concernes wth the statstcal analyss of hydrologcal

More information

Negative Binomial Regression

Negative Binomial Regression STATGRAPHICS Rev. 9/16/2013 Negatve Bnomal Regresson Summary... 1 Data Input... 3 Statstcal Model... 3 Analyss Summary... 4 Analyss Optons... 7 Plot of Ftted Model... 8 Observed Versus Predcted... 10 Predctons...

More information

Economics 130. Lecture 4 Simple Linear Regression Continued

Economics 130. Lecture 4 Simple Linear Regression Continued Economcs 130 Lecture 4 Contnued Readngs for Week 4 Text, Chapter and 3. We contnue wth addressng our second ssue + add n how we evaluate these relatonshps: Where do we get data to do ths analyss? How do

More information

Polynomial Regression Models

Polynomial Regression Models LINEAR REGRESSION ANALYSIS MODULE XII Lecture - 6 Polynomal Regresson Models Dr. Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur Test of sgnfcance To test the sgnfcance

More information

Statistics for Business and Economics

Statistics for Business and Economics Statstcs for Busness and Economcs Chapter 11 Smple Regresson Copyrght 010 Pearson Educaton, Inc. Publshng as Prentce Hall Ch. 11-1 11.1 Overvew of Lnear Models n An equaton can be ft to show the best lnear

More information

Limited Dependent Variables

Limited Dependent Variables Lmted Dependent Varables. What f the left-hand sde varable s not a contnuous thng spread from mnus nfnty to plus nfnty? That s, gven a model = f (, β, ε, where a. s bounded below at zero, such as wages

More information

ECONOMETRICS - FINAL EXAM, 3rd YEAR (GECO & GADE)

ECONOMETRICS - FINAL EXAM, 3rd YEAR (GECO & GADE) ECONOMETRICS - FINAL EXAM, 3rd YEAR (GECO & GADE) June 7, 016 15:30 Frst famly name: Name: DNI/ID: Moble: Second famly Name: GECO/GADE: Instructor: E-mal: Queston 1 A B C Blank Queston A B C Blank Queston

More information

Basically, if you have a dummy dependent variable you will be estimating a probability.

Basically, if you have a dummy dependent variable you will be estimating a probability. ECON 497: Lecture Notes 13 Page 1 of 1 Metropoltan State Unversty ECON 497: Research and Forecastng Lecture Notes 13 Dummy Dependent Varable Technques Studenmund Chapter 13 Bascally, f you have a dummy

More information

Multiple Contrasts (Simulation)

Multiple Contrasts (Simulation) Chapter 590 Multple Contrasts (Smulaton) Introducton Ths procedure uses smulaton to analyze the power and sgnfcance level of two multple-comparson procedures that perform two-sded hypothess tests of contrasts

More information

P R. Lecture 4. Theory and Applications of Pattern Recognition. Dept. of Electrical and Computer Engineering /

P R. Lecture 4. Theory and Applications of Pattern Recognition. Dept. of Electrical and Computer Engineering / Theory and Applcatons of Pattern Recognton 003, Rob Polkar, Rowan Unversty, Glassboro, NJ Lecture 4 Bayes Classfcaton Rule Dept. of Electrcal and Computer Engneerng 0909.40.0 / 0909.504.04 Theory & Applcatons

More information

CHAPTER IV RESEARCH FINDING AND DISCUSSIONS

CHAPTER IV RESEARCH FINDING AND DISCUSSIONS CHAPTER IV RESEARCH FINDING AND DISCUSSIONS A. Descrpton of Research Fndng. The Implementaton of Learnng Havng ganed the whole needed data, the researcher then dd analyss whch refers to the statstcal data

More information

Professor Chris Murray. Midterm Exam

Professor Chris Murray. Midterm Exam Econ 7 Econometrcs Sprng 4 Professor Chrs Murray McElhnney D cjmurray@uh.edu Mdterm Exam Wrte your answers on one sde of the blank whte paper that I have gven you.. Do not wrte your answers on ths exam.

More information

See Book Chapter 11 2 nd Edition (Chapter 10 1 st Edition)

See Book Chapter 11 2 nd Edition (Chapter 10 1 st Edition) Count Data Models See Book Chapter 11 2 nd Edton (Chapter 10 1 st Edton) Count data consst of non-negatve nteger values Examples: number of drver route changes per week, the number of trp departure changes

More information

MULTIPLE COMPARISON PROCEDURES

MULTIPLE COMPARISON PROCEDURES MULTIPLE COMPARISON PROCEDURES RAJENDER PARSAD Indan Agrcultural Statstcs Research Insttute Lbrary Avenue, New Delh 110 012 raender@asr.res.n 1. Introducton Analyss of varance s used to test for the real

More information

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems Numercal Analyss by Dr. Anta Pal Assstant Professor Department of Mathematcs Natonal Insttute of Technology Durgapur Durgapur-713209 emal: anta.bue@gmal.com 1 . Chapter 5 Soluton of System of Lnear Equatons

