PHGN590. Introduction to Nuclear Reactor Physics. Two Group Flux Profile

Size: px
Start display at page:

Download "PHGN590. Introduction to Nuclear Reactor Physics. Two Group Flux Profile"

Transcription

1 PHGN590 Introduction to Nuclear Reactor Physics Two Group Flux Profile J. A. McNeil Physics Department Colorado School of Mines 4/2009

2 2 Flux_Profile_2group.nb Two velocity groups ü Parameters based on USGS Triga (group 1-> fast, group 2 -> thermal) H* Geometry is given in inches and converted to cm *L geom = 8RC Ø 2.54 H ê 16L, HC Ø 2.54 µ 15, RRef Ø 2.54 H ê 8L, HRef Ø 2.54 H µ 3.47L<; Print@" Reactor geometry: Core Radius = ", RC ê. geom, " cm Core Height = ", HC ê. geom, " cm"d Print@" Reflector radius = ", RRef ê. geom, " cm Reflector Height = ", HRef ê. geom, " cm"d params1 = 8n Ø 2.07, Sf Ø.00258, SCa Ø H L, SRefa Ø , SCs Ø 3.29, SRefs Ø.3811, mc Ø.025, mref Ø 1 ê 18.<; params2 = 8n Ø 2.07, Sf Ø.0712, SCa Ø H L, SRefa Ø , SCs Ø 3.29, SRefs Ø.3811, mc Ø.025, mref Ø 1 ê 18.<; H* Diffusion constants for core *L StrC = SCa + Sf + H1 - mcl SCs; D C = 1 ê H3 StrCL; L C = D C SCa ;

3 Flux_Profile_2group.nb 3 Print@" Core parameters "D Print@" Fast group: Str1 = ", StrC ê. params1, " cm^-1 D C1 = ", D C ê. params1, " cm L C1 = ", L C ê. params1, " cm"d Print@" Thermal group: Str2 = ", StrC ê. params2, " cm^-1 D C2 = ", D C ê. params2, " cm L C1 = ", L C ê. params2, " cm"d H* Diffusion constants for reflector *L StrRef = SRefa + H1 - mrefl SRefs; lex = 1 ê H3 StrRefL; D R = 1 ê H3 StrRefL; L R = D R SRefa ; Print@" Reflector parameters "D Print@" Fast group: Str1 = ", StrRef ê. params1, " cm^-1 D R1 = ", D R ê. params1, " cm L R1 = ", L R ê. params1, " cm"d Print@" Thermal group: Str2 = ", StrRef ê. params2, " cm^-1 D R2 = ", D R ê. params2, " cm L R1 = ", L R ê. params2, " cm"d Reactor geometry: Core Radius = cm Core Height = 38.1 cm Reflector radius = cm Reflector Height = cm Core parameters Fast group: Str1 = cm^-1 D C1 = cm L C1 = cm Thermal group: Str2 = cm^-1 D C2 = cm L C1 = cm Reflector parameters Fast group: Str1 = cm^-1 D R1 = cm L R1 = cm Thermal group: Str2 = cm^-1 D R2 = cm L R1 = cm

4 4 Flux_Profile_2group.nb Rex = HRRef + lexl ê. params1 ê. geom; Hex = HHRef + 2 lexl ê. params1 ê. geom; Print@" Extrapolation distance: lex = ", lex ê. params1, " cm"d Extrapolation distance: lex = cm ü Bare Cylindrical Reactor The diffusion equations for the two velocity group fluxes are: D 1 2 F 1 == H-Sa 1 - Ss 1->2 L F 1 + n Sf 2 F k 2 D 2 2 F 2 == -Sa 2 F 2 + Ss 1->2 F 1 For cylindrical geometry these factor into r and z components: F = R[r] Z[z]. Reqn = 1 r D@Hr R'@rDL, rd == -Br2 R@rD; Zeqn = Z''@zD ã -Bz 2 Z@zD; For both groups the boundary conditions are R'[0]=Z'[0]==0 and R[Rex]=Z[- Hex/2]==0 which gives: Z1soln@z_D = Az1 Cos@Bz zd R1soln@r_D = Ar1 BesselJ@0, Br rd Z2soln@z_D = Az2 Cos@Bz zd R2soln@r_D = Ar2 BesselJ@0, Br rd Az1 Cos@Bz zd Ar1 BesselJ@0, Br rd Az2 Cos@Bz zd Ar2 BesselJ@0, Br rd where Bz = p / Hex and Br = z0 / Rex, where z0 is the first zero of J0:

5 Flux_Profile_2group.nb 5 z0soln = z0 ê. FindRoot@BesselJ@0, z0d ã 0, 8z0, 2.5<D; Bconstants = 8Br -> z0soln ê Rex, Bz -> p ê Hex<; Bnet = Br 2 + Bz 2 ê. Bconstants ê. geom; PNL = 1 ê H1 + Bnet^2 L C ^2L ê. params1 ê. geom; r21 = SCs ê HSCa + D C Bnet^2L ê. params2 ê. Bconstants; kmax = HHHn SfL ê. params1l + r21 HHn SfL ê. params2ll ê HBnet ^ 2 + HHSCa + SCsL ê. params2ll ê. Bconstants; Print@" Buckling constants Hcm^-1L: Br = ", Br ê. Bconstants, " Bz = ", Bz ê. Bconstants, " BHtotalL = ", BnetD Print@" Nonleakage probability = ", PNLD Print@" Ratio of thermal to fast flux = ", r21d Print@ " Maximum neutron multiplication: k = ", kmaxd Buckling constants Hcm^-1L: Br = Bz = BHtotalL = Nonleakage probability = Ratio of thermal to fast flux = Maximum neutron multiplication: k = soln = 8Br -> z0soln ê Rex, Bz -> p ê Hex, Ar1 Ø 1, Az1 Ø 1, Ar2 Ø r21, Az2 Ø r21<; Plot@8 R1soln@rD ê. soln, R2soln@rD ê. soln<, 8r, 0, Rex<D Plot@8 Z1soln@zD ê. soln, Z2soln@zD ê. soln<, 8z, 0, Hex ê 2<D

6 6 Flux_Profile_2group.nb

7 Flux_Profile_2group.nb

8 8 Flux_Profile_2group.nb ü Reflected Slab Reactor Consider a slsb reactor having a core of width, a, which is surrounded by an infinite reflector. There are two velocity groups and two regions (core and reflector) giving the following four diffusion equations for the neutron flux: [1a] D C1 2 F C1 ã HS ac1 + S 12 C L F C1-1 k Hn 1 S f1 F C1 + n 2 S f2 F C2 L [1b] D R1 2 F R1 == HS ar1 + S 12 R L F R1 [1c] D C2 2 F C2 == S ac2 F C2 - S sc1 F C1 D R2 2 F R2 == S ar2 F R2 - S sr1 F R1 [1d] In the following we will solve for the conditions that give k= 1. For slab symmetry 2 F -> d2 F. The (8) boundary conditions are: dx 2 F C1 '[0] = F C2 '[0] = 0 F C1 A a 2 E = F R1A a 2 E J C1 A a 2 E = J R1A a 2 E F C2 A a 2 E = F R2A a 2 E J C2 A a 2 E = J R2A a 2 E F D = F D = 0 [2a,b] [2c] [2d] [2e] [2f] [2g,h] The general solutions, satisfying [2a,b] and [2g,h] and normalized by the first sineterm, are: F = Cos@m xd + r C Cosh@n xd; F = S 1 Cos@m xd + S 2 r C Cosh@n xd; F = r F Exp@-k 1 xd; F = r G Exp@-k 2 xd + S 3 r F Exp@-k 1 xd;

9 Flux_Profile_2group.nb 9 We will work only in the positive x region and use reflection symmetry to obtain the solution in the negative x region. There remain 10 parameters, {m, n, k 1, k 2, r C, r F, r G, S 1, S 2, S 3 <, to be determined. Substitution in to Eq.[1c,d] gives: k 1 soln = S ar1 + S 12 R D R1 ; k 2 soln = S ar2 D R2 ; Substitution into [1a,b] and equating sine and sinh-terms gives: S 1 soln = S 2 soln = S 3 soln = S 12 C S ac2 + D C2 m 2 ; S 12 C S ac2 - D C2 n ; 2 D R1 S 12 R ; D R1 S ar2 - D R2 S ar1 - D R2 S 12 R The joining conditions for the currents at r = R gives the flux ratios, { r C, r F, r G <:

10 10 Flux_Profile_2group.nb eq1 = F C1 B a 2 F ã F R1B a 2 F; eq2 = D C1 D@F xd == D R1 D@F xd ê. x Ø a 2 ; rcfsoln = Flatten@Solve@8eq1, eq2<, 8r C, r F <DD; r Csoln = r C ê. rcfsoln; r Fsoln = r F ê. rcfsoln; eq3 = F C2 B a 2 F ã F R2B a 2 F; eq4 = D C2 D@F xd == D R2 D@F xd ê. x Ø a 2 ; rfgsoln = Flatten@Solve@8eq3, eq4<, 8r G, r F <DD; r Gsoln = Simplify@r G ê. rfgsoln ê. r C -> r Csoln D; r Fsoln2 = Simplify@r F ê. rfgsoln ê. r C -> r Csoln D; Print@" r C Print@" r F Print@" r G = ", r Csoln D = ", r Fsoln D = ", r Gsoln D r C = - -m SinA a m 2 E D C1 + CosA a m 2 E D R1 k 1 n SinhA a n 2 E D C1 + CoshA a n 2 E D R1 k 1 r F = r G = a k 1 2 Im CoshA a n 2 E SinA a m 2 E + n CosA a m 2 E SinhA a n 2 EM D C1 n SinhA a n 2 E D C1 + CoshA a n 2 E D R1 k 1 1 D R2 Hk 1 - k 2 L a k2 2 -m SinB a m 2 F D C2 S 1 + CosB a m 2 F D R2 S 1 k 1 + n SinhA a n 2 E D C2 S 2 Im SinA a m 2 E D C1 - CosA a m 2 E D R1 k 1 M n SinhA a n 2 E D C1 + CoshA a n 2 E D R1 k 1 - CoshA a n 2 E D R2 S 2 k 1 I-m SinA a m 2 E D C1 + CosA a m 2 E D R1 k 1 M n SinhA a n 2 E D C1 + CoshA a n 2 E D R1 k 1 The second solution for r F will be used to obtain the reactor width, a, self-consistently. We start with the value for a bare reactor based on the reactor parameters are taken from Meem, Two Group Reactor Theory,

11 Flux_Profile_2group.nb 11 H* Meems parameters *L params1 = 8n 1 Ø 2.47, S f1 Ø , S ac1 Ø , S ar1 Ø 0.0, S sc1 Ø , S sr1 Ø.6871, z C Ø , z R Ø.8203, E 0 Ø 1.62 µ 10^6, E th Ø 0.1, mc Ø.5078, mref Ø.5391<; params2 = 8n 2 Ø 2.47, S f2 Ø.06147, S ac2 Ø , S ar2 Ø , S sc2 Ø 4.715, S sr2 Ø 6.529, mc Ø , mref Ø.6533<; Calculate the various parameters appropriate to this reactor: S 12 Cvalue = z C S sc1 ê Log@E 0 ê E th D ê. params1; S 12 Rvalue = z R S sr1 ê Log@E 0 ê E th D ê. params1; PrintA" S 12 C = ", S 12 Cvalue, " cm -1 S 12 R = ", S 12 Rvalue, " cm -1 "E StrC1 = H1 - mcl S sc1 ê. params1; StrC2 = H1 - mcl S sc2 ê. params2; StrR1 = H1 - mrefl S sr1 ê. params1; StrR2 = H1 - mrefl S sr2 ê. params2; D C1value = 1 ê H3 HS ac1 + StrC1LL ê. params1; D C2value = 1 ê H3 HS ac2 + StrC2LL ê. params2; D R1value = 1 ê H3 HS ar1 + StrR1LL ê. params1; D R2value = 1 ê H3 HS ar2 + StrR2LL ê. params2; Print@" D C1 = ", D C1value, " cm D C2 = ", D C2value, " cm D R1 = ", D R1value, " cm D R2 = ", D R2value, " cm"d Dparams = 8D C1 -> D C1value, D C2 -> D C2value, D R1 -> D R1value, D R2 -> D R2value, S 12 C -> S 12 Cvalue, S 12 R -> S 12 Rvalue <; k 1 value = k 1 soln ê. Dparams ê. params1; k 2 value = k 2 soln ê. Dparams ê. params2;

12 12 Flux_Profile_2group.nb PrintA" k 1 = ", k 1 value, " cm -1 k 2 = ", k 2 value, " cm -1 "E L nsol = D C1 S 12 C + S ac1 - n 1 S f1 ; L nvalue = L nsol ê. Dparams ê. params1; Print@" L n = ", L nvalue, " cm"d slabparams = 8D C1 -> D C1value, D C2 -> D C2value, D R1 -> D R1value, D R2 -> D R2value, S 12 C -> S 12 Cvalue, S 12 R -> S 12 Rvalue, L n -> L nvalue, R Ø R value <; S 12 C = cm -1 S 12 R = cm -1 D C1 = cm D C2 = cm D R1 = cm D R2 = cm k 1 = cm -1 k 2 = cm -1 L n = cm The initial guess for the slab width is estimated from the buckling constant using the geometric mean of the fast and thermal buckling:

13 Flux_Profile_2group.nb 13 a new = 0; k = n 1 S f1 ê S ac1 ê. params1; L1 = D C1value S ac1 ê. params1; B1 = Hk - 1L ë IL1 2 M ; k = n 2 S f2 ê S ac2 ê. params2; L2 = D C2value S ac2 ê. params2; B2 = Hk - 1L ë L2 2 ; a 0 = p í B1 B2 ; Print@" a HguessL = ", a 0, " cm"d a HguessL = cm The parameters list needs to be re-run once the self consistent radius is determined. Initially, however, set it to a 0. RUN SOLUTION HERE --> a value = If@a new < 1, a 0, a new D; slabparams = 8D C1 -> D C1value, D C2 -> D C2value, D R1 -> D R1value, D R2 -> D R2value, S 12 C -> S 12 Cvalue, S 12 R -> S 12 Rvalue, L n -> L nvalue, a Ø a value < 8D C1 Ø , D C2 Ø , D R1 Ø , D R2 Ø , S 12 C Ø , S 12 R Ø , L n Ø , a Ø < Find the remaining parameters needed to specify the solutions. b m = b n = 1 L + S ac2 2 n D C2 ê. slabparams ê. params1 ê. params2;

14 14 Flux_Profile_2group.nb - 1 L n 2 + S ac2 D C2 ê. slabparams ê. params1 ê. params2; c = - n 2 S f2 S 12 C D C1 D C2 + S ac2 L n 2 D C2 ê. slabparams ê. params1 ê. params2; m value = I-b m + SqrtAb m 2-4 cem ë 2 ; n value = I-b n + SqrtAb n 2-4 cem ë 2 ; S 1 value = S 1 soln ê. 8m -> m value < ê. slabparams ê. params2; S 2 value = S 2 soln ê. 8n Ø n value < ê. slabparams ê. params2; S 3 value = S 3 soln ê. slabparams ê. params2 ê. params1; musparams = 8m -> m value, n -> n value, S 1 -> S 1 value, S 2 -> S 2 value, S 3 -> S 3 value, k 1 -> k 1 value, k 2 -> k 2 value <; r Cvalue = r Csoln ê. slabparams ê. params2 ê. params1 ê. musparams; r Fvalue = r Fsoln ê. slabparams ê. params2 ê. params1 ê. musparams; r Gvalue = r Gsoln ê. slabparams ê. params2 ê. params1 ê. musparams; solnparams = 8m -> m value, n -> n value, S 1 -> S 1 value, S 2 -> S 2 value, S 3 -> S 3 value, k 1 -> k 1 value, k 2 -> k 2 value <; rparams = 8r C -> r Cvalue, r F -> r Fvalue, r G -> r Gvalue < ê. solnparams; PrintA" m = ", m value, " cm -1 n = ", n value, " cm -1 "E Print@" S 1 = ", S 1 value, " S 2 = ", S 2 value, " S 3 = ", S 3 value D

15 Flux_Profile_2group.nb 15 PrintA" k 1 = ", k 1 value, " cm -1 k 2 = ", k 2 value, " cm -1 "E Print@" r C = ", r Cvalue, " r F = ", r Fvalue, " r G = ", r Gvalue D m = cm -1 n = cm -1 S 1 = S 2 = S 3 = k 1 = cm -1 k 2 = cm -1 r C = r F = r G = Test the solution by examining the matching conditions at the reactor boundary, a/2: FC1 = F C1 B a F ê. params1 ê. slabparams ê. Dparams ê. 2 solnparams ê. rparams; FR1 = F R1 B a F ê. params1 ê. slabparams ê. Dparams ê. 2 solnparams ê. rparams; PrintB" F a D = ", FC1, " 2 F R1@ a D = ", FR1F 2 FC2 = F C2 B a F ê. params1 ê. params2 ê. slabparams ê. 2 Dparams ê. solnparams ê. rparams; FR2 = F R2 B a F ê. params1 ê. params2 ê. slabparams ê. 2 Dparams ê. solnparams ê. rparams; PrintB" F a D = ", FC2, " 2 F R2@ a D = ", FR2F 2

16 16 Flux_Profile_2group.nb jc1 = D C1 D@F xd ê. x Ø a 2 ê. params1 ê. slabparams ê. Dparams ê. solnparams ê. rparams; jr1 = D R1 D@F xd ê. x Ø a 2 ê. params1 ê. slabparams ê. Dparams ê. solnparams ê. rparams; PrintB" J a D = ", jc1, " 2 J R1@ a D = ", jr1f 2 jc2 = D C2 D@F xd ê. x Ø a 2 ê. params1 ê. params2 ê. slabparams ê. Dparams ê. solnparams ê. rparams; jr2 = D R2 D@F xd ê. x Ø a 2 ê. params1 ê. params2 ê. slabparams ê. Dparams ê. solnparams ê. rparams; PrintB" J a D = ", jc2, " 2 J R2@ a D = ", jr2f 2 F a 2 D = F R1@ a 2 D = F a 2 D = F R2@ a 2 D = J a 2 D = J R1@ a 2 D = J a 2 D = J R2@ a 2 D = The first attempt using the initial guess for a does not quite satisfy the matching conditions. To find the correcd slab width, find the value of a which gives the same flux ratio, r F, for the two cases:

17 Flux_Profile_2group.nb 17 a new = a ê. FindRoot@Hr Fsoln - r Fsoln2 L ê. params1 ê. params2 ê. Dparams ê. solnparams, 8a, a value <D; Print@" Self-consistent a = ", a new, " cm"d Self-consistent a = cm --> Now re-run the solutions to show that the matching conditions are now exactly satisfied (go to "RUN SOLUTION HERE" and re-run parameter list ). F1plot@x_D = If@x < a value ê 2, HF ê. solnparams ê. rparams, HF ê. solnparams ê. rparamsd; F2plot@x_D = If@x < a value ê 2, HF ê. solnparams ê. rparams, HF ê. solnparams ê. rparamsd; Plot@8F1plot@xD, F2plot@xD<, 8x,.01, 2 a value <, PlotRange Ø AllD

18 18 Flux_Profile_2group.nb Reflected Spherical Reactor Consider a spherical reactor having a core of radius, R, which is surrounded by an infinite reflector. There are two velocity groups and two regions (core and reflector) giving the following four diffusion equations for the neutron flux: [1a] D C1 2 F C1 ã HS ac1 + S 12 C L F C1-1 k Hn 1 S f1 F C1 + n 2 S f2 F C2 L [1b] D R1 2 F R1 == HS ar1 + S 12 R L F R1 [1c] D C2 2 F C2 == S ac2 F C2 - S sc1 F C1 [1d] D R2 2 F R2 == S ar2 F R2 - S sr1 F R1 For spherical symmetry we define F = u/r and, 2 F -> 1 d2 r dr 2 u. The (8) boundary conditions are: u C1 [0] = u C2 [0] = 0 [2a,b] u = u [2c] J = J [2d] u = u [2e] J = J [2f] u D = u D = 0 [2g,h] The general solutions, satisfying [2a,b] and [2g,h] and normalized by the first sineterm, are: u = Sin@m rd + r C Sinh@n rd; u = S 1 Sin@m rd + S 2 r C Sinh@n rd; u = r F Exp@-k 1 rd; u = r G Exp@-k 2 rd + S 3 r F Exp@-k 1 rd; There remain 10 parameters, {m, n, k 1, k 2, r C, r F, r G, S 1, S 2, S 3 <, to be deter-

19 Flux_Profile_2group.nb C F G 1 2 3< mined. Substitution in to Eq.[1c,d] gives: k 1 soln = S ar1 + S 12 R D R1 ; k 2 soln = S ar2 D R2 ; Substitution into [1a,b] and equating sine and sinh-terms gives: S 1 soln = S 2 soln = S 3 soln = S 12 C S ac2 + D C2 m 2 ; S 12 C S ac2 - D C2 n ; 2 D R1 S 12 R ; D R1 S ar2 - D R2 S ar1 - D R2 S 12 R The joining conditions for the currents at r = R gives the flux ratios, { r C, r F, r G <:

20 20 Flux_Profile_2group.nb eq1 = u == u eq2 = D C1 D@u ê r, rd == D R1 D@u ê r, rd ê. r Ø R; rcfsoln = Flatten@Solve@8eq1, eq2<, 8r C, r F <DD; r Csoln = r C ê. rcfsoln; r Fsoln = r F ê. rcfsoln; eq3 = u == u eq4 = D C2 D@u ê r, rd == D R2 D@u ê r, rd ê. r Ø R; rfgsoln = Flatten@Solve@8eq3, eq4<, 8r G, r F <DD; r Gsoln = Simplify@r G ê. rfgsoln ê. r C -> r Csoln D; r Fsoln2 = Simplify@r F ê. rfgsoln ê. r C -> r Csoln D; Print@" r C Print@" r F Print@" r G = ", r Csoln D = ", r Fsoln D = ", r Gsoln D R m Cos@R md D C1 - Sin@R md D C1 + Sin@R md D R1 + R Sin@R md D R1 k 1 r C = - R n Cosh@R nd D C1 - Sinh@R nd D C1 + Sinh@R nd D R1 + R Sinh@R nd D R1 k 1 r F = r G = R k 1 R Hn Cosh@R nd Sin@R md - m Cos@R md Sinh@R ndl DC1 R n Cosh@R nd D C1 - Sinh@R nd D C1 + Sinh@R nd D R1 + R Sinh@R nd D R1 k 1 -I R k 2 HD R1 H1 + R k 1 L HD C2 HHR m Cos@R md - Sin@R mdl Sinh@R nd S 1 + Sin@R md H-R n Cosh@R nd + Sinh@R ndl S 2 L + Sin@R md Sinh@R nd D R2 HS 1 - S 2 L H1 + R k 1 LL + D C1 HHR m Cos@R md - Sin@R mdl HR n Cosh@R nd - Sinh@R ndl D C2 HS 1 - S 2 L + D R2 HSin@R md HR n Cosh@R nd - Sinh@R ndl S 1 + H-R m Cos@R md + Sin@R mdl Sinh@R nd S 2 L H1 + R k 1 LLLM ë HR D R2 HHR n Cosh@R nd - Sinh@R ndl D C1 + Sinh@R nd D R1 H1 + R k 1 LL H-k 1 + k 2 LL The second solution for r F will be used to obtain the reactor radius, R, self-consistently. We start with the value for a bare reactor based on the reactor parameters are taken from Meem, Two Group Reactor Theory,

21 Flux_Profile_2group.nb 21 H* Meems parameters *L params1 = 8n 1 Ø 2.47, S f1 Ø , S ac1 Ø , S ar1 Ø 0.0, S sc1 Ø , S sr1 Ø.6871, z C Ø , z R Ø.8203, E 0 Ø 1.62 µ 10^6, E th Ø 0.1, mc Ø.5078, mref Ø.5391<; params2 = 8n 2 Ø 2.47, S f2 Ø.06147, S ac2 Ø , S ar2 Ø , S sc2 Ø 4.715, S sr2 Ø 6.529, mc Ø , mref Ø.6533<; Calculate the various parameters appropriate to this reactor: S 12 Cvalue = z C S sc1 ê Log@E 0 ê E th D ê. params1; S 12 Rvalue = z R S sr1 ê Log@E 0 ê E th D ê. params1; PrintA" S 12 C = ", S 12 Cvalue, " cm -1 S 12 R = ", S 12 Rvalue, " cm -1 "E StrC1 = H1 - mcl S sc1 ê. params1; StrC2 = H1 - mcl S sc2 ê. params2; StrR1 = H1 - mrefl S sr1 ê. params1; StrR2 = H1 - mrefl S sr2 ê. params2; D C1value = 1 ê H3 HS ac1 + StrC1LL ê. params1; D C2value = 1 ê H3 HS ac2 + StrC2LL ê. params2; D R1value = 1 ê H3 HS ar1 + StrR1LL ê. params1; D R2value = 1 ê H3 HS ar2 + StrR2LL ê. params2; Print@" D C1 = ", D C1value, " cm D C2 = ", D C2value, " cm D R1 = ", D R1value, " cm D R2 = ", D R2value, " cm"d Dparams = 8D C1 -> D C1value, D C2 -> D C2value, D R1 -> D R1value, D R2 -> D R2value, S 12 C -> S 12 Cvalue, S 12 R -> S 12 Rvalue <; k 1 value = k 1 soln ê. Dparams ê. params1; k 2 value = k 2 soln ê. Dparams ê. params2;

22 22 Flux_Profile_2group.nb PrintA" k 1 = ", k 1 value, " cm -1 k 2 = ", k 2 value, " cm -1 "E L nsol = D C1 S 12 C + S ac1 - n 1 S f1 ; L nvalue = L nsol ê. Dparams ê. params1; Print@" L n = ", L nvalue, " cm"d sphereparams = 8D C1 -> D C1value, D C2 -> D C2value, D R1 -> D R1value, D R2 -> D R2value, S 12 C -> S 12 Cvalue, S 12 R -> S 12 Rvalue, L n -> L nvalue, R Ø R value <; S 12 C = cm -1 S 12 R = cm -1 D C1 = cm D C2 = cm D R1 = cm D R2 = cm k 1 = cm -1 k 2 = cm -1 L n = cm The initial guess for the radius is estimated from the buckling constant using the geometric mean of the fast and thermal buckling:

23 Flux_Profile_2group.nb 23 R new = 0; k = n 1 S f1 ê S ac1 ê. params1; L1 = D C1value S ac1 ê. params1; B1 = Hk - 1L ë IL1 2 M ; k = n 2 S f2 ê S ac2 ê. params2; L2 = D C2value S ac2 ê. params2; B2 = Hk - 1L ë L2 2 ; R 0 = p í B1 B2 ; Print@" R HguessL = ", R 0, " cm"d R HguessL = cm The parameters list needs to be re-run once the self consistent radius is determined. Initially, however, set it to R 0. RUN SOLUTION HERE --> R value = If@R new < 1, R 0, R new D; sphereparams = 8D C1 -> D C1value, D C2 -> D C2value, D R1 -> D R1value, D R2 -> D R2value, S 12 C -> S 12 Cvalue, S 12 R -> S 12 Rvalue, L n -> L nvalue, R Ø R value < 8D C1 Ø , D C2 Ø , D R1 Ø , D R2 Ø , S 12 C Ø , S 12 R Ø , L n Ø , R Ø < Find the remaining parameters needed to specify the solutions. b m = 1 L + S ac2 2 n D C2 ê. sphereparams ê. params1 ê. params2;

24 24 Flux_Profile_2group.nb b n = - 1 L n 2 + S ac2 D C2 ê. sphereparams ê. params1 ê. params2; c = - n 2 S f2 S 12 C D C1 D C2 + S ac2 L n 2 D C2 ê. sphereparams ê. params1 ê. params2; m value = I-b m + SqrtAb m 2-4 cem ë 2 ; n value = I-b n + SqrtAb n 2-4 cem ë 2 ; S 1 value = S 1 soln ê. 8m -> m value < ê. sphereparams ê. params2; S 2 value = S 2 soln ê. 8n Ø n value < ê. sphereparams ê. params2; S 3 value = S 3 soln ê. sphereparams ê. params2 ê. params1; musparams = 8m -> m value, n -> n value, S 1 -> S 1 value, S 2 -> S 2 value, S 3 -> S 3 value, k 1 -> k 1 value, k 2 -> k 2 value <; r Cvalue = r Csoln ê. sphereparams ê. params2 ê. params1 ê. musparams; r Fvalue = r Fsoln ê. sphereparams ê. params2 ê. params1 ê. musparams; r Gvalue = r Gsoln ê. sphereparams ê. params2 ê. params1 ê. musparams; solnparams = 8m -> m value, n -> n value, S 1 -> S 1 value, S 2 -> S 2 value, S 3 -> S 3 value, k 1 -> k 1 value, k 2 -> k 2 value <; rparams = 8r C -> r Cvalue, r F -> r Fvalue, r G -> r Gvalue < ê. solnparams; Print@" m = ", m value, " n = ", n value D Print@" S 1 = ", S 1 value, " S 2 = ", S 2 value, " S 3 = ", S 3 value D

25 Flux_Profile_2group.nb 25 PrintA" k 1 = ", k 1 value, " cm -1 k 2 = ", k 2 value, " cm -1 "E Print@" r C = ", r Cvalue, " r F = ", r Fvalue, " r G = ", r Gvalue D m = n = S 1 = S 2 = S 3 = k 1 = cm -1 k 2 = cm -1 r C = µ 10-8 r F = r G = Test the solution by examining the matching conditions at the reactor radius, R:

26 26 Flux_Profile_2group.nb uc1 = u ê. params1 ê. sphereparams ê. Dparams ê. solnparams ê. rparams; ur1 = u ê. params1 ê. sphereparams ê. Dparams ê. solnparams ê. rparams; Print@" u = ", uc1, " u = ", ur1d uc2 = u ê. params1 ê. params2 ê. sphereparams ê. Dparams ê. solnparams ê. rparams; ur2 = u ê. params1 ê. params2 ê. sphereparams ê. Dparams ê. solnparams ê. rparams; Print@" u = ", uc2, " u = ", ur2d jc1 = D C1 D@u ê r, rd ê. r Ø R ê. params1 ê. sphereparams ê. Dparams ê. solnparams ê. rparams; jr1 = D R1 D@u ê r, rd ê. r Ø R ê. params1 ê. sphereparams ê. Dparams ê. solnparams ê. rparams; Print@" J = ", jc1, " J = ", jr1d jc2 = D C2 D@u ê r, rd ê. r Ø R ê. params1 ê. params2 ê. sphereparams ê. Dparams ê. solnparams ê. rparams; jr2 = D R2 D@u ê r, rd ê. r Ø R ê. params1 ê. params2 ê. sphereparams ê. Dparams ê. solnparams ê. rparams; Print@" J = ", jc2, " J = ", jr2d u = u = u = u = J = J = J = J =

27 Flux_Profile_2group.nb 27 The first attempt using the initial guess for R does not quite satisfy the matching conditions. To find the correcd radius, find the value of R which gives the same flux ratio, r F, for the two cases: R new = R ê. FindRoot@Hr Fsoln - r Fsoln2 L ê. params1 ê. params2 ê. Dparams ê. solnparams, 8R, R value <D; Print@" Self-consistent R = ", R new, " cm"d Self-consistent R = cm Now re-run the solutions to show that the matching conditions are now exactly satisfied (go to "RUN SOLUTION HERE").

28 28 Flux_Profile_2group.nb = < R value, Hu ê rl ê. solnparams ê. rparams, Hu ê rl ê. solnparams ê. rparamsd; F2plot@r_D = If@r < R value, Hu ê rl ê. solnparams ê. rparams, Hu ê rl ê. solnparams ê. rparamsd; Plot@8F1plot@rD, F2plot@rD<, 8r,.01, 1.5 R value <D

as nonrigid Carnot groups

as nonrigid Carnot groups Th Th Th V 5 5 34 356 V V crcc 5 c5 5 Hdr 5 34 356 Vr 34 dh 356 crcc-c 5 Hdr c Vr d Cr r c d Cr r c r c c r c 5 B Hdr Wrhr B Wrhr Vr Ccd b G cr Ccd b cr Abrc G c cr W d rdc r c d Cr hch Abrc r W d Cr rdc

More information

Lesson 9: Multiplying Media (Reactors)

Lesson 9: Multiplying Media (Reactors) Lesson 9: Multiplying Media (Reactors) Laboratory for Reactor Physics and Systems Behaviour Multiplication Factors Reactor Equation for a Bare, Homogeneous Reactor Geometrical, Material Buckling Spherical,

More information

8: Source-Sink Problems in 1 Energy Group

8: Source-Sink Problems in 1 Energy Group 8: Source-Sink Problems in 1 Energy Group B. Rouben McMaster University Course EP 4D03/6D03 Nuclear Reactor Analysis (Reactor Physics) 015 Sept.-Dec. 015 September 1 Contents Solving the 1-group diffusion

More information

Legendre s Equation. PHYS Southern Illinois University. October 13, 2016

Legendre s Equation. PHYS Southern Illinois University. October 13, 2016 PHYS 500 - Southern Illinois University October 13, 2016 PHYS 500 - Southern Illinois University Legendre s Equation October 13, 2016 1 / 10 The Laplacian in Spherical Coordinates The Laplacian is given

More information

OH BOY! Story. N a r r a t iv e a n d o bj e c t s th ea t e r Fo r a l l a g e s, fr o m th e a ge of 9

OH BOY! Story. N a r r a t iv e a n d o bj e c t s th ea t e r Fo r a l l a g e s, fr o m th e a ge of 9 OH BOY! O h Boy!, was or igin a lly cr eat ed in F r en ch an d was a m a jor s u cc ess on t h e Fr en ch st a ge f or young au di enc es. It h a s b een s een by ap pr ox i ma t ely 175,000 sp ect at

More information

22 t b r 2, 20 h r, th xp t d bl n nd t fr th b rd r t t. f r r z r t l n l th h r t rl T l t n b rd n n l h d, nd n nh rd f pp t t f r n. H v v d n f

22 t b r 2, 20 h r, th xp t d bl n nd t fr th b rd r t t. f r r z r t l n l th h r t rl T l t n b rd n n l h d, nd n nh rd f pp t t f r n. H v v d n f n r t d n 20 2 : 6 T P bl D n, l d t z d http:.h th tr t. r pd l 22 t b r 2, 20 h r, th xp t d bl n nd t fr th b rd r t t. f r r z r t l n l th h r t rl T l t n b rd n n l h d, nd n nh rd f pp t t f r

More information

H NT Z N RT L 0 4 n f lt r h v d lt n r n, h p l," "Fl d nd fl d " ( n l d n l tr l t nt r t t n t nt t nt n fr n nl, th t l n r tr t nt. r d n f d rd n t th nd r nt r d t n th t th n r lth h v b n f

More information

Multiple Choice. Compute the Jacobian, (u, v), of the coordinate transformation x = u2 v 4, y = uv. (a) 2u 2 + 4v 4 (b) xu yv (c) 3u 2 + 7v 6

Multiple Choice. Compute the Jacobian, (u, v), of the coordinate transformation x = u2 v 4, y = uv. (a) 2u 2 + 4v 4 (b) xu yv (c) 3u 2 + 7v 6 .(5pts) y = uv. ompute the Jacobian, Multiple hoice (x, y) (u, v), of the coordinate transformation x = u v 4, (a) u + 4v 4 (b) xu yv (c) u + 7v 6 (d) u (e) u v uv 4 Solution. u v 4v u = u + 4v 4..(5pts)

More information

Chair Susan Pilkington called the meeting to order.

Chair Susan Pilkington called the meeting to order. PGE PRK D RECREO DVOR COMMEE REGUR MEEG MUE MOD, JU, Ru M h P P d R d Cmm hd : m Ju,, h Cu Chmb C H P, z Ch u P dd, Mmb B C, Gm Cu D W Bd mmb b: m D, d Md z ud mmb : C M, J C P Cmmu Dm D, Km Jh Pub W M,

More information

MARYLAND. Fundamentals of heat transfer Radiative equilibrium Surface properties Non-ideal effects. Conduction Thermal system components

MARYLAND. Fundamentals of heat transfer Radiative equilibrium Surface properties Non-ideal effects. Conduction Thermal system components Fundamentals of heat transfer Radiative equilibrium Surface properties Non-ideal effects Internal power generation Environmental temperatures Conduction Thermal system components 2003 David L. Akin - All

More information

Mid Term Exam 3. Apr 24, /40 2 /40 3 /30. Total /110

Mid Term Exam 3. Apr 24, /40 2 /40 3 /30. Total /110 Name: ID: Mid Term Exam 3 Phys 248 Apr 24, 2009 Print your name and ID number clearly above. To receive full credit you must show all your work. If you do not show your work you will only receive partial

More information

n r t d n :4 T P bl D n, l d t z d th tr t. r pd l

n r t d n :4 T P bl D n, l d t z d   th tr t. r pd l n r t d n 20 20 :4 T P bl D n, l d t z d http:.h th tr t. r pd l 2 0 x pt n f t v t, f f d, b th n nd th P r n h h, th r h v n t b n p d f r nt r. Th t v v d pr n, h v r, p n th pl v t r, d b p t r b R

More information

Spherical trigonometry

Spherical trigonometry Spherical trigonometry 1 The spherical Pythagorean theorem Proposition 1.1 On a sphere of radius, any right triangle AC with C being the right angle satisfies cos(c/) = cos(a/) cos(b/). (1) Proof: Let

More information

Frobenius Series. Use Frobenius series to solve the D. E. x 2 y + xy + Ix 2-1)y[x]=0. Determine the nature of the singularity at x 0

Frobenius Series. Use Frobenius series to solve the D. E. x 2 y + xy + Ix 2-1)y[x]=0. Determine the nature of the singularity at x 0 Frobenius Series ClearAll@"Global` "D; Off@General::spell, General::spell1D Use Frobenius series to solve the D. E. x 2 y ''@xd + xy '@xd + Ix 2-1)y[x]=0 Determine the nature of the singularity at x 0

More information

Nuclear Reactor Physics I Final Exam Solutions

Nuclear Reactor Physics I Final Exam Solutions .11 Nuclear Reactor Physics I Final Exam Solutions Author: Lulu Li Professor: Kord Smith May 5, 01 Prof. Smith wants to stress a couple of concepts that get people confused: Square cylinder means a cylinder

More information

" W I T H M C A L I C E T O " W ^ V H, 3 D N O N E ^ N D O H A - R I T Y F O R A. L L. NOBODY'S 6LAIM, deaths off Wm. itafftkon and Mrs. Kennodyb..

 W I T H M C A L I C E T O  W ^ V H, 3 D N O N E ^ N D O H A - R I T Y F O R A. L L. NOBODY'S 6LAIM, deaths off Wm. itafftkon and Mrs. Kennodyb.. ~ M M U M M «««M URZZ F)R U V Q Y \ $ R YJ UMUM!!!!!! MD M C C V 3 D D R Y F R V CUY MC MRC 2 89 39 C F C D J M R Y F! < «F C V C F :: $6 FC MC VR D UCQ C x M M R q R Y Y J C [ CM F FURUR D UDRR JD J YDR

More information

CCNY 203 Fall 2011 Final Solutions

CCNY 203 Fall 2011 Final Solutions CCNY Fall Final Solutions a: Take cross products of the displacement vectors to get a normal to plane P: Cross@8,, < - 8,, -

More information

UNIVERSITY OF TORONTO

UNIVERSITY OF TORONTO UNIVERSITY OF TORONTO t ERINDALE [;J CAMPUS "'~.. SURVEY SCIENCE AN ALGORITHM FOR THE AZIMUTH OF POLARIS by R. C. GUNN, Q L. S. and M. R. CRAYMER Technical Report No.8 September 1985 R.C. Gunn. O.L.S.

More information

,. *â â > V>V. â ND * 828.

,. *â â > V>V. â ND * 828. BL D,. *â â > V>V Z V L. XX. J N R â J N, 828. LL BL D, D NB R H â ND T. D LL, TR ND, L ND N. * 828. n r t d n 20 2 2 0 : 0 T http: hdl.h ndl.n t 202 dp. 0 02802 68 Th N : l nd r.. N > R, L X. Fn r f,

More information

n

n p l p bl t n t t f Fl r d, D p rt nt f N t r l R r, D v n f nt r r R r, B r f l. n.24 80 T ll h, Fl. : Fl r d D p rt nt f N t r l R r, B r f l, 86. http://hdl.handle.net/2027/mdp.39015007497111 r t v n

More information

LA PRISE DE CALAIS. çoys, çoys, har - dis. çoys, dis. tons, mantz, tons, Gas. c est. à ce. C est à ce. coup, c est à ce

LA PRISE DE CALAIS. çoys, çoys, har - dis. çoys, dis. tons, mantz, tons, Gas. c est. à ce. C est à ce. coup, c est à ce > ƒ? @ Z [ \ _ ' µ `. l 1 2 3 z Æ Ñ 6 = Ð l sl (~131 1606) rn % & +, l r s s, r 7 nr ss r r s s s, r s, r! " # $ s s ( ) r * s, / 0 s, r 4 r r 9;: < 10 r mnz, rz, r ns, 1 s ; j;k ns, q r s { } ~ l r mnz,

More information

Solutions to PS 2 Physics 201

Solutions to PS 2 Physics 201 Solutions to PS Physics 1 1. ke dq E = i (1) r = i = i k eλ = i k eλ = i k eλ k e λ xdx () (x x) (x x )dx (x x ) + x dx () (x x ) x ln + x x + x x (4) x + x ln + x (5) x + x To find the field for x, we

More information

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Multiple Integrals 3. 2 Vector Fields 9

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Multiple Integrals 3. 2 Vector Fields 9 MATH 32B-2 (8W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables Contents Multiple Integrals 3 2 Vector Fields 9 3 Line and Surface Integrals 5 4 The Classical Integral Theorems 9 MATH 32B-2 (8W)

More information

0 t b r 6, 20 t l nf r nt f th l t th t v t f th th lv, ntr t n t th l l l nd d p rt nt th t f ttr t n th p nt t th r f l nd d tr b t n. R v n n th r

0 t b r 6, 20 t l nf r nt f th l t th t v t f th th lv, ntr t n t th l l l nd d p rt nt th t f ttr t n th p nt t th r f l nd d tr b t n. R v n n th r n r t d n 20 22 0: T P bl D n, l d t z d http:.h th tr t. r pd l 0 t b r 6, 20 t l nf r nt f th l t th t v t f th th lv, ntr t n t th l l l nd d p rt nt th t f ttr t n th p nt t th r f l nd d tr b t n.

More information

Algebra 1B. Unit 9. Algebraic Roots and Radicals. Student Reading Guide. and. Practice Problems

Algebra 1B. Unit 9. Algebraic Roots and Radicals. Student Reading Guide. and. Practice Problems Name: Date: Period: Algebra 1B Unit 9 Algebraic Roots and Radicals Student Reading Guide and Practice Problems Contents Page Number Lesson 1: Simplifying Non-Perfect Square Radicands 2 Lesson 2: Radical

More information

Non-Linear Problems. Almost Linear Systems Consider the system of equations: (1) Y ' = AY + ghyl

Non-Linear Problems. Almost Linear Systems Consider the system of equations: (1) Y ' = AY + ghyl Non-Linear Problems Almost Linear Systems Consider the system of equations: (1) Y ' = AY + ghyl (here Y is a matrix). Suppose that the origin is an isolated equilibrium point (that is, there is some circle

More information

F q. Gas at radius R (cylindrical) and height z above the disk midplane. F z. central mass M

F q. Gas at radius R (cylindrical) and height z above the disk midplane. F z. central mass M Accretion Disks Luminosity of AGN derives from gravitational potential energy of gas spiraling inward through an accretion disk. Derive structure of the disk, and characteristic temperatures of the gas.

More information

PHYSICS 301/MATH 355 HOMEWORK #8

PHYSICS 301/MATH 355 HOMEWORK #8 PHYSICS 3/MATH 355 HOMEWORK #8 Solutions Question # We consider the integral : where m and n are both integers. We can evaluate this integral : Integrate@Cos@m xd Cos@n xd, 8x, π, π

More information

ME201/MTH21/ME400/CHE400 ASSIGNMENT #7 PROBLEM 1 Newton's Law of Cooling in Transient Conduction 1. Introduction This notebook uses Mathematica to solve problem 1 of Assignment #7, in which we analyze

More information

i;\-'i frz q > R>? >tr E*+ [S I z> N g> F 'x sa :r> >,9 T F >= = = I Y E H H>tr iir- g-i I * s I!,i --' - = a trx - H tnz rqx o >.F g< s Ire tr () -s

i;\-'i frz q > R>? >tr E*+ [S I z> N g> F 'x sa :r> >,9 T F >= = = I Y E H H>tr iir- g-i I * s I!,i --' - = a trx - H tnz rqx o >.F g< s Ire tr () -s 5 C /? >9 T > ; '. ; J ' ' J. \ ;\' \.> ). L; c\ u ( (J ) \ 1 ) : C ) (... >\ > 9 e!) T C). '1!\ /_ \ '\ ' > 9 C > 9.' \( T Z > 9 > 5 P + 9 9 ) :> : + (. \ z : ) z cf C : u 9 ( :!z! Z c (! $ f 1 :.1 f.

More information

Make sure you show all your work and justify your answers in order to get full credit.

Make sure you show all your work and justify your answers in order to get full credit. PHYSICS 7B, Lectures & 3 Spring 5 Midterm, C. Bordel Monday, April 6, 5 7pm-9pm Make sure you show all your work and justify your answers in order to get full credit. Problem esistance & current ( pts)

More information

MCR3U - Practice Mastery Test #9 & #10

MCR3U - Practice Mastery Test #9 & #10 Name: Class: Date: MCRU - Practice Mastery Test #9 & #0 Multiple Choice Identify the choice that best completes the statement or answers the question.. Factor completely: 4x 0x + 5 a. (x + 5)(x 5) b. (4x

More information

FORMULA SHEET FOR QUIZ 2 Exam Date: November 8, 2017

FORMULA SHEET FOR QUIZ 2 Exam Date: November 8, 2017 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.07: Electromagnetism II November 5, 207 Prof. Alan Guth FORMULA SHEET FOR QUIZ 2 Exam Date: November 8, 207 A few items below are marked

More information

4 4 N v b r t, 20 xpr n f th ll f th p p l t n p pr d. H ndr d nd th nd f t v L th n n f th pr v n f V ln, r dn nd l r thr n nt pr n, h r th ff r d nd

4 4 N v b r t, 20 xpr n f th ll f th p p l t n p pr d. H ndr d nd th nd f t v L th n n f th pr v n f V ln, r dn nd l r thr n nt pr n, h r th ff r d nd n r t d n 20 20 0 : 0 T P bl D n, l d t z d http:.h th tr t. r pd l 4 4 N v b r t, 20 xpr n f th ll f th p p l t n p pr d. H ndr d nd th nd f t v L th n n f th pr v n f V ln, r dn nd l r thr n nt pr n,

More information

T h e C S E T I P r o j e c t

T h e C S E T I P r o j e c t T h e P r o j e c t T H E P R O J E C T T A B L E O F C O N T E N T S A r t i c l e P a g e C o m p r e h e n s i v e A s s es s m e n t o f t h e U F O / E T I P h e n o m e n o n M a y 1 9 9 1 1 E T

More information

Nuclear Fission. ~200 MeV. Nuclear Reactor Theory, BAU, Second Semester, (Saed Dababneh).

Nuclear Fission. ~200 MeV. Nuclear Reactor Theory, BAU, Second Semester, (Saed Dababneh). Surface effect Coulomb effect ~200 MeV 1 B.E. per nucleon for 238 U (BE U ) and 119 Pd (BE Pd )? 2x119xBE Pd 238xBE U =?? K.E. of the fragments 10 11 J/g Burning coal 10 5 J/g Why not spontaneous? Two

More information

Trigonometry (Addition,Double Angle & R Formulae) - Edexcel Past Exam Questions. cos 2A º 1 2 sin 2 A. (2)

Trigonometry (Addition,Double Angle & R Formulae) - Edexcel Past Exam Questions. cos 2A º 1 2 sin 2 A. (2) Trigonometry (Addition,Double Angle & R Formulae) - Edexcel Past Exam Questions. (a) Using the identity cos (A + B) º cos A cos B sin A sin B, rove that cos A º sin A. () (b) Show that sin q 3 cos q 3

More information

The wave equation. The basic equation and it's fundamental solutions on bounded domains. u t t = c 2 u x x. An amalgam of sections 1.5 and 2.2.

The wave equation. The basic equation and it's fundamental solutions on bounded domains. u t t = c 2 u x x. An amalgam of sections 1.5 and 2.2. The wave equation An amalgam of sections.5 and.. The basic equation and it's fundamental solutions on bounded domains Suppose that uhx, tl describes the displacement from equlibrium of a vibrating string

More information

ME201/MTH281/ME400/CHE400 Newton's Law of Cooling

ME201/MTH281/ME400/CHE400 Newton's Law of Cooling ME1/MTH281/ME0/CHE0 Newton's Law of Cooling 1. Introduction This notebook uses Mathematica to solve the problem presented in class, in section 5.1 of the notes. The problem is one of transient heat conduction

More information

Second-generation holographic grating technology

Second-generation holographic grating technology Second-generation holographic grating technology Dr. Erik Wilkinson University of Colorado Outline Challenges of UV instrumentation Holographic gratings in general Aberration-control theory in a viewgraph

More information

Colby College Catalogue

Colby College Catalogue Colby College Digital Commons @ Colby Colby Catalogues College Archives: Colbiana Collection 1866 Colby College Catalogue 1866-1867 Colby College Follow this and additional works at: http://digitalcommons.colby.edu/catalogs

More information

Optimal Flux Distribution in Slab Reactors with Uniform External Source

Optimal Flux Distribution in Slab Reactors with Uniform External Source Journal of NUCLEAR SCIENCE and TECHNOLOGY, 20[5], pp. 359~365 (May 1983). 359 Optimal Flux Distribution in Slab Reactors with Uniform External Source Javier VITELA E. and A. Ziya AKCASU Department of Nuclear

More information

F O R SOCI AL WORK RESE ARCH

F O R SOCI AL WORK RESE ARCH 7 TH EUROPE AN CONFERENCE F O R SOCI AL WORK RESE ARCH C h a l l e n g e s i n s o c i a l w o r k r e s e a r c h c o n f l i c t s, b a r r i e r s a n d p o s s i b i l i t i e s i n r e l a t i o n

More information

$%! & (, -3 / 0 4, 5 6/ 6 +7, 6 8 9/ 5 :/ 5 A BDC EF G H I EJ KL N G H I. ] ^ _ ` _ ^ a b=c o e f p a q i h f i a j k e i l _ ^ m=c n ^

$%! & (, -3 / 0 4, 5 6/ 6 +7, 6 8 9/ 5 :/ 5 A BDC EF G H I EJ KL N G H I. ] ^ _ ` _ ^ a b=c o e f p a q i h f i a j k e i l _ ^ m=c n ^ ! #" $%! & ' ( ) ) (, -. / ( 0 1#2 ' ( ) ) (, -3 / 0 4, 5 6/ 6 7, 6 8 9/ 5 :/ 5 ;=? @ A BDC EF G H I EJ KL M @C N G H I OPQ ;=R F L EI E G H A S T U S V@C N G H IDW G Q G XYU Z A [ H R C \ G ] ^ _ `

More information

Received May 20, 2009; accepted October 21, 2009

Received May 20, 2009; accepted October 21, 2009 MATHEMATICAL COMMUNICATIONS 43 Math. Commun., Vol. 4, No., pp. 43-44 9) Geodesics and geodesic spheres in SL, R) geometry Blaženka Divjak,, Zlatko Erjavec, Barnabás Szabolcs and Brigitta Szilágyi Faculty

More information

Trig Identities, Solving Trig Equations Answer Section

Trig Identities, Solving Trig Equations Answer Section Trig Identities, Solving Trig Equations Answer Section MULTIPLE CHOICE. ANS: B PTS: REF: Knowledge and Understanding OBJ: 7. - Compound Angle Formulas. ANS: A PTS: REF: Knowledge and Understanding OBJ:

More information

X. Neutron and Power Distribution

X. Neutron and Power Distribution X. Neutron and Power Distribution X.1. Distribution of the Neutron Flux in the Reactor In order for the power generated by the fission reactions to be maintained at a constant level, the fission rate must

More information

Magnetostatic Fields. Dr. Talal Skaik Islamic University of Gaza Palestine

Magnetostatic Fields. Dr. Talal Skaik Islamic University of Gaza Palestine Magnetostatic Fields Dr. Talal Skaik Islamic University of Gaza Palestine 01 Introduction In chapters 4 to 6, static electric fields characterized by E or D (D=εE) were discussed. This chapter considers

More information

PHYSICS 7B, Section 1 Fall 2013 Midterm 2, C. Bordel Monday, November 4, pm-9pm. Make sure you show your work!

PHYSICS 7B, Section 1 Fall 2013 Midterm 2, C. Bordel Monday, November 4, pm-9pm. Make sure you show your work! PHYSICS 7B, Section 1 Fall 2013 Midterm 2, C. Bordel Monday, November 4, 2013 7pm-9pm Make sure you show your work! Problem 1 - Current and Resistivity (20 pts) a) A cable of diameter d carries a current

More information

Physics 7B, Speliotopoulos Final Exam, Fall 2014 Berkeley, CA

Physics 7B, Speliotopoulos Final Exam, Fall 2014 Berkeley, CA Physics 7B, Speliotopoulos Final Exam, Fall 4 Berkeley, CA Rules: This final exam is closed book and closed notes. In particular, calculators are not allowed during this exam. Cell phones must be turned

More information

Chemical Engineering 693R

Chemical Engineering 693R Chemical Engineering 693 eactor Design and Analysis Lecture 8 Neutron ransport Spiritual hought Moroni 7:48 Wherefore, my beloved brethren, pray unto the Father with all the energy of heart, that ye may

More information

Gauss s Law. Chapter 22. Electric Flux Gauss s Law: Definition. Applications of Gauss s Law

Gauss s Law. Chapter 22. Electric Flux Gauss s Law: Definition. Applications of Gauss s Law Electric Flux Gauss s Law: Definition Chapter 22 Gauss s Law Applications of Gauss s Law Uniform Charged Sphere Infinite Line of Charge Infinite Sheet of Charge Two infinite sheets of charge Phys 2435:

More information

Speed of light c = m/s. x n e a x d x = 1. 2 n+1 a n π a. He Li Ne Na Ar K Ni 58.

Speed of light c = m/s. x n e a x d x = 1. 2 n+1 a n π a. He Li Ne Na Ar K Ni 58. Physical Chemistry II Test Name: KEY CHEM 464 Spring 18 Chapters 7-11 Average = 1. / 16 6 questions worth a total of 16 points Planck's constant h = 6.63 1-34 J s Speed of light c = 3. 1 8 m/s ħ = h π

More information

A L A BA M A L A W R E V IE W

A L A BA M A L A W R E V IE W A L A BA M A L A W R E V IE W Volume 52 Fall 2000 Number 1 B E F O R E D I S A B I L I T Y C I V I L R I G HT S : C I V I L W A R P E N S I O N S A N D TH E P O L I T I C S O F D I S A B I L I T Y I N

More information

An Analytic Basis for Heat Conduction in a Fuel Rods

An Analytic Basis for Heat Conduction in a Fuel Rods An Analytic Basis for Heat Conduction in a Fuel Rods Dan Shields December 15, 211 Introduction It is important in nuclear science and engineering to understand heat flow in and around fuel in reactors.

More information

Vector analysis. 1 Scalars and vectors. Fields. Coordinate systems 1. 2 The operator The gradient, divergence, curl, and Laplacian...

Vector analysis. 1 Scalars and vectors. Fields. Coordinate systems 1. 2 The operator The gradient, divergence, curl, and Laplacian... Vector analysis Abstract These notes present some background material on vector analysis. Except for the material related to proving vector identities (including Einstein s summation convention and the

More information

Formulas to remember

Formulas to remember Complex numbers Let z = x + iy be a complex number The conjugate z = x iy Formulas to remember The real part Re(z) = x = z+z The imaginary part Im(z) = y = z z i The norm z = zz = x + y The reciprocal

More information

Exercises involving elementary functions

Exercises involving elementary functions 017:11:0:16:4:09 c M. K. Warby MA3614 Complex variable methods and applications 1 Exercises involving elementary functions 1. This question was in the class test in 016/7 and was worth 5 marks. a) Let

More information

Physics 504, Spring 2010 Electricity and Magnetism

Physics 504, Spring 2010 Electricity and Magnetism Resonant cavities do not need to be cylindrical, of course. The surface of the Earth R E 6400 m the ionosphere R = R E + h, h 100 m form concentric spheres which are sufficiently good conductors to form

More information

Ma 530. Partial Differential Equations - Separation of Variables in Multi-Dimensions

Ma 530. Partial Differential Equations - Separation of Variables in Multi-Dimensions Ma 530 Partial Differential Equations - Separation of ariables in Multi-Dimensions Temperature in an Infinite Cylinder Consider an infinitely long, solid, circular cylinder of radius c with its axis coinciding

More information

Project: Vibration of Diatomic Molecules

Project: Vibration of Diatomic Molecules Project: Vibration of Diatomic Molecules Objective: Find the vibration energies and the corresponding vibrational wavefunctions of diatomic molecules H 2 and I 2 using the Morse potential. equired Numerical

More information

Alpha decay, ssion, and nuclear reactions

Alpha decay, ssion, and nuclear reactions Alpha decay, ssion, and nuclear reactions March 11, 2002 1 Energy release in alpha-decay ² Consider a nucleus which is stable against decay by proton or neutron emission { the least bound nucleon still

More information

Colby College Catalogue

Colby College Catalogue Colby College Digital Commons @ Colby Colby Catalogues College Archives: Colbiana Collection 1870 Colby College Catalogue 1870-1871 Colby College Follow this and additional works at: http://digitalcommonscolbyedu/catalogs

More information

Torsional waves in piezoelectric (622) crystal plate

Torsional waves in piezoelectric (622) crystal plate Proc. Indian Acad. Sci., Vol. 85 A, No. 5, 1977, pp. 289-298. Torsional waves in piezoelectric (622) crystal plate H. S. PAUL AND K. VENKATESWARA SARMA Department of Mathematics, Indian Institute of Technology,

More information

QUANTUM MECHANICS AND ATOMIC STRUCTURE

QUANTUM MECHANICS AND ATOMIC STRUCTURE 5 CHAPTER QUANTUM MECHANICS AND ATOMIC STRUCTURE 5.1 The Hydrogen Atom 5.2 Shell Model for Many-Electron Atoms 5.3 Aufbau Principle and Electron Configurations 5.4 Shells and the Periodic Table: Photoelectron

More information

Practice Problems For Test 3

Practice Problems For Test 3 Practice Problems For Test 3 Power Series Preliminary Material. Find the interval of convergence of the following. Be sure to determine the convergence at the endpoints. (a) ( ) k (x ) k (x 3) k= k (b)

More information

Method of Solution by Separation

Method of Solution by Separation Method of Solution by Separation Example of Solution by Separation () Solve the initial value problem y @td = -------- + y 3 t By inspection, we can see that the differential equation is separable. t=

More information

8œ! This theorem is justified by repeating the process developed for a Taylor polynomial an infinite number of times.

8œ! This theorem is justified by repeating the process developed for a Taylor polynomial an infinite number of times. Taylor and Maclaurin Series We can use the same process we used to find a Taylor or Maclaurin polynomial to find a power series for a particular function as long as the function has infinitely many derivatives.

More information

trawhmmry ffimmf,f;wnt

trawhmmry ffimmf,f;wnt r nsr rwry fff,f;wn My 26, $51 Swe, k "Te Srwberry Cp f e Vr,, c) [ re ers 6 (, r " * f rn ff e # s S,r,* )er*,3n*,.\ ) x 8 2 n v c e 6 r D r, } e ;s 1 :n..< Z r : 66 3 X f; 1r_ X r { j r Z r 1r 3r B s

More information

-$! " #$%&! ' () * +,,,)* -./ ( 01! 6 %&! +,,.: - 1?* 'F! %&! '3*4 -$ ):7 +,,

-$!  #$%&! ' () * +,,,)* -./ ( 01! 6 %&! +,,.: - 1?* 'F! %&! '3*4 -$ ):7 +,, ((((( +,-. ()* $%&' "#! : :!, %& ' ()*+ $ " -$! " #$%&! ' () * +,,,)* -. ( 01! '% 6):7 -$'1& '*6 )78 %&! +,, 79.& 2* '3*4 0 (A 6>* & ' BC D$!E.?@$* '*! ;4 6 %&! +,,.: - 1?* 'F! %&! '3*4 -$ ):7

More information

Executive Committee and Officers ( )

Executive Committee and Officers ( ) Gifted and Talented International V o l u m e 2 4, N u m b e r 2, D e c e m b e r, 2 0 0 9. G i f t e d a n d T a l e n t e d I n t e r n a t i o n a2 l 4 ( 2), D e c e m b e r, 2 0 0 9. 1 T h e W o r

More information

Make sure you show all your work and justify your answers in order to get full credit.

Make sure you show all your work and justify your answers in order to get full credit. PHYSICS 7B, Lecture 3 Spring 5 Final exam, C. Bordel Tuesday, May, 5 8- am Make sure you show all your work and justify your answers in order to get full credit. Problem : Thermodynamic process ( points)

More information

4 8 N v btr 20, 20 th r l f ff nt f l t. r t pl n f r th n tr t n f h h v lr d b n r d t, rd n t h h th t b t f l rd n t f th rld ll b n tr t d n R th

4 8 N v btr 20, 20 th r l f ff nt f l t. r t pl n f r th n tr t n f h h v lr d b n r d t, rd n t h h th t b t f l rd n t f th rld ll b n tr t d n R th n r t d n 20 2 :24 T P bl D n, l d t z d http:.h th tr t. r pd l 4 8 N v btr 20, 20 th r l f ff nt f l t. r t pl n f r th n tr t n f h h v lr d b n r d t, rd n t h h th t b t f l rd n t f th rld ll b n

More information

8. Relax and do well.

8. Relax and do well. CHEM 1314 3;30 pm Theory Exam III John III. Gelder November 13, 2002 Name TA's Name Lab Section INSTRUCTIONS: 1. This examination consists of a total of 8 different pages. The last page include a periodic

More information

A Boundary Condition for Porous Electrodes

A Boundary Condition for Porous Electrodes Electrochemical Solid-State Letters, 7 9 A59-A63 004 0013-4651/004/79/A59/5/$7.00 The Electrochemical Society, Inc. A Boundary Condition for Porous Electrodes Venkat R. Subramanian, a, *,z Deepak Tapriyal,

More information

PHYS-E0562 Ydinenergiatekniikan jatkokurssi Lecture 4 Diffusion theory

PHYS-E0562 Ydinenergiatekniikan jatkokurssi Lecture 4 Diffusion theory PHYS-E0562 Ydinenergiatekniikan jatkokurssi Lecture 4 Diffusion theory Jaakko Leppänen (Lecturer), Ville Valtavirta (Assistant) Department of Applied Physics Aalto University, School of Science Jaakko.Leppanen@aalto.fi

More information

(This type of questions may be asked in the examination )

(This type of questions may be asked in the examination ) 34. The slope of a straight line parallel to the line 2x + 4y + 5 = 0 is... a) 2 b) 1 / 2 c) - 1 / 2 d) - 2 35. The angle of inclination of a straight line whose slope is is... a) 0 0 b) 30 0 c) 60 0 d)

More information

Parts Manual. EPIC II Critical Care Bed REF 2031

Parts Manual. EPIC II Critical Care Bed REF 2031 EPIC II Critical Care Bed REF 2031 Parts Manual For parts or technical assistance call: USA: 1-800-327-0770 2013/05 B.0 2031-109-006 REV B www.stryker.com Table of Contents English Product Labels... 4

More information

Summation of series: Sommerfeld-Watson transformation

Summation of series: Sommerfeld-Watson transformation Summation of series: Sommerfeld-Watson transformation PHYS400, Department of Physics, University of Connecticut http://www.phys.uconn.edu/phys400/ Last modified: March 6, 05 Contour integration can be

More information

ME201/MTH281/ME400/CHE400 Zeros of Bessel Function Derivatives

ME201/MTH281/ME400/CHE400 Zeros of Bessel Function Derivatives ME201/MTH281/ME400/CHE400 Zeros of Bessel Function Derivatives In[42]:= We write code here to find the n th zero of the derivative of the Bessel function J m. Here n is a positive integer, and m is any

More information

Mass dilation and reciprocal forces relate the components of stress, leading to the Kruskal-Szekeres metric.

Mass dilation and reciprocal forces relate the components of stress, leading to the Kruskal-Szekeres metric. Stress is frequently represented as a tensor. A vector of stress may also represent a stress field. The components of stress are associated with dimensions of space-time. Stress has two types, pressure

More information

h : sh +i F J a n W i m +i F D eh, 1 ; 5 i A cl m i n i sh» si N «q a : 1? ek ser P t r \. e a & im a n alaa p ( M Scanned by CamScanner

h : sh +i F J a n W i m +i F D eh, 1 ; 5 i A cl m i n i sh» si N «q a : 1? ek ser P t r \. e a & im a n alaa p ( M Scanned by CamScanner m m i s t r * j i ega>x I Bi 5 n ì r s w «s m I L nk r n A F o n n l 5 o 5 i n l D eh 1 ; 5 i A cl m i n i sh» si N «q a : 1? { D v i H R o s c q \ l o o m ( t 9 8 6) im a n alaa p ( M n h k Em l A ma

More information

828.^ 2 F r, Br n, nd t h. n, v n lth h th n l nd h d n r d t n v l l n th f v r x t p th l ft. n ll n n n f lt ll th t p n nt r f d pp nt nt nd, th t

828.^ 2 F r, Br n, nd t h. n, v n lth h th n l nd h d n r d t n v l l n th f v r x t p th l ft. n ll n n n f lt ll th t p n nt r f d pp nt nt nd, th t 2Â F b. Th h ph rd l nd r. l X. TH H PH RD L ND R. L X. F r, Br n, nd t h. B th ttr h ph rd. n th l f p t r l l nd, t t d t, n n t n, nt r rl r th n th n r l t f th f th th r l, nd d r b t t f nn r r pr

More information

A A + B. ra + A + 1. We now want to solve the Einstein equations in the following cases:

A A + B. ra + A + 1. We now want to solve the Einstein equations in the following cases: Lecture 29: Cosmology Cosmology Reading: Weinberg, Ch A metric tensor appropriate to infalling matter In general (see, eg, Weinberg, Ch ) we may write a spherically symmetric, time-dependent metric in

More information

Chapter 2: Heat Conduction. Dr Ali Jawarneh Department of Mechanical Engineering, Hashemite University

Chapter 2: Heat Conduction. Dr Ali Jawarneh Department of Mechanical Engineering, Hashemite University Chapter : Heat Conduction Equation Dr Ali Jawarneh Department of Mechanical Engineering, Hashemite University Objectives When you finish studying this chapter, you should be able to: Understand multidimensionality

More information

CHAPTER 6 : LITERATURE REVIEW

CHAPTER 6 : LITERATURE REVIEW CHAPTER 6 : LITERATURE REVIEW Chapter : LITERATURE REVIEW 77 M E A S U R I N G T H E E F F I C I E N C Y O F D E C I S I O N M A K I N G U N I T S A B S T R A C T A n o n l i n e a r ( n o n c o n v e

More information

P E R E N C O - C H R I S T M A S P A R T Y

P E R E N C O - C H R I S T M A S P A R T Y L E T T I C E L E T T I C E I S A F A M I L Y R U N C O M P A N Y S P A N N I N G T W O G E N E R A T I O N S A N D T H R E E D E C A D E S. B A S E D I N L O N D O N, W E H A V E T H E P E R F E C T R

More information

PHGN 422: Nuclear Physics Lecture 5: The Liquid Drop Model of the Nucleus

PHGN 422: Nuclear Physics Lecture 5: The Liquid Drop Model of the Nucleus PHGN 422: NUCLEAR PHYSICS PHGN 422: Nuclear Physics Lecture 5: The Liquid Drop Model of the Nucleus Prof. Kyle Leach September 5, 2017 Slide 1 KUgridlrcorner Last Week... Nuclear binding results in a mass

More information

principles of f ta f a rt.

principles of f ta f a rt. DD H L L H PDG D BB PBLH L 20 D PP 32 C B P L s BDWY s BGG M W C WDM DLL P M DC GL CP F BW Y BBY PMB 5 855 C WHL X 6 s L Y F H 5 L & 5 zzzl s s zz z s s» z sk??» szz zz s L ~Lk Bz ZzY Z? ~ s s sgss s z«f

More information

Relativistic Motion of a Charged Particle and Pauli Algebra Jan Vrbik

Relativistic Motion of a Charged Particle and Pauli Algebra Jan Vrbik The Mathematica Journal Relativistic Motion of a Charged Particle and Pauli Algebra Jan Vrbik We introduce some key formulas of special relativity and apply them to the motion of a spinless, charged point

More information

FOURIER SERIES ON ANY INTERVAL

FOURIER SERIES ON ANY INTERVAL FOURIER SERIES ON ANY INTERVAL Overview We have spent considerabe time earning how to compute Fourier series for functions that have a period of 2p on the interva (-p,p). We have aso seen how Fourier series

More information

THE UNIVERSITY OF WESTERN ONTARIO. Applied Mathematics 375a Instructor: Matt Davison. Final Examination December 14, :00 12:00 a.m.

THE UNIVERSITY OF WESTERN ONTARIO. Applied Mathematics 375a Instructor: Matt Davison. Final Examination December 14, :00 12:00 a.m. THE UNIVERSITY OF WESTERN ONTARIO London Ontario Applied Mathematics 375a Instructor: Matt Davison Final Examination December 4, 22 9: 2: a.m. 3 HOURS Name: Stu. #: Notes: ) There are 8 question worth

More information

The answers below are not comprehensive and are meant to indicate the correct way to solve the problem. sin

The answers below are not comprehensive and are meant to indicate the correct way to solve the problem. sin Math : Practice Final Answer Key Name: The answers below are not comprehensive and are meant to indicate the correct way to solve the problem. Problem : Consider the definite integral I = 5 sin ( ) d.

More information

Flow toward Pumping Well, next to river = line source = constant head boundary

Flow toward Pumping Well, next to river = line source = constant head boundary Flow toward Pumping Well, next to river = line source = constant head boundary Plan view River Channel after Domenico & Schwartz (1990) Line Source Leonhard Euler 1707-1783 e i" +1 = 0 wikimedia.org Charles

More information

Part r A A A 1 Mark Part r B B B 2 Marks Mark P t ar t t C C 5 Mar M ks Part r E 4 Marks Mark Tot To a t l

Part r A A A 1 Mark Part r B B B 2 Marks Mark P t ar t t C C 5 Mar M ks Part r E 4 Marks Mark Tot To a t l Part Part P t Part Part Total A B C E 1 Mark 2 Marks 5 Marks M k 4 Marks CIRCLES 12 Marks approximately Definition ; A circle is defined as the locus of a point which moves such that its distance from

More information

:,,.. ;,..,.,. 90 :.. :, , «-»,, -. : -,,, -, -., ,, -, -. - «-»:,,, ,.,.

:,,.. ;,..,.,. 90 :.. :, , «-»,, -. : -,,, -, -., ,, -, -. - «-»:,,, ,.,. .,.,. 2015 1 614.8 68.9 90 :,,.. ;,. 90.,.,. :.. :, 2015. 164. - - 280700, «-»,, -. : -,,, -, -.,. -. -. -,, -, -. - «-»:,,, -. 614.8 68.9.,.,., 2015, 2015 2 ... 5... 7 1.... 7 1.1.... 7 1.2.... 9 1.3....

More information

Gavilan JCCD Trustee Areas Plan Adopted October 13, 2015

Gavilan JCCD Trustee Areas Plan Adopted October 13, 2015 S Jos Gvil JCCD Trust Ar Pl Aopt Octobr, 0 p Lrs Pl Aopt Oct, 0 Cit/Csus Dsigt Plc ighw US 0 Cit Arom ollistr igmr S Jos Trs Pios cr Ps 4 ut S Bito ut 0 0 ils Arom ollistr igmr Trs Pios 7 S Bito ut Lpoff

More information

46 D b r 4, 20 : p t n f r n b P l h tr p, pl t z r f r n. nd n th t n t d f t n th tr ht r t b f l n t, nd th ff r n b ttl t th r p rf l pp n nt n th

46 D b r 4, 20 : p t n f r n b P l h tr p, pl t z r f r n. nd n th t n t d f t n th tr ht r t b f l n t, nd th ff r n b ttl t th r p rf l pp n nt n th n r t d n 20 0 : T P bl D n, l d t z d http:.h th tr t. r pd l 46 D b r 4, 20 : p t n f r n b P l h tr p, pl t z r f r n. nd n th t n t d f t n th tr ht r t b f l n t, nd th ff r n b ttl t th r p rf l

More information

EINDHOVEN UNIVERSITY OF TECHNOLOGY Department of Mathematics and Computer Science. CASA-Report March2008

EINDHOVEN UNIVERSITY OF TECHNOLOGY Department of Mathematics and Computer Science. CASA-Report March2008 EINDHOVEN UNIVERSITY OF TECHNOLOGY Department of Mathematics and Computer Science CASA-Report 08-08 March2008 The complexe flux scheme for spherically symmetrie conservation laws by J.H.M. ten Thije Boonkkamp,

More information

MATH 241 Practice Second Midterm Exam - Fall 2012

MATH 241 Practice Second Midterm Exam - Fall 2012 MATH 41 Practice Second Midterm Exam - Fall 1 1. Let f(x = { 1 x for x 1 for 1 x (a Compute the Fourier sine series of f(x. The Fourier sine series is b n sin where b n = f(x sin dx = 1 = (1 x cos = 4

More information