L18: Quantized fracture mechanics of nanostructures with atomic vacancies

Size: px
Start display at page:

Download "L18: Quantized fracture mechanics of nanostructures with atomic vacancies"

Transcription

1 L18: Quantized fracture mechanics of nanostructures with atomic vacancies 198 estimate: $10B : 4% of GDP

2 y/article/ htm ns_what_are.htm Arrows show where failure occurred: the remnant cracks On 16 January 1943, Schenectady, a Liberty tanker, split in two while moored in calm water at the outfitting dock at Swan Island, Oregon. A US oast Guard report described the incident: Without warning and with a report which was heard for at least a mile, the deck and sides of the vessel fractured just aft of the bridge superstructure. The fracture extended almost instantaneously to the turn of the bilge port and starboard. The deck side shell, longitudinal bulkhead and bottom girders fractured. Only the bottom plating held. The vessel jack-knifed and the center portion rose so that no water entered. The bow and stern settled into the silt of the river bottom. The ship was twenty-four hours old. The official oast Guard report on the Schenectady incident attributed the fracture to welds in critical seams that "were found to be defective." Avalanche Accident on Mt Hood, Oregon-5/31/98 Photo: The photo below is courtesy GW-Television in Portland, Oregon, and was available from the GW-TV Sky am at Timberline Lodge on Mt Hood. This particular picture was zoomed in on the mountain after the event-and was taken ~4 hours after the event. The large fracture appearing crack in the right middle of the picture is the Hogsback bergschrund (crack produced when a moving mass of snow slides away from an anchored part of the snowpack) which cuts across the shallow snow ridge above the saddle near rater Rock. The actual avalanche for this incident appears as a long crack in the upper left of the photo, cutting across the top of rater Rock; the deepest part of the fracture lies just below the rocks where the fracture line begins to extend downhill to the left.

3 Scaling of Sea Ice Fracture. ourtesy, Zdenek Bazant How the load was applied Notched Specimen: m Generation of a big crack! ONR Project, Director & Organizer: John Dempsey Rod Ruoff Northwestern University! Nanotechnology " # $%!$ " & $% ' $( ) * +, ' - * / 0 1 +( !0( " + + Northwestern University Rod Ruoff Nanotechnology

4 //&! " #6 $ %+%9 49&!/1" $%& :;+7+!+%+*"'+!"σ!"++ σ max = 3σ!";+++ a σ = + max σ 1 b!" <9 9=> σ asy I = πr a I = σ

5 ' (%&)$* ' (+, ( σ ) σ σ = max ;*9*+'++@ A*+'+ B +%+B 4 9'+<'9,**+'< -,./ )$* d d A G dw d A = ( d G d ) < 0 σ = 0,. +,. ( W + Ω) = 0 A G πa G * W@++*% Ω@ *% " +%(or instable if larger than zero) ;*9*< +@ * + "11,, /3, 3

6 %4. 51 )$* G = I / G = ;,+ I = I G / = 7+ / = ( 1 v ) 7+,@7 I I G / % + D <9*9 % <9 <!/-&" ;*9+ I = σ πa *+ %4. +, 6!", ')$* G = I / + II / 1+ν + III * + * 3*!*9" I, II, III = I, II, III ( I d A) 0 d, II, III < 7* +%<*!++*"

7 7 8' (%& <* Q ;*9! 9 ' +" Q * 1 σ = σ y = Q d 0 ( θ = 0) x σ σ y F+%+% %6+%<' 0,+,97<9 <99!/&/" ' (), 5 * +, 7 8 )76'* 7* 897+*- 9-/!11 " W A ( + Ω) = 0 * G W A = G * A+ A I, II, III I, II, III = A I, II, III if if if if Ω = G A * ( G A) * ( G A) * ( I, II, III A) * ( A) I, II, III < 0, stable > 0, unstable < 0, stable > 0, unstable where I, II, III A+ A A 1 A A+ A A I, II, III da % D < G% : +,

8 0( "&! )* σ QFM = π I ( a + Q ) σ = LFM I πa '!" :;+!:;" *< + Q 0 4+%* ' +H a 0 +* ' ++'I ; )* <06'.=,> " 76' 8 " " + +<!ρ: " σ QFM = I 1+ ρ Q π = σ 1+ ρ Q ( a + Q ) 1+ a Q 3+<' H

9 4( *0 %+%*!*9" J %D < ' '< + 9H $ '+ ; ' Note that QFM can be successfully applied also at larger size scales!, see: $3% *9;050;; F8; ;D409!11#"?$9 11- Quantized Fracture Mechanics N. Pugno* and R. Ruoff *Politecnico di Torino, Italy Philosophical Magazine, 84 (004) The role of vacancy defects and holes in the fracture of carbon nanotubes Steven L. Mielke, Diego Troya, Sulin Zhang, Je-Luen Li, Shaoping Xiao, Roberto ar, Rodney S. Ruoff, George. Schatz, and Ted Belytschko, hemical Physics Letters, 390 (004)

10 β-si : 600 GPa σ ideal : 53 GPa (51 GPa <111>) Unit cell of β-si (zinc blende structure) Overview of the approach used to probe mechanical properties of β-si nanorods TM image of β-si nanorods, 3. g/cc Ref.) Dai, H. et al., Nature, 375, p769, (1995). Wong,. W. et al., Science, 77, p1971, (1997). Li and Wang, Phys Rev B 59(6), 3993 (1999). α-si 3 N 4 : 345 GPa σ ideal : 59 GPa (54 GPa < >) Unit cell of α-si 3 N 4 (a) TM image of one α-si 3 N 4 whisker (b) corresponding electron diffraction pattern SM image of α-si 3 N 4 whiskers; 3. g/cc Ref.) 1. Iwanaga, H. et al., J. Am. eram. Soc. 81(3), p773, (1998).. Shigenobu Ogata, unpublished.