More information

Lecture 3: Probability Distributions

Lecture 3: Probability Distributions Lecture 3: Probablty Dstrbutons Random Varables Let us begn by defnng a sample space as a set of outcomes from an experment. We denote ths by S. A random varable s a functon whch maps outcomes nto the

More information

CHAPTER 8. Exercise Solutions

CHAPTER 8. Exercise Solutions CHAPTER 8 Exercse Solutons 77 Chapter 8, Exercse Solutons, Prncples of Econometrcs, 3e 78 EXERCISE 8. When = N N N ( x x) ( x x) ( x x) = = = N = = = N N N ( x ) ( ) ( ) ( x x ) x x x x x = = = = Chapter

More information

General Linear Models

General Linear Models General Lnear Models Revsed: 10/10/2017 Summary... 2 Analyss Summary... 6 Analyss Optons... 10 Model Coeffcents... 11 Scatterplot... 14 Table of Means... 15 Means Plot... 16 Interacton Plot... 19 Multple

More information

The Gaussian classifier. Nuno Vasconcelos ECE Department, UCSD

The Gaussian classifier. Nuno Vasconcelos ECE Department, UCSD he Gaussan classfer Nuno Vasconcelos ECE Department, UCSD Bayesan decson theory recall that we have state of the world X observatons g decson functon L[g,y] loss of predctng y wth g Bayes decson rule s

More information

Correlation and Regression

Correlation and Regression Correlaton and Regresson otes prepared by Pamela Peterson Drake Index Basc terms and concepts... Smple regresson...5 Multple Regresson...3 Regresson termnology...0 Regresson formulas... Basc terms and

More information

REGRESSION ANALYSIS II- MULTICOLLINEARITY

REGRESSION ANALYSIS II- MULTICOLLINEARITY REGRESSION ANALYSIS II- MULTICOLLINEARITY QUESTION 1 Departments of Open Unversty of Cyprus A and B consst of na = 35 and nb = 30 students respectvely. The students of department A acheved an average test

More information

ANSWERS CHAPTER 9. TIO 9.2: If the values are the same, the difference is 0, therefore the null hypothesis cannot be rejected.

ANSWERS CHAPTER 9. TIO 9.2: If the values are the same, the difference is 0, therefore the null hypothesis cannot be rejected. ANSWERS CHAPTER 9 THINK IT OVER thnk t over TIO 9.: χ 2 k = ( f e ) = 0 e Breakng the equaton down: the test statstc for the ch-squared dstrbuton s equal to the sum over all categores of the expected frequency

More information

Composite Hypotheses testing

Composite Hypotheses testing Composte ypotheses testng In many hypothess testng problems there are many possble dstrbutons that can occur under each of the hypotheses. The output of the source s a set of parameters (ponts n a parameter

More information

PHYS 450 Spring semester Lecture 02: Dealing with Experimental Uncertainties. Ron Reifenberger Birck Nanotechnology Center Purdue University

PHYS 450 Spring semester Lecture 02: Dealing with Experimental Uncertainties. Ron Reifenberger Birck Nanotechnology Center Purdue University PHYS 45 Sprng semester 7 Lecture : Dealng wth Expermental Uncertantes Ron Refenberger Brck anotechnology Center Purdue Unversty Lecture Introductory Comments Expermental errors (really expermental uncertantes)

More information

Lecture 9: Linear regression: centering, hypothesis testing, multiple covariates, and confounding

Lecture 9: Linear regression: centering, hypothesis testing, multiple covariates, and confounding Recall: man dea of lnear regresson Lecture 9: Lnear regresson: centerng, hypothess testng, multple covarates, and confoundng Sandy Eckel seckel@jhsph.edu 6 May 8 Lnear regresson can be used to study an

More information

Linear Regression Analysis: Terminology and Notation

Linear Regression Analysis: Terminology and Notation ECON 35* -- Secton : Basc Concepts of Regresson Analyss (Page ) Lnear Regresson Analyss: Termnology and Notaton Consder the generc verson of the smple (two-varable) lnear regresson model. It s represented

More information

Lecture 9: Linear regression: centering, hypothesis testing, multiple covariates, and confounding

Lecture 9: Linear regression: centering, hypothesis testing, multiple covariates, and confounding Lecture 9: Lnear regresson: centerng, hypothess testng, multple covarates, and confoundng Sandy Eckel seckel@jhsph.edu 6 May 008 Recall: man dea of lnear regresson Lnear regresson can be used to study

More information

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity LINEAR REGRESSION ANALYSIS MODULE IX Lecture - 30 Multcollnearty Dr. Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur 2 Remedes for multcollnearty Varous technques have

More information

Statistical tables are provided Two Hours UNIVERSITY OF MANCHESTER. Date: Wednesday 4 th June 2008 Time: 1400 to 1600

Statistical tables are provided Two Hours UNIVERSITY OF MANCHESTER. Date: Wednesday 4 th June 2008 Time: 1400 to 1600 Statstcal tables are provded Two Hours UNIVERSITY OF MNCHESTER Medcal Statstcs Date: Wednesday 4 th June 008 Tme: 1400 to 1600 MT3807 Electronc calculators may be used provded that they conform to Unversty

More information