18 Problem 1. 7 d Sketch a cross section of a switched reluctance machine and explain the principle of operation.

Size: px
Start display at page:

Download "18 Problem 1. 7 d Sketch a cross section of a switched reluctance machine and explain the principle of operation."

Transcription

1 Exam Electrical Machine and Drive (ET4117) 9 November 01 from to Thi exam conit of 3 roblem on 3 age. Page 5 can be ued to anwer roblem 4 quetion a. The number before a quetion indicate how many credit you can earn by anwering that quetion. A artly correct anwer may give a art of the credit. Thi examination ha to be made without uing a book, old examination, note, dictionarie or rogrammable calculator; a ocket calculator may be ued. 18 Problem 1 A DC machine with indeendent electrical excitation i connected to a DC voltage ource. 5 a Sketch a DC machine cro ection. Include the interole and the comenating winding. Indicate current direction with dot and croe. 3 b Draw the equivalent circuit. 3 c Give at leat 1 imortant advantage and imortant diadvantage of uing DC machine when comared to induction machine. 7 d Sketch a cro ection of a witched reluctance machine and exlain the rincile of oeration. 1

2 38 Problem The figure deict a linear ermanent-magnet machine. The tator conit of back-iron and ermanent magnet. The moving art (the tranlator) ha three teeth and three coil wound around the teeth. The width of a tooth i b t = 6 mm. The number of turn of one coil i N = 600. The ole itch (the ditance between two magnet) i τ = 1 mm. The tack length of the motor (the length of the magnet and the teeth in the lane erendicular to the lane of the drawing) i l = 50 mm. The flux linkage of the tranlator coil i a linear ueroition of the flux linkage due to the magnet and the flux linkage due to the tranlator current (i a, i b, and i c ): ˆ a ma ia mco( x/ ) Lia ˆ b mb ib mco( x / / 3) Lib ˆ co( x / 4 / 3) Li c mc ic m c The inductance i L = 70 mh. The reitance of the coil i = 1 Ω. Other loe than the coer loe are neglected. In quetion a to d, the current in the tranlator coil are zero. 10 a Write down Amere law and ue it to derive an exreion the flux denity in the air ga below the tooth of hae a. Sketch the contour to which you aly Amere law; you can ue the lat age with the cro ection. Make your aumtion exlicit and exlain the difficultie. In the ret of thi quetion, the amlitude of the flux linkage due to the magnet i ˆ m =180 mwb. b Calculate the amlitude of the magnetic flux going through a tooth. c Calculate the amlitude of the magnetic flux denity going through a tooth. 3 d I thi a realitic value for the flux denity with regard to aturation in the teeth and magnetization of the magnet? Why or why not? What are the tyical value for aturation and magnetization of the magnet? In quetion e to g, the tranlator move with a eed of 1 m/, the amlitude of the three inuoidal hae current i î = A and the hae of the current i o that the electromagnetic force i maximum. 8 e Calculate the amlitude of the no-load voltage (the back emf), the voltage dro over the inductance, the voltage dro over the reitance, and the terminal voltage. 4 f Sketch the haor diagram. 3 g Calculate the electromagnetic force develoed by thi motor. h Until now, iron loe have been neglected. Are they reent in thi motor? Why or why not? 4 i Which kind of iron loe do you know, how do they deend on frequency and flux denity?

3 44 Problem 3 Thi quetion deal with a three-hae tarconnected quirrel-cage induction machine for an electric car. The equivalent circuit i given. 11 a If thi machine i available for teting, how can the arameter of the equivalent circuit be determined in an exerimental way? Mention the tet, the quantitie that have to be meaured and the equation that have to be ued to determine the arameter. You can ue the aumtion that are normally ued. The arameter of the equivalent circuit are given by = 10 mω, L σ = 0.55 mh, L = 11 mh. The tator coer loe are neglected: = 0. The core loe are alo neglected. The number of ole i =4. The nominal line voltage i 400 V. The nominal electrical inut ower i P=30 kw. The machine i driven by a voltage ource inverter, which kee the voltage level roortional to the frequency below the nominal frequency, and contant at the nominal value above the bae frequency. The bae frequency i f=00 Hz. b Why i the tator voltage roortional to the tator frequency below the bae frequency? c Calculate the no-load eed (in rm) at the bae frequency. 3 d Calculate the nominal no-load current (the magnetizing current) at the bae frequency. 4 e Calculate the nominal torque at the bae frequency. 6 f Calculate the nominal li at the bae frequency from the given data. 3 g Calculate the angular rotor frequency at which the torque i maximum. Thi motor i ued to drive an electric vehicle with a ma of 100 kg including the driver. The wheel radiu i 300 mm. Between the motor and the wheel, there i an ideal gearbox (without loe) with a gear ratio of 10 (the wheel rotate lower than the motor). It i aumed that the only friction force acting on the vehicle the i air friction, and the air friction force i given by 1 Faf Cd Aairv Kaf v where Kaf 0.5 N /m. 3 h Calculate the acceleration at tandtill if the motor develo a torque of 150 Nm for a hort time during tarting. i Give a good aroximation of the eed of the car at the bae frequency. 3 j Give a good aroximation of the maximum continuou eed of the car. 5 k Sketch a ower electronic converter (witche and diode) that can connect thi machine to the battery and that enable regenerative braking. 3

4 Examination Electrical Machine and Drive ET4117 Friday, November 9, 01 from to Name: Student number: Anwer to quetion a 4

5 Anwer to the exam Electrical Machine and Drive ET Problem 1 5 a 3 b The direction of the current in the comenating winding and the current around the interole i ooite to the direction of the current in the armature. Therefore, in the right half of the machine, there hould be dot in the comenating winding and around the interole, and in the left half of the machine there hould be tar. 3 c Advantage: - eay to control with rectifier or choer Diadvantage: - regular maintenance due to bruhe, - runaway when excitation field i removed, - heavier than induction machine, - more exenive than induction machine, - commutation roblem may occur (arking). 7 d The rincile of oeration i that of magnetic attraction between magnetized teel art. The tator hae are excited one after the other and then attract the cloet rotor teeth. 5

6 38 Problem 10 a Amere law i given by H d JndA Cm Sm In the figure, a ueful contour ha been ketched. We could aume the flux denity to cro the air ga erendicular only on thee lace where there i a magnet below a tooth. We aume the flux denity to be zero if there i no magnet below a tooth. Alication of Amere law give H l H l H l H l 0 ga ga ma ma gb gb mb mb There i a difficulty becaue the magnetic field intenity in the magnet and the ga below the tooth of hae a may be different from the magnetic field intenity in the magnet and the ga below the teeth of hae b and c. However, thi may be olved by auming that they are equal becaue the magnet cover are only half of the urface area of the teeth of hae b and c, o that the um of the fluxe in tooth b and c i equal to the flux in tooth a. In thi cae: Hl g ghl m m 0 The BH curve of the magnet i given by Bm 0 rmh m Brm The BH curve of air i given by Bg 0H g Subtituting thee BH relation for magnet and air in the reult of Amere law give: Bglg ( Bm Brm) lm The equation for flux continuity: B nda 0 Bg Ag Bm Am Bg B Subtitution give Bglg ( Bg Brm) lm lm Bg Brm l l g m m A ˆ b ˆ m m 0. 3mWb N ˆ m c B 1 T btl 3 d Ye, tyical remanent flux denitie of magnet are u to 1.5 T, o that 1 T in a tooth i realitic, and tyical aturation flux denitie in teeth are in the order of 1.5 T to T, o 1 T in a tooth i realitic. 8 e The voltage equation of hae a i given by: da dia ˆ d x ua ia ia L m in( x). dt dt dt The current i in hae with the no-load voltage in order to create maximum force, o 6

7 ia iˆin( x) Subtituting thi in the voltage equation give ˆ ˆ dx ˆ dx ua iin( x) Li co( x) m in( x) dt dt Therefore, the no-load voltage amlitude i ˆ d x eˆ a m 47.1 V dt The voltage dro over the reitance i uˆ ˆ i 4V The voltage dro over the inductance i ˆ d x uˆ L Li 36.65V d t The terminal voltage i uˆ ( ˆ ˆ a ea u) ul 80.01V 4 f 3 g The force develoed by thi motor i Pem 3 ˆ ˆ Fem im N v h Ye, the flux denity in the tranlator varie when the tranlator move. Thi reult in iron loe in the tranlator iron. 4 i Hyterei loe, roortional to frequency and flux denity quared and eddy current loe, roortional to frequency quared and flux denity quared. 7

8 44 Problem 3 11 a eitance meaurement: ut a DC voltage on the terminal of two hae and meaure the DC current while the machine i at tandtill: U I No-load tet: The machine run ynchronouly ( = 0) in no-load at the rated AC voltage. The line voltage U line and the hae current I are meaured. During thi tet, = 0, and therefore, P nl 3I L 1 U 3 line I nl Short-circuit tet: The rotor i blocked ( = 1) and the machine i connected to a reduced AC voltage in uch a way that the current i about the nominal current. The line voltage U line, the hae current I and the three-hae ower P are meaured. Often, the current through the ynchronou inductance i neglected. Therefore, P 3I 1 Uline L ( ) 3I b Below the bae frequency, the voltage i roortional to the eed to avoid aturation of the magnetic circuit. 10 f c n 6000 rm 3 d The magnetizing current through L i given by U hae Uline I m 16.71A noml 3 noml 4 e The ower balance er hae ay: P PCu Pmech PCu mt The air ga ower can be written a: I 1 P I I From thee equation: 1 mt I The mechanical eed can be written a m (1 ) Therefore, 1 I (1 ) T I T P Therefore, the torque of a three-hae machine can be written a 8

9 Pnom Tnom Nm 6 f In the rated oerating oint, we know that 3I Uline Vt Pnom L L Therefore, Pnom L Uline Pnom 0 Therefore, nom U U 4 L P line line nom LP nom 3 g 18.rad/ f 34.7Hz. r L r 3 h The gear increae the torque on the wheel to 1500 Nm. The force on the wheel aly to the car i T F 5000N r The acceleration i F a m/ m 3 i The li i rather low, in the order of 1%. Therefore, neglecting the li, the eed i mrw erw 4 frw vwrw 18.85m/ g g g 3 j The air friction i given by F K v, o the ower to overcome thi friction i 5 k f 3 P Fv K f v At eed above the nominal eed, the machine converter ue field weakening with contant voltage and contant ower. If we neglect all other loe and we alo neglect the loe in the machine, the maximum eed can be aroximated by Pnom v / K f u 3 u 4 9

15 Problem 1. 3 a Draw the equivalent circuit diagram of the synchronous machine. 2 b What is the expected synchronous speed of the machine?

15 Problem 1. 3 a Draw the equivalent circuit diagram of the synchronous machine. 2 b What is the expected synchronous speed of the machine? Exam Electrical Machine and Drive (ET4117) 6 November 009 from 9.00 to 1.00. Thi exam conit of 4 problem on 4 page. Page 5 can be ued to anwer problem quetion b. The number before a quetion indicate how

More information

Overview Electrical Machines and Drives

Overview Electrical Machines and Drives Overview Electrical Machine and Drive 7-9 1: Introduction, Maxwell equation, magnetic circuit 11-9 1.-3: Magnetic circuit, Princile 14-9 3-4.: Princile, DC machine 18-9 4.3-4.7: DC machine and drive 1-9

More information

3 d Calculate the product of the motor constant and the pole flux KΦ in this operating point. 2 e Calculate the torque.

3 d Calculate the product of the motor constant and the pole flux KΦ in this operating point. 2 e Calculate the torque. Exam Electrical Machines and Drives (ET4117) 11 November 011 from 14.00 to 17.00. This exam consists of 5 problems on 4 pages. Page 5 can be used to answer problem 4 question b. The number before a question

More information

Section Induction motor drives

Section Induction motor drives Section 5.1 - nduction motor drive Electric Drive Sytem 5.1.1. ntroduction he AC induction motor i by far the mot widely ued motor in the indutry. raditionally, it ha been ued in contant and lowly variable-peed

More information

Basic parts of an AC motor : rotor, stator, The stator and the rotor are electrical

Basic parts of an AC motor : rotor, stator, The stator and the rotor are electrical INDUCTION MOTO 1 CONSTUCTION Baic part of an AC motor : rotor, tator, encloure The tator and the rotor are electrical circuit that perform a electromagnet. CONSTUCTION (tator) The tator - tationary part

More information

BASIC INDUCTION MOTOR CONCEPTS

BASIC INDUCTION MOTOR CONCEPTS INDUCTION MOTOS An induction motor ha the ame phyical tator a a ynchronou machine, with a different rotor contruction. There are two different type of induction motor rotor which can be placed inide the

More information

Induction Motor Drive

Induction Motor Drive Induction Motor Drive 1. Brief review of IM theory.. IM drive characteritic with: Variable input voltage Variable rotor reitance Variable rotor power Variable voltage and variable frequency, VVVF drive

More information

No-load And Blocked Rotor Test On An Induction Machine

No-load And Blocked Rotor Test On An Induction Machine No-load And Blocked Rotor Tet On An Induction Machine Aim To etimate magnetization and leakage impedance parameter of induction machine uing no-load and blocked rotor tet Theory An induction machine in

More information

ECE 325 Electric Energy System Components 6- Three-Phase Induction Motors. Instructor: Kai Sun Fall 2015

ECE 325 Electric Energy System Components 6- Three-Phase Induction Motors. Instructor: Kai Sun Fall 2015 ECE 35 Electric Energy Sytem Component 6- Three-Phae Induction Motor Intructor: Kai Sun Fall 015 1 Content (Material are from Chapter 13-15) Component and baic principle Selection and application Equivalent

More information

MANUFACTURING TOLERANCES AS A CAUSE FOR AUDIBLE NOISE OF INDUCTION MOTORS

MANUFACTURING TOLERANCES AS A CAUSE FOR AUDIBLE NOISE OF INDUCTION MOTORS MANUFACTURING TOLERANCES AS A CAUSE FOR AUDIBLE NOISE OF INDUCTION MOTORS Delaere K., Franen J., Hameyer K., Belman R. Katholieke Univeriteit Leuven, De. EE (ESAT) Div. ELEN, Kardinaal Mercierlaan 94,

More information

Overview: Induction Motors. Review Questions. Why the Rotor Moves: Motor Speed

Overview: Induction Motors. Review Questions. Why the Rotor Moves: Motor Speed Overview: nduction Motor Motor operation & Slip Speed-torque relationhip Equivalent circuit model Tranformer Motor efficiency Starting induction motor Smith College, EGR 35 ovember 5, 04 Review Quetion

More information

60 p. 2. A 200hp 600V, 60 Hz 3-phase induction motor has start code F. What line current should be expected at starting? 4 marks.

60 p. 2. A 200hp 600V, 60 Hz 3-phase induction motor has start code F. What line current should be expected at starting? 4 marks. EE 004 Final Solution : Thi wa a hr exam. A 60 Hz 4 pole -phae induction motor rotate at 740rpm. a) What i the lip? mark b) What i the peed o rotation o the rotor magnetic ield (in rpm)? mark The motor

More information

Performance Improvement of Direct Torque Controlled Interior Permanent Magnet Synchronous Motor Drive by Considering Magnetic Saturation

Performance Improvement of Direct Torque Controlled Interior Permanent Magnet Synchronous Motor Drive by Considering Magnetic Saturation Performance Improvement of Direct Torque Controlled Interior Permanent Magnet Synchronou Motor Drive by Conidering Magnetic Saturation Behrooz Majidi * Jafar Milimonfared * Kaveh Malekian * *Amirkabir

More information

Figure 1 Siemens PSSE Web Site

Figure 1 Siemens PSSE Web Site Stability Analyi of Dynamic Sytem. In the lat few lecture we have een how mall ignal Lalace domain model may be contructed of the dynamic erformance of ower ytem. The tability of uch ytem i a matter of

More information

Tutorial 1 - Drive fundamentals and DC motor characteristics

Tutorial 1 - Drive fundamentals and DC motor characteristics University of New South Wales School of Electrical Engineering & elecommunications ELEC4613 ELECRIC DRIVE SYSEMS utorial 1 - Drive fundamentals and DC motor characteristics 1. In the hoist drive system

More information

MAE140 Linear Circuits Fall 2012 Final, December 13th

MAE140 Linear Circuits Fall 2012 Final, December 13th MAE40 Linear Circuit Fall 202 Final, December 3th Intruction. Thi exam i open book. You may ue whatever written material you chooe, including your cla note and textbook. You may ue a hand calculator with

More information

ISSN: [Basnet* et al., 6(3): March, 2017] Impact Factor: 4.116

ISSN: [Basnet* et al., 6(3): March, 2017] Impact Factor: 4.116 IJESR INERNAIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH ECHNOLOGY DIREC ORQUE CONROLLED INDUCION MOOR DRIVE FOR ORQUE RIPPLE REDUCION Bigyan Banet Department of Electrical Engineering, ribhuvan Univerity,

More information

Chapter 5 Part 2. AC Bridges. Comparison Bridges. Capacitance. Measurements. Dr. Wael Salah

Chapter 5 Part 2. AC Bridges. Comparison Bridges. Capacitance. Measurements. Dr. Wael Salah Chater 5 Part 2 AC Bridge Comarion Bridge Caacitance Meaurement 5.5 AC - BIDGES AC - Bridge enable u to erform recie meaurement for the following : eactance (caacitance and inductance) meaurement. Determining

More information

Physics 2. Angular Momentum. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

Physics 2. Angular Momentum. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB Phyic Angular Momentum For Campu earning Angular Momentum Thi i the rotational equivalent of linear momentum. t quantifie the momentum of a rotating object, or ytem of object. To get the angular momentum,

More information

Physics 6A. Angular Momentum. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

Physics 6A. Angular Momentum. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB Phyic 6A Angular Momentum For Campu earning Angular Momentum Thi i the rotational equivalent of linear momentum. t quantifie the momentum of a rotating object, or ytem of object. f we imply tranlate the

More information

Lecture 10. Erbium-doped fiber amplifier (EDFA) Raman amplifiers Have replaced semiconductor optical amplifiers in the course

Lecture 10. Erbium-doped fiber amplifier (EDFA) Raman amplifiers Have replaced semiconductor optical amplifiers in the course ecture 1 Two tye of otical amlifier: Erbium-doed fiber amlifier (EDFA) Raman amlifier Have relaced emiconductor otical amlifier in the coure Fiber Otical Communication ecture 1, Slide 1 Benefit and requirement

More information

ROOT LOCUS. Poles and Zeros

ROOT LOCUS. Poles and Zeros Automatic Control Sytem, 343 Deartment of Mechatronic Engineering, German Jordanian Univerity ROOT LOCUS The Root Locu i the ath of the root of the characteritic equation traced out in the - lane a a ytem

More information

Comparison of Hardware Tests with SIMULINK Models of UW Microgrid

Comparison of Hardware Tests with SIMULINK Models of UW Microgrid Comparion of Hardware Tet with SIMULINK Model of UW Microgrid Introduction Thi report include a detailed dicuion of the microource available on the Univerity- of- Wiconin microgrid. Thi include detail

More information

55:041 Electronic Circuits

55:041 Electronic Circuits 55:04 Electronic ircuit Frequency eone hater 7 A. Kruger Frequency eone- ee age 4-5 o the Prologue in the text Imortant eview v = M co ωt + θ m = M e e j ωt+θ m = e M e jθ me jωt Thi lead to the concet

More information

Synchronous Machines - Structure

Synchronous Machines - Structure Synchronou Machine - Structure Synchronou Machine - Structure rotate at contant peed. primary energy converion device of the word electric power ytem. both generator and motor operation can draw either

More information

NOTE: The items d) and e) of Question 4 gave you bonus marks.

NOTE: The items d) and e) of Question 4 gave you bonus marks. MAE 40 Linear ircuit Summer 2007 Final Solution NOTE: The item d) and e) of Quetion 4 gave you bonu mark. Quetion [Equivalent irciut] [4 mark] Find the equivalent impedance between terminal A and B in

More information

University of North Carolina-Charlotte Department of Electrical and Computer Engineering ECGR 4143/5195 Electrical Machinery Fall 2009

University of North Carolina-Charlotte Department of Electrical and Computer Engineering ECGR 4143/5195 Electrical Machinery Fall 2009 University of North Carolina-Charlotte Deartment of Electrical and Comuter Engineering ECG 4143/5195 Electrical Machinery Fall 9 Problem Set 5 Part Due: Friday October 3 Problem 3: Modeling the exerimental

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Electric Machines

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Electric Machines Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.685 Electric Machines Problem Set 10 Issued November 11, 2013 Due November 20, 2013 Problem 1: Permanent

More information

The Influence of the Load Condition upon the Radial Distribution of Electromagnetic Vibration and Noise in a Three-Phase Squirrel-Cage Induction Motor

The Influence of the Load Condition upon the Radial Distribution of Electromagnetic Vibration and Noise in a Three-Phase Squirrel-Cage Induction Motor The Influence of the Load Condition upon the Radial Ditribution of Electromagnetic Vibration and Noie in a Three-Phae Squirrel-Cage Induction Motor Yuta Sato 1, Iao Hirotuka 1, Kazuo Tuboi 1, Maanori Nakamura

More information

ME 375 FINAL EXAM SOLUTIONS Friday December 17, 2004

ME 375 FINAL EXAM SOLUTIONS Friday December 17, 2004 ME 375 FINAL EXAM SOLUTIONS Friday December 7, 004 Diviion Adam 0:30 / Yao :30 (circle one) Name Intruction () Thi i a cloed book eamination, but you are allowed three 8.5 crib heet. () You have two hour

More information

ME 315 Exam 3 8:00-9:00 PM Thursday, April 16, 2009 CIRCLE YOUR DIVISION

ME 315 Exam 3 8:00-9:00 PM Thursday, April 16, 2009 CIRCLE YOUR DIVISION ME 315 Exam 3 8:00-9:00 PM Thurday, Aril 16, 009 Thi i a cloed-book, cloed-note examination. There i a formula heet at the back. You mut turn off all communication device before tarting thi exam, and leave

More information

Synchronous Machines

Synchronous Machines Synchronous Machines Synchronous Machines n 1 Φ f n 1 Φ f I f I f I f damper (run-up) winding Stator: similar to induction (asynchronous) machine ( 3 phase windings that forms a rotational circular magnetic

More information

Final Comprehensive Exam Physical Mechanics Friday December 15, Total 100 Points Time to complete the test: 120 minutes

Final Comprehensive Exam Physical Mechanics Friday December 15, Total 100 Points Time to complete the test: 120 minutes Final Comprehenive Exam Phyical Mechanic Friday December 15, 000 Total 100 Point Time to complete the tet: 10 minute Pleae Read the Quetion Carefully and Be Sure to Anwer All Part! In cae that you have

More information

Lesson 17: Synchronous Machines

Lesson 17: Synchronous Machines Lesson 17: Synchronous Machines ET 332b Ac Motors, Generators and Power Systems Lesson 17_et332b.pptx 1 Learning Objectives After this presentation you will be able to: Explain how synchronous machines

More information

Physics Exam 3 Formulas

Physics Exam 3 Formulas Phyic 10411 Exam III November 20, 2009 INSTRUCTIONS: Write your NAME on the front of the blue exam booklet. The exam i cloed book, and you may have only pen/pencil and a calculator (no tored equation or

More information

2. Electromagnetic fundamentals

2. Electromagnetic fundamentals 2. Electromagnetic fundamentals Prof. A. Binder 2/1 AMPERE s law: Excitation of magnetic field by electric current Examle: Two different currents I 1, I 2 with two different numbers of turns 1 and N and

More information

Math 273 Solutions to Review Problems for Exam 1

Math 273 Solutions to Review Problems for Exam 1 Math 7 Solution to Review Problem for Exam True or Fale? Circle ONE anwer for each Hint: For effective tudy, explain why if true and give a counterexample if fale (a) T or F : If a b and b c, then a c

More information

Step Motor Modeling. Step Motor Modeling K. Craig 1

Step Motor Modeling. Step Motor Modeling K. Craig 1 Step Motor Modeling Step Motor Modeling K. Craig 1 Stepper Motor Models Under steady operation at low speeds, we usually do not need to differentiate between VR motors and PM motors (a hybrid motor is

More information

Simulation of Wound Rotor Synchronous Machine under Voltage Sags

Simulation of Wound Rotor Synchronous Machine under Voltage Sags Simulation of Wound Rotor Synchronou Machine under oltage Sag D. Aguilar, G. azquez, Student Member, IEEE, A. Rolan, Student Member, IEEE, J. Rocabert, Student Member, IEEE, F. Córcole, Member, IEEE, and

More information

Revision Guide for Chapter 15

Revision Guide for Chapter 15 Revision Guide for Chapter 15 Contents tudent s Checklist Revision otes Transformer... 4 Electromagnetic induction... 4 Generator... 5 Electric motor... 6 Magnetic field... 8 Magnetic flux... 9 Force on

More information

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web:     Ph: Serial : Ch1_EE_C_Power Electronic_6818 Delhi Noida Bhopal Hyderabad Jaipur ucknow Indore Pune Bhubanewar Kolkata Patna Web: E-mail: info@madeeay.in Ph: 11-451461 CASS ES 18-19 EECRICA ENGINEERING Subject

More information

ME 3560 Fluid Mechanics

ME 3560 Fluid Mechanics Sring 018 ME 3560 Fluid Mechanic Chater III. Elementary Fluid Dynamic The Bernoulli Equation 1 Sring 018 3.1 Newton Second Law A fluid article can exerience acceleration or deceleration a it move from

More information

Question 1 Equivalent Circuits

Question 1 Equivalent Circuits MAE 40 inear ircuit Fall 2007 Final Intruction ) Thi exam i open book You may ue whatever written material you chooe, including your cla note and textbook You may ue a hand calculator with no communication

More information

FUNDAMENTALS OF POWER SYSTEMS

FUNDAMENTALS OF POWER SYSTEMS 1 FUNDAMENTALS OF POWER SYSTEMS 1 Chapter FUNDAMENTALS OF POWER SYSTEMS INTRODUCTION The three baic element of electrical engineering are reitor, inductor and capacitor. The reitor conume ohmic or diipative

More information

Introduction to Laplace Transform Techniques in Circuit Analysis

Introduction to Laplace Transform Techniques in Circuit Analysis Unit 6 Introduction to Laplace Tranform Technique in Circuit Analyi In thi unit we conider the application of Laplace Tranform to circuit analyi. A relevant dicuion of the one-ided Laplace tranform i found

More information

Tutorial 1 (EMD) Rotary field winding

Tutorial 1 (EMD) Rotary field winding Tutorial 1 (EMD) Rotary field winding The unchorded two-layer three-phase winding of a small synchronous fan drