Proceedings oh the 18th IAHR International Symposium on Ice (2006) DISCRETE ELEMENT SIMULATION OF ICE PILE-UP AGAINST AN INCLINED STRUCTURE

Size: px
Start display at page:

Download "Proceedings oh the 18th IAHR International Symposium on Ice (2006) DISCRETE ELEMENT SIMULATION OF ICE PILE-UP AGAINST AN INCLINED STRUCTURE"

Transcription

1 DISCRETE ELEMENT SIMULATION OF ICE PILE-UP AGAINST AN INCLINED STRUCTURE Jani Paavilainen, Jukka Tuhkuri and Arttu Polojärvi Helsinki University of Technology, Laboratory for Mechanics of Materials, Finland ABSTRACT A two dimensional discrete element method has been used to study the ice pile-up process against an inclined plate. In a simulation, an intact ice sheet, driven against an inclined plate, failed into discrete ice blocks which then accumulated into a pile. The pile-up process, forces acting on the plate and the shape of the rubble pile were studied. Simulation results were compared to laboratory experiments. KEY WORDS: pile-up, inclined structure, simulation INTRODUCTION The failure of an ice cover against an inclined structure is a process where an ice sheet breaks into discrete ice blocks which then accumulate in the ice-structure interface and form a rubble pile. The first models for calculating the ice load on sloping structures separated the failure process into failure of the ice sheet through bending, and ride-up of the ice along the structure (for a review, see Sanderson, 1988). The main variables in this kind of models are the slope angle, thickness and other properties of the ice sheet, as well as the friction coefficient. Later, also other failure modes and effects of weight and buoyancy of the rubble have been included in the calculation models (e.g. Määttänen, 1986). While solutions for different events can be obtained through simple analyses, calculation of the total ice load is not as easy. This is because the maximum value of each load component does not necessarily occur at the same time, and also because the different ice failure events can interact. As an example, the bending failure of the ice sheet is affected by the rubble formation. This kind of uncertainties can be avoided if the ice-structure interaction is studied as a process and simulated. One method to simulate the ice failure processes is the discrete element method (DEM), which has already been used in analyses of ice pile-up on an inclined ramp (Hopkins, 1997) and ice sheet interaction with a rubble pile adjacent to a structure (Evgin et al., 1992). In addition, it is important to note, that the pile-up process is closely related to the ice ridging process, which has been extensively simulated with DEM (e.g. Hopkins, 1998; Hopkins et al. 1999)

2 In this paper, a two dimensional DEM is used to simulate laboratory scale experiments of ice sheet failure and rubble formation against an inclined structure. The simulations provide a method to study the rubble formation process and the forces related to it, while the experimental data is used to benchmark the simulation method. DISCRETE ELEMENT METHOD Discrete element method (DEM) is a technique for modelling media consisting of discrete particles. In DEM, the interaction between the particles within the system occurs through pairwise collisions from which the forces acting on each particle are derived according to the chosen interaction laws. On each time step of a DEM simulation, the contacting particles are identified, the contact geometries are solved, the contact forces are determined, and the particles are moved to new locations. The method for searching contacting particles was adopted from Munjiza and Andrews (1998) and the method for calculating contact forces between interacting ice blocks was adopted from Hopkins (1992). The contact forces between particles were calculated with an elastic-viscous-plastic material model combined with an incremental Mohr-Coulomb tangential force model. Inelasticity was modelled by using a plastic limit for the material. Determination of the elastic contact forces was based on the overlap area and the rate of change of the overlap area of contacting particles. The normal component of the elastic contact force is F ne = k ne (A e + A)n, (1) where k ne is the normal stiffness of the contact, A e is the elastic area of the overlap from the previous time step, A is the change in the overlap area between time steps and n is the unit vector normal to the line of contact defined for the contact geometry. The viscous component of the normal force is given by F nv = k nv ( A t ) n, where k nv is the viscous damping coefficient and t is the length of time step. The plastic limit is defined as (2) F p = σ p l n, (3) where σ p is the plastic limit of the material and l is the length of the line of contact. Using F p as the upper limit for the normal contact force, the total normal contact force is given by F n = min {F ne + F nv,f p }. (4) If the plastic limit is exceeded, the elastic area for the next time step is updated by solving the equation A e t = 1 k nv ( F p k ne A e ). (5) The tangential contact force F t,i on timestep i is calculated using its value from time step i 1, tangential contact stiffness k te and relative tangential velocity of interacting particles v t. The -178-

3 upper limit for F t,i, using Mohr-Coulomb model, is achieved by using friction coefficient µ and F n, hence F t,i = min {F t,i 1 k te v t t, µf n }. (6) The moment acting on each particle due to contacts is given by M = r F, (7) where r is the vector pointing from the centroid of a particle to the centroid of the overlap area and F is achieved as a sum of the tangential and normal contact forces. When simulating an ice sheet failure against a structure, an intact ice sheet and the failure of the ice sheet need to be modelled, in addition to the discrete particles. This intact 2D sheet was modelled with discrete particles that were combined together with beam elements. For the beam elements, a non-linear Timoshenko plane beam model was used (Paavilainen, 2006). From the positions and orientations of two adjacent particles in the intact sheet, the strainsh T = [ε γ κ] of the beam element combining the particles are calculated. The stress resultants z T = [N V M] are then defined from the strains, and the internal forces p of the beam element are calculated from the stress resultants as follows p = B T z dx. (8) L 0 The matrix B is obtained from the strain-displacement relation and the integral is taken over the initial length L 0 of the beam element. Internal forces of the beam element are then added to the corresponding forces acting on the particle. A fracture criterion, σ x σ b, where σ x is the stress in the surface of the beam and σ b is the bending strength of the beam, was used for the ice sheet. On each time step, the fracture criterion was examined on both the upper and the lower surface of the beam. If σ x σ b, a crack was assumed to initiate and propagate with constant velocity through the beam during the following time steps. The crack velocity in many brittle materials is of the order of 0.3 E/ρ, where E is Young s modulus and ρ is density (Broek, 1991). Parsons et al. (1987) measured a much lower value 0.01 E/ρ for sea ice. Crack velocity in the model ice simulated here is not known, and a value 0.05 E/ρ was used in the simulations. SET-UP OF THE SIMULATIONS AND THE LABORATORY EXPERIMENTS The numerical DE simulations performed were simulations of the model scale laboratory experiments conducted by Saarinen (2000). In both experiments and simulations, an ice sheet was pushed against an inclined plate with a constant velocity. Figure 1 shows the geometry of the set-up and Table 1 gives the parameters used in the simulations and either measured during the laboratory experiments or known for the model scale laboratory ice. In the experiments, a 4.6 m wide ice sheet was used, but the simulations were two dimensional. All the individual particles in the simulation were square shaped. At the left boundary, the ice sheet rotation was constrained, vertical displacement was allowed, and a constant horizontal velocity was given as an input value. Distance from the inclined plate to the left boundary was 217.5h, where h is the ice thickness. The number of ice particles in the beginning of the simulation was 217 and at the end Both ends of the inclined plate were rigidly supported

4 Table 1: Parameters used in the simulations and either measured during the laboratory experiments or known for the model scale laboratory ice. Parameter Simulations Experiments Ice particles thickness [m], h width [m] Ice properties Young s modulus [MPa], E i Poisson ratio, ν i density [kg m 3 ], ρ i friction coefficient, µ i friction coefficient (under water), µ is normal stiffness [MPa], k ne tangential stiffness [MPa], k te viscous damping [MPa s], k nv plastic limit [kpa], σ p bending strength [kpa], σ b internal damping [kpa s], c i,int crack propagation speed [m s 1 ] ice sheet velocity, v i 0.1, Water density [kg m 3 ], ρ w Wall properties inclination angle [ ], α 50 50, 65, 80 Young s modulus [GPa], E W Poisson ratio, ν W internal damping [kpa s], c W,int Ice-wall contact friction coefficient, µ iw , 0.35 friction coefficient (under water), µ iws Simulation time step [s], t SIMULATION RESULTS Figure 1 shows snapshots of the simulation and Figure 2 gives the total force acting on the inclined plate in the horizontal direction as a function of the length of pushed ice L. Figure 2 shows also the force obtained in the laboratory experiments. For comparison of the forces and the stage of simulation, the subfigures of Figure 1 are pointed out in the F(L)-record in Figure 2 with arrows. The growth of the cross sectional area of the rubble pile was also studied. Cross sections from the simulation are presented in Figure 3 at L = 10, 20, 30 and 40 m. Initially, the ice sheet failed against the inclined plate by bending (Figure 1a) and started to form a pile (Figure 1b) which grew both vertically and horizontally. After a pile was formed, the ice sheet failed against the pile to form a sail (Figures 1d and 1g) or slided on top of the pile to the inclined plate and rode-up along the plate (Figures 1c and 1e). Figures 1e and 1f illustrate a collapse of the pile, when a failure of the ice sheet resulted in decrease of the horizontal force, followed by movement of the pile down and left. The cycle, growth of the pile against the plate and collapse of the pile, occurred several times during the simulation. During the initial stages (0 L < 20 m) of the simulation these collapses of the rubble pile caused the force to drop to zero as the contact between the sheet -180-

5 (a) (b) (c) (d) (e) (f) (g) (h) Figure 1. Snapshots of a simulation. Ice sheet (white) is pushed with a constant velocity of 0.05 m/s against an inclined plate (black). The water layer is coloured gray. The length of the pushed ice L in subfigures (a)-(h) can be found from Figure 2. and the plate was lost. This is evident from the F(L)-record. Another phenomenon observed in the simulations was a clockwise rotational motion of the rubble pile. In later stages, the location of the active failure prosess moved away from the plate (Figures 1g and 1h). Two velocities, 0.1 m/s and 0.05 m/s, were used in the simulations. In this range, the velocity did not affect the calculated F(L)-record or the final shape of the rubble pile profile

6 simulation experiment (e) F [N/m] (a) (c) (g) 0 (f) (h) (b) (d) L [m] Figure 2: Horizontal force F acting on the plate as a function of the length of the pushed ice L as obtained from the simulation and experiments. The letters refer to Figure 1. DISCUSSION AND CONCLUSIONS Visual observations of the simulations and laboratory experiments were similar. In both cases cycles of rubble pile growth and collapse were observed. More quantitative data can be obtained through comparison of the rubble pile profiles and measured forces. Figure 3 shows rubble pile profiles during the simulation and Figure 4 compares the rubble profiles from the simulations and experiments. The shapes of the rubble piles from the experiments are similar with those achieved from the simulations. However, it appears that in the simulations the rubble piles were more loosely packed. The porosity ν p of the piles was in the range of in the experiments and in the simulations. Here porosity ν p is defined as (1 ν p )A = hl, where A is the cross sectional area of the pile as measured from 0.5 L=30 m L =40 m L =20 m L =10 m Figure 3: Rubble pile profiles from the simulation with different lengths of the pushed ice L

7 (a) (b) Figure 4. Comparisons of rubble pile profiles from laboratory experiments and simulations. (a) L = 14.6 m with an angle of inclination of 65 in experiments, and (b) L = 16.6 m with an angle of inclination of 50 in experiments. Data from simulations is presented with bold lines and experimental data with dashed lines. the cross sectional profiles. One reason for this difference in porosity may be edge crushing. During the experiments, edge crushing leads to formation of very small ice particles which may fill the pores in the rubble. In the simulations, the ice blocks failed only through bending, although an upper limit for the normal contact force is defined by Equation 4. The F(L)-records in Figure 2 show that the average force obtained from the simulation and experiments reached the same level of about 400 N/m. However, during the initial stages the F(L)-records look rather different. This is due to the loss of contact between the pile and the inclined plate during initial stages of the simulation. When the contact is lost, the simulated force drops to zero. This is caused by the 2D nature of the simulations and is thus not observed during the experiments. In the later stages of the simulation, when the contact between ice and the structure was not lost, the simulated F(L)-record is similar with the experimental data. The ice force obtained from the simulations can further be compared with results from analytical methods. A textbook solution to the horizontal ice force F h on a sloping-sided structure (Sanderson, 1988) divides the force into an ice breaking force F b and an ice ride-up F r force ( ) ρw gh 5 1/4 ( F h = F b + F r = σ b 0.68 sin α + µ ) iw cos α E cosα µ iw sin α ( sin α + µiw cosα + zhρ i g (sin α + µ iw cosα) cos α µ iw sin α + cosα ) sin α, (9) where z is the height of ride-up and the other symbols are as explained in Table 1. At the simulation event shown in Figure 1e, z = 0.75 m and the simulated force was about 1400 N/m. By using the values given in Table 1 and z = 0.75 m, a force F h = 1353 N/m is obtained by Equation

8 ACKNOWLEDGEMENTS The financial support from the Academy of Finland, the Finnish Cultural Foundation, and Heikki and Hilma Honkanen Foundation is gratefully acknowledged. REFERENCES Broek, D. (1991), "Elementary engineering fracture mechanics", Kluwer, 516 p. Evgin, E., Zhan, C. and Timco, G.W. (1992), "Distinct element modelling of load transmission through grounded ice rubble," Proc. of the 11th OMAE Symp., Calgary, Canada, Vol IV, pp Hopkins, M.A. (1992), "Numerical simulation of systems of multitudinous polygonal blocks", Cold Regions Research and Engineering Laboratory, CRREL, Report 92-22, 69 p. Hopkins, M.A. (1997), "Onshore ice pile-up: a comparison between experiments and simulations," Cold Regions Science and Technology, 26: Hopkins, M.A. (1998), "Four stages of pressure ridging," Journal of Geophysical Research, 103, pp. 21,883-21,891. Hopkins, M.A., Tuhkuri, J. and Lensu, M. (1999), "Rafting and ridging of thin ice sheets," Journal of Geophysical Research, 104, pp Munjiza, A., Andrews K. F. R. (1998), "NBS Contact detection algorithm for bodies of similar size", Int. J. Numer. Meth. Engng., 43, pp Määttänen, M. (1986), "Ice sheet failure against an inclined wall", Proc. of the IAHR Ice Symposium 1986, Iowa City, USA, Vol I, pp Paavilainen, J. (2006), "Modelling of beams in discrete element simulations", To appear in the Proceedings of IX Finnish Mechanics Days. Parsons, B.L., Snellen, J.B. and Hill, B., (1987), "Preliminary measurements of terminal crack velocity in ice", Cold Regions Science and Technology, 13: Saarinen, S. (2000), "Description of the pile-up process of an ice sheet against an inclined plate", M.Sc. thesis, Helsinki University of Technology, Dept. of Mechanical Engineering, 78 p. Sanderson, T.J.O. (1988). "Ice Mechanics, Risks to Offshore Structures". Graham & Trotman. 253 p

Keywords: sea ice deformation, ridging, rafting, finger-rafting, ice rubble, pile-up, ridge keel, ridge sail UNESCO-EOLSS

Keywords: sea ice deformation, ridging, rafting, finger-rafting, ice rubble, pile-up, ridge keel, ridge sail UNESCO-EOLSS ICE RIDGE FORMATION Jukka Tuhkuri Aalto University, Department of Applied Mechanics, Finland Keywords: sea ice deformation, ridging, rafting, finger-rafting, ice rubble, pile-up, ridge keel, ridge sail

More information

Lilja, Ville-Pekka; Polojärvi, Arttu; Tuhkuri, Jukka; Paavilainen, Jani A three-dimensional FEM-DEM model of an ice sheet

Lilja, Ville-Pekka; Polojärvi, Arttu; Tuhkuri, Jukka; Paavilainen, Jani A three-dimensional FEM-DEM model of an ice sheet Powered by TCPDF (www.tcpdf.org) This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail. Lilja, Ville-Pekka; Polojärvi, Arttu;

More information

ON ANALYSIS OF PUNCH TESTS ON ICE RUBBLE

ON ANALYSIS OF PUNCH TESTS ON ICE RUBBLE Ice in the Environment: Proceedings of the 16th IAHR International Symposium on Ice Dunedin, New Zealand, 2nd 6th December 2002 International Association of Hydraulic Engineering and Research ON ANALYSIS

More information

FORMATION, BEHAVIOUR AND CHARACTERISTICS OF ICE RUBBLE PILE-UP AND RIDE-UP ON A CONE

FORMATION, BEHAVIOUR AND CHARACTERISTICS OF ICE RUBBLE PILE-UP AND RIDE-UP ON A CONE Proceedings oh the th IAHR International Symposium on Ice () FORMATION, BEHAVIOUR AND CHARACTERISTICS OF ICE RUBBLE PILE-UP AND RIDE-UP ON A CONE Mohamed O. ElSeify and Thomas G. Brown University of Calgary,

More information

DYNAMIC ANALYSIS OF PILES IN SAND BASED ON SOIL-PILE INTERACTION

DYNAMIC ANALYSIS OF PILES IN SAND BASED ON SOIL-PILE INTERACTION October 1-17,, Beijing, China DYNAMIC ANALYSIS OF PILES IN SAND BASED ON SOIL-PILE INTERACTION Mohammad M. Ahmadi 1 and Mahdi Ehsani 1 Assistant Professor, Dept. of Civil Engineering, Geotechnical Group,

More information

Ch 4a Stress, Strain and Shearing

Ch 4a Stress, Strain and Shearing Ch. 4a - Stress, Strain, Shearing Page 1 Ch 4a Stress, Strain and Shearing Reading Assignment Ch. 4a Lecture Notes Sections 4.1-4.3 (Salgado) Other Materials Handout 4 Homework Assignment 3 Problems 4-13,

More information

Examination in Damage Mechanics and Life Analysis (TMHL61) LiTH Part 1

Examination in Damage Mechanics and Life Analysis (TMHL61) LiTH Part 1 Part 1 1. (1p) Define the Kronecker delta and explain its use. The Kronecker delta δ ij is defined as δ ij = 0 if i j 1 if i = j and it is used in tensor equations to include (δ ij = 1) or "sort out" (δ

More information

Geology 229 Engineering Geology. Lecture 5. Engineering Properties of Rocks (West, Ch. 6)

Geology 229 Engineering Geology. Lecture 5. Engineering Properties of Rocks (West, Ch. 6) Geology 229 Engineering Geology Lecture 5 Engineering Properties of Rocks (West, Ch. 6) Common mechanic properties: Density; Elastic properties: - elastic modulii Outline of this Lecture 1. Uniaxial rock

More information

VORONOI APPLIED ELEMENT METHOD FOR STRUCTURAL ANALYSIS: THEORY AND APPLICATION FOR LINEAR AND NON-LINEAR MATERIALS

VORONOI APPLIED ELEMENT METHOD FOR STRUCTURAL ANALYSIS: THEORY AND APPLICATION FOR LINEAR AND NON-LINEAR MATERIALS The 4 th World Conference on Earthquake Engineering October -7, 008, Beijing, China VORONOI APPLIED ELEMENT METHOD FOR STRUCTURAL ANALYSIS: THEORY AND APPLICATION FOR LINEAR AND NON-LINEAR MATERIALS K.

More information

Effect of buttress on reduction of rock slope sliding along geological boundary

Effect of buttress on reduction of rock slope sliding along geological boundary Paper No. 20 ISMS 2016 Effect of buttress on reduction of rock slope sliding along geological boundary Ryota MORIYA *, Daisuke FUKUDA, Jun-ichi KODAMA, Yoshiaki FUJII Faculty of Engineering, Hokkaido University,

More information

Brittle Deformation. Earth Structure (2 nd Edition), 2004 W.W. Norton & Co, New York Slide show by Ben van der Pluijm

Brittle Deformation. Earth Structure (2 nd Edition), 2004 W.W. Norton & Co, New York Slide show by Ben van der Pluijm Lecture 6 Brittle Deformation Earth Structure (2 nd Edition), 2004 W.W. Norton & Co, New York Slide show by Ben van der Pluijm WW Norton, unless noted otherwise Brittle deformation EarthStructure (2 nd

More information

A QUALITATIVE ANALYSIS OF BREAKING LENGTH OF SHEET ICE AGAINST CONICAL STRUCTURE

A QUALITATIVE ANALYSIS OF BREAKING LENGTH OF SHEET ICE AGAINST CONICAL STRUCTURE A QUALITATIVE ANALYSIS OF BREAKING LENGTH OF SHEET ICE AGAINST CONICAL STRUCTURE Li Feng 1, Yue Qianjin 1, Karl N. Shkhinek 2, Tuomo Kärnä 3 1 Dalian University of Technology, China 2 St. Petersburg State

More information

Using the Timoshenko Beam Bond Model: Example Problem

Using the Timoshenko Beam Bond Model: Example Problem Using the Timoshenko Beam Bond Model: Example Problem Authors: Nick J. BROWN John P. MORRISSEY Jin Y. OOI School of Engineering, University of Edinburgh Jian-Fei CHEN School of Planning, Architecture and

More information

Lecture 4 Honeycombs Notes, 3.054

Lecture 4 Honeycombs Notes, 3.054 Honeycombs-In-plane behavior Lecture 4 Honeycombs Notes, 3.054 Prismatic cells Polymer, metal, ceramic honeycombs widely available Used for sandwich structure cores, energy absorption, carriers for catalysts

More information

Discrete Element Modelling of a Reinforced Concrete Structure

Discrete Element Modelling of a Reinforced Concrete Structure Discrete Element Modelling of a Reinforced Concrete Structure S. Hentz, L. Daudeville, F.-V. Donzé Laboratoire Sols, Solides, Structures, Domaine Universitaire, BP 38041 Grenoble Cedex 9 France sebastian.hentz@inpg.fr

More information

THE TRENCH FLEXURE PROBLEM and

THE TRENCH FLEXURE PROBLEM and THE TRENCH FLEXURE PROBLEM and THE YIELD STRENGTH OF THE OUTER RISE Presented by: Paul Evans, Christine Wittich, and Qian Yao For: SIO234 Geodynamics, Fall 2011 BRIEF OVERVIEW Discussion of the trench

More information

Limit analysis of brick masonry shear walls with openings under later loads by rigid block modeling

Limit analysis of brick masonry shear walls with openings under later loads by rigid block modeling Limit analysis of brick masonry shear walls with openings under later loads by rigid block modeling F. Portioli, L. Cascini, R. Landolfo University of Naples Federico II, Italy P. Foraboschi IUAV University,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION DOI: 10.1038/NGEO1887 Diverse calving patterns linked to glacier geometry J. N. Bassis and S. Jacobs 1. Supplementary Figures (a) (b) (c) Supplementary Figure S1 Schematic of

More information

UNIVERSITY OF SASKATCHEWAN ME MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 13, 2008 Professor A. Dolovich

UNIVERSITY OF SASKATCHEWAN ME MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 13, 2008 Professor A. Dolovich UNIVERSITY OF SASKATCHEWAN ME 313.3 MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 13, 2008 Professor A. Dolovich A CLOSED BOOK EXAMINATION TIME: 3 HOURS For Marker s Use Only LAST NAME (printed): FIRST

More information

The effect of plasticity in crumpling of thin sheets: Supplementary Information

The effect of plasticity in crumpling of thin sheets: Supplementary Information The effect of plasticity in crumpling of thin sheets: Supplementary Information T. Tallinen, J. A. Åström and J. Timonen Video S1. The video shows crumpling of an elastic sheet with a width to thickness

More information

Laboratory tests on ridging and rafting of ice sheets

Laboratory tests on ridging and rafting of ice sheets JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 107, NO. C9, 3125, doi:10.1029/2001jc000848, 2002 Laboratory tests on ridging and rafting of ice sheets Jukka Tuhkuri Laboratory for Mechanics of Materials, Helsinki

More information

DYNAMIC ICE FORCES CAUSED BY CRUSHING FAILURE

DYNAMIC ICE FORCES CAUSED BY CRUSHING FAILURE Ice in the Environment: Proceedings of the 6th IAHR International Symposium on Ice Dunedin, New Zealand, 2nd 6th December 22 International Association of Hydraulic Engineering and Research DYNAMIC ICE

More information

Tectonics. Lecture 12 Earthquake Faulting GNH7/GG09/GEOL4002 EARTHQUAKE SEISMOLOGY AND EARTHQUAKE HAZARD

Tectonics. Lecture 12 Earthquake Faulting GNH7/GG09/GEOL4002 EARTHQUAKE SEISMOLOGY AND EARTHQUAKE HAZARD Tectonics Lecture 12 Earthquake Faulting Plane strain 3 Strain occurs only in a plane. In the third direction strain is zero. 1 ε 2 = 0 3 2 Assumption of plane strain for faulting e.g., reverse fault:

More information

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown.

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown. D : SOLID MECHANICS Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown. Q.2 Consider the forces of magnitude F acting on the sides of the regular hexagon having

More information

Mechanics of Earthquakes and Faulting

Mechanics of Earthquakes and Faulting Mechanics of Earthquakes and Faulting www.geosc.psu.edu/courses/geosc508 Surface and body forces Tensors, Mohr circles. Theoretical strength of materials Defects Stress concentrations Griffith failure

More information

Dynamic Soil Pressures on Embedded Retaining Walls: Predictive Capacity Under Varying Loading Frequencies

Dynamic Soil Pressures on Embedded Retaining Walls: Predictive Capacity Under Varying Loading Frequencies 6 th International Conference on Earthquake Geotechnical Engineering 1-4 November 2015 Christchurch, New Zealand Dynamic Soil Pressures on Embedded Retaining Walls: Predictive Capacity Under Varying Loading

More information

8.1. What is meant by the shear strength of soils? Solution 8.1 Shear strength of a soil is its internal resistance to shearing stresses.

8.1. What is meant by the shear strength of soils? Solution 8.1 Shear strength of a soil is its internal resistance to shearing stresses. 8.1. What is meant by the shear strength of soils? Solution 8.1 Shear strength of a soil is its internal resistance to shearing stresses. 8.2. Some soils show a peak shear strength. Why and what type(s)

More information

Module 5: Failure Criteria of Rock and Rock masses. Contents Hydrostatic compression Deviatoric compression

Module 5: Failure Criteria of Rock and Rock masses. Contents Hydrostatic compression Deviatoric compression FAILURE CRITERIA OF ROCK AND ROCK MASSES Contents 5.1 Failure in rocks 5.1.1 Hydrostatic compression 5.1.2 Deviatoric compression 5.1.3 Effect of confining pressure 5.2 Failure modes in rocks 5.3 Complete

More information

EDEM DISCRETIZATION (Phase II) Normal Direction Structure Idealization Tangential Direction Pore spring Contact spring SPRING TYPES Inner edge Inner d

EDEM DISCRETIZATION (Phase II) Normal Direction Structure Idealization Tangential Direction Pore spring Contact spring SPRING TYPES Inner edge Inner d Institute of Industrial Science, University of Tokyo Bulletin of ERS, No. 48 (5) A TWO-PHASE SIMPLIFIED COLLAPSE ANALYSIS OF RC BUILDINGS PHASE : SPRING NETWORK PHASE Shanthanu RAJASEKHARAN, Muneyoshi

More information

Mechanics of Earthquakes and Faulting

Mechanics of Earthquakes and Faulting Mechanics of Earthquakes and Faulting Lectures & 3, 9/31 Aug 017 www.geosc.psu.edu/courses/geosc508 Discussion of Handin, JGR, 1969 and Chapter 1 Scholz, 00. Stress analysis and Mohr Circles Coulomb Failure

More information

Analysis of Blocky Rock Slopes with Finite Element Shear Strength Reduction Analysis

Analysis of Blocky Rock Slopes with Finite Element Shear Strength Reduction Analysis Analysis of Blocky Rock Slopes with Finite Element Shear Strength Reduction Analysis R.E. Hammah, T. Yacoub, B. Corkum & F. Wibowo Rocscience Inc., Toronto, Canada J.H. Curran Department of Civil Engineering

More information

Outline. Advances in STAR-CCM+ DEM models for simulating deformation, breakage, and flow of solids

Outline. Advances in STAR-CCM+ DEM models for simulating deformation, breakage, and flow of solids Advances in STAR-CCM+ DEM models for simulating deformation, breakage, and flow of solids Oleh Baran Outline Overview of DEM in STAR-CCM+ Recent DEM capabilities Parallel Bonds in STAR-CCM+ Constant Rate

More information

INTERACTION OF LEVEL ICE WITH UPWARD BREAKING CONICAL STRUCTURES AT TWO SCALES

INTERACTION OF LEVEL ICE WITH UPWARD BREAKING CONICAL STRUCTURES AT TWO SCALES Ice in the Environment: Proceedings of the 16th IAHR International Symposium on Ice Dunedin, New Zealand, 2nd 6th December 2002 International Association of Hydraulic Engineering and Research INTERACTION

More information

Landslide FE Stability Analysis

Landslide FE Stability Analysis Landslide FE Stability Analysis L. Kellezi Dept. of Geotechnical Engineering, GEO-Danish Geotechnical Institute, Denmark S. Allkja Altea & Geostudio 2000, Albania P. B. Hansen Dept. of Geotechnical Engineering,

More information

Foundation Analysis LATERAL EARTH PRESSURE

Foundation Analysis LATERAL EARTH PRESSURE Foundation Analysis LATERAL EARTH PRESSURE INTRODUCTION Vertical or near-vertical slopes of soil are supported by retaining walls, cantilever sheet-pile walls, sheet-pile bulkheads, braced cuts, and other

More information

SOIL MODELS: SAFETY FACTORS AND SETTLEMENTS

SOIL MODELS: SAFETY FACTORS AND SETTLEMENTS PERIODICA POLYTECHNICA SER. CIV. ENG. VOL. 48, NO. 1 2, PP. 53 63 (2004) SOIL MODELS: SAFETY FACTORS AND SETTLEMENTS Gabriella VARGA and Zoltán CZAP Geotechnical Department Budapest University of Technology

More information

MAXIMUM EFFECTIVE PRESSURE DURING CONTINUOUS BRITTLE CRUSHING OF ICE

MAXIMUM EFFECTIVE PRESSURE DURING CONTINUOUS BRITTLE CRUSHING OF ICE MAXIMUM EFFECTIVE PRESSURE DURING CONTINUOUS BRITTLE CRUSHING OF ICE Devinder S. Sodhi 1 1 Retired from CRREL, Hanover, NH, USA ABSTRACT After presenting a brief review of the ductile and brittle modes

More information

Dynamic Analysis of a Reinforced Concrete Structure Using Plasticity and Interface Damage Models

Dynamic Analysis of a Reinforced Concrete Structure Using Plasticity and Interface Damage Models Dynamic Analysis of a Reinforced Concrete Structure Using Plasticity and Interface Damage Models I. Rhee, K.J. Willam, B.P. Shing, University of Colorado at Boulder ABSTRACT: This paper examines the global

More information

Lecture 7, Foams, 3.054

Lecture 7, Foams, 3.054 Lecture 7, Foams, 3.054 Open-cell foams Stress-Strain curve: deformation and failure mechanisms Compression - 3 regimes - linear elastic - bending - stress plateau - cell collapse by buckling yielding

More information

Engineering Design for Ocean and Ice Environments Engineering Sea Ice Engineering

Engineering Design for Ocean and Ice Environments Engineering Sea Ice Engineering Engineering 867 - Design for Ocean and Ice Environments Engineering 9096 - Sea Ice Engineering MID-TERM EXAMINATION With Solutions Date: Fri., Feb. 6, 009 Time: 1:00-1:50 pm Professor: Dr. C. Daley Answer

More information

Modelling Progressive Failure with MPM

Modelling Progressive Failure with MPM Modelling Progressive Failure with MPM A. Yerro, E. Alonso & N. Pinyol Department of Geotechnical Engineering and Geosciences, UPC, Barcelona, Spain ABSTRACT: In this work, the progressive failure phenomenon

More information

Introduction to Structural Member Properties

Introduction to Structural Member Properties Introduction to Structural Member Properties Structural Member Properties Moment of Inertia (I): a mathematical property of a cross-section (measured in inches 4 or in 4 ) that gives important information

More information

AN ANALYSIS OF AMPLITUDE AND PERIOD OF ALTERNATING ICE LOADS ON CONICAL STRUCTURES

AN ANALYSIS OF AMPLITUDE AND PERIOD OF ALTERNATING ICE LOADS ON CONICAL STRUCTURES Ice in te Environment: Proceedings of te 1t IAHR International Symposium on Ice Dunedin, New Zealand, nd t December International Association of Hydraulic Engineering and Researc AN ANALYSIS OF AMPLITUDE

More information

Using the finite element method of structural analysis, determine displacements at nodes 1 and 2.

Using the finite element method of structural analysis, determine displacements at nodes 1 and 2. Question 1 A pin-jointed plane frame, shown in Figure Q1, is fixed to rigid supports at nodes and 4 to prevent their nodal displacements. The frame is loaded at nodes 1 and by a horizontal and a vertical

More information

MECHANICS OF 2D MATERIALS

MECHANICS OF 2D MATERIALS MECHANICS OF 2D MATERIALS Nicola Pugno Cambridge February 23 rd, 2015 2 Outline Stretching Stress Strain Stress-Strain curve Mechanical Properties Young s modulus Strength Ultimate strain Toughness modulus

More information

FINITE ELEMENT SIMULATION OF RETROGRESSIVE FAILURE OF SUBMARINE SLOPES

FINITE ELEMENT SIMULATION OF RETROGRESSIVE FAILURE OF SUBMARINE SLOPES FINITE ELEMENT SIMULATION OF RETROGRESSIVE FAILURE OF SUBMARINE SLOPES A. AZIZIAN & R. POPESCU Faculty of Engineering & Applied Science, Memorial University, St. John s, Newfoundland, Canada A1B 3X5 Abstract

More information

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each.

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. GTE 2016 Q. 1 Q. 9 carry one mark each. D : SOLID MECHNICS Q.1 single degree of freedom vibrating system has mass of 5 kg, stiffness of 500 N/m and damping coefficient of 100 N-s/m. To make the system

More information

ME 243. Mechanics of Solids

ME 243. Mechanics of Solids ME 243 Mechanics of Solids Lecture 2: Stress and Strain Ahmad Shahedi Shakil Lecturer, Dept. of Mechanical Engg, BUET E-mail: sshakil@me.buet.ac.bd, shakil6791@gmail.com Website: teacher.buet.ac.bd/sshakil

More information

FCP Short Course. Ductile and Brittle Fracture. Stephen D. Downing. Mechanical Science and Engineering

FCP Short Course. Ductile and Brittle Fracture. Stephen D. Downing. Mechanical Science and Engineering FCP Short Course Ductile and Brittle Fracture Stephen D. Downing Mechanical Science and Engineering 001-015 University of Illinois Board of Trustees, All Rights Reserved Agenda Limit theorems Plane Stress

More information

Instabilities and Dynamic Rupture in a Frictional Interface

Instabilities and Dynamic Rupture in a Frictional Interface Instabilities and Dynamic Rupture in a Frictional Interface Laurent BAILLET LGIT (Laboratoire de Géophysique Interne et Tectonophysique) Grenoble France laurent.baillet@ujf-grenoble.fr http://www-lgit.obs.ujf-grenoble.fr/users/lbaillet/

More information

FLAC3D analysis on soil moving through piles

FLAC3D analysis on soil moving through piles University of Wollongong Research Online Faculty of Engineering - Papers (Archive) Faculty of Engineering and Information Sciences 211 FLAC3D analysis on soil moving through piles E H. Ghee Griffith University

More information

NON-LINEAR VISCOELASTIC MODEL OF STRUCTURAL POUNDING

NON-LINEAR VISCOELASTIC MODEL OF STRUCTURAL POUNDING 3 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August -6, 004 Paper No. 308 NON-LINEAR VISCOELASTIC MODEL OF STRUCTURAL POUNDING Robert JANKOWSKI SUMMARY Pounding between structures

More information

Rock Cutting Analysis Employing Finite and Discrete Element Methods

Rock Cutting Analysis Employing Finite and Discrete Element Methods Journal of Mechanics Engineering and Automation 6 (2016) 100-108 doi: 10.17265/2159-5275/2016.02.006 D DAVID PUBLISHING Rock Cutting Analysis Employing Finite and Discrete Element Methods Carla Massignani

More information

Site Response Analysis with 2D-DDA

Site Response Analysis with 2D-DDA Site Response Analysis with 2D-DDA Yossef H. Hatzor Sam and Edna Lemkin Professor of Rock Mechanics Dept. of Geological and Environmental Sciences Ben-Gurion University of the Negev, Beer-Sheva, Israel

More information

Mechanical Properties of Materials

Mechanical Properties of Materials Mechanical Properties of Materials Strains Material Model Stresses Learning objectives Understand the qualitative and quantitative description of mechanical properties of materials. Learn the logic of

More information

NUMERICAL ANALYSIS OF A PILE SUBJECTED TO LATERAL LOADS

NUMERICAL ANALYSIS OF A PILE SUBJECTED TO LATERAL LOADS IGC 009, Guntur, INDIA NUMERICAL ANALYSIS OF A PILE SUBJECTED TO LATERAL LOADS Mohammed Younus Ahmed Graduate Student, Earthquake Engineering Research Center, IIIT Hyderabad, Gachibowli, Hyderabad 3, India.

More information

Example-3. Title. Description. Cylindrical Hole in an Infinite Mohr-Coulomb Medium

Example-3. Title. Description. Cylindrical Hole in an Infinite Mohr-Coulomb Medium Example-3 Title Cylindrical Hole in an Infinite Mohr-Coulomb Medium Description The problem concerns the determination of stresses and displacements for the case of a cylindrical hole in an infinite elasto-plastic

More information

NORMAL STRESS. The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts.

NORMAL STRESS. The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts. NORMAL STRESS The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts. σ = force/area = P/A where σ = the normal stress P = the centric

More information

Practice Final Examination. Please initial the statement below to show that you have read it

Practice Final Examination. Please initial the statement below to show that you have read it EN175: Advanced Mechanics of Solids Practice Final Examination School of Engineering Brown University NAME: General Instructions No collaboration of any kind is permitted on this examination. You may use

More information

Wellbore stability analysis in porous carbonate rocks using cap models

Wellbore stability analysis in porous carbonate rocks using cap models Wellbore stability analysis in porous carbonate rocks using cap models L. C. Coelho 1, A. C. Soares 2, N. F. F. Ebecken 1, J. L. D. Alves 1 & L. Landau 1 1 COPPE/Federal University of Rio de Janeiro, Brazil

More information

MAAE 2202 A. Come to the PASS workshop with your mock exam complete. During the workshop you can work with other students to review your work.

MAAE 2202 A. Come to the PASS workshop with your mock exam complete. During the workshop you can work with other students to review your work. It is most beneficial to you to write this mock final exam UNDER EXAM CONDITIONS. This means: Complete the exam in 3 hours. Work on your own. Keep your textbook closed. Attempt every question. After the

More information

Simulation of the cutting action of a single PDC cutter using DEM

Simulation of the cutting action of a single PDC cutter using DEM Petroleum and Mineral Resources 143 Simulation of the cutting action of a single PDC cutter using DEM B. Joodi, M. Sarmadivaleh, V. Rasouli & A. Nabipour Department of Petroleum Engineering, Curtin University,

More information

Fine adhesive particles A contact model including viscous damping

Fine adhesive particles A contact model including viscous damping Fine adhesive particles A contact model including viscous damping CHoPS 2012 - Friedrichshafen 7 th International Conference for Conveying and Handling of Particulate Solids Friedrichshafen, 12 th September

More information

Entrance exam Master Course

Entrance exam Master Course - 1 - Guidelines for completion of test: On each page, fill in your name and your application code Each question has four answers while only one answer is correct. o Marked correct answer means 4 points

More information

ON THE FACE STABILITY OF TUNNELS IN WEAK ROCKS

ON THE FACE STABILITY OF TUNNELS IN WEAK ROCKS 33 rd 33 Annual rd Annual General General Conference conference of the Canadian of the Canadian Society for Society Civil Engineering for Civil Engineering 33 e Congrès général annuel de la Société canadienne

More information

A NEW SIMPLIFIED AND EFFICIENT TECHNIQUE FOR FRACTURE BEHAVIOR ANALYSIS OF CONCRETE STRUCTURES

A NEW SIMPLIFIED AND EFFICIENT TECHNIQUE FOR FRACTURE BEHAVIOR ANALYSIS OF CONCRETE STRUCTURES Fracture Mechanics of Concrete Structures Proceedings FRAMCOS-3 AEDFCATO Publishers, D-79104 Freiburg, Germany A NEW SMPLFED AND EFFCENT TECHNQUE FOR FRACTURE BEHAVOR ANALYSS OF CONCRETE STRUCTURES K.

More information

Chapter 12: Lateral Earth Pressure

Chapter 12: Lateral Earth Pressure Part 4: Lateral Earth Pressure and Earth-Retaining Structures Chapter 12: Lateral Earth Pressure Introduction Vertical or near-vertical slopes of soil are supported by retaining walls, cantilever sheetpile

More information

When you are standing on a flat surface, what is the normal stress you exert on the ground? What is the shear stress?

When you are standing on a flat surface, what is the normal stress you exert on the ground? What is the shear stress? When you are standing on a flat surface, what is the normal stress you exert on the ground? What is the shear stress? How could you exert a non-zero shear stress on the ground? Hydrostatic Pressure (fluids)

More information

Finite element modelling of fault stress triggering due to hydraulic fracturing

Finite element modelling of fault stress triggering due to hydraulic fracturing Finite element modelling of fault stress triggering due to hydraulic fracturing Arsalan, Sattari and David, Eaton University of Calgary, Geoscience Department Summary In this study we aim to model fault

More information

FIRST INTERNATIONAL SEMINAR DEEP AND HIGH STRESS MINING 6-8 NOVEMBER 2002 PERTH, AUSTRALIA. Potential. T. Wiles Mine Modelling Pty Ltd, Australia

FIRST INTERNATIONAL SEMINAR DEEP AND HIGH STRESS MINING 6-8 NOVEMBER 2002 PERTH, AUSTRALIA. Potential. T. Wiles Mine Modelling Pty Ltd, Australia FIRST INTERNATIONAL SEMINAR ON DEEP AND HIGH STRESS MINING 6-8 NOVEMBER 22 PERTH, AUSTRALIA Loading System Stiffness A Parameter to Evaluate Rockburst Potential T. Wiles Mine Modelling Pty Ltd, Australia

More information

Mechanics of Earthquakes and Faulting

Mechanics of Earthquakes and Faulting Mechanics of Earthquakes and Faulting www.geosc.psu.edu/courses/geosc508 Overview Milestones in continuum mechanics Concepts of modulus and stiffness. Stress-strain relations Elasticity Surface and body

More information

20. Rheology & Linear Elasticity

20. Rheology & Linear Elasticity I Main Topics A Rheology: Macroscopic deformation behavior B Linear elasticity for homogeneous isotropic materials 10/29/18 GG303 1 Viscous (fluid) Behavior http://manoa.hawaii.edu/graduate/content/slide-lava

More information

Uncertainty modelling using software FReET

Uncertainty modelling using software FReET Uncertainty modelling using software FReET D. Novak, M. Vorechovsky, R. Rusina Brno University of Technology Brno, Czech Republic 1/30 Outline Introduction Methods and main features Software FReET Selected

More information

Lateral Earth Pressure

Lateral Earth Pressure 1 of 11 6/2/2012 4:28 AM Lateral Earth Pressure The magnitude of lateral earth pressure depends on: 1. Shear strength characteristics of soil 2. Lateral strain condition 3. Pore water pressure 4. State

More information

Surface changes caused by erosion and sedimentation were treated by solving: (2)

Surface changes caused by erosion and sedimentation were treated by solving: (2) GSA DATA REPOSITORY 214279 GUY SIMPSON Model with dynamic faulting and surface processes The model used for the simulations reported in Figures 1-3 of the main text is based on two dimensional (plane strain)

More information

Experimentally Calibrating Cohesive Zone Models for Structural Automotive Adhesives

Experimentally Calibrating Cohesive Zone Models for Structural Automotive Adhesives Experimentally Calibrating Cohesive Zone Models for Structural Automotive Adhesives Mark Oliver October 19, 2016 Adhesives and Sealants Council Fall Convention contact@veryst.com www.veryst.com Outline

More information

The Frictional Regime

The Frictional Regime The Frictional Regime Processes in Structural Geology & Tectonics Ben van der Pluijm WW Norton+Authors, unless noted otherwise 1/25/2016 10:08 AM We Discuss The Frictional Regime Processes of Brittle Deformation

More information

What we should know about mechanics of materials

What we should know about mechanics of materials What we should know about mechanics of materials 0 John Maloney Van Vliet Group / Laboratory for Material Chemomechanics Department of Materials Science and Engineering Massachusetts Institute of Technology

More information

Numerical modelling of ice & ice-structure interactions

Numerical modelling of ice & ice-structure interactions Numerical modelling as defined in Encyclopædia Britannica: A computer generated description of a mathematical system to represent the behaviour of a real or proposed system that uses a set of equations

More information

ENG1001 Engineering Design 1

ENG1001 Engineering Design 1 ENG1001 Engineering Design 1 Structure & Loads Determine forces that act on structures causing it to deform, bend, and stretch Forces push/pull on objects Structures are loaded by: > Dead loads permanent

More information

Study of Pile Interval of Landslide Restraint Piles by Centrifuge Test and FEM Analysis

Study of Pile Interval of Landslide Restraint Piles by Centrifuge Test and FEM Analysis Disaster Mitigation of Debris Flows, Slope Failures and Landslides 113 Study of Pile Interval of Landslide Restraint Piles by Centrifuge Test and FEM Analysis Yasuo Ishii, 1) Hisashi Tanaka, 1) Kazunori

More information

Critical Borehole Orientations Rock Mechanics Aspects

Critical Borehole Orientations Rock Mechanics Aspects Critical Borehole Orientations Rock Mechanics Aspects By R. BRAUN* Abstract This article discusses rock mechanics aspects of the relationship between borehole stability and borehole orientation. Two kinds

More information

Soil Mechanics Prof. B.V.S. Viswanathan Department of Civil Engineering Indian Institute of Technology, Bombay Lecture 51 Earth Pressure Theories II

Soil Mechanics Prof. B.V.S. Viswanathan Department of Civil Engineering Indian Institute of Technology, Bombay Lecture 51 Earth Pressure Theories II Soil Mechanics Prof. B.V.S. Viswanathan Department of Civil Engineering Indian Institute of Technology, Bombay Lecture 51 Earth Pressure Theories II Welcome to lecture number two on earth pressure theories.

More information

1 Introduction. 1.1 Aims. 1.2 Rock fractures

1 Introduction. 1.1 Aims. 1.2 Rock fractures 1 Introduction 1.1 Aims Rock fractures occur in a variety of geological processes and range in size from plate boundaries at the scale of hundreds of kilometres to microcracks in crystals at the scale

More information

Numerical modeling of standard rock mechanics laboratory tests using a finite/discrete element approach

Numerical modeling of standard rock mechanics laboratory tests using a finite/discrete element approach Numerical modeling of standard rock mechanics laboratory tests using a finite/discrete element approach S. Stefanizzi GEODATA SpA, Turin, Italy G. Barla Department of Structural and Geotechnical Engineering,

More information

SN QUESTION YEAR MARK 1. State and prove the relationship between shearing stress and rate of change of bending moment at a section in a loaded beam.

SN QUESTION YEAR MARK 1. State and prove the relationship between shearing stress and rate of change of bending moment at a section in a loaded beam. ALPHA COLLEGE OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING MECHANICS OF SOLIDS (21000) ASSIGNMENT 1 SIMPLE STRESSES AND STRAINS SN QUESTION YEAR MARK 1 State and prove the relationship

More information

Fluid driven cohesive crack propagation in quasi-brittle materials

Fluid driven cohesive crack propagation in quasi-brittle materials Fluid driven cohesive crack propagation in quasi-brittle materials F. Barpi 1, S. Valente 2 Department of Structural and Geotechnical Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129

More information

Tentamen/Examination TMHL61

Tentamen/Examination TMHL61 Avd Hållfasthetslära, IKP, Linköpings Universitet Tentamen/Examination TMHL61 Tentamen i Skademekanik och livslängdsanalys TMHL61 lördagen den 14/10 2000, kl 8-12 Solid Mechanics, IKP, Linköping University

More information

Mechanics of Solids. Mechanics Of Solids. Suraj kr. Ray Department of Civil Engineering

Mechanics of Solids. Mechanics Of Solids. Suraj kr. Ray Department of Civil Engineering Mechanics Of Solids Suraj kr. Ray (surajjj2445@gmail.com) Department of Civil Engineering 1 Mechanics of Solids is a branch of applied mechanics that deals with the behaviour of solid bodies subjected

More information

HYDRAULIC FRACTURE PROPAGATION NEAR A NATURAL DISCONTINUITY

HYDRAULIC FRACTURE PROPAGATION NEAR A NATURAL DISCONTINUITY PROCEEDINGS, Twenty-Eight Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 7-9, SGP-TR-7 HYDRAULIC FRACTURE PROPAGATION NEAR A NATURAL DISCONTINUITY V. Koshelev

More information

3.032 Problem Set 2 Solutions Fall 2007 Due: Start of Lecture,

3.032 Problem Set 2 Solutions Fall 2007 Due: Start of Lecture, 3.032 Problem Set 2 Solutions Fall 2007 Due: Start of Lecture, 09.21.07 1. In the beam considered in PS1, steel beams carried the distributed weight of the rooms above. To reduce stress on the beam, it

More information

Effect of intermediate principal stresses on compressive strength of Phra Wihan sandstone

Effect of intermediate principal stresses on compressive strength of Phra Wihan sandstone Rock Mechanics, Fuenkajorn & Phien-wej (eds) 211. ISBN 978 974 533 636 Effect of intermediate principal stresses on compressive strength of Phra Wihan sandstone T. Pobwandee & K. Fuenkajorn Geomechanics

More information

Evaluation of dynamic behavior of culverts and embankments through centrifuge model tests and a numerical analysis

Evaluation of dynamic behavior of culverts and embankments through centrifuge model tests and a numerical analysis Computer Methods and Recent Advances in Geomechanics Oka, Murakami, Uzuoka & Kimoto (Eds.) 2015 Taylor & Francis Group, London, ISBN 978-1-138-00148-0 Evaluation of dynamic behavior of culverts and embankments

More information

Numerical Modeling of Interface Between Soil and Pile to Account for Loss of Contact during Seismic Excitation

Numerical Modeling of Interface Between Soil and Pile to Account for Loss of Contact during Seismic Excitation Numerical Modeling of Interface Between Soil and Pile to Account for Loss of Contact during Seismic Excitation P. Sushma Ph D Scholar, Earthquake Engineering Research Center, IIIT Hyderabad, Gachbowli,

More information

Loads on an Off-Shore Structure due to an Ice Floe Impact

Loads on an Off-Shore Structure due to an Ice Floe Impact Archives of Hydro-Engineering and Environmental Mechanics Vol. 54 (2007), No. 2, pp. 77 94 IBW PAN, ISSN 1231 3726 Loads on an Off-Shore Structure due to an Ice Floe Impact Ryszard Staroszczyk Institute

More information

Introduction and Background

Introduction and Background Introduction and Background Itasca Consulting Group, Inc. (Itasca) has been participating in the geomechanical design of the underground 118-Zone at the Capstone Minto Mine (Minto) in the Yukon, in northwestern

More information

MODELING OF THE WEDGE SPLITTING TEST USING AN EXTENDED CRACKED HINGE MODEL

MODELING OF THE WEDGE SPLITTING TEST USING AN EXTENDED CRACKED HINGE MODEL Engineering MECHANICS, Vol. 21, 2014, No. 1, p. 67 72 67 MODELING OF THE WEDGE SPLITTING TEST USING AN EXTENDED CRACKED HINGE MODEL Tomáš Pail, Petr Frantík* The present paper describes a semi-analytical

More information

friction friction a-b slow fast increases during sliding

friction friction a-b slow fast increases during sliding µ increases during sliding faster sliding --> stronger fault --> slows sliding leads to stable slip: no earthquakes can start velocity-strengthening friction slow fast µ velocity-strengthening friction

More information

Finite Element analysis of Laterally Loaded Piles on Sloping Ground

Finite Element analysis of Laterally Loaded Piles on Sloping Ground Indian Geotechnical Journal, 41(3), 2011, 155-161 Technical Note Finite Element analysis of Laterally Loaded Piles on Sloping Ground K. Muthukkumaran 1 and N. Almas Begum 2 Key words Lateral load, finite

More information

UNIT V. The active earth pressure occurs when the wall moves away from the earth and reduces pressure.

UNIT V. The active earth pressure occurs when the wall moves away from the earth and reduces pressure. UNIT V 1. Define Active Earth pressure. The active earth pressure occurs when the wall moves away from the earth and reduces pressure. 2. Define Passive Earth pressure. The passive earth pressure occurs

More information