Electronic structure calculations: methods and applications. George C. Schatz Northwestern University

Size: px
Start display at page:

Download "Electronic structure calculations: methods and applications. George C. Schatz Northwestern University"

Transcription

1 Electronic structure calculations: methods and applications George C. Schatz Northwestern University

2 Materials Fracture and Degradation Steven Mielke, Diego Troya, LiPeng Sun, Jeff Paci, Ted Belytschko, Sulin Zhang, Roopam Khare and George C. Schatz Northwestern University Also thanks to: Rod Ruoff, Horacio Espinosa Northwestern Peter Zapol, Orlando Auciello-ANL Roberto Car - Princeton

3 Using Electronic Structure Theory to Model Mechanical Properties of Nanomaterials Nanotubes, rods and other nanomaterials provide the simplest systems for which mechanical properties (stress/strain behavior) can be measured. These materials provide an excellent opportunity to learn about the influence of defects and chemical functionalization. They are sometimes amenable to study using electronic structure theory methods, thus providing a platform for connecting fundamental theory with experiment.

4 Electronic Structure Theory will be used to: Establish shape of stress/strain curves, and their sensitivity to nanotube structure. Interpret experiments, establish theoretical limits. Examine the role of defects and chemical functionalization on fracture behavior. Integrate single nanotube results with bulk results.

5 Using electronic structure theory to describe fracture in nanosystems is a big challenge Minimum size systems to model structure typically contain >100 atoms, and real systems are usually much larger. The quality of theory needs to be carefully considered: bonds are being broken, open-shell effects can be important, both finite cluster and periodic boundary conditions need to be considered. Finite temperature effects might be important, but it is impossible to do useful MD calculations with most electronic structure models. Multiple pathways to fracture are possible.

6 Model Systems Carbon Nanotubes (defects, chemical functionalization) Ultrananocrystalline Diamond Films (grain boundary fracture, doping effects)

7 Electronic structure methods DFT (PBE): SIESTA (Spanish Initiative for Electronic Simulations with Thousands of Atoms): a self-consistent DFT program. Highest accuracy of the methods we have studied, but computational effort is a serious problem. PM3: Semiempirical method which is reasonably close to DFT for carbon-based nanostructures. Largely restricted to finite cluster calculations. MSINDO: Semiempirical method that can be used both for clusters and for periodic boundary conditions. For carbon-based nanostructures it is less accurate than PM3. SCC-DFTB (density functional-based tight-binding with self-consistent charges): an approximate DFT method.

8 Other methods For systems with carbon and hydrogens, can use Tersoff-Brenner (reactive bond-order) potential for MM calculations. Mixed MM/CM studies (and ultimately QM/MM/CM) to extend from a few atoms to a continuum description.

9 Carbon nanotube fracture Carbon nanotubes are likely the strongest known materials Their superior mechanical properties (resisting more than 1 order of magnitude larger tensile loads than reinforced steel) and their lightweight nature (six times less than steel) make them perfect candidates for reinforcement materials in nanocomposites

10 Fracture of Carbon Nanotubes MM calculations with empirical force fields T. Belytschko, S. P. Xiao, G. C. Schatz and R. Ruoff, Phys. Rev. B 65, /1-/8 (2002). (single wall tube results) (Multiwall tubes)

11 Carbon nanotube fracture Determination of stress vs strain curve for [5,5] tube with Stone-Wales defect (170 carbon atoms) l/2 l 0 l/2 strain= l/ l 0

12 PM3 results: Strain = (just before fracture) 8 6 E-E 0 / a.u strain

13 Strain = 0.26 (just after fracture) 8 6 E-E 0 / a.u strain

14 Stress-Strain Curves: undefected tubes [5,5] tube [10,0] tube

15 One and Two-Atom Vacancies

16 Fracture for one/two atom vacancies Two-atom vacancy (sym) [5,5] tube One-atom vacancy (asym), [10,0] tube

17 Fracture for Large Hole Defects Hole Defect MM results Slit Defect

18 Undefected CNTs have fracture stress >100 GPa Chem vap dep Arc discharge

19 Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements, Bei Peng, Mark Locascio, Peter Zapol, Shuyou Li, Steven L. Mielke, George C. Schatz and Horacio D. Espinosa, Nature Nanotech, 3, (2008)

20 Stress-strain results show fracture stress in excess of 100 GPa Calculations shows significant load transfer in the cross-linked tube

21 Polymer/Carbon Nanotube Composites Ramanathan, T.; Liu, H.; Brinson, L. C..J. Polymer Sci B (2005), 43(17),

22 Graphite and Graphite Oxide (GO) Graphite Graphite Oxide d = 0.71 nm B. Brodie, 1855 C:O:H is 2:1:0.2

23 Graphene-Based Composites TEGO - Thermally exfoliated GO: 30% of carbon is lost as CO/CO 2 during heating to 1500K GO TEGO TEGO Properties: Individual sheets (2600 m 2 /g) Readily dispersed in polymers Retain inherent mechanical, thermal, electrical properties of graphene Dramatically improved composite properties

24 TEGO Nanocomposites (Cate Brinson, Northwestern) Thin sheets wrinkled in situ interaction with polymer Remarkable increase in Tg (30 C) with 0.05% loading of TEGO!

25 TEGO-PMMA Mechanical Properties PMMA/1wt% Nanoinclusion Normalized values TEGO/PMMA a-swnt/pmma PMMA values: E-2.1 GPa, Tg 105 C, (fracture stress) Ultimate strength - 70 MPa Thermal degradation temperature C Ramanathan, T.; Abdala, A. A.; Stankovich, S.; Dikin, D. A.; Herrera-Alonso, M.; Piner, R. D.; Adamson, D. H.; Schniepp, H. C.; Chen, X.; Ruoff, R. S.; Nguyen, S. T.; Aksay, I. A.; Prud'Homme, R. K.; Brinson, L. C.. Functionalized graphene sheets for polymer nanocomposites. Nature Nanotechnology (2008), 3(6),

26 Structure of Graphite Oxide? (1939) (1946) (1969) Dekany and coworkers, Chem. Mater.18, 2740 (2006) (1996) (1998)

27 Lerf, Klinowski (1998) Model Dekany (2006) Model 1. Aliphatic six-membered rings containing epoxides and hydroxides. Ketones and other C=O bonds are on the edges. No 1,3 ethers. 2. Aromatic regions that give rise to a nearly flat carbon grid. 1. Trans linked cyclohexane chairs that is functionalized with tertiary OH, 1,3-ether, ketone, quinone and phenol 2. Ribbons of aromatic rings

28 Basic Questions 1. What is the structure of GO, and how do defects in graphite get propagated into GO? 2. What are the mechanical properties of GO and TEGO? 3. What does this teach us about graphite oxidation?