11 Multi-walled carbon nanotube Iijima, Nature 1991 Single-walled carbon nanotube Iijima et al; Bethune et al; Nature 1993 SM image of carbon ropes with ~10-0 nm diameter and several microns in length ~1100 GPa;σ ideal : ~ GPa ( 63 GPa) Space elevator? More detailed view of cross section of a single walled carbon nanotube bundle, which is comprised of single-walled nanotubes with diameter ~ 1.4 nm. Thess et al, Science. Table 1: lustering of experimental strength [GPa] of β-si nanorods, α-si3n4 whiskers, and MWNTs. β-si 53.4± ± ±., 11.6±.9, 10.±.1 α-si 3 N MWNT* ,37,37,35,34 8,6,4,4 1,0,0,19,18,18 1,11 * Ruoff group, Science 000; outer shell of the multiwalled NT is what breaks. Table : omparison between molecular mechanics (MM) simulations and theoretical QFM predictions for the strength [GPa] of nanotubes with blunt cracks (adjacent vacancies of n atoms). n-atom defect MM* QFM *Belytschko (Xiao, Ruoff), zig zig tube But imagine 80 hexagons around the circumference for (80, 0) zig zag tube ~6.4 nm in diameter. 5 hexagons along this edge

12 hexagons along this edge 5 arm-chair tube zig zig tube We used a round hole for QFM But imagine 100 hexagons around the circumference for (100, 0) zig zag tube ~8 nm in diameter. Failure stresses (GPa) and strains of large NTs with holes calculated with the MTB-G potential and by QFM. QFM [100,0] [9,9] hole size index a) Tensional nergy-based Stress Strain at failure Stress Strain pristine

13 Rod Ruoff Northwestern University, 5 σ n σ 1+ ρ Q (1 + n ) 1, n>0 Nanotechnology 8 A.g., blunt cracks a = nq Quantized Strength Levels and Forbidden bands Northwestern University Rod Ruoff Nanotechnology

14 0(" %,)* Observed Strength/ Ideal Strength xperiments on β-si nanorods, α-si3n4 whiskers and MWNTs Quantized Levels Si3N4-59GPa Si3N4-75GPa Si-53GPa Si-68GPa MWNT-115GPa MWNT-104GPa n Thus, the strength is quantized as a consequence of the quantization of the defect size!

Fracture Behavior. Section

Fracture Behavior. Section Section 6 Fracture Behavior In January 1943 the one-day old Liberty Ship, SS Schenectady, had just completed successful sea trials and returned to harbor in calm cool weather when... "Without warning and

More information

MECHANICS OF 2D MATERIALS

MECHANICS OF 2D MATERIALS MECHANICS OF 2D MATERIALS Nicola Pugno Cambridge February 23 rd, 2015 2 Outline Stretching Stress Strain Stress-Strain curve Mechanical Properties Young s modulus Strength Ultimate strain Toughness modulus

More information

The role of vacancy defects and holes in the fracture of carbon nanotubes

The role of vacancy defects and holes in the fracture of carbon nanotubes Chemical Physics Letters 390 (2004) 413 420 www.elsevier.com/locate/cplett The role of vacancy defects and holes in the fracture of carbon nanotubes Steven L. Mielke a, *, Diego Troya a, Sulin Zhang b,

More information

Electronic structure calculations: methods and applications. George C. Schatz Northwestern University

Electronic structure calculations: methods and applications. George C. Schatz Northwestern University Electronic structure calculations: methods and applications George C. Schatz Northwestern University Materials Fracture and Degradation Steven Mielke, Diego Troya, LiPeng Sun, Jeff Paci, Ted Belytschko,

More information

Effects of Defects on the Strength of Nanotubes: Experimental- Computational Comparisons

Effects of Defects on the Strength of Nanotubes: Experimental- Computational Comparisons Effects of Defects on the Strength of Nanotubes: Experimental- Computational Comparisons T. Belytschko, S. P. Xiao and R. Ruoff Department of Mechanical Engineering Northwestern University, 2145 Sheridan

More information

Free Vibrations of Carbon Nanotubes with Defects

Free Vibrations of Carbon Nanotubes with Defects Mechanics and Mechanical Engineering Vol. 17, No. 2 (2013) 157 166 c Lodz University of Technology Free Vibrations of Carbon Nanotubes with Defects Aleksander Muc Aleksander Banaś Ma lgorzata Chwa l Institute

More information

Fracture resistance of single-walled carbon nanotubes through atomistic simulation

Fracture resistance of single-walled carbon nanotubes through atomistic simulation ICOSSAR 2005, G. Augusti, G.I. Schuëller, M. Ciampoli (eds) 2005 Millpress, Rotterdam, ISBN 90 5966 040 4 Fracture resistance of single-walled carbon nanotubes through atomistic simulation Qiang Lu & Baidurya

More information

This article was published in an Elsevier journal. The attached copy is furnished to the author for non-commercial research and education use, including for instruction at the author s institution, sharing

More information

Fracture of vacancy-defected carbon nanotubes and their embedded nanocomposites

Fracture of vacancy-defected carbon nanotubes and their embedded nanocomposites PHYSICAL REVIEW B 73, 115406 2006 Fracture of vacancy-defected carbon nanotubes and their embedded nanocomposites Shaoping Xiao and Wenyi Hou Department of Mechanical and Industrial Engineering, and Center

More information

2 Symmetry. 2.1 Structure of carbon nanotubes

2 Symmetry. 2.1 Structure of carbon nanotubes 2 Symmetry Carbon nanotubes are hollow cylinders of graphite sheets. They can be viewed as single molecules, regarding their small size ( nm in diameter and µm length), or as quasi-one dimensional crystals

More information

Molecular Dynamics Simulation of Fracture of Graphene

Molecular Dynamics Simulation of Fracture of Graphene Molecular Dynamics Simulation of Fracture of Graphene Dewapriya M. A. N. 1, Rajapakse R. K. N. D. 1,*, Srikantha Phani A. 2 1 School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada

More information

D Radaj, C M Sonsino and W Pricke. Fatigue assessment of welded joints by local approaches

D Radaj, C M Sonsino and W Pricke. Fatigue assessment of welded joints by local approaches D Radaj, C M Sonsino and W Pricke Fatigue assessment of welded joints by local approaches Second edition Foreword Preface Author contact details Introduction 1.1 Fatigue strength assessment of welded joints

More information

Carbon nanotube oscillators: Effect of small bending strain

Carbon nanotube oscillators: Effect of small bending strain Proceedings of ICTACEM 2014 International Conference on Theoretical, Applied, Computational and Experimental Mechanics December 29-31, 2014, IIT Kharagpur, India ICTACEM-2014/405 Carbon nanotube oscillators:

More information

MMJ1133 FATIGUE AND FRACTURE MECHANICS E ENGINEERING FRACTURE MECHANICS

MMJ1133 FATIGUE AND FRACTURE MECHANICS E ENGINEERING FRACTURE MECHANICS E ENGINEERING WWII: Liberty ships Reprinted w/ permission from R.W. Hertzberg, "Deformation and Fracture Mechanics of Engineering Materials", (4th ed.) Fig. 7.1(b), p. 6, John Wiley and Sons, Inc., 1996.

More information

Electron Microscopy Testing of Nanostructures

Electron Microscopy Testing of Nanostructures MEMS devices for In-Situ Electron Microscopy Testing of Nanostructures Horacio D. Espinosa Y. Zhu, C-H. C Ke,, N. Moldovan Acknowledgments: NSF-NIRT, NSF-NSEC, FAA, ONR NEMS Characterization Technique

More information

V Predicted Weldment Fatigue Behavior AM 11/03 1

V Predicted Weldment Fatigue Behavior AM 11/03 1 V Predicted Weldment Fatigue Behavior AM 11/03 1 Outline Heavy and Light Industry weldments The IP model Some predictions of the IP model AM 11/03 2 Heavy industry AM 11/03 3 Heavy industry AM 11/03 4

More information

The stress transfer efficiency of a single-walled carbon nanotube in epoxy matrix

The stress transfer efficiency of a single-walled carbon nanotube in epoxy matrix JOURNAL OF MATERIALS SCIENCE 39 (2 004)4481 4486 The stress transfer efficiency of a single-walled carbon nanotube in epoxy matrix K. Q. XIAO, L. C. ZHANG School of Aerospace, Mechanical and Mechatronic

More information

Fig. 1. Different locus of failure and crack trajectories observed in mode I testing of adhesively bonded double cantilever beam (DCB) specimens.

Fig. 1. Different locus of failure and crack trajectories observed in mode I testing of adhesively bonded double cantilever beam (DCB) specimens. a). Cohesive Failure b). Interfacial Failure c). Oscillatory Failure d). Alternating Failure Fig. 1. Different locus of failure and crack trajectories observed in mode I testing of adhesively bonded double

More information

Stress Concentration. Professor Darrell F. Socie Darrell Socie, All Rights Reserved

Stress Concentration. Professor Darrell F. Socie Darrell Socie, All Rights Reserved Stress Concentration Professor Darrell F. Socie 004-014 Darrell Socie, All Rights Reserved Outline 1. Stress Concentration. Notch Rules 3. Fatigue Notch Factor 4. Stress Intensity Factors for Notches 5.

More information

Examination in Damage Mechanics and Life Analysis (TMHL61) LiTH Part 1

Examination in Damage Mechanics and Life Analysis (TMHL61) LiTH Part 1 Part 1 1. (1p) Define the Kronecker delta and explain its use. The Kronecker delta δ ij is defined as δ ij = 0 if i j 1 if i = j and it is used in tensor equations to include (δ ij = 1) or "sort out" (δ

More information

Mechanics of Earthquakes and Faulting

Mechanics of Earthquakes and Faulting Mechanics of Earthquakes and Faulting Lectures & 3, 9/31 Aug 017 www.geosc.psu.edu/courses/geosc508 Discussion of Handin, JGR, 1969 and Chapter 1 Scholz, 00. Stress analysis and Mohr Circles Coulomb Failure

More information

Introduction of Nano Science and Tech. Basics of Solid Mechanics in Nanostructures. Nick Fang

Introduction of Nano Science and Tech. Basics of Solid Mechanics in Nanostructures. Nick Fang Introduction of Nano Science and Tech Basics of Solid Mechanics in Nanostructures Nick Fang Course Website: nanohub.org Compass.illinois.edu ME 498 2006-09 Nick Fang, University of Illinois. All rights

More information

Linear Elastic Fracture Mechanics

Linear Elastic Fracture Mechanics Measure what is measurable, and make measurable what is not so. - Galileo GALILEI Linear Elastic Fracture Mechanics Krishnaswamy Ravi-Chandar Lecture presented at the University of Pierre and Marie Curie

More information

Stress concentrations, fracture and fatigue

Stress concentrations, fracture and fatigue Stress concentrations, fracture and fatigue Piet Schreurs Department of Mechanical Engineering Eindhoven University of Technology http://www.mate.tue.nl/ piet December 1, 2016 Overview Stress concentrations

More information

Rooster Comb Ridge Cornice Incident

Rooster Comb Ridge Cornice Incident Rooster Comb Ridge Cornice Incident April 3, 2011 Date/time: Sunday, April 3, 2011 / ~12:45pm PDT Submitted by: Patty Morrison Stevens Pass Winter Resort Snow Safety; Mark Moore NWAC Place: High point

