8. The Synchronous Machine

Size: px
Start display at page:

Download "8. The Synchronous Machine"

Transcription

1 8. The Synchronou Machine TECHNSCHE NVERSTÄT Pro. A. Biner : Electrical Machine an Drive 8/1 ntitut ür Elektriche

2 Synchronou machine with roun rotor an alient ole rotor ROND ROTOR: Fiel wining itribute in rotor lot; contant air ga SALENT POLE ROTOR: concentrate iel wining on rotor ole; air ga i minimum at ole centre Synchronou machine: Rotor iel wining excite tatic magnetic rotor iel with DC iel current. MOTOR-oeration: Stator 3-hae ac current ytem excite tator rotating air ga iel. Thi iel rotate with n = / an attract rotor magnetic iel, which ha ame number o ole. So rotor will rotate ynchronouly with tator iel. GENERATOR-moe: Rotor i riven mechanically, an inuce with rotor iel in the tator wining a 3-hae voltage ytem with requency = n.. Stator current ue to thi voltage excite tator iel, which rotate ynchronouly with rotor. TECHNSCHE NVERSTÄT Pro. A. Biner : Electrical Machine an Drive 8/2 ntitut ür Elektriche

3 Roun rotor ynchronou machine, 8 ole Three iel coil er ole: q r = 3 Damer cage with 9 bar er ole Raial ventilation uct Gla ibre banage or ixing rotor coil overhang Source: VA Tech Hyro, Bhoal, nia TECHNSCHE NVERSTÄT Pro. A. Biner : Electrical Machine an Drive 8/3 ntitut ür Elektriche

4 Rotor air ga iel an tator back EMF o roun rotor ynchronou machine Rotor m.m.. an air ga iel itribution have te ue to lot an contain unamental ( = 1): Vˆ Bˆ k k 2 N ( k, k, ) Vˆ, N 0 2 qr N c in W in( / 3) 2 in( / 6), kw k q in( /(6q )), Back EMF (ynchronouly inuce tator voltage): Rotor iel unamental B inuce in 3-hae tator wining at ee n a 3-hae voltage ytem : Examle: q r =2 / 2 Nkw, / 2 2 Nkw, l with requency = n. Current will low in tator wining., 2 r Bˆ r 3 2 k TECHNSCHE NVERSTÄT Pro. A. Biner : Electrical Machine an Drive 8/4 ntitut ür Elektriche

5 Roun rotor ynchronou machine: Equivalent circuit Stator wining: Three hae AC wining like in inuction machine with el-inuce voltage ue to tator rotating magnetic iel, ecribe by tator air ga iel main reactance X h an tator leakage lux reactance X. With tator hae reitance R we get tator voltage equation er hae: jx h jx R jx R "ynchronou reactance": iel! X X contain eect o total tator magnetic Equivalent circuit er tator hae: or tator voltage equation (ac voltage an current). n rotor wining only DC voltage an current: R X h h Rotor electric circuit: : Rotor c iel voltage: (exciter voltage): imree via 2 li ring an carbon bruhe a rotor DC current (iel current ) into rotor iel wining. Fiel wining reitance i R. TECHNSCHE NVERSTÄT Pro. A. Biner : Electrical Machine an Drive 8/5 ntitut ür Elektriche

6 Traner ratio or rotor iel current Stator el-inuce voltage: by tator air-ga iel Back EMF : nuce by rotor air ga iel. t may be change by iel current arbitrarily DRNG OPERATON = ynchronou machine i controlle voltage ource". a) Amlitue o i etermine via. b) Phae hit o with reect to tator voltage i etermine by relative oition o rotor north ole axi with reect to tator north ole axi. Rotor ole oition i ecribe by loa angle. Amlitue an hae hit o : may be ecribe in equivalent circuit by ictive AC tator current : Thi eine traner ratio o iel current ü : With Vˆ, B B 2 N, k w Vˆ, Vˆ jx Vˆ : h, jx hall _ be h 2 mn 1 ü k w 1 ü we get: ü mnk 2N k w w 2 TECHNSCHE NVERSTÄT Pro. A. Biner : Electrical Machine an Drive 8/6 ntitut ür Elektriche

7 h = +jx h Alternative equivalent circuit: Current ource or equivalent iel current h Fictitiou AC current ource generate ynchronou back EMF a voltage ro at magnetizing reactance jx h TECHNSCHE NVERSTÄT Pro. A. Biner : Electrical Machine an Drive 8/7 ntitut ür Elektriche

8 Phaor iagram o roun rotor ynchronou machine Examle: Generator, over-excite: a) electrical active ower: P m e Phae angle between -90 an -180 : Hence co negative: P e i negative = ower elivere to the gri (GENERATOR). P e <0: Generator, P e >0: Motor. b) electrical reactive ower: Q m co Phae angle negative = tator current LEADS ahea tator voltage: in negative: Q i negative = caacitive reactive ower: Machine i caacitive conumer. Q < 0: over-excite, caacitive conumer. Q > 0: uner-excite, inuctive conumer. in TECHNSCHE NVERSTÄT Pro. A. Biner : Electrical Machine an Drive 8/8 ntitut ür Elektriche

9 Loa angle, internal voltage h, magnetiing current m Loa angle between tator hae voltage an back EMF haor. Counte in mathematical oitive ene (counter-clockwie). nternal voltage h i inuce in tator wining by reulting air ga iel (rotor an tator iel): h jx Magnetiing current m : Fictitiou tator current to excite reulting air ga iel (rotor an tator iel): m Voltage triangle h h an current triangle,, m are o the ame hae, but hite by 90. h, jx, TECHNSCHE NVERSTÄT Pro. A. Biner : Electrical Machine an Drive 8/9 ntitut ür Elektriche

10 Loa angle - internal voltage h h Loa angle (exactly at R, X = 0) TECHNSCHE NVERSTÄT Pro. A. Biner : Electrical Machine an Drive 8/10 ntitut ür Elektriche

11 Over-/uner-excitation, generator/motor-moe Generator moe: > 0: Rotor LEADS ahea o reulting rotating magnetic iel = Phaor LEADS ahea o h. Motor moe: < 0: Rotor LAGS behin reulting magnetic iel = Phaor LAGS behin h. Over-excitation: Machine i caacitive conumer: Phaor i longer than haor h : big iel current i neee. ner-excitation: Machine i inuctive conumer: Phaor i horter than haor h : mall iel current i neee. Facit: Stator- an rotor iel rotate alway ynchronouly. Generator- an motor moe are only eine by ign o loa angle. TECHNSCHE NVERSTÄT Pro. A. Biner : Electrical Machine an Drive 8/11 ntitut ür Elektriche

12 Roun rotor ynchronou machine: Magnetic iel at no-loa Rotor cro ection without iel wining: - Slot er ole 2q r = 10, 2-ole rotor - Rotor may be contructe o maive iron, a rotor contain only tatic magnetic iel! Magnetic iel at no-loa ( = 0, > 0): - Fiel wining excite by - Stator wining without current (no-loa) - Fiel line in air ga in raial irection = no tangential magnetic ull = torque i zero! (Examle: 2 = 2, q = 6, q r = 6) TECHNSCHE NVERSTÄT Pro. A. Biner : Electrical Machine an Drive 8/12 ntitut ür Elektriche

13 Roun rotor ynchronou machine: Magnetic iel at loa - Magnetic iel at loa ( > 0, > 0): Rotor ole axi = Direction o, reulting iel axi = Direction o h - Fiel line in air ga have alo tangential comonent = tangential magnetic ull = torque! TECHNSCHE NVERSTÄT Pro. A. Biner : Electrical Machine an Drive 8/13 ntitut ür Elektriche