29 Monte Carlo-based simulations of graphite oxide formation: Introduction Add OH and epoxide groups to graphene. Add these functional groups to both sides of the basal plane. Build sheets with experimentally-observed stoichiometry (C 10 O 5 H 2 ). Use cluster- and PBCmodels. SCC-DFTB, PBE(DZP) Harris(DZP), simulations. A graphene sheet.

30 The algorithm 1) Add two OH and three epoxide groups to the basal plane composed of, e.g., 128 carbon atoms with PBCs. Locations chosen at random. 2) Geometry-optimize structure, calculate energy, using Metropolis MC to accept or reject structures for further functionalization. Steps 1) and 2) are repeated N times. Result is N sheets of partiallyoxidized GO. A partially-oxidized sheet of GO. Paci, Jeffrey T.; Belytschko, Ted; Schatz, George C. Journal of Physical Chemistry C (2007), 111(49),

31 Final results: C 2 OH 0.2 stoichiometry undefected graphene Defect = line of epoxides

32 Some aromaticity remains for low oxygen/carbon ratio Requirements: Planar, cyclic, one p- orbital/atom perpendicular to the plane of the ring. 4n+2 pi electrons, where n is an integer. Shown here: A carbon to oxygen ratio of 2:0.77. Aromatic carbons are shaded purple.

33 Final results 1. Interplanar spacing: 5.8Å (calc) 6.0Å (expt) (vs. graphite = 3.4Å) 2. Chemical species (out of 64 oxygens): O Found at edges Unimportant Unimportant 3. Hole formation: Does not occur in pristine graphene. Previously existing holes can expand during growth. Paci, Jeffrey T.; Belytschko, Ted; Schatz, George C. Journal of Physical Chemistry C (2007), 111(49),

34 Heating GO to 1323K leads to gaseous CO, as well as a mechanism for making holes OH O O O O OH + CO O

35 Fracture studies: Notched graphene sheet Energy (E h ) Strain

36 Polymer degradation in LEO Spacecraft surfaces made of polymeric hydrocarbons erode in low Earth orbit (LEO) (~ km). J. W. Connell, High Perform Polym 12, 43 (2000)

37 Most abundant species in atmosphere as function of altitude Minton, in Chemical Dynamics in Extreme Environments, (World Scientific, Singapore, 2001), pp 420. Roble, in The Upper Mesosphere and Lower Thermosphere: A Review of Experiment and Theory, Geophysical Monograph 87, pp 1 21, 1995.

38 Materials erosion in low earth orbit Materials (polymers) on the RAM surfaces of satellites in low earth orbit are degraded by 5eV O( 3 P) as well as other neutrals, ions, UV, electrons and dust. Many mechanisms for erosion have been discussed including intersystem crossing, collision induced dissociation and ion-surface reactions.

39 O + graphite J. Zhang, T. K. Minton, High Performance Polymers (2001), 13(3), S467-S481. K. T. Nicholson, T. K. Minton, S. J. Sibener, J Phys Chem B (2005), 109(17), CO CO 200 N(t) / arb. units CO Time of Flight / s

40 Configuration-biased Monte Carlo studies of graphite oxide Jeffrey T. Paci, Ted Belytschko, George C. Schatz, J. Phys. Chem. C, 111, (2007)

41 O + graphite simulations Paci, Jeffrey T.; Upadhyaya, Hari P.; Zhang, Jianming; Schatz, George C.; Minton, Timothy K. Theoretical and Experimental Studies of the Reactions between Hyperthermal O(3P) and Graphite: Graphene-Based Direct Dynamics and Beam-Surface Scattering Approaches. Journal of Physical Chemistry A (2009), 113(16),

42 Summary Molecular dynamics (molecular mechanics) with quantum forces provides the most accurate approach for describing structures and bond breaking. System size (few hundred atoms) and time scales (<10 ps) are the primary limitations. Fracture properties of carbon nanotubes and other nanomaterials. Structure of graphite oxide. Degradation of graphite in LEO.

Molecular Dynamics Study of the Effect of Chemical Functionalization on the Elastic Properties of Graphene Sheets

Molecular Dynamics Study of the Effect of Chemical Functionalization on the Elastic Properties of Graphene Sheets Copyright 21 American Scientific Publishers All rights reserved Printed in the United States of America Journal of Nanoscience and Nanotechnology Vol. 1, 1 5, 21 Molecular Dynamics Study of the Effect

More information

Molecular Dynamics Simulation of Fracture of Graphene

Molecular Dynamics Simulation of Fracture of Graphene Molecular Dynamics Simulation of Fracture of Graphene Dewapriya M. A. N. 1, Rajapakse R. K. N. D. 1,*, Srikantha Phani A. 2 1 School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada

More information

The role of vacancy defects and holes in the fracture of carbon nanotubes

The role of vacancy defects and holes in the fracture of carbon nanotubes Chemical Physics Letters 390 (2004) 413 420 www.elsevier.com/locate/cplett The role of vacancy defects and holes in the fracture of carbon nanotubes Steven L. Mielke a, *, Diego Troya a, Sulin Zhang b,

More information

How Graphene Is Cut upon Oxidation?

How Graphene Is Cut upon Oxidation? How Graphene Is Cut upon Oxidation? Zhenyu Li, 1,2,* Wenhua Zhang, 1,2 Yi Luo, 1,2 Jinlong Yang, 1,* and Jian Guo Hou 1 1 Hefei National Laboratory for Physical Sciences at Microscale, University of Science

More information

Effects of Defects on the Strength of Nanotubes: Experimental- Computational Comparisons

Effects of Defects on the Strength of Nanotubes: Experimental- Computational Comparisons Effects of Defects on the Strength of Nanotubes: Experimental- Computational Comparisons T. Belytschko, S. P. Xiao and R. Ruoff Department of Mechanical Engineering Northwestern University, 2145 Sheridan

More information

Restoring the electrical conductivity of graphene oxide films by UV light induced. oxygen desorption

Restoring the electrical conductivity of graphene oxide films by UV light induced. oxygen desorption Restoring the electrical conductivity of graphene oxide films by UV light induced oxygen desorption S. Bittolo Bon a, L. Valentini a* a) Dipartimento di Ingegneria Civile e Ambientale, Università di Perugia,

More information

Electronic structure calculations and applications. George C. Schatz Northwestern University

Electronic structure calculations and applications. George C. Schatz Northwestern University Electronic structure calculations and applications George C. Schatz Northwestern University Electronic Structure (often called Quantum Chemistry) calculations use quantum mechanics to determine the wavefunctions

More information

Nitrogen-doped graphene and its electrochemical applications

Nitrogen-doped graphene and its electrochemical applications Nitrogen-doped and its electrochemical applications Yuyan Shao, a Sheng Zhang, a Mark H Engelhard, a Guosheng Li, a Guocheng Shao, a Yong Wang, a Jun Liu, a Ilhan A. Aksay, b Yuehe Lin*,a a Pacific Northwest

More information

L18: Quantized fracture mechanics of nanostructures with atomic vacancies

L18: Quantized fracture mechanics of nanostructures with atomic vacancies L18: Quantized fracture mechanics of nanostructures with atomic vacancies 198 estimate: $10B : 4% of GDP http://www.nlm.nih.gov/medlineplus/enc y/article/000001.htm http://www.animatedteeth.com/dental_crowns/t1_dental_crow

More information

MOLECULAR SIMULATION FOR PREDICTING MECHANICAL STRENGTH OF 3-D JUNCTIONED CARBON NANOSTRUCTURES

MOLECULAR SIMULATION FOR PREDICTING MECHANICAL STRENGTH OF 3-D JUNCTIONED CARBON NANOSTRUCTURES ECCM16-16 TH EUROPEAN CONFERENCE ON COMPOSITE MATERIALS, Seville, Spain, 22-26 June 214 MOLECULAR SIMULATION FOR PREDICTING MECHANICAL STRENGTH OF 3-D JUNCTIONED CARBON NANOSTRUCTURES S. Sihn a,b*, V.

More information

Nanoscale Modeling and Simulation. George C. Schatz Northwestern University

Nanoscale Modeling and Simulation. George C. Schatz Northwestern University Nanoscale Modeling and Simulation George C. Schatz Northwestern University Where can simulation play a role in nanoscience, both now and in the future? 1. Structures of disordered nanomaterials: peptide

More information

sheets in the exfoliation step

sheets in the exfoliation step Optimization of the size and yield of graphene oxide sheets in the exfoliation step Cristina Botas, Ana M. Pérez-Mas, Patricia Álvarez, Ricardo Santamaría, Marcos Granda, Clara Blanco, and Rosa Menéndez

More information

Surface Modifications of Graphene-based Polymer Nanocomposites by Different Synthesis Techniques

Surface Modifications of Graphene-based Polymer Nanocomposites by Different Synthesis Techniques Surface Modifications of Graphene-based Polymer Nanocomposites by Different Synthesis Techniques Journal: 2012 MRS Spring Meeting Manuscript ID: MRSS12-1451-DD14-02.R1 Manuscript Type: Symposium DD Date

More information

Electronic structure calculations and Bioadhesion

Electronic structure calculations and Bioadhesion Electronic structure calculations and Bioadhesion George C. Schatz Northwestern University In this class we will learn about Electronic Structure Calculations (often called Quantum chemistry) This refers

More information

Coupled quantum mechanical/molecular mechanical modeling of the fracture of defective carbon nanotubes and graphene sheets

Coupled quantum mechanical/molecular mechanical modeling of the fracture of defective carbon nanotubes and graphene sheets Coupled quantum mechanical/molecular mechanical modeling of the fracture of defective carbon nanotubes and graphene sheets Roopam Khare, 1 Steven L. Mielke, 2 Jeffrey T. Paci, 2 Sulin Zhang, 1 Roberto

More information

Fracture of vacancy-defected carbon nanotubes and their embedded nanocomposites

Fracture of vacancy-defected carbon nanotubes and their embedded nanocomposites PHYSICAL REVIEW B 73, 115406 2006 Fracture of vacancy-defected carbon nanotubes and their embedded nanocomposites Shaoping Xiao and Wenyi Hou Department of Mechanical and Industrial Engineering, and Center

More information

This article was published in an Elsevier journal. The attached copy is furnished to the author for non-commercial research and education use, including for instruction at the author s institution, sharing

More information

Free Vibrations of Carbon Nanotubes with Defects

Free Vibrations of Carbon Nanotubes with Defects Mechanics and Mechanical Engineering Vol. 17, No. 2 (2013) 157 166 c Lodz University of Technology Free Vibrations of Carbon Nanotubes with Defects Aleksander Muc Aleksander Banaś Ma lgorzata Chwa l Institute

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Supplementary Information Figure S1: (a) Initial configuration of hydroxyl and epoxy groups used in the MD calculations based on the observations of Cai et al. [Ref 27 in the

More information

MECHANICS OF CARBON NANOTUBE BASED COMPOSITES WITH MOLECULAR DYNAMICS AND MORI TANAKA METHODS. Vinu Unnithan and J. N. Reddy

MECHANICS OF CARBON NANOTUBE BASED COMPOSITES WITH MOLECULAR DYNAMICS AND MORI TANAKA METHODS. Vinu Unnithan and J. N. Reddy MECHANICS OF CARBON NANOTUBE BASED COMPOSITES WITH MOLECULAR DYNAMICS AND MORI TANAKA METHODS Vinu Unnithan and J. N. Reddy US-South American Workshop: Mechanics and Advanced Materials Research and Education

More information

Supporting information for Polymer interactions with Reduced Graphene Oxide: Van der Waals binding energies of Benzene on defected Graphene

Supporting information for Polymer interactions with Reduced Graphene Oxide: Van der Waals binding energies of Benzene on defected Graphene Supporting information for Polymer interactions with Reduced Graphene Oxide: Van der Waals binding energies of Benzene on defected Graphene Mohamed Hassan, Michael Walter *,,, and Michael Moseler, Freiburg

More information

First-principles Studies of Formaldehyde Molecule Adsorption on Graphene Modified with Vacancy, -OH, -CHO and -COOH Group

First-principles Studies of Formaldehyde Molecule Adsorption on Graphene Modified with Vacancy, -OH, -CHO and -COOH Group 2017 Asia-Pacific Engineering and Technology Conference (APETC 2017) ISBN: 978-1-60595-443-1 First-principles Studies of Formaldehyde Molecule Adsorption on Graphene Modified with Vacancy, -OH, -CHO and

More information

GECP Hydrogen Project: "Nanomaterials Engineering for Hydrogen Storage"

GECP Hydrogen Project: Nanomaterials Engineering for Hydrogen Storage GECP Hydrogen Project: "Nanomaterials Engineering for Hydrogen Storage" PI: KJ Cho Students and Staff Members: Zhiyong Zhang, Wei Xiao, Byeongchan Lee, Experimental Collaboration: H. Dai, B. Clemens, A.

More information

Nonadiabatic Reactions

Nonadiabatic Reactions IMA Workshop: Chemical Dynamics, Jan. 12-16, 2009 Nonadiabatic Reactions reactant product Methods for nonadiabatic dynamics: 1. Solve the Schrodinger equation 1. Basis expansions, wavepackets, MCTDH (360)

More information

Comparisons of DFT-MD, TB- MD and classical MD calculations of radiation damage and plasmawallinteractions

Comparisons of DFT-MD, TB- MD and classical MD calculations of radiation damage and plasmawallinteractions CMS Comparisons of DFT-MD, TB- MD and classical MD calculations of radiation damage and plasmawallinteractions Kai Nordlund Department of Physics and Helsinki Institute of Physics University of Helsinki,

More information

Supplementary Figure 1(a) The trajectory of the levitated pyrolytic graphite test sample (blue curve) and

Supplementary Figure 1(a) The trajectory of the levitated pyrolytic graphite test sample (blue curve) and Supplementary Figure 1(a) The trajectory of the levitated pyrolytic graphite test sample (blue curve) and the envelope from free vibration theory (red curve). (b) The FFT of the displacement-time curve

More information

POLYMER GRAPHENE NANOCOMPOSITES. Ahmed A. Abdala

POLYMER GRAPHENE NANOCOMPOSITES. Ahmed A. Abdala POLYMER GRAPHENE NANOCOMPOSITES Ahmed A. Abdala Department of Chemical Engineering, The Petroleum Institute, Abu Dhabi, UAE Authors' e-mails: aabdala@pi.ac.ae JIChEC06 The Sixth Jordan International Chemical

More information

Carbon nanotube fracture differences between quantum mechanical mechanisms and those of empirical potentials

Carbon nanotube fracture differences between quantum mechanical mechanisms and those of empirical potentials Chemical Physics Letters 382 (2003) 133 141 www.elsevier.com/locate/cplett Carbon nanotube fracture differences between quantum mechanical mechanisms and those of empirical potentials Diego Troya, Steven

More information

Nanomechanics of carbon nanotubes and composites

Nanomechanics of carbon nanotubes and composites Nanomechanics of carbon nanotubes and composites Deepak Srivastava and Chenyu Wei Computational Nanotechnology, NASA Ames Research Center, Moffett Field, California 94035-1000; deepak@nas.nasa.gov Kyeongjae

More information

Research Article Molecular Dynamics Study on the Effect of Temperature on the Tensile Properties of Single-Walled Carbon Nanotubes with a Ni-Coating

Research Article Molecular Dynamics Study on the Effect of Temperature on the Tensile Properties of Single-Walled Carbon Nanotubes with a Ni-Coating Nanomaterials Volume 2015, Article ID 767182, 7 pages http://dx.doi.org/10.1155/2015/767182 Research Article Molecular Dynamics Study on the Effect of Temperature on the Tensile Properties of Single-Walled

More information

The stress transfer efficiency of a single-walled carbon nanotube in epoxy matrix

The stress transfer efficiency of a single-walled carbon nanotube in epoxy matrix JOURNAL OF MATERIALS SCIENCE 39 (2 004)4481 4486 The stress transfer efficiency of a single-walled carbon nanotube in epoxy matrix K. Q. XIAO, L. C. ZHANG School of Aerospace, Mechanical and Mechatronic

More information

Influence of functionalization on the structural and mechanical properties of graphene

Influence of functionalization on the structural and mechanical properties of graphene Copyright 2017 Tech Science Press CMC, vol.53, no.2, pp.109-127, 2017 Influence of functionalization on the structural and mechanical properties of graphene L.S. Melro 1,2 and L.R. Jensen 1 Abstract: Molecular

More information

Supporting Information Kinetics of Topological Stone-Wales Defect Formation in Single Walled Carbon Nanotubes

Supporting Information Kinetics of Topological Stone-Wales Defect Formation in Single Walled Carbon Nanotubes Supporting Information Kinetics of Topological Stone-Wales Defect Formation in Single Walled Carbon Nanotubes Mukul Kabir, and Krystyn J. Van Vliet Department of Physics, and Centre for Energy Science,

More information

Controlled healing of graphene nanopore

Controlled healing of graphene nanopore Controlled healing of graphene nanopore Konstantin Zakharchenko Alexander Balatsky Zakharchenko K.V., Balatsky A.V. Controlled healing of graphene nanopore. Carbon (80), December 2014, pp. 12 18. http://dx.doi.org/10.1016/j.carbon.2014.07.085

More information

Functionalized Carbon Nanotubes a key to nanotechnology?

Functionalized Carbon Nanotubes a key to nanotechnology? 1 27th Max Born Symposium Multiscale Modeling of Real Materials Wroclaw, Sep 19, 2010 Functionalized Carbon Nanotubes a key to nanotechnology? Karolina Milowska, Magda Birowska & Jacek A. Majewski Faculty

More information

Defense Technical Information Center Compilation Part Notice

Defense Technical Information Center Compilation Part Notice UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP012151 TITLE: Chemical Bonding of Polymer on Carbon Nanotube DISTRIBUTION: Approved for public release, distribution unlimited

More information

Intensity (a.u.) Intensity (a.u.) Raman Shift (cm -1 ) Oxygen plasma. 6 cm. 9 cm. 1mm. Single-layer graphene sheet. 10mm. 14 cm

Intensity (a.u.) Intensity (a.u.) Raman Shift (cm -1 ) Oxygen plasma. 6 cm. 9 cm. 1mm. Single-layer graphene sheet. 10mm. 14 cm Intensity (a.u.) Intensity (a.u.) a Oxygen plasma b 6 cm 1mm 10mm Single-layer graphene sheet 14 cm 9 cm Flipped Si/SiO 2 Patterned chip Plasma-cleaned glass slides c d After 1 sec normal Oxygen plasma

More information

Supporting Information. Interfacial Shear Strength of Multilayer Graphene Oxide Films

Supporting Information. Interfacial Shear Strength of Multilayer Graphene Oxide Films Supporting Information Interfacial Shear Strength of Multilayer Graphene Oxide Films Matthew Daly a,1, Changhong Cao b,1, Hao Sun b, Yu Sun b, *, Tobin Filleter b, *, and Chandra Veer Singh a, * a Department

More information

Smart Functional Nanoenergetic Materials

Smart Functional Nanoenergetic Materials Smart Functional Nanoenergetic Materials Graphene as a Reactive Material and Carrier of Energetic Materials I. A. Aksay, A. Selloni, R. Car, C. Zhang, D. M. Dabbs Chemical and Biological Engineering and

More information

Functionalized Single Graphene Sheets Derived from Splitting Graphite Oxide

Functionalized Single Graphene Sheets Derived from Splitting Graphite Oxide Published on Web 04/11/2006 Functionalized Single Graphene Sheets Derived from Splitting Graphite Oxide Hannes C. Schniepp, Je-Luen Li, Michael J. McAllister, Hiroaki Sai, Margarita Herrera-Alonso, Douglas

More information

Available online at ScienceDirect. Procedia Materials Science 6 (2014 )

Available online at   ScienceDirect. Procedia Materials Science 6 (2014 ) Available online at www.sciencedirect.com ScienceDirect Procedia Materials Science 6 (2014 ) 256 264 3rd International Conference on Materials Processing and Characterisation (ICMPC 2014) A new approach

More information

WRINKLING IN GRAPHENE OXIDE PAPERS: EFFECT ON YOUNG S MODULUS

WRINKLING IN GRAPHENE OXIDE PAPERS: EFFECT ON YOUNG S MODULUS THE 19 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS WRINKLING IN GRAPHENE OXIDE PAPERS: EFFECT ON YOUNG S MODULUS Xi Shen 1*, Xiuyi Lin 1, Nariman Yousefi 1, Jingjing Jia 1, Jang-Kyo Kim 1 1 Department

More information

Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1

Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1 Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1 ChiiDong Chen Institute of Physics, Academia Sinica chiidong@phys.sinica.edu.tw 02 27896766 Section 5.2.1 Nature of the Carbon Bond

More information

EFFECT OF VACANCY DEFECTS ON THE MECHANICAL PROPERTIES OF CARBON NANOTUBE REINFORCED POLYPROPYLENE

EFFECT OF VACANCY DEFECTS ON THE MECHANICAL PROPERTIES OF CARBON NANOTUBE REINFORCED POLYPROPYLENE International Journal of Mechanical Engineering and Technology (IJMET) Volume 8, Issue 7, July 2017, pp. 1370 1375, Article ID: IJMET_08_07_148 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=8&itype=7

More information

Shear Properties and Wrinkling Behaviors of Finite Sized Graphene

Shear Properties and Wrinkling Behaviors of Finite Sized Graphene Shear Properties and Wrinkling Behaviors of Finite Sized Graphene Kyoungmin Min, Namjung Kim and Ravi Bhadauria May 10, 2010 Abstract In this project, we investigate the shear properties of finite sized

More information

INTERFACIAL STRESS TRANSFER IN GRAPHENE OXIDE NANOCOMPOSITES

INTERFACIAL STRESS TRANSFER IN GRAPHENE OXIDE NANOCOMPOSITES THE 19 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS INTERFACIAL STRESS TRANSFER IN GRAPHENE OXIDE NANOCOMPOSITES Z. Li*, R. J. Young, I. A. Kinloch School of Materials, University of Manchester,

More information

Computational Materials Science

Computational Materials Science Computational Materials Science 69 (2013) 381 388 Contents lists available at SciVerse ScienceDirect Computational Materials Science journal homepage: www.elsevier.com/locate/commatsci Single-edge crack

More information

Fracture resistance of single-walled carbon nanotubes through atomistic simulation

Fracture resistance of single-walled carbon nanotubes through atomistic simulation ICOSSAR 2005, G. Augusti, G.I. Schuëller, M. Ciampoli (eds) 2005 Millpress, Rotterdam, ISBN 90 5966 040 4 Fracture resistance of single-walled carbon nanotubes through atomistic simulation Qiang Lu & Baidurya

More information

Simultaneous Nitrogen Doping and Reduction of Graphene Oxide

Simultaneous Nitrogen Doping and Reduction of Graphene Oxide Published on Web 10/09/2009 Simultaneous Nitrogen Doping and Reduction of Graphene Oxide Xiaolin Li, Hailiang Wang, Joshua T. Robinson, Hernan Sanchez, Georgi Diankov, and Hongjie Dai* Department of Chemistry,

More information

Formation of N-doped Graphene Nanoribbons via Chemical Unzipping

Formation of N-doped Graphene Nanoribbons via Chemical Unzipping SUPPORTING INFORMATION FILE FOR: Formation of N-doped Graphene Nanoribbons via Chemical Unzipping Rodolfo Cruz-Silva 1, Aaron Morelos-Gómez 3, Sofia Vega-Díaz 1, Ferdinando Tristán- López 1, Ana L. Elias

More information

STM and graphene. W. W. Larry Pai ( 白偉武 ) Center for condensed matter sciences, National Taiwan University NTHU, 2013/05/23

STM and graphene. W. W. Larry Pai ( 白偉武 ) Center for condensed matter sciences, National Taiwan University NTHU, 2013/05/23 STM and graphene W. W. Larry Pai ( 白偉武 ) Center for condensed matter sciences, National Taiwan University NTHU, 2013/05/23 Why graphene is important: It is a new form of material (two dimensional, single

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Facile Synthesis of High Quality Graphene Nanoribbons Liying Jiao, Xinran Wang, Georgi Diankov, Hailiang Wang & Hongjie Dai* Supplementary Information 1. Photograph of graphene

More information

arxiv: v1 [cond-mat.mtrl-sci] 2 Apr 2010

arxiv: v1 [cond-mat.mtrl-sci] 2 Apr 2010 First Principles NMR Signatures of Graphene Oxide Ning Lu, Ying Huang, Haibei Li, Zhenyu Li, and Jinlong Yang Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology

More information

Experimental-Computational Study of Shear Interactions within Double-Walled Carbon Nanotube Bundles

Experimental-Computational Study of Shear Interactions within Double-Walled Carbon Nanotube Bundles pubs.acs.org/nanolett Experimental-Computational Study of Shear Interactions within Double-Walled Carbon Nanotube Bundles Tobin Filleter, Scott Yockel, Mohammad Naraghi, Jeffrey T. Paci,, Owen C. Compton,

More information

Design of Efficient Catalysts with Double Transition Metal. Atoms on C 2 N Layer

Design of Efficient Catalysts with Double Transition Metal. Atoms on C 2 N Layer Supporting Information Design of Efficient Catalysts with Double Transition Metal Atoms on C 2 N Layer Xiyu Li, 1, Wenhui Zhong, 2, Peng Cui, 1 Jun Li, 1 Jun Jiang 1, * 1 Hefei National Laboratory for

More information

TAILORING OF ELECTRO-MECHANICAL PROPERTIES OF GRAPHENE REINFORCED TEMPLATED COMPOSITES

TAILORING OF ELECTRO-MECHANICAL PROPERTIES OF GRAPHENE REINFORCED TEMPLATED COMPOSITES TAILORING OF ELECTRO-MECHANICAL PROPERTIES OF GRAPHENE REINFORCED TEMPLATED COMPOSITES N. Heeder a, A. Yussuf a, I. Chakraborty b, M. P. Godfrin c, R. Hurt d, A. Tripathi c, A. Bose b, A. Shukla a* a Department

More information

THE DISPARATE THERMAL CONDUCTIVITY OF CARBON NANOTUBES AND DIAMOND NANOWIRES STUDIED BY ATOMISTIC SIMULATION

THE DISPARATE THERMAL CONDUCTIVITY OF CARBON NANOTUBES AND DIAMOND NANOWIRES STUDIED BY ATOMISTIC SIMULATION MTE 8(1) #14664 Microscale Thermophysical Engineering, 8:61 69, 2004 Copyright Taylor & Francis Inc. ISSN: 1089-3954 print/1091-7640 online DOI: 10.1080/10893950490272939 THE DISPARATE THERMAL CONDUCTIVITY

More information

APPLICATION OF POLYMERIC NANO COMPOSITES AT LOW EARTH ORBIT AND GEOSYNCHRONOUS EARTH ORBIT

APPLICATION OF POLYMERIC NANO COMPOSITES AT LOW EARTH ORBIT AND GEOSYNCHRONOUS EARTH ORBIT APPLICATION OF POLYMERIC NANO COMPOSITES AT LOW EARTH ORBIT AND GEOSYNCHRONOUS EARTH ORBIT S. Bhowmik, R. Benedictus, H. M. S. Iqbal and M. I. Faraz Faculty of Aerospace Engineering, Delft University of

More information

MECHANICS OF 2D MATERIALS

MECHANICS OF 2D MATERIALS MECHANICS OF 2D MATERIALS Nicola Pugno Cambridge February 23 rd, 2015 2 Outline Stretching Stress Strain Stress-Strain curve Mechanical Properties Young s modulus Strength Ultimate strain Toughness modulus

More information

Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition

Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition SUPPLEMENTARY INFORMATION Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition S1. Characterization of the graphene foam (GF) and GF/PDMS composites

More information

MECHANICAL PROPERTIES OF GRAPHENE NANORIBBONS: A SELECTIVE REVIEW OF COMPUTER SIMULATIONS

MECHANICAL PROPERTIES OF GRAPHENE NANORIBBONS: A SELECTIVE REVIEW OF COMPUTER SIMULATIONS Mechanical Rev. Adv. Mater. properties Sci. 40 of (2015) graphene 249-256 nanoribbons: a selective review of computer simulations 249 MECHANICAL PROPERTIES OF GRAPHENE NANORIBBONS: A SELECTIVE REVIEW OF

More information

GRAPHENE BASED POLY(VINYL ALCOHOL) NANOCOMPOSITES: EFFECT OF HUMIDITY CONTENT

GRAPHENE BASED POLY(VINYL ALCOHOL) NANOCOMPOSITES: EFFECT OF HUMIDITY CONTENT THE 19 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS GRAPHENE BASED POLY(VINYL ALCOHOL) NANOCOMPOSITES: EFFECT OF HUMIDITY CONTENT A. Pegoretti 1 *, M. Traina 2 1 Department of Industrial Engineering,

More information

Material Surfaces, Grain Boundaries and Interfaces: Structure-Property Relationship Predictions

Material Surfaces, Grain Boundaries and Interfaces: Structure-Property Relationship Predictions Material Surfaces, Grain Boundaries and Interfaces: Structure-Property Relationship Predictions Susan B. Sinnott Department of Materials Science and Engineering Penn State University September 16, 2016

More information

IMPROVEMENT IN MECHANICAL PROPERTIES OF MODIFIED GRAPHENE/EPOXY NANOCOMPOSITES

IMPROVEMENT IN MECHANICAL PROPERTIES OF MODIFIED GRAPHENE/EPOXY NANOCOMPOSITES 18 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS IMPROVEMENT IN MECHANICAL PROPERTIES OF MODIFIED 1 Introduction Since first successfully separated from graphite by micromechanical cleavage [1], graphene

More information

Ab Initio Study of Hydrogen Storage on CNT

Ab Initio Study of Hydrogen Storage on CNT Ab Initio Study of Hydrogen Storage on CNT Zhiyong Zhang, Henry Liu, and KJ Cho Stanford University Presented at the ICNT 2005, San Francisco Financial Support: GCEP (Global Climate and Energy Project)

More information

status solidi Department of Physics, University of California at Berkeley, Berkeley, CA, USA 2

status solidi Department of Physics, University of California at Berkeley, Berkeley, CA, USA 2 physica pss status solidi basic solid state physics b Extreme thermal stability of carbon nanotubes G. E. Begtrup,, K. G. Ray, 3, B. M. Kessler, T. D. Yuzvinsky,, 3, H. Garcia,,, 3 and A. Zettl Department

More information

Supplementary Figure S1. AFM image and height profile of GO. (a) AFM image

Supplementary Figure S1. AFM image and height profile of GO. (a) AFM image Supplementary Figure S1. AFM image and height profile of GO. (a) AFM image and (b) height profile of GO obtained by spin-coating on silicon wafer, showing a typical thickness of ~1 nm. 1 Supplementary

More information

Katheryn Penrod York College of Pennsylvania Department of Physical Science CHM482 Independent Study Advisor Dr. James Foresman Spring 2014

Katheryn Penrod York College of Pennsylvania Department of Physical Science CHM482 Independent Study Advisor Dr. James Foresman Spring 2014 Katheryn Penrod York College of Pennsylvania Department of Physical Science CHM482 Independent Study Advisor Dr. James Foresman Spring 2014 Functionalization of SWCNTs with Stone-Wales and vacancy defects:

More information

ELECTROMAGNETIC PROPERTIES OF COBALT REDUCED GRAPHENE OXIDE (CO-RGO)/ EPOXY COMPOSITES

ELECTROMAGNETIC PROPERTIES OF COBALT REDUCED GRAPHENE OXIDE (CO-RGO)/ EPOXY COMPOSITES THE 19 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS ELECTROMAGNETIC PROPERTIES OF COBALT REDUCED GRAPHENE OXIDE (CO-RGO)/ EPOXY COMPOSITES Y. Wang 1, Y. Zhao 1 *, Y. Su 1, X. Lu 2 1 School of Materials

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2015 Supporting Information Single Layer Lead Iodide: Computational Exploration of Structural, Electronic

More information

Density functional theory calculations of atomic hydrogen adsorption on graphenes with vacancy defects

Density functional theory calculations of atomic hydrogen adsorption on graphenes with vacancy defects Density functional theory calculations of atomic hydrogen adsorption on graphenes with vacancy defects Shunfu Xu Institute of Architecture and Engineering, Weifang University of Science and Technology,

More information

3-month progress Report

3-month progress Report 3-month progress Report Graphene Devices and Circuits Supervisor Dr. P.A Childs Table of Content Abstract... 1 1. Introduction... 1 1.1 Graphene gold rush... 1 1.2 Properties of graphene... 3 1.3 Semiconductor

More information

Unit 2: Structure and Bonding

Unit 2: Structure and Bonding Elements vs Compounds Elements are substances made of one kind of atom. There are around 100 elements, which are listed in the Periodic Table. Elements may chemically combine (bond) together in fixed proportions

More information

Electron Microscopy Testing of Nanostructures

Electron Microscopy Testing of Nanostructures MEMS devices for In-Situ Electron Microscopy Testing of Nanostructures Horacio D. Espinosa Y. Zhu, C-H. C Ke,, N. Moldovan Acknowledgments: NSF-NIRT, NSF-NSEC, FAA, ONR NEMS Characterization Technique

More information

Multiscale modelling of D trapping in W

Multiscale modelling of D trapping in W CMS Multiscale modelling of D trapping in W Kalle Heinola, Tommy Ahlgren and Kai Nordlund Department of Physics and Helsinki Institute of Physics University of Helsinki, Finland Contents Background Plasma-wall

More information

Supplementary Figure 1 Experimental setup for crystal growth. Schematic drawing of the experimental setup for C 8 -BTBT crystal growth.

Supplementary Figure 1 Experimental setup for crystal growth. Schematic drawing of the experimental setup for C 8 -BTBT crystal growth. Supplementary Figure 1 Experimental setup for crystal growth. Schematic drawing of the experimental setup for C 8 -BTBT crystal growth. Supplementary Figure 2 AFM study of the C 8 -BTBT crystal growth

More information

Mechanical and Tribological Properties of Graphene Modified Epoxy Composites

Mechanical and Tribological Properties of Graphene Modified Epoxy Composites KMUTNB Int J Appl Sci Technol, Vol. 8, No. 2, pp. 101-109, (2015) Mechanical and Tribological Properties of Graphene Modified Epoxy Composites Nay Win Khun, He Zhang, Lee Hoon Lim and Jinglei Yang* School

More information

Modeling Transport in Heusler-based Spin Devices

Modeling Transport in Heusler-based Spin Devices Modeling Transport in Heusler-based Spin Devices Gautam Shine (Stanford) S. Manipatruni, A. Chaudhry, D. E. Nikonov, I. A. Young (Intel) Electronic Structure Extended Hückel theory Application to Heusler

More information

Optical Science of Nano-graphene (graphene oxide and graphene quantum dot) Introduction of optical properties of nano-carbon materials

Optical Science of Nano-graphene (graphene oxide and graphene quantum dot) Introduction of optical properties of nano-carbon materials Optical Science of Nano-graphene (graphene oxide and graphene quantum dot) J Kazunari Matsuda Institute of Advanced Energy, Kyoto University Introduction of optical properties of nano-carbon materials

More information

Transparent Electrode Applications

Transparent Electrode Applications Transparent Electrode Applications LCD Solar Cells Touch Screen Indium Tin Oxide (ITO) Zinc Oxide (ZnO) - High conductivity - High transparency - Resistant to environmental effects - Rare material (Indium)

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi: 10.1038/nature06016 SUPPLEMENTARY INFORMATION Preparation and characterization of graphene oxide paper Dmitriy A. Dikin, 1 Sasha Stankovich, 1 Eric J. Zimney, 1 Richard D. Piner, 1 Geoffrey H. B.

More information

Nanostrukturphysik Übung 2 (Class 3&4)

Nanostrukturphysik Übung 2 (Class 3&4) Nanostrukturphysik Übung 2 (Class 3&4) Prof. Yong Lei & Dr. Yang Xu 2017.05.03 Fachgebiet 3D-Nanostrukturierung, Institut für Physik Contact: yong.lei@tu-ilmenau.de (3748), yang.xu@tuilmenau.de (4902)

More information

Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1

Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1 Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1 ChiiDong Chen Institute of Physics, Academia Sinica chiidong@phys.sinica.edu.tw 02 27896766 Carbon contains 6 electrons: (1s) 2,

More information

School of Physical Science and Technology, ShanghaiTech University, Shanghai

School of Physical Science and Technology, ShanghaiTech University, Shanghai Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2015 1 Facile Two-step thermal annealing of graphite oxide in air for graphene with a 2 higher C/O

More information

The Role of Oxygen during Thermal Reduction of Graphene Oxide Studied by Infrared Absorption Spectroscopy

The Role of Oxygen during Thermal Reduction of Graphene Oxide Studied by Infrared Absorption Spectroscopy SUPPLEMENTARY INFORMATION The Role of Oxygen during Thermal Reduction of Graphene Oxide Studied by Infrared Absorption Spectroscopy Muge Acik, 1 Geunsik Lee, 1 Cecilia Mattevi, ǂ2 Adam Pirkle, 1 Robert

More information

Plasma-Surface Interactions and Impact on Electron Energy Distribution Function

Plasma-Surface Interactions and Impact on Electron Energy Distribution Function Plasma-Surface Interactions and Impact on Electron Energy Distribution Function N. Fox-Lyon(a), N. Ning(b), D.B. Graves(b), V. Godyak(c) and G.S. Oehrlein(a) (a) University of Maryland, College Park (b)

More information

4.2.1 Chemical bonds, ionic, covalent and metallic

4.2.1 Chemical bonds, ionic, covalent and metallic 4.2 Bonding, structure, and the properties of matter Chemists use theories of structure and bonding to explain the physical and chemical properties of materials. Analysis of structures shows that atoms

More information

Carbon nanotube oscillators: Effect of small bending strain

Carbon nanotube oscillators: Effect of small bending strain Proceedings of ICTACEM 2014 International Conference on Theoretical, Applied, Computational and Experimental Mechanics December 29-31, 2014, IIT Kharagpur, India ICTACEM-2014/405 Carbon nanotube oscillators:

More information

Understanding Aqueous Dispersibility of Graphene Oxide and Reduced Graphene Oxide through pka Measurements

Understanding Aqueous Dispersibility of Graphene Oxide and Reduced Graphene Oxide through pka Measurements Understanding Aqueous Dispersibility of Graphene xide and Reduced Graphene xide through pka Measurements Bharathi Konkena and Sukumaran Vasudevan * Department of Inorganic and Physical Chemistry Indian

More information

Calculating Electronic Structure of Different Carbon Nanotubes and its Affect on Band Gap

Calculating Electronic Structure of Different Carbon Nanotubes and its Affect on Band Gap Calculating Electronic Structure of Different Carbon Nanotubes and its Affect on Band Gap 1 Rashid Nizam, 2 S. Mahdi A. Rizvi, 3 Ameer Azam 1 Centre of Excellence in Material Science, Applied Physics AMU,

More information

Site dependent hydrogenation in Graphynes: A Fully Atomistic Molecular Dynamics Investigation

Site dependent hydrogenation in Graphynes: A Fully Atomistic Molecular Dynamics Investigation Site dependent hydrogenation in Graphynes: A Fully Atomistic Molecular Dynamics Investigation Pedro A. S. Autreto and Douglas S. Galvao Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas,

More information

analysis. Figure S1(a-c), shows C-1s XPS of powder graphite, polymer coated graphene oxide (GO) and

analysis. Figure S1(a-c), shows C-1s XPS of powder graphite, polymer coated graphene oxide (GO) and This journal is (c) The Royal Society of Chemistry 00 Electronic supplementary information Functionalized graphene and graphene oxide solution via polyacrylate coating # Arindam Saha, a SK Basiruddin,

More information

Comparison of fracture behavior of defective armchair and zigzag graphene nanoribbons

Comparison of fracture behavior of defective armchair and zigzag graphene nanoribbons Article Comparison of fracture behavior of defective armchair and zigzag graphene nanoribbons International Journal of Damage Mechanics 0(0) 1 21! The Author(s) 2018 Reprints and permissions: sagepub.co.uk/journalspermissions.nav

More information

A NEW GENERATION OF CONSTRUCTION MATERIALS: CARBON NANOTUBES INCORPORATED TO CONCRETE AND POLYMERIC MATRIX

A NEW GENERATION OF CONSTRUCTION MATERIALS: CARBON NANOTUBES INCORPORATED TO CONCRETE AND POLYMERIC MATRIX A NEW GENERATION OF CONSTRUCTION MATERIALS: CARBON NANOTUBES INCORPORATED TO CONCRETE AND POLYMERIC MATRIX Javier Grávalos, Juan Manuel Mieres and Santiago González R&D Department, NECSO Entrecanales Cubiertas

More information

performance electrocatalytic or electrochemical devices. Nanocrystals grown on graphene could have

performance electrocatalytic or electrochemical devices. Nanocrystals grown on graphene could have Nanocrystal Growth on Graphene with Various Degrees of Oxidation Hailiang Wang, Joshua Tucker Robinson, Georgi Diankov, and Hongjie Dai * Department of Chemistry and Laboratory for Advanced Materials,

More information

Carbon Nanomaterials: Nanotubes and Nanobuds and Graphene towards new products 2030

Carbon Nanomaterials: Nanotubes and Nanobuds and Graphene towards new products 2030 Carbon Nanomaterials: Nanotubes and Nanobuds and Graphene towards new products 2030 Prof. Dr. Esko I. Kauppinen Helsinki University of Technology (TKK) Espoo, Finland Forecast Seminar February 13, 2009

More information

hot press (Model 0230C-X1, PHI-Tulip) at 18 kn with a temperature of 210 C. Copper

hot press (Model 0230C-X1, PHI-Tulip) at 18 kn with a temperature of 210 C. Copper S1. Supplementary Methods 1 Composite samples preparation via hot pressing To prepare specimens for microscopy and conductivity analysis, the composite powder was placed between two brass plates (95 mm

More information

1 Supporting information

1 Supporting information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2018 1 Supporting information 1.1 Separation of the chemical potentials of electrons and protons in

More information

Statistical Law of High-Energy Fullerene and Its Derivatives Passing Through Graphene

Statistical Law of High-Energy Fullerene and Its Derivatives Passing Through Graphene Commun. Theor. Phys. 65 (2016) 361 365 Vol. 65, No. 3, March 1, 2016 Statistical Law of High-Energy Fullerene and Its Derivatives Passing Through Graphene Zhi-Cheng Xu (Åã ), Jia-Le Wen ( Ï), Wei-Rong

More information