More information

Introduction and Background

Introduction and Background Introduction and Background Itasca Consulting Group, Inc. (Itasca) has been participating in the geomechanical design of the underground 118-Zone at the Capstone Minto Mine (Minto) in the Yukon, in northwestern

More information

Smart Invisible/Visible Synthetic Spider Silk

Smart Invisible/Visible Synthetic Spider Silk Smart Invisible/Visible Synthetic Spider Silk Nicola M. Pugno Department of Structural Engineering, Politecnico di Torino, Italy Abstract Spiders suggest to us that producing high strength over density

More information

Mechanics of Earthquakes and Faulting

Mechanics of Earthquakes and Faulting Mechanics of Earthquakes and Faulting www.geosc.psu.edu/courses/geosc508 Surface and body forces Tensors, Mohr circles. Theoretical strength of materials Defects Stress concentrations Griffith failure

More information

Large scale growth and characterization of atomic hexagonal boron. nitride layers

Large scale growth and characterization of atomic hexagonal boron. nitride layers Supporting on-line material Large scale growth and characterization of atomic hexagonal boron nitride layers Li Song, Lijie Ci, Hao Lu, Pavel B. Sorokin, Chuanhong Jin, Jie Ni, Alexander G. Kvashnin, Dmitry

More information

THE DISPARATE THERMAL CONDUCTIVITY OF CARBON NANOTUBES AND DIAMOND NANOWIRES STUDIED BY ATOMISTIC SIMULATION

THE DISPARATE THERMAL CONDUCTIVITY OF CARBON NANOTUBES AND DIAMOND NANOWIRES STUDIED BY ATOMISTIC SIMULATION MTE 8(1) #14664 Microscale Thermophysical Engineering, 8:61 69, 2004 Copyright Taylor & Francis Inc. ISSN: 1089-3954 print/1091-7640 online DOI: 10.1080/10893950490272939 THE DISPARATE THERMAL CONDUCTIVITY

More information

NORMAL STRESS. The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts.

NORMAL STRESS. The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts. NORMAL STRESS The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts. σ = force/area = P/A where σ = the normal stress P = the centric

More information

Samantha Ramirez, MSE. Stress. The intensity of the internal force acting on a specific plane (area) passing through a point. F 2

Samantha Ramirez, MSE. Stress. The intensity of the internal force acting on a specific plane (area) passing through a point. F 2 Samantha Ramirez, MSE Stress The intensity of the internal force acting on a specific plane (area) passing through a point. Δ ΔA Δ z Δ 1 2 ΔA Δ x Δ y ΔA is an infinitesimal size area with a uniform force

More information

Rock slope failure along non persistent joints insights from fracture mechanics approach

Rock slope failure along non persistent joints insights from fracture mechanics approach Rock slope failure along non persistent joints insights from fracture mechanics approach Louis N.Y. Wong PhD(MIT), BSc(HKU) Assistant Professor and Assistant Chair (Academic) Nanyang Technological University,

More information

Introduction to Fracture

Introduction to Fracture Introduction to Fracture Introduction Design of a component Yielding Strength Deflection Stiffness Buckling critical load Fatigue Stress and Strain based Vibration Resonance Impact High strain rates Fracture

More information

Spherical Pressure Vessels

Spherical Pressure Vessels Spherical Pressure Vessels Pressure vessels are closed structures containing liquids or gases under essure. Examples include tanks, pipes, essurized cabins, etc. Shell structures : When essure vessels

More information

Unit 18 Other Issues In Buckling/Structural Instability

Unit 18 Other Issues In Buckling/Structural Instability Unit 18 Other Issues In Buckling/Structural Instability Readings: Rivello Timoshenko Jones 14.3, 14.5, 14.6, 14.7 (read these at least, others at your leisure ) Ch. 15, Ch. 16 Theory of Elastic Stability

More information

Forces That Shape Earth. How do continents move? What forces can change rocks? How does plate motion affect the rock cycle?

Forces That Shape Earth. How do continents move? What forces can change rocks? How does plate motion affect the rock cycle? Forces That Shape Earth How do continents move? What forces can change rocks? How does plate motion affect the rock cycle? Plate Motion Mountain ranges are produced by plate tectonics. The theory of plate

More information

What we should know about mechanics of materials

What we should know about mechanics of materials What we should know about mechanics of materials 0 John Maloney Van Vliet Group / Laboratory for Material Chemomechanics Department of Materials Science and Engineering Massachusetts Institute of Technology

More information

Effect of randomly occurring Stone-Wales defects on mechanical properties of carbon nanotubes using atomistic simulation

Effect of randomly occurring Stone-Wales defects on mechanical properties of carbon nanotubes using atomistic simulation Effect of randomly occurring Stone-Wales defects on mechanical properties of carbon nanotubes using atomistic simulation Qiang Lu and Baidurya Bhattacharya 1 Department of Civil and Environmental Engineering,

More information

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 3 Torsion

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 3 Torsion EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 3 Torsion Introduction Stress and strain in components subjected to torque T Circular Cross-section shape Material Shaft design Non-circular

More information

Mechanics of Solids. Mechanics Of Solids. Suraj kr. Ray Department of Civil Engineering

Mechanics of Solids. Mechanics Of Solids. Suraj kr. Ray Department of Civil Engineering Mechanics Of Solids Suraj kr. Ray (surajjj2445@gmail.com) Department of Civil Engineering 1 Mechanics of Solids is a branch of applied mechanics that deals with the behaviour of solid bodies subjected

More information

Controlled continuous spinning of fibres of single wall carbon nanotubes

Controlled continuous spinning of fibres of single wall carbon nanotubes Controlled continuous spinning of fibres of single wall carbon nanotubes Guadalupe Workshop 8-12 April 2011 Krzysztof Koziol and Alan Windle kk292@cam.ac.uk Department of Materials Science and Metallurgy

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Facile Synthesis of High Quality Graphene Nanoribbons Liying Jiao, Xinran Wang, Georgi Diankov, Hailiang Wang & Hongjie Dai* Supplementary Information 1. Photograph of graphene

More information

Laboratory 4 Bending Test of Materials

Laboratory 4 Bending Test of Materials Department of Materials and Metallurgical Engineering Bangladesh University of Engineering Technology, Dhaka MME 222 Materials Testing Sessional.50 Credits Laboratory 4 Bending Test of Materials. Objective

More information

FAILURE ASSESSMENT DIAGRAM ASSESSMENTS OF LARGE-SCALE CRACKED STRAIGHT PIPES AND ELBOWS

FAILURE ASSESSMENT DIAGRAM ASSESSMENTS OF LARGE-SCALE CRACKED STRAIGHT PIPES AND ELBOWS Transactions, SMiRT-23, Paper ID 093 FAILURE ASSESSMENT DIAGRAM ASSESSMENTS OF LARGE-SCALE CRACKED STRAIGHT PIPES AND ELBOWS R A Ainsworth 1, M Gintalas 1, M K Sahu 2, J Chattopadhyay 2 and B K Dutta 2

More information

MOLECULAR SIMULATION FOR PREDICTING MECHANICAL STRENGTH OF 3-D JUNCTIONED CARBON NANOSTRUCTURES

MOLECULAR SIMULATION FOR PREDICTING MECHANICAL STRENGTH OF 3-D JUNCTIONED CARBON NANOSTRUCTURES ECCM16-16 TH EUROPEAN CONFERENCE ON COMPOSITE MATERIALS, Seville, Spain, 22-26 June 214 MOLECULAR SIMULATION FOR PREDICTING MECHANICAL STRENGTH OF 3-D JUNCTIONED CARBON NANOSTRUCTURES S. Sihn a,b*, V.

More information

THE ROLE OF DELAMINATION IN NOTCHED AND UNNOTCHED TENSILE STRENGTH

THE ROLE OF DELAMINATION IN NOTCHED AND UNNOTCHED TENSILE STRENGTH THE ROLE OF DELAMINATION IN NOTCHED AND UNNOTCHED TENSILE STRENGTH M. R. Wisnom University of Bristol Advanced Composites Centre for Innovation and Science University Walk, Bristol BS8 1TR, UK M.Wisnom@bristol.ac.uk

More information

Cracks Jacques Besson

Cracks Jacques Besson Jacques Besson Centre des Matériaux UMR 7633 Mines ParisTech PSL Research University Institut Mines Télécom Aγνωστ oς Θεoς Outline 1 Some definitions 2 in a linear elastic material 3 in a plastic material

More information

FCP Short Course. Ductile and Brittle Fracture. Stephen D. Downing. Mechanical Science and Engineering

FCP Short Course. Ductile and Brittle Fracture. Stephen D. Downing. Mechanical Science and Engineering FCP Short Course Ductile and Brittle Fracture Stephen D. Downing Mechanical Science and Engineering 001-015 University of Illinois Board of Trustees, All Rights Reserved Agenda Limit theorems Plane Stress

More information

A finite deformation membrane based on inter-atomic potentials for single atomic layer films Application to the mechanics of carbon nanotubes

A finite deformation membrane based on inter-atomic potentials for single atomic layer films Application to the mechanics of carbon nanotubes A finite deformation membrane based on inter-atomic potentials for single atomic layer films Application to the mechanics of carbon nanotubes Marino Arroyo and Ted Belytschko Department of Mechanical Engineering

More information

Shape Earth. Plate Boundaries. Building. Building

Shape Earth. Plate Boundaries. Building. Building Chapter Introduction Lesson 1 Lesson 2 Lesson 3 Lesson 4 Chapter Wrap-Up Forces That Shape Earth Landforms at Plate Boundaries Mountain Building Continent Building How is Earth s surface shaped by plate

More information

Diameter- and Loading Mode Effects of Modulus in ZnO Nanowires

Diameter- and Loading Mode Effects of Modulus in ZnO Nanowires Diameter- and Loading Mode Effects of Modulus in ZnO Nanowires In Situ Measurements & Theoretical Understanding Mo-rigen H, CQ Chen, Y Shi, YS Zhang, W Zhou, JW Chen, YJ Yan, J Zhu* Beijing National Center

More information

Ideal torsional strengths and stiffnesses of carbon nanotubes

Ideal torsional strengths and stiffnesses of carbon nanotubes PHYSICAL REVIEW B 72, 045425 2005 Ideal torsional strengths and stiffnesses of carbon nanotubes Elif Ertekin and D. C. Chrzan* Department of Materials Science and Engineering, University of California,

More information

5. STRESS CONCENTRATIONS. and strains in shafts apply only to solid and hollow circular shafts while they are in the

5. STRESS CONCENTRATIONS. and strains in shafts apply only to solid and hollow circular shafts while they are in the 5. STRESS CONCENTRATIONS So far in this thesis, most of the formulas we have seen to calculate the stresses and strains in shafts apply only to solid and hollow circular shafts while they are in the elastic

More information

MODIFIED MONTE CARLO WITH LATIN HYPERCUBE METHOD

MODIFIED MONTE CARLO WITH LATIN HYPERCUBE METHOD MODIFIED MONTE CARLO WITH LATIN HYPERCUBE METHOD Latin hypercube sampling (LHS) was introduced by McKay, Conover and Beckman as a solution to increase the efficiency of computer simulations. This technique

More information

Strain Gages. Approximate Elastic Constants (from University Physics, Sears Zemansky, and Young, Reading, MA, Shear Modulus, (S) N/m 2

Strain Gages. Approximate Elastic Constants (from University Physics, Sears Zemansky, and Young, Reading, MA, Shear Modulus, (S) N/m 2 When you bend a piece of metal, the Strain Gages Approximate Elastic Constants (from University Physics, Sears Zemansky, and Young, Reading, MA, 1979 Material Young's Modulus, (E) 10 11 N/m 2 Shear Modulus,

More information

Wuchang Shipbuilding Industry Co., Ltd. China Shipbuilding Industry Corporation

Wuchang Shipbuilding Industry Co., Ltd. China Shipbuilding Industry Corporation Safety Assessments for Anchor Handling Conditions of Multi-purpose Platform Work Vessels Reporter:Yu Wang Wuchang Shipbuilding Industry Co., Ltd. China Shipbuilding Industry Corporation 2009.12.04 0 Outline

More information

Tectonics. Lecture 12 Earthquake Faulting GNH7/GG09/GEOL4002 EARTHQUAKE SEISMOLOGY AND EARTHQUAKE HAZARD

Tectonics. Lecture 12 Earthquake Faulting GNH7/GG09/GEOL4002 EARTHQUAKE SEISMOLOGY AND EARTHQUAKE HAZARD Tectonics Lecture 12 Earthquake Faulting Plane strain 3 Strain occurs only in a plane. In the third direction strain is zero. 1 ε 2 = 0 3 2 Assumption of plane strain for faulting e.g., reverse fault:

More information

Introduction to Aerospace Engineering

Introduction to Aerospace Engineering Introduction to Aerospace Engineering Lecture slides Challenge the future 1 Aircraft & spacecraft loads Translating loads to stresses Faculty of Aerospace Engineering 29-11-2011 Delft University of Technology

More information

BME 207 Introduction to Biomechanics Spring Homework 9

BME 207 Introduction to Biomechanics Spring Homework 9 April 10, 2018 UNIVERSITY OF RHODE ISLAND Department of Electrical, Computer and Biomedical Engineering BME 207 Introduction to Biomechanics Spring 2018 Homework 9 Prolem 1 The intertrochanteric nail from

More information

CHAPTER 9 FAILURE PROBLEM SOLUTIONS

CHAPTER 9 FAILURE PROBLEM SOLUTIONS Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to students enrolled in courses for which the textbook has

More information

Local buckling of carbon nanotubes under bending

Local buckling of carbon nanotubes under bending APPLIED PHYSICS LETTERS 91, 093128 2007 Local buckling of carbon nanotubes under bending Q. Wang a Department of Mechanical and Manufacturing Engineering, University of Manitoba, Winnipeg, Manitoba R3T

More information

Carbon nanotube fracture differences between quantum mechanical mechanisms and those of empirical potentials

Carbon nanotube fracture differences between quantum mechanical mechanisms and those of empirical potentials Chemical Physics Letters 382 (2003) 133 141 www.elsevier.com/locate/cplett Carbon nanotube fracture differences between quantum mechanical mechanisms and those of empirical potentials Diego Troya, Steven

More information

Efficient 2-parameter fracture assessments of cracked shell structures

Efficient 2-parameter fracture assessments of cracked shell structures Efficient 2-parameter fracture assessments of cracked shell structures B. Skallerud, K.R. Jayadevan, C. Thaulow, E. Berg*, K. Holthe Faculty of Engineering Science The Norwegian University of Science and

More information

FRACTURE OF CRACKED MEMBERS 1. The presence of a crack in a structure may weaken it so that it fails by fracturing in two or more pieces.

FRACTURE OF CRACKED MEMBERS 1. The presence of a crack in a structure may weaken it so that it fails by fracturing in two or more pieces. Aerospace Structures Fracture Mechanics: An Introduction Page 1 of 7 FRACTURE OF CRACED MEMBERS 1. The presence of a crack in a structure may weaken it so that it fails by fracturing in two or more pieces.

More information

Geology 2112 Principles and Applications of Geophysical Methods WEEK 1. Lecture Notes Week 1

Geology 2112 Principles and Applications of Geophysical Methods WEEK 1. Lecture Notes Week 1 Lecture Notes Week 1 A Review of the basic properties and mechanics of materials Suggested Reading: Relevant sections from any basic physics or engineering text. Objectives: Review some basic properties

More information

BME 207 Introduction to Biomechanics Spring 2017

BME 207 Introduction to Biomechanics Spring 2017 April 7, 2017 UNIVERSITY OF RHODE ISAND Department of Electrical, Computer and Biomedical Engineering BE 207 Introduction to Biomechanics Spring 2017 Homework 7 Problem 14.3 in the textbook. In addition

More information

Little Zigzag Canyon, Mt. Hood Accident

Little Zigzag Canyon, Mt. Hood Accident Body Page 1 Little Zigzag Canyon, Mt. Hood Accident 3-17-14 Date: 3-17-14 Location: Little Zigzag Canyon, near PCT crossing, Mt. Hood Number in Party: 2 Number caught: 1, completely buried Number hurt:

More information

Tentamen/Examination TMHL61

Tentamen/Examination TMHL61 Avd Hållfasthetslära, IKP, Linköpings Universitet Tentamen/Examination TMHL61 Tentamen i Skademekanik och livslängdsanalys TMHL61 lördagen den 14/10 2000, kl 8-12 Solid Mechanics, IKP, Linköping University

More information

Lecture 4 Honeycombs Notes, 3.054

Lecture 4 Honeycombs Notes, 3.054 Honeycombs-In-plane behavior Lecture 4 Honeycombs Notes, 3.054 Prismatic cells Polymer, metal, ceramic honeycombs widely available Used for sandwich structure cores, energy absorption, carriers for catalysts

More information

Fracture resistance of zigzag single walled carbon nanotubes

Fracture resistance of zigzag single walled carbon nanotubes Fracture resistance of zigzag single walled carbon nanotubes Qiang Lu a & Baidurya Bhattacharya b a Department of Mechanical Engineering, Northwestern University, Evanston, IL 628, USA b Department of

More information

Studies of nanotube-based resonant oscillators through multiscale modeling and simulation

Studies of nanotube-based resonant oscillators through multiscale modeling and simulation Studies of nanotube-based resonant oscillators through multiscale modeling and simulation Shaoping Xiao and Wenyi Hou Department of Mechanical and Industrial Engineering and Center for Computer-Aided Design,

More information

Analysis of asymmetric radial deformation in pipe with local wall thinning under internal pressure using strain energy method

Analysis of asymmetric radial deformation in pipe with local wall thinning under internal pressure using strain energy method Analysis of asymmetric radial deformation in pipe with local wall thinning under internal pressure using strain energy method V.M.F. Nascimento Departameto de ngenharia Mecânica TM, UFF, Rio de Janeiro

More information

How to assess a snowpack with your group:

How to assess a snowpack with your group: This avalanche awareness curriculum was produced in partnership between the Colorado Mountain Club s Conservation Department s Backcountry Snowsports Initiative and Youth Education Program as well as the

More information

On the Impossibility of Separating Nanotubes in a Bundle by Longitudinal Tension

On the Impossibility of Separating Nanotubes in a Bundle by Longitudinal Tension The Journal of Adhesion, 84:439 444, 2008 Copyright # Taylor & Francis Group, LLC ISSN: 0021-8464 print=1545-5823 online DOI: 10.1080/00218460802089270 On the Impossibility of Separating Nanotubes in a

More information

Module 2 Selection of Materials and Shapes. IIT, Bombay

Module 2 Selection of Materials and Shapes. IIT, Bombay Module Selection of Materials and Shapes Lecture 4 Case Studies - I Instructional objectives This is a continuation of the previous lecture. By the end of this lecture, the student will further learn how

More information

Multiaxial Fatigue. Professor Darrell F. Socie. Department of Mechanical Science and Engineering University of Illinois at Urbana-Champaign

Multiaxial Fatigue. Professor Darrell F. Socie. Department of Mechanical Science and Engineering University of Illinois at Urbana-Champaign Multiaxial Fatigue Professor Darrell F. Socie Department of Mechanical Science and Engineering University of Illinois at Urbana-Champaign 2001-2011 Darrell Socie, All Rights Reserved Contact Information

More information

Proceedings oh the 18th IAHR International Symposium on Ice (2006) DISCRETE ELEMENT SIMULATION OF ICE PILE-UP AGAINST AN INCLINED STRUCTURE

Proceedings oh the 18th IAHR International Symposium on Ice (2006) DISCRETE ELEMENT SIMULATION OF ICE PILE-UP AGAINST AN INCLINED STRUCTURE DISCRETE ELEMENT SIMULATION OF ICE PILE-UP AGAINST AN INCLINED STRUCTURE Jani Paavilainen, Jukka Tuhkuri and Arttu Polojärvi Helsinki University of Technology, Laboratory for Mechanics of Materials, Finland

More information

859/ 2. *+:;6 7!/ < - -./0 -./ , /0 -./ , + +

859/ 2. *+:;6 7!/ < - -./0 -./ , /0 -./ , + + 86-81!"# 196 7 8 6. 7( 6 1-./ ' '1 '!,&' () 89/. :;6 7!/ < - -./ -./ 1., - -./ -./ 1., - -./ -./ 1., 9= >9? 8@A.6 B,9. 9 D >. < @8 -,, B @ A @ (8 >?;< =89 : 67 ' > 6 IH >. @ ;. > E = O @< @, N

More information

1. Which type of climate has the greatest amount of rock weathering caused by frost action? A) a wet climate in which temperatures remain below

1. Which type of climate has the greatest amount of rock weathering caused by frost action? A) a wet climate in which temperatures remain below 1. Which type of climate has the greatest amount of rock weathering caused by frost action? A) a wet climate in which temperatures remain below freezing B) a wet climate in which temperatures alternate

More information

RULES FOR CLASSIFICATION. Ships. Part 3 Hull Chapter 6 Hull local scantling. Edition January 2017 DNV GL AS

RULES FOR CLASSIFICATION. Ships. Part 3 Hull Chapter 6 Hull local scantling. Edition January 2017 DNV GL AS RULES FOR CLASSIFICATION Ships Edition January 2017 Part 3 Hull Chapter 6 The content of this service document is the subject of intellectual property rights reserved by ("DNV GL"). The user accepts that

More information

Lecture Outline Friday March 2 thru Wednesday March 7, 2018

Lecture Outline Friday March 2 thru Wednesday March 7, 2018 Lecture Outline Friday March 2 thru Wednesday March 7, 2018 Questions? Lecture Exam Friday March 9, 2018 Same time, Same room Bring Pencils and WSU ID 50 question Multiple Choice, Computer Graded Interlude

More information

Strain Gages. Approximate Elastic Constants (from University Physics, Sears Zemansky, and Young, Reading, MA, 1979

Strain Gages. Approximate Elastic Constants (from University Physics, Sears Zemansky, and Young, Reading, MA, 1979 Material Strain Gages Approximate Elastic Constants (from University Physics, Sears Zemansky, and Young, Reading, MA, 1979 Young's Modulus, Y Shear Modulus, S Bulk Modulus, B Poisson's Ratio 10 11 N/m

More information

(48) CHAPTER 3: TORSION

(48) CHAPTER 3: TORSION (48) CHAPTER 3: TORSION Introduction: In this chapter structural members and machine parts that are in torsion will be considered. More specifically, you will analyze the stresses and strains in members

More information

Description of faults

Description of faults GLG310 Structural Geology Description of faults Horizontal stretch Crustal thickness Regional elevation Regional character Issues Normal Thrust/reverse Strike-slip >1 1 in one direction and < 1 in

More information

THERMODYNAMICS OF FRACTURE GROWTH (18) Griffith energy balance and the fracture energy release rate (G)

THERMODYNAMICS OF FRACTURE GROWTH (18) Griffith energy balance and the fracture energy release rate (G) GG 711c 3/0/0 1 THRMODYNAMICS OF FRACTUR GROWTH (18) I Main topics A Griffith energy balance and the fracture energy release rate (G) B nergy partitioning in a cracked solid & independence of G on loading

More information

Molecular Dynamics Study of the Effect of Chemical Functionalization on the Elastic Properties of Graphene Sheets

Molecular Dynamics Study of the Effect of Chemical Functionalization on the Elastic Properties of Graphene Sheets Copyright 21 American Scientific Publishers All rights reserved Printed in the United States of America Journal of Nanoscience and Nanotechnology Vol. 1, 1 5, 21 Molecular Dynamics Study of the Effect

More information

Paradise, Mt Rainier Avalanche Incident

Paradise, Mt Rainier Avalanche Incident Page 1 of 6 Paradise, Mt Rainier Avalanche Incident January 1, 2003, 1345 PST [Report prepared by Mark Moore, NWAC] Location: Upper Golden Gate Trail Avalanche Specifics: SS-AO-3 (US Classification), 3-4

More information

Stress Intensity Factor Determination of Multiple Straight and Oblique Cracks in Double Cover Butt Riveted Joint

Stress Intensity Factor Determination of Multiple Straight and Oblique Cracks in Double Cover Butt Riveted Joint ISSN (Online) : 2319-8753 ISSN (Print) : 2347-671 International Journal of Innovative Research in Science, Engineering and Technology Volume 3, Special Issue 3, March 214 214 International Conference on

More information

Strength of Material. Shear Strain. Dr. Attaullah Shah

Strength of Material. Shear Strain. Dr. Attaullah Shah Strength of Material Shear Strain Dr. Attaullah Shah Shear Strain TRIAXIAL DEFORMATION Poisson's Ratio Relationship Between E, G, and ν BIAXIAL DEFORMATION Bulk Modulus of Elasticity or Modulus of Volume

More information

In-situ TEM study on structural change and light emission of a multiwall carbon nanotube during Joule heating

In-situ TEM study on structural change and light emission of a multiwall carbon nanotube during Joule heating IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS In-situ TEM study on structural change and light emission of a multiwall carbon nanotube during Joule heating To cite this article:

More information

Crystal Mountain Employee Housing Chutes Avalanche Accident Crystal Mountain, WA February 17, 2001

Crystal Mountain Employee Housing Chutes Avalanche Accident Crystal Mountain, WA February 17, 2001 Page 1 of 9 Crystal Mountain Employee Housing Chutes Avalanche Accident Crystal Mountain, WA February 17, 2001 Summary One out of bounds skier triggered and caught by slide, swept through trees, partially

More information

Continuum modeling of van der Waals interactions between. carbon nanotube walls

Continuum modeling of van der Waals interactions between. carbon nanotube walls Contuum modelg of van der Waals teractions between carbon nanotube walls W.B. Lu 1, B. Liu 1a), J. Wu 1, J. Xiao, K.C. Hwang 1, S. Y. Fu 3,4 a), Y. Huang 1 FML, Department of Engeerg Mechanics, Tsghua

More information

Use a highlighter to mark the most important parts, or the parts. you want to remember in the background information.

Use a highlighter to mark the most important parts, or the parts. you want to remember in the background information. P a g e 1 Name A Fault Model Purpose: To explore the types of faults and how they affect the geosphere Background Information: A fault is an area of stress in the earth where broken rocks slide past each

More information

Fracture mechanics fundamentals. Stress at a notch Stress at a crack Stress intensity factors Fracture mechanics based design

Fracture mechanics fundamentals. Stress at a notch Stress at a crack Stress intensity factors Fracture mechanics based design Fracture mechanics fundamentals Stress at a notch Stress at a crack Stress intensity factors Fracture mechanics based design Failure modes Failure can occur in a number of modes: - plastic deformation

More information

Plate Tectonics Notes

Plate Tectonics Notes Plate Tectonics Notes Last 30 Days Earthquakes Physical Features Last 30 Days Earthquakes with Plate Boundaries Earth s Structure Earth s Layers Core: Inner Core: Center of the earth, solid ball of metal

More information

The Norwood Science Center. Geology (Minerals) Grade 4

The Norwood Science Center. Geology (Minerals) Grade 4 The Norwood Science Center Geology (Minerals) Grade 4 Background Information: Where do rocks come from? At first you might think the answer to this question is simple. Igneous rock comes from either magma

More information

Fatigue and Fracture

Fatigue and Fracture Fatigue and Fracture Multiaxial Fatigue Professor Darrell F. Socie Mechanical Science and Engineering University of Illinois 2004-2013 Darrell Socie, All Rights Reserved When is Multiaxial Fatigue Important?

More information

Longitudinal Strength Members & Small Hatch Securing System. IMO - MSC 105(73) Longitudinal Strength

Longitudinal Strength Members & Small Hatch Securing System. IMO - MSC 105(73) Longitudinal Strength Longitudinal Strength Members & Small Hatch Securing System IMO - MSC 105(73) Longitudinal Strength Valid for oil tankers with length of 130 meters and more, age more than 10 years (calculated from delivery

More information

Structural Analysis I Chapter 4 - Torsion TORSION

Structural Analysis I Chapter 4 - Torsion TORSION ORSION orsional stress results from the action of torsional or twisting moments acting about the longitudinal axis of a shaft. he effect of the application of a torsional moment, combined with appropriate

More information