14 Torque o roun rotor ynchronou machine at = cont. & R = 0 Machine oerate at RGD gri: = contant = (= haor ut in real axi o comlex lane): (co j in) an ( ) /( jx ) * ( * ) /( jx ) Active ower P e : P e m P e Re m co m (co jx Re * Electromagnetic torque: j in) m X in (*: conjugate comlex) M e P m yn Pe yn m yn X in M 0 in Note: All loe neglecte ( unity eiciency). Negative torque: Generator: M e i braking Poitive torque: Motor: M e i riving Machine ee i alway ynchronou ee! TECHNSCHE NVERSTÄT Pro. A. Biner : Electrical Machine an Drive 8/14 ntitut ür Elektriche

15 Stable oint o oeration Examle: Torque-loa angle curve M(): in generator moe the mechanical riving hat torque M i etermining oeration oint 1 an 2. Oeration oint 1 i table, oeration oint 2 i untable. The tability limit i at loa angle /2 (generator limit) an -/2 (motor limit). Facit: Synchronou motor an generator ull-out torque M 0 occur at ull-out loa angle /2. Rotor i ulle out" o ynchronim, i loa torque excee ull-out torque. Reult: Pulle-out rotor oe not run ynchronouly with tator magnetic iel, which i etermine by the gri voltage. The rotor li! No active ower i converte any longer. TECHNSCHE NVERSTÄT Pro. A. Biner : Electrical Machine an Drive 8/15 ntitut ür Elektriche

16 Stability analyi o oeration oint Torque-loa angle curve M e () linearize in oeration oint 0 : Tangent a linearization: with M e( ) M e( 0 ) M e / 0 c ( 0 ) M e / 0 : Equivalent ring contant M e c m Change o loa angle with time caue change o ee : / t ( t) ( t) m m yn NEWTON law o motion: m m J M M c J lea to e( ) ( ) t t 2 2 t J 0 a) / 2 : c c <0, b) / 2 : c c >0 c / 2 2 ( c / J ) 0 0 ( t) ~ in( t) a) : Deviation o loa angle rom teay tate oint o oeration remain limite: STABLE oeration / 2 2 ( c / J ) 0 0 e ( t) ~ inh( t) b) : e m e Deviation o loa angle rom oeration oint increae: NSTABLE e TECHNSCHE NVERSTÄT Pro. A. Biner : Electrical Machine an Drive 8/16 ntitut ür Elektriche

17 Torional ocillation o ynchronou machine Deviation o loa angle in table oint o oeration ue to iturbance: / 2 2 ( c / J ) 0 0 ( t) ~ in( t) : e e lea to ierential equation with ocillation a olution. Rotor ocillate aroun teay tate oint o oeration 0,, which i eine by the tator iel, that i generate by the rigi gri. Natural requency o ocillation (eigen-requency): e e 2 Facit: The ynchronou machine i erorming like a (non-linear) torional ring. 1 2 c J Examle: Oeration at no-loa (M e = 0, 0 = 0): With yn = N an rate acceleration time we get: T J c J M N M M yn 0 co( 0) e N T J M M 0 N Synchronou motor riving a an blower or a win tunnel: P N = 50 MW, N = 50 Hz, T J = 10, M 0 /M N = 1.5, e Hz 2 10 TECHNSCHE NVERSTÄT Pro. A. Biner : Electrical Machine an Drive 8/17 ntitut ür Elektriche

18 Roun rotor ynchronou machine Stator 1 Turbo- Generator Stator tacking Source: (C) 2007 Bryon Paul McCartney / all right reerve. (C) 2007 Bryon Paul McCartney / all right reerve. TECHNSCHE NVERSTÄT Pro. A. Biner : Electrical Machine an Drive 8/18 ntitut ür Elektriche

19 Roun rotor ynchronou machine Stator 2 Turbo- Generator Stator comlete 4-ole Turbogenerator Source: (C) 2007 Bryon Paul McCartney / all right reerve. TECHNSCHE NVERSTÄT Pro. A. Biner : Electrical Machine an Drive 8/19 ntitut ür Elektriche

20 Roun rotor ynchronou machine Rotor 1 Turbo- Generator Rotor woun Source: (C) 2007 Bryon Paul McCartney / all right reerve. TECHNSCHE NVERSTÄT Pro. A. Biner : Electrical Machine an Drive 8/20 ntitut ür Elektriche

21 Roun rotor ynchronou machine Rotor 2 Turbo- Generator Rotor inertion in tator Source: 4-ole Turbogenerator TECHNSCHE NVERSTÄT Pro. A. Biner : Electrical Machine an Drive 8/21 ntitut ür Elektriche

22 Rotor iel an back EMF o alient ole ynchronou machine Bell hae rotor air ga iel curve B (x): A contant m.m.. V excite with a variable air ga (x) a bell hae iel curve. Funamental o thi bell-hae ( = 1): B V ( x) 0 ( x) FORER-unamental wave: Amlitue roortional to Back EMF : Sinuoial rotor iel unamental wave B inuce in three-hae tator wining at ee n a three-hae voltage ytem / 2 Nkw, / 2 2 Nkw, l with requency n Stator current i lowing in tator wining. 2 Bˆ Bˆ TECHNSCHE NVERSTÄT Pro. A. Biner : Electrical Machine an Drive 8/22 ntitut ür Elektriche

23 Maive ole reing late Rotor alient ole manuacturing Dove tail rotor ole Lamination ree by reing late Source: VA Tech Hyro, Bhoal, nia TECHNSCHE NVERSTÄT Pro. A. Biner : Electrical Machine an Drive 8/23 ntitut ür Elektriche

24 Comlete alient ole ynchronou rotor, 8 ole Fly wheel to increae rotor inertia to limit acceleration in cae o loa ro Shat mounte an with backwar bent raial blae or rotation in clockwie irection at ixe ee Source: VA Tech Hyro, Bhoal, nia Kauli ower lant TECHNSCHE NVERSTÄT Pro. A. Biner : Electrical Machine an Drive 8/24 ntitut ür Elektriche

25 Four-ole alient ole rotor with maive ole hoe o aynchronou line tart u a motor - At aynchronou line tart u the tator iel inuce ey current in the rotor maive ole hoe. - Thee ey current evelo with the tator iel the neee tarting torque. 50 Hz, 2 = 4, n = 1500/min Source: VA Tech Hyro, Autria TECHNSCHE NVERSTÄT Pro. A. Biner : Electrical Machine an Drive 8/25 ntitut ür Elektriche

26 Salient ole ynchronou machine: Magnetizing inuctance L h Stator wining i three-hae wining like in inuction machine, BT the air ga i LARGER in neutral zone (inter-ole ga o q-axi) than in ole axi (-axi). Hence or equal m.m.. V (inu unamental = 1) the correoning air ga iel i SMALLER in q-axi than in -axi an NOT SNSODAL. Stator iel in -axi (irect axi): Funamental o iel a little bit maller than or contant air ga 0 : ˆ ca. 0.95, thu: c ˆ 1 B / B 1 Stator iel in q-axi (quarature axi): Funamental o iel igniicantly maller than at contant air ga 0 : ˆ ca , thu L c L c q ˆ q 1 B / B 1 L h c L h qh q h TECHNSCHE NVERSTÄT Pro. A. Biner : Electrical Machine an Drive 8/26 ntitut ür Elektriche

27 Stator current : - an q-comonent h qh Stator current haor ecomoe into - an q-comonent: i in hae or ooite hae with ictitiou current. So it excite a tator air ga iel in -axi (in rotor ole axi), which together with rotor iel give -axi air ga lux h. q i hae-hite by 90 to an excite thereore a tator air ga iel in q- axi (inter-ole ga). The correoning air ga lux i qh. Stator el-inuce voltage conit o two, by 90 hae hite comonent: j, Lh jlqh q / 2 Lh ( ) h h /( kwn ) an o el-inuce voltage o tator / 2 Lqh q qh qh /( kwn ) leakage lux: j L q TECHNSCHE NVERSTÄT Pro. A. Biner : Electrical Machine an Drive 8/27 ntitut ür Elektriche

28 Stator voltage equation o alient ole ynchronou machine Stator voltage equation er hae: Coniering el-inuction o main an leakage lux L h, L qh, L an o rotor hae reitance R we get : R j L j L qh q j L h j L h R j L ( ) j ( L q qh q L h ) X : "ynchronou -axi reactance": X X X h L L h X q : "ynchronou q-axi reactance": X q X X qh L L qh Tyical value: Due to inter-ole ga it i X > X q (tyically: X q = ( ) X ) e.g. alient ole hro-generator, ieel engine generator, reluctance machine,... Note: Roun rotor ynchronou machine may be regare a ecial cae" o alient ole machine or X = X q. The lot oening o rotor iel wining in roun rotor machine may alo be regare a non-contant air ga, yieling alo X > X q (tyically: X q = ( ) X ) TECHNSCHE NVERSTÄT Pro. A. Biner : Electrical Machine an Drive 8/28 ntitut ür Elektriche

29 Phaor iagram o laient ole machine Examle: Generator, over-excite: a) an lie in -axi, q lie in q-axi b) ~ j an jx h lie in q-axi, jx qh q lie in -axi (!) nuce internal voltage h : h j h i ecomoe into comonent qh h j L h j L qh qh q Stator voltage an current: - Loa angle, - Phae angle are eine in the ame way a with roun rotor ynchronou machine! h TECHNSCHE NVERSTÄT Pro. A. Biner : Electrical Machine an Drive 8/29 ntitut ür Elektriche

30 Torque o alient ole machine at = cont. & R =0 OPERATON at rigi" gri: = contant We chooe: -axi = Re-axi, q-axi = m-axi o comlex lane: j q j q j R = 0: jx jx q q jx X q q j Active ower P e : Electromagnetical torque: P e P e m co m Re m ( X X q ) M e q q P P * m ( ) q m m e q ( X X q ) yn yn yn q q q - Two torque comonent: a) ro. a with roun rotor machine b) "Reluctance torque ue to X. NO rotor excitation i neceary! X q Synchronou reluctance machine: Reluctance torque = robut rotor WTHOT ANY wining, but DEEP inter-ole ga. TECHNSCHE NVERSTÄT Pro. A. Biner : Electrical Machine an Drive 8/30 ntitut ür Elektriche

31 jx Torque a unction o loa angle X j q q q j q in j co m M e q ( X X q ) yn m in X X q yn X q X X q M e m X q X q jx in 2 q q in ( 2 1 ( X q 1 X j co )in 2 ) q X q q X TECHNSCHE NVERSTÄT Pro. A. Biner : Electrical Machine an Drive 8/31 ntitut ür Elektriche

32 Torque-loa angle curve M e () Torque i exree by tator voltage, back EMF an loa angle:, q are exree by, : M e m X in ( X q 1 X )in 2 Abolute value o ull-out loa angle i < 90, a ull-out torque o reluctance torque occur at loa abgle 45. Pull-out torque i increae by reluctance torque. Equivalent ring contant c bigger than in roun rotor machine, a reluctance torque a ( tier M e ()-curve). TECHNSCHE NVERSTÄT Pro. A. Biner : Electrical Machine an Drive 8/32 ntitut ür Elektriche

33 Synchronou reluctance machine Rotor without any wining, but with ee inter-ole ga: X > X q. Rotor -axi want to move into tator iel axi, to allow iel line to cro air ga via the MOST SHORTEST itance oible, thu yieling the reluctance torque. TECHNSCHE NVERSTÄT Pro. A. Biner : Electrical Machine an Drive 8/33 ntitut ür Elektriche

34 Salient ole ynchronou machine - Stator Hyro- Generator Stator Source: TECHNSCHE NVERSTÄT Pro. A. Biner : Electrical Machine an Drive 8/34 ntitut ür Elektriche

35 Salient ole ynchronou machine - Rotor Hyro- Generator Rotor inertion Three Gorge (China) 840 MVA 80 ole Source: TECHNSCHE NVERSTÄT Pro. A. Biner : Electrical Machine an Drive 8/35 ntitut ür Elektriche

36 Hyro Power Plant 1 Hyro- Generator Rotor inertion Three Gorge (China) 840 MVA 80 ole Source: TECHNSCHE NVERSTÄT Pro. A. Biner : Electrical Machine an Drive 8/36 ntitut ür Elektriche

37 Hyro Power Plant 2 Hyro- Generator Rotor aembly Karakaya (Turkey) 315 MVA 40 ole Source: TECHNSCHE NVERSTÄT Pro. A. Biner : Electrical Machine an Drive 8/37 ntitut ür Elektriche

38 Generator no-loa Rotor with excite iel wining i riven, iel current i 0, tator terminal are not connecte (no tator current low): At oen tator terminal i meaure. jx h 0 TECHNSCHE NVERSTÄT Pro. A. Biner : Electrical Machine an Drive 8/38 ntitut ür Elektriche

39 Synchronou machine a hae hiter (R 0) big (over-excite): machine i caacitive conumer R 0 : mall (uner-excite): machine i inuctive conumer Stator connecte to gri, no active ower traner, but hae angle either inuctive or caacitive! jx TECHNSCHE NVERSTÄT Pro. A. Biner : Electrical Machine an Drive 8/39 ntitut ür Elektriche

40 Secial oerating oint o ynchronou machine (R 0) h jx non-excite at the gri: = 0. Stator wining current act a magnetizing current R 0 : jx Steay tate hort circuit: Stator wining hort-circuite: = 0, Rotor i riven, i inuce, caue hort circuit current k, which i limite by X an R : k /X R 0 : 0 jx TECHNSCHE NVERSTÄT Pro. A. Biner : Electrical Machine an Drive 8/40 ntitut ür Elektriche

41 Synchronou machine in tan-alone oeration Examle: Automotive generator, Air lane / hi generator, generator tation on ilan, o-hore latorm, oai, mountainou region, emergency generator in hoital, military ue (e.g. raar uly) No rigi" gri available: i NOT contant: Rotor i excite an riven, iel current, back EMF i inuce a voltage ource", i eening on loa. E.g.: roun rotor ynchronou machine: No M e ~ in -curve, No rotor ull out at = 90 Examle: Mixe OHM ic-inuctive loa Z L (Loa current L = - ) Loa imeance: Z L (here: Z L = R L + jx L ) TECHNSCHE NVERSTÄT Pro. A. Biner : Electrical Machine an Drive 8/41 ntitut ür Elektriche

42 Stan-alone voltage-current characteritic ( ) at R = 0 No-loa: = 0 = = 0 ; Short-circuit: Z L = 0: = 0 = /X = k nuctive loa: Z L jll jx L : Phaor iagram: voltage ro are in line: X Voltage ecreae linear with increaing loa current! / 1 /( / X ) u 1 i Reitive loa: Z L R L : Phaor iagram: right angle triangle. Pythagora: 2 2 ( X ) ( / ) 1 /( / X Voltage-current curve in er-unit o no-loa voltage an hort-circuit current i egment o circle! ) 2 u 2 1 i 2 TECHNSCHE NVERSTÄT Pro. A. Biner : Electrical Machine an Drive 8/42 ntitut ür Elektriche

43 Stan-alone oeration: Voltage-current curve ( ) At mixe reitive-inuctive an reitive-caacitive loa the er unit voltage-current curve are ection o ellie. TECHNSCHE NVERSTÄT Pro. A. Biner : Electrical Machine an Drive 8/43 ntitut ür Elektriche

44 Stan-alone caacitive loa curve ( ) or R = 0 Caacitive loa: Z L 1/( jcl) jx C : - From haor iagram we ee, that voltage ro are in line! - Two cae are to be coniere: a) in hae ooition to : X C < X CONTER-EXCTATON X / /( / X ) 1 u 1 i jx b) in hae with : X C > X X u 1 i / 1 /( / X ) ually cae b) occur! May alo tart rom un-excite generator, where remanence o rotor inuce a (mall) back EMF in tator wining ( el-excitation o ynchronou generator ). Voltage RSES with increaing loa: FERRANT-henomenon TECHNSCHE NVERSTÄT Pro. A. Biner : Electrical Machine an Drive 8/44 ntitut ür Elektriche

45 Examle tan alone oeration: Automotive ynchronou generator Automotive ynchronou generator: three hae, q = 1, ingle layer wave Stator wining woun wining, 12 ole Dioe Stack - Claw ole rotor, electrically excite Sli ring - Driven via belt with variable ee rom internal combution engine - Dioe rectiier or tator ower at 12 V or 24 V DC voltage - Dioe rectiier or rotor iel wining excitation - Tranitor controller kee tator voltage contant - ineenently rom varying ee n an tator loa current via variable exciter current - Data: e. g.: V, 90 A, 1 kw, /min Source: Boch, Germany Claw ole Fan Rotor ring coil a iel wining TECHNSCHE NVERSTÄT Pro. A. Biner : Electrical Machine an Drive 8/45 ntitut ür Elektriche

Outcome of this lecture

Outcome of this lecture Outcome of this lecture At the en of this lecture you will be able to: List the ifferent parts of a synchronous machine Explain the operation principles of the machine Use the equivalent circuit moel of

More information

BASIC INDUCTION MOTOR CONCEPTS

BASIC INDUCTION MOTOR CONCEPTS INDUCTION MOTOS An induction motor ha the ame phyical tator a a ynchronou machine, with a different rotor contruction. There are two different type of induction motor rotor which can be placed inide the

More information

Synchronous Machines - Structure

Synchronous Machines - Structure Synchronou Machine - Structure Synchronou Machine - Structure rotate at contant peed. primary energy converion device of the word electric power ytem. both generator and motor operation can draw either

More information

ECE 325 Electric Energy System Components 6- Three-Phase Induction Motors. Instructor: Kai Sun Fall 2015

ECE 325 Electric Energy System Components 6- Three-Phase Induction Motors. Instructor: Kai Sun Fall 2015 ECE 35 Electric Energy Sytem Component 6- Three-Phae Induction Motor Intructor: Kai Sun Fall 015 1 Content (Material are from Chapter 13-15) Component and baic principle Selection and application Equivalent

More information

18 Problem 1. 7 d Sketch a cross section of a switched reluctance machine and explain the principle of operation.

18 Problem 1. 7 d Sketch a cross section of a switched reluctance machine and explain the principle of operation. Exam Electrical Machine and Drive (ET4117) 9 November 01 from 14.00 to 17.00. Thi exam conit of 3 roblem on 3 age. Page 5 can be ued to anwer roblem 4 quetion a. The number before a quetion indicate how

More information

No-load And Blocked Rotor Test On An Induction Machine

No-load And Blocked Rotor Test On An Induction Machine No-load And Blocked Rotor Tet On An Induction Machine Aim To etimate magnetization and leakage impedance parameter of induction machine uing no-load and blocked rotor tet Theory An induction machine in

More information

Section Induction motor drives

Section Induction motor drives Section 5.1 - nduction motor drive Electric Drive Sytem 5.1.1. ntroduction he AC induction motor i by far the mot widely ued motor in the indutry. raditionally, it ha been ued in contant and lowly variable-peed

More information

60 p. 2. A 200hp 600V, 60 Hz 3-phase induction motor has start code F. What line current should be expected at starting? 4 marks.

60 p. 2. A 200hp 600V, 60 Hz 3-phase induction motor has start code F. What line current should be expected at starting? 4 marks. EE 004 Final Solution : Thi wa a hr exam. A 60 Hz 4 pole -phae induction motor rotate at 740rpm. a) What i the lip? mark b) What i the peed o rotation o the rotor magnetic ield (in rpm)? mark The motor

More information

Basic parts of an AC motor : rotor, stator, The stator and the rotor are electrical

Basic parts of an AC motor : rotor, stator, The stator and the rotor are electrical INDUCTION MOTO 1 CONSTUCTION Baic part of an AC motor : rotor, tator, encloure The tator and the rotor are electrical circuit that perform a electromagnet. CONSTUCTION (tator) The tator - tationary part

More information

Figure 1 Siemens PSSE Web Site

Figure 1 Siemens PSSE Web Site Stability Analyi of Dynamic Sytem. In the lat few lecture we have een how mall ignal Lalace domain model may be contructed of the dynamic erformance of ower ytem. The tability of uch ytem i a matter of

More information

MANUFACTURING TOLERANCES AS A CAUSE FOR AUDIBLE NOISE OF INDUCTION MOTORS

MANUFACTURING TOLERANCES AS A CAUSE FOR AUDIBLE NOISE OF INDUCTION MOTORS MANUFACTURING TOLERANCES AS A CAUSE FOR AUDIBLE NOISE OF INDUCTION MOTORS Delaere K., Franen J., Hameyer K., Belman R. Katholieke Univeriteit Leuven, De. EE (ESAT) Div. ELEN, Kardinaal Mercierlaan 94,

More information

15 Problem 1. 3 a Draw the equivalent circuit diagram of the synchronous machine. 2 b What is the expected synchronous speed of the machine?

15 Problem 1. 3 a Draw the equivalent circuit diagram of the synchronous machine. 2 b What is the expected synchronous speed of the machine? Exam Electrical Machine and Drive (ET4117) 6 November 009 from 9.00 to 1.00. Thi exam conit of 4 problem on 4 page. Page 5 can be ued to anwer problem quetion b. The number before a quetion indicate how

More information

Ch. 6 Single Variable Control ES159/259

Ch. 6 Single Variable Control ES159/259 Ch. 6 Single Variable Control Single variable control How o we eterine the otor/actuator inut o a to coan the en effector in a eire otion? In general, the inut voltage/current oe not create intantaneou

More information

Induction Motor Drive

Induction Motor Drive Induction Motor Drive 1. Brief review of IM theory.. IM drive characteritic with: Variable input voltage Variable rotor reitance Variable rotor power Variable voltage and variable frequency, VVVF drive

More information

Control Systems. Root locus.

Control Systems. Root locus. Control Sytem Root locu chibum@eoultech.ac.kr Outline Concet of Root Locu Contructing root locu Control Sytem Root Locu Stability and tranient reone i cloely related with the location of ole in -lane How

More information

Overview Electrical Machines and Drives

Overview Electrical Machines and Drives Overview Electrical Machine and Drive 7-9 1: Introduction, Maxwell equation, magnetic circuit 11-9 1.-3: Magnetic circuit, Princile 14-9 3-4.: Princile, DC machine 18-9 4.3-4.7: DC machine and drive 1-9

More information

Control Systems. Root locus.

Control Systems. Root locus. Control Sytem Root locu chibum@eoultech.ac.kr Outline Concet of Root Locu Contructing root locu Control Sytem Root Locu Stability and tranient reone i cloely related with the location of ole in -lane How

More information

FUNDAMENTALS OF POWER SYSTEMS

FUNDAMENTALS OF POWER SYSTEMS 1 FUNDAMENTALS OF POWER SYSTEMS 1 Chapter FUNDAMENTALS OF POWER SYSTEMS INTRODUCTION The three baic element of electrical engineering are reitor, inductor and capacitor. The reitor conume ohmic or diipative

More information

CHAPTER 14 SIGNAL GENERATORS AND WAVEFORM-SHAPING CIRCUITS

CHAPTER 14 SIGNAL GENERATORS AND WAVEFORM-SHAPING CIRCUITS CHAPTE 4 SIGNA GENEATS AN WAEFM-SHAPING CICUITS Chapter utline 4. Baic Principle o Sinuoidal cillator 4. p Amp-C cillator 4. C and Crytal cillator 4.4 Bitable Multiibrator 4.5 Generation o Square and Triangular

More information

55:041 Electronic Circuits

55:041 Electronic Circuits 55:04 Electronic ircuit Frequency eone hater 7 A. Kruger Frequency eone- ee age 4-5 o the Prologue in the text Imortant eview v = M co ωt + θ m = M e e j ωt+θ m = e M e jθ me jωt Thi lead to the concet

More information

Dynamics of the synchronous machine

Dynamics of the synchronous machine ELEC0047 - Power system ynamics, control an stability Dynamics of the synchronous machine Thierry Van Cutsem t.vancutsem@ulg.ac.be www.montefiore.ulg.ac.be/~vct These slies follow those presente in course

More information

Parks Equations Generalised Machines. Represent ac machines in the simplest possible way.

Parks Equations Generalised Machines. Represent ac machines in the simplest possible way. Park Euaton Generale Machne ereent ac machne n the mlet oble way. All machne excet oubly alent reluctance machne e.g. SM an teng motor are eentally alternatng n nature Ueful torue from funamental (atal)

More information

UNIT I INTRODUCTION Part A- Two marks questions

UNIT I INTRODUCTION Part A- Two marks questions ROEVER COLLEGE OF ENGINEERING & TECHNOLOGY ELAMBALUR, PERAMBALUR-621220 DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING DESIGN OF ELECTRICAL MACHINES UNIT I INTRODUCTION 1. Define specific magnetic

More information

Chapter 9: Controller design. Controller design. Controller design

Chapter 9: Controller design. Controller design. Controller design Chapter 9. Controller Deign 9.. Introduction 9.2. Eect o negative eedback on the network traner unction 9.2.. Feedback reduce the traner unction rom diturbance to the output 9.2.2. Feedback caue the traner

More information

Simulation of Wound Rotor Synchronous Machine under Voltage Sags

Simulation of Wound Rotor Synchronous Machine under Voltage Sags Simulation of Wound Rotor Synchronou Machine under oltage Sag D. Aguilar, G. azquez, Student Member, IEEE, A. Rolan, Student Member, IEEE, J. Rocabert, Student Member, IEEE, F. Córcole, Member, IEEE, and

More information

Synchronous Machines

Synchronous Machines Synchronous Machines Synchronous generators or alternators are used to convert mechanical power derived from steam, gas, or hydraulic-turbine to ac electric power Synchronous generators are the primary

More information

FUZZY LOGIC BASED FIELD ORIENTED CONTROL OF PERMANENT MAGNET SYNCHRONOUS MOTOR

FUZZY LOGIC BASED FIELD ORIENTED CONTROL OF PERMANENT MAGNET SYNCHRONOUS MOTOR International Journal of Electrical, Electronic an Data Communication, ISSN: 2320-2084 Volume-3, Iue-8, Aug.-2015 FUZZY LOGIC BASED FIELD ORIENTED CONTROL OF PERMANENT MAGNET SYNCHRONOUS MOTOR 1 BINITA

More information

Overview: Induction Motors. Review Questions. Why the Rotor Moves: Motor Speed

Overview: Induction Motors. Review Questions. Why the Rotor Moves: Motor Speed Overview: nduction Motor Motor operation & Slip Speed-torque relationhip Equivalent circuit model Tranformer Motor efficiency Starting induction motor Smith College, EGR 35 ovember 5, 04 Review Quetion

More information

Lesson 17: Synchronous Machines

Lesson 17: Synchronous Machines Lesson 17: Synchronous Machines ET 332b Ac Motors, Generators and Power Systems Lesson 17_et332b.pptx 1 Learning Objectives After this presentation you will be able to: Explain how synchronous machines

More information

Introduction to Synchronous. Machines. Kevin Gaughan

Introduction to Synchronous. Machines. Kevin Gaughan Introduction to Synchronous Machines Kevin Gaughan The Synchronous Machine An AC machine (generator or motor) with a stator winding (usually 3 phase) generating a rotating magnetic field and a rotor carrying

More information

ROEVER COLLEGE OF ENGINEERING & TECHNOLOGY ELAMBALUR, PERAMBALUR DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING ELECTRICAL MACHINES I

ROEVER COLLEGE OF ENGINEERING & TECHNOLOGY ELAMBALUR, PERAMBALUR DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING ELECTRICAL MACHINES I ROEVER COLLEGE OF ENGINEERING & TECHNOLOGY ELAMBALUR, PERAMBALUR-621220 DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING ELECTRICAL MACHINES I Unit I Introduction 1. What are the three basic types

More information

Modelling of pressure gradient in the space behind the projectile

Modelling of pressure gradient in the space behind the projectile Moelling of reure graient in the ace behin the rojectile Luěk JEDLIČKA, Stanilav BEER, Mirolav VÍDEŇKA Deartment of weaon an ammunition Univerity of Defence Kounicova 65, 65 00 BRNO 5 Czech Reublic Abtract:

More information

Chapter 4. Synchronous Generators. Basic Topology

Chapter 4. Synchronous Generators. Basic Topology Basic Topology Chapter 4 ynchronous Generators In stator, a three-phase winding similar to the one described in chapter 4. ince the main voltage is induced in this winding, it is also called armature winding.

More information

ROOT LOCUS. Poles and Zeros

ROOT LOCUS. Poles and Zeros Automatic Control Sytem, 343 Deartment of Mechatronic Engineering, German Jordanian Univerity ROOT LOCUS The Root Locu i the ath of the root of the characteritic equation traced out in the - lane a a ytem

More information

Chapter 6. Electromagnetic Oscillations and Alternating Current

Chapter 6. Electromagnetic Oscillations and Alternating Current hapter 6 Electromagnetic Oscillations an Alternating urrent hapter 6: Electromagnetic Oscillations an Alternating urrent (hapter 31, 3 in textbook) 6.1. Oscillations 6.. The Electrical Mechanical Analogy

More information

Improving Power System Transient Stability with Static Synchronous Series Compensator

Improving Power System Transient Stability with Static Synchronous Series Compensator American Journal of Applied Science 8 (1): 77-81, 2011 ISSN 1546-9239 2010 Science Pulication Improving Power Sytem Tranient Staility with Static Synchronou Serie Compenator Prechanon Kumkratug Diviion

More information

ISSN: [Basnet* et al., 6(3): March, 2017] Impact Factor: 4.116

ISSN: [Basnet* et al., 6(3): March, 2017] Impact Factor: 4.116 IJESR INERNAIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH ECHNOLOGY DIREC ORQUE CONROLLED INDUCION MOOR DRIVE FOR ORQUE RIPPLE REDUCION Bigyan Banet Department of Electrical Engineering, ribhuvan Univerity,

More information

Saliency Modeling in Radial Flux Permanent Magnet Synchronous Machines

Saliency Modeling in Radial Flux Permanent Magnet Synchronous Machines NORPIE 4, Tronheim, Norway Saliency Moeling in Raial Flux Permanent Magnet Synchronou Machine Abtract Senorle control of Permanent Magnet Synchronou Machine i popular for everal reaon: cot aving an ytem

More information

Analysis the Transient Process of Wind Power Resources when there are Voltage Sags in Distribution Grid

Analysis the Transient Process of Wind Power Resources when there are Voltage Sags in Distribution Grid Analyi the Tranient Proce of Wind Power Reource when there are Voltage Sag in Ditribution Grid Do Nhu Y 1,* 1 Hanoi Univerity of ining and Geology, Deartment of Electrification, Electromechanic Faculty,

More information

CHAPTER 5. The Operational Amplifier 1

CHAPTER 5. The Operational Amplifier 1 EECE22 NETWORK ANALYSIS I Dr. Charle J. Kim Cla Note 9: Oerational Amlifier (OP Am) CHAPTER. The Oerational Amlifier A. INTRODUCTION. The oerational amlifier or o am for hort, i a eratile circuit building

More information

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder R. W. Erickon Department of Electrical, Computer, and Energy Engineering Univerity of Colorado, Boulder ZOH: Sampled Data Sytem Example v T Sampler v* H Zero-order hold H v o e = 1 T 1 v *( ) = v( jkω

More information

Chapter 5 Part 2. AC Bridges. Comparison Bridges. Capacitance. Measurements. Dr. Wael Salah

Chapter 5 Part 2. AC Bridges. Comparison Bridges. Capacitance. Measurements. Dr. Wael Salah Chater 5 Part 2 AC Bridge Comarion Bridge Caacitance Meaurement 5.5 AC - BIDGES AC - Bridge enable u to erform recie meaurement for the following : eactance (caacitance and inductance) meaurement. Determining

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Electric Machines

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Electric Machines Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.685 Electric Machines Problem Set 10 Issued November 11, 2013 Due November 20, 2013 Problem 1: Permanent

More information

Tutorial 1 (EMD) Rotary field winding

Tutorial 1 (EMD) Rotary field winding Tutorial 1 (EMD) Rotary field winding The unchorded two-layer three-phase winding of a small synchronous fan drive for a computer has the following parameters: number of slots per pole and phase q = 1,

More information

Chapter 7. Root Locus Analysis

Chapter 7. Root Locus Analysis Chapter 7 Root Locu Analyi jw + KGH ( ) GH ( ) - K 0 z O 4 p 2 p 3 p Root Locu Analyi The root of the cloed-loop characteritic equation define the ytem characteritic repone. Their location in the complex

More information

Synchronous Machines

Synchronous Machines Synchronous machine 1. Construction Generator Exciter View of a twopole round rotor generator and exciter. A Stator with laminated iron core C Slots with phase winding B A B Rotor with dc winding B N S

More information

Lecture Set 8 Induction Machines

Lecture Set 8 Induction Machines Lecture Set 8 Induction Machine S.D. Sudhoff Spring 2018 Reading Chapter 6, Electromechanical Motion Device, Section 6.1-6.9, 6.12 2 Sample Application Low Power: Shaded pole machine (mall fan) Permanent

More information

Modeling and analysis of parallel connected permanent magnet synchronous generators in a small hydropower plant

Modeling and analysis of parallel connected permanent magnet synchronous generators in a small hydropower plant Proceeings of the 2006 IASME/WSEAS International Conference on Energy & Environmental Systems, Chalkia, Greece, May 8-10, 2006 (pp83-88) Moeling an analysis of parallel connecte permanent magnet synchronous

More information

EE C128 / ME C134 Problem Set 1 Solution (Fall 2010) Wenjie Chen and Jansen Sheng, UC Berkeley

EE C128 / ME C134 Problem Set 1 Solution (Fall 2010) Wenjie Chen and Jansen Sheng, UC Berkeley EE C28 / ME C34 Problem Set Solution (Fall 200) Wenjie Chen and Janen Sheng, UC Berkeley. (0 pt) BIBO tability The ytem h(t) = co(t)u(t) i not BIBO table. What i the region of convergence for H()? A bounded

More information

ECE 692 Advanced Topics on Power System Stability 2 Power System Modeling

ECE 692 Advanced Topics on Power System Stability 2 Power System Modeling ECE 692 Avance Topics on Power System Stability 2 Power System Moeling Spring 2016 Instructor: Kai Sun 1 Outline Moeling of synchronous generators for Stability Stuies Moeling of loas Moeling of frequency

More information

Liquid cooling

Liquid cooling SKiiPPACK no. 3 4 [ 1- exp (-t/ τ )] + [( P + P )/P ] R [ 1- exp (-t/ τ )] Z tha tot3 = R ν ν tot1 tot tot3 thaa-3 aa 3 ν= 1 3.3.6. Liquid cooling The following table contain the characteritic R ν and

More information

Lecture 4. Chapter 11 Nise. Controller Design via Frequency Response. G. Hovland 2004

Lecture 4. Chapter 11 Nise. Controller Design via Frequency Response. G. Hovland 2004 METR4200 Advanced Control Lecture 4 Chapter Nie Controller Deign via Frequency Repone G. Hovland 2004 Deign Goal Tranient repone via imple gain adjutment Cacade compenator to improve teady-tate error Cacade

More information

Representation of a Group of Three-phase Induction Motors Using Per Unit Aggregation Model A.Kunakorn and T.Banyatnopparat

Representation of a Group of Three-phase Induction Motors Using Per Unit Aggregation Model A.Kunakorn and T.Banyatnopparat epreentation of a Group of Three-phae Induction Motor Uing Per Unit Aggregation Model A.Kunakorn and T.Banyatnopparat Abtract--Thi paper preent a per unit gregation model for repreenting a group of three-phae

More information

REDUCED-ORDER models of synchronous machines

REDUCED-ORDER models of synchronous machines A Library of Secon-Orer Moel for Synchronou Machine Olaoluwapo Ajala Stuent Member IEEE Alejanro Domínguez-García Member IEEE Peter Sauer Life Fellow IEEE an Daniel Liberzon Fellow IEEE Abtract Thi paper

More information

Solved problems 4 th exercise

Solved problems 4 th exercise Soled roblem th exercie Soled roblem.. On a circular conduit there are different diameter: diameter D = m change into D = m. The elocity in the entrance rofile wa meaured: = m -. Calculate the dicharge

More information

Lecture 6: Control of Three-Phase Inverters

Lecture 6: Control of Three-Phase Inverters Yoash Levron The Anrew an Erna Viterbi Faculty of Electrical Engineering, Technion Israel Institute of Technology, Haifa 323, Israel yoashl@ee.technion.ac.il Juri Belikov Department of Computer Systems,

More information

Improvement of Transient Stability of Power System by Thyristor Controlled Phase Shifter Transformer

Improvement of Transient Stability of Power System by Thyristor Controlled Phase Shifter Transformer American Journal of Applied Science 7 (11): 1495-1499, 010 ISSN 1546-939 010 Science Publication Improvement of Tranient Stability of Power Sytem by Thyritor Controlled Phae Shifter Tranformer Prechanon

More information

Synchronous Machines

Synchronous Machines Synchronous Machines Synchronous Machines n 1 Φ f n 1 Φ f I f I f I f damper (run-up) winding Stator: similar to induction (asynchronous) machine ( 3 phase windings that forms a rotational circular magnetic

More information

ECSE 4440 Control System Engineering. Project 1. Controller Design of a Second Order System TA

ECSE 4440 Control System Engineering. Project 1. Controller Design of a Second Order System TA ECSE 4440 Control Sytem Enineerin Project 1 Controller Dein of a Secon Orer Sytem TA Content 1. Abtract. Introuction 3. Controller Dein for a Sinle Penulum 4. Concluion 1. Abtract The uroe of thi roject

More information

Royal Institute of Technology (KTH) Department of Electrical Engineering Permanent Magnet Drives (PMD) Research Group Stockholm, Sweden

Royal Institute of Technology (KTH) Department of Electrical Engineering Permanent Magnet Drives (PMD) Research Group Stockholm, Sweden A Permanent agnet ynchronou otor for Traction Application of Electric ehicle Y.K. Chin, J. oular Royal Intitute of Technology (KTH) Department of Electrical Engineering Permanent agnet Drive (PD) Reearch

More information

2. Electromagnetic fundamentals

2. Electromagnetic fundamentals 2. Electromagnetic fundamentals Prof. A. Binder 2/1 AMPERE s law: Excitation of magnetic field by electric current Examle: Two different currents I 1, I 2 with two different numbers of turns 1 and N and

More information

Electric Machines I Three Phase Induction Motor. Dr. Firas Obeidat

Electric Machines I Three Phase Induction Motor. Dr. Firas Obeidat Electric Machines I Three Phase Induction Motor Dr. Firas Obeidat 1 Table of contents 1 General Principles 2 Construction 3 Production of Rotating Field 4 Why Does the Rotor Rotate 5 The Slip and Rotor

More information

Systems Analysis. Prof. Cesar de Prada ISA-UVA

Systems Analysis. Prof. Cesar de Prada ISA-UVA Sytem Analyi Prof. Cear de Prada ISAUVA rada@autom.uva.e Aim Learn how to infer the dynamic behaviour of a cloed loo ytem from it model. Learn how to infer the change in the dynamic of a cloed loo ytem

More information

Torque Ripple minimization techniques in direct torque control induction motor drive

Torque Ripple minimization techniques in direct torque control induction motor drive orque Ripple minimization technique in irect torque control inuction motor rive inoini Bhole At.Profeor, Electrical Department College of Engineering, Pune, INDIA vbb.elec@coep.ac.in B.N.Chauhari Profeor,Electrical

More information

ECE 325 Electric Energy System Components 7- Synchronous Machines. Instructor: Kai Sun Fall 2015

ECE 325 Electric Energy System Components 7- Synchronous Machines. Instructor: Kai Sun Fall 2015 ECE 325 Electric Energy System Components 7- Synchronous Machines Instructor: Kai Sun Fall 2015 1 Content (Materials are from Chapters 16-17) Synchronous Generators Synchronous Motors 2 Synchronous Generators

More information

IPMSM Inductances Calculation Using FEA

IPMSM Inductances Calculation Using FEA X International Symposium on Inustrial Electronics INDEL 24, Banja Luka, November 68, 24 IPMSM Inuctances Calculation Using FEA Dejan G. Jerkan, Marko A. Gecić an Darko P. Marčetić Department for Power,

More information

3 d Calculate the product of the motor constant and the pole flux KΦ in this operating point. 2 e Calculate the torque.

3 d Calculate the product of the motor constant and the pole flux KΦ in this operating point. 2 e Calculate the torque. Exam Electrical Machines and Drives (ET4117) 11 November 011 from 14.00 to 17.00. This exam consists of 5 problems on 4 pages. Page 5 can be used to answer problem 4 question b. The number before a question

More information

A NEW EQUIVALENT CIRCUIT OF THE THREE-PHASE INDUCTION MOTOR (CASE STUDIES:CURRENT AND POWER FACTOR OF THE MOTOR)

A NEW EQUIVALENT CIRCUIT OF THE THREE-PHASE INDUCTION MOTOR (CASE STUDIES:CURRENT AND POWER FACTOR OF THE MOTOR) VO. 1, NO. 3, DECEBER 017 SSN 1819-6608 ARPN Journal of Engineering and Applied Science 006-017 Aian Reearch Publihing Network (ARPN. All right reerved. www.arpnjournal.com A NEW EQUVAENT CRCUT OF THE

More information

Generators for wind power conversion

Generators for wind power conversion Generators for wind power conversion B. G. Fernandes Department of Electrical Engineering Indian Institute of Technology, Bombay Email : bgf@ee.iitb.ac.in Outline of The Talk Introduction Constant speed

More information

11.2 Stability. A gain element is an active device. One potential problem with every active circuit is its stability

11.2 Stability. A gain element is an active device. One potential problem with every active circuit is its stability 5/7/2007 11_2 tability 1/2 112 tability eading Aignment: pp 542-548 A gain element i an active device One potential problem with every active circuit i it tability HO: TABIITY Jim tile The Univ of Kana

More information

An Introduction to Electrical Machines. P. Di Barba, University of Pavia, Italy

An Introduction to Electrical Machines. P. Di Barba, University of Pavia, Italy An Introduction to Electrical Machines P. Di Barba, University of Pavia, Italy Academic year 0-0 Contents Transformer. An overview of the device. Principle of operation of a single-phase transformer 3.

More information

Permanent Magnet Synchronous Motors Direct Torque Control Considering the Effect of Salient Pole

Permanent Magnet Synchronous Motors Direct Torque Control Considering the Effect of Salient Pole Journal o Modeling and Optimization 8: (16) Permanent Magnet Synchronou Motor Direct Torque Control Conidering the Eect o Salient Pole Wenjie Chen, Yi Zhang, Haieng Wei 1. School o Electrical and Inormation,

More information

State Space Analysis of Power System Stability Enhancement with Used the STATCOM

State Space Analysis of Power System Stability Enhancement with Used the STATCOM tate pace Analysis of Power ystem tability Enhancement with Use the ACOM M. Mahavian () - G. hahgholian () () Department of Electrical Engineering, Islamic Aza University, Naein Branch, Esfahan, Iran ()

More information

Bogoliubov Transformation in Classical Mechanics

Bogoliubov Transformation in Classical Mechanics Bogoliubov Tranformation in Claical Mechanic Canonical Tranformation Suppoe we have a et of complex canonical variable, {a j }, and would like to conider another et of variable, {b }, b b ({a j }). How

More information

Sensorless PM Brushless Drives

Sensorless PM Brushless Drives IEEE UK Chapter Seminar 15 December 3 Senorle PM Bruhle Drive Prof. D. Howe and Prof. Z. Q. Zhu The Univerity of Sheffield Electrical Machine & Drive Reearch Group Outline Review of enorle technique Zero-croing

More information

Sensorless speed control including zero speed of non salient PM synchronous drives

Sensorless speed control including zero speed of non salient PM synchronous drives BULLETIN OF THE POLISH ACADEMY OF SCIENCES TECHNICAL SCIENCES Vol. 54, No. 3, 2006 Senorle peed control including zero peed of non alient PM ynchronou drive H. RASMUSSEN Aalborg Univerity, Fredrik Bajer

More information

The Influence of the Load Condition upon the Radial Distribution of Electromagnetic Vibration and Noise in a Three-Phase Squirrel-Cage Induction Motor

The Influence of the Load Condition upon the Radial Distribution of Electromagnetic Vibration and Noise in a Three-Phase Squirrel-Cage Induction Motor The Influence of the Load Condition upon the Radial Ditribution of Electromagnetic Vibration and Noie in a Three-Phae Squirrel-Cage Induction Motor Yuta Sato 1, Iao Hirotuka 1, Kazuo Tuboi 1, Maanori Nakamura

More information

Electrical Machines and Energy Systems: Operating Principles (Part 1) SYED A Rizvi

Electrical Machines and Energy Systems: Operating Principles (Part 1) SYED A Rizvi Electrical Machines and Energy Systems: Operating Principles (Part 1) SYED A Rizvi AC Machines Operating Principles: Rotating Magnetic Field The key to the functioning of AC machines is the rotating magnetic

More information

Root Locus Diagram. Root loci: The portion of root locus when k assume positive values: that is 0

Root Locus Diagram. Root loci: The portion of root locus when k assume positive values: that is 0 Objective Root Locu Diagram Upon completion of thi chapter you will be able to: Plot the Root Locu for a given Tranfer Function by varying gain of the ytem, Analye the tability of the ytem from the root

More information

LESSON 20 ALTERNATOR OPERATION OF SYNCHRONOUS MACHINES

LESSON 20 ALTERNATOR OPERATION OF SYNCHRONOUS MACHINES ET 332b Ac Motors, Generators and Power Systems LESSON 20 ALTERNATOR OPERATION OF SYNCHRONOUS MACHINES 1 LEARNING OBJECTIVES After this presentation you will be able to: Interpret alternator phasor diagrams

More information

Revision Guide for Chapter 15

Revision Guide for Chapter 15 Revision Guide for Chapter 15 Contents tudent s Checklist Revision otes Transformer... 4 Electromagnetic induction... 4 Generator... 5 Electric motor... 6 Magnetic field... 8 Magnetic flux... 9 Force on

More information

Unit-3. Question Bank

Unit-3. Question Bank Unit- Question Bank Q.1 A delta connected load draw a current of 15A at lagging P.F. of.85 from 400, -hase, 50Hz suly. Find & of each hase. Given P = = 400 0 I = 15A Ans. 4.98, 5.7mH So I P = 15 =8.66A

More information

Electrical Machines and Energy Systems: Operating Principles (Part 2) SYED A Rizvi

Electrical Machines and Energy Systems: Operating Principles (Part 2) SYED A Rizvi Electrical Machines and Energy Systems: Operating Principles (Part 2) SYED A Rizvi AC Machines Operating Principles: Synchronous Motor In synchronous motors, the stator of the motor has a rotating magnetic

More information

QUESTION BANK ENGINEERS ACADEMY. Power Systems Power System Stability 1

QUESTION BANK ENGINEERS ACADEMY. Power Systems Power System Stability 1 ower ystems ower ystem tability QUETION BANK. A cylindrical rotor generator delivers 0.5 pu power in the steady-state to an infinite bus through a transmission line of reactance 0.5 pu. The generator no-load

More information

The Operational Amplifier

The Operational Amplifier The Operational Amplifier The operational amplifier i a building block of modern electronic intrumentation. Therefore, matery of operational amplifier fundamental i paramount to any practical application

More information

EEE3405 ELECTRICAL ENGINEERING PRINCIPLES 2 - TEST

EEE3405 ELECTRICAL ENGINEERING PRINCIPLES 2 - TEST ATTEMPT ALL QUESTIONS (EACH QUESTION 20 Marks, FULL MAKS = 60) Given v 1 = 100 sin(100πt+π/6) (i) Find the MS, period and the frequency of v 1 (ii) If v 2 =75sin(100πt-π/10) find V 1, V 2, 2V 1 -V 2 (phasor)

More information

Physics 11 HW #9 Solutions

Physics 11 HW #9 Solutions Phyic HW #9 Solution Chapter 6: ocu On Concept: 3, 8 Problem: 3,, 5, 86, 9 Chapter 7: ocu On Concept: 8, Problem:,, 33, 53, 6 ocu On Concept 6-3 (d) The amplitude peciie the maximum excurion o the pot

More information

Generators. What its all about

Generators. What its all about Generators What its all about How do we make a generator? Synchronous Operation Rotor Magnetic Field Stator Magnetic Field Forces and Magnetic Fields Force Between Fields Motoring Generators & motors are

More information

INDUCTION MOTOR MODEL AND PARAMETERS

INDUCTION MOTOR MODEL AND PARAMETERS APPENDIX C INDUCTION MOTOR MODEL AND PARAMETERS C.1 Dynamic Model of the Induction Motor in Stationary Reference Frame A three phase induction machine can be represented by an equivalent two phase machine

More information

Mechanics. Free rotational oscillations. LD Physics Leaflets P Measuring with a hand-held stop-clock. Oscillations Torsion pendulum

Mechanics. Free rotational oscillations. LD Physics Leaflets P Measuring with a hand-held stop-clock. Oscillations Torsion pendulum Mechanic Ocillation Torion pendulum LD Phyic Leaflet P.5.. Free rotational ocillation Meauring with a hand-held top-clock Object of the experiment g Meauring the amplitude of rotational ocillation a function

More information

Synchronous Machine Modeling

Synchronous Machine Modeling ECE 53 Session ; Page / Fall 07 Synchronous Machine Moeling Reference θ Quarature Axis B C Direct Axis Q G F D A F G Q A D C B Transient Moel for a Synchronous Machine Generator Convention ECE 53 Session

More information

ANALYSIS OF SECTION. Behaviour of Beam in Bending

ANALYSIS OF SECTION. Behaviour of Beam in Bending ANALYSIS OF SECTION Behaviour o Beam in Bening Conier a imply upporte eam ujecte to graually increaing loa. The loa caue the eam to en an eert a ening moment a hown in igure elow. The top urace o the eam

More information

CHAPTER 5 SIMULATION AND TEST SETUP FOR FAULT ANALYSIS

CHAPTER 5 SIMULATION AND TEST SETUP FOR FAULT ANALYSIS 47 CHAPTER 5 SIMULATION AND TEST SETUP FOR FAULT ANALYSIS 5.1 INTRODUCTION This chapter describes the simulation model and experimental set up used for the fault analysis. For the simulation set up, the

More information

Performance Improvement of Direct Torque Controlled Interior Permanent Magnet Synchronous Motor Drive by Considering Magnetic Saturation

Performance Improvement of Direct Torque Controlled Interior Permanent Magnet Synchronous Motor Drive by Considering Magnetic Saturation Performance Improvement of Direct Torque Controlled Interior Permanent Magnet Synchronou Motor Drive by Conidering Magnetic Saturation Behrooz Majidi * Jafar Milimonfared * Kaveh Malekian * *Amirkabir

More information

Lecture 15 - Current. A Puzzle... Advanced Section: Image Charge for Spheres. Image Charge for a Grounded Spherical Shell

Lecture 15 - Current. A Puzzle... Advanced Section: Image Charge for Spheres. Image Charge for a Grounded Spherical Shell Lecture 15 - Current Puzzle... Suppoe an infinite grounded conducting plane lie at z = 0. charge q i located at a height h above the conducting plane. Show in three different way that the potential below

More information

Lecture 23 Date:

Lecture 23 Date: Lecture 3 Date: 4.4.16 Plane Wave in Free Space and Good Conductor Power and Poynting Vector Wave Propagation in Loy Dielectric Wave propagating in z-direction and having only x-component i given by: E

More information

Nonlinear Control of Interior PMSM Using Control Lyapunov Functions

Nonlinear Control of Interior PMSM Using Control Lyapunov Functions Journal of Power an Energy Engineering, 24, 2, 7-26 Publihe Online January 24 (http://www.cirp.org/journal/jpee) http://x.oi.org/.4236/jpee.24.23 Nonlinear Control of Interior PMSM Uing Control yapunov

More information

Prince Sattam bin Abdulaziz University College of Engineering. Electrical Engineering Department EE 3360 Electrical Machines (II)

Prince Sattam bin Abdulaziz University College of Engineering. Electrical Engineering Department EE 3360 Electrical Machines (II) Chapter # 4 Three-Phase Induction Machines 1- Introduction (General Principles) Generally, conversion of electrical power into mechanical power takes place in the rotating part of an electric motor. In

More information

The Measurement of DC Voltage Signal Using the UTI

The Measurement of DC Voltage Signal Using the UTI he Meaurement of DC Voltage Signal Uing the. INRODUCION can er an interface for many paive ening element, uch a, capacitor, reitor, reitive bridge and reitive potentiometer. By uing ome eternal component,

More information

EE 742 Chapter 3: Power System in the Steady State. Y. Baghzouz

EE 742 Chapter 3: Power System in the Steady State. Y. Baghzouz EE 742 Chapter 3: Power System in the Steady State Y. Baghzouz Transmission Line Model Distributed Parameter Model: Terminal Voltage/Current Relations: Characteristic impedance: Propagation constant: π

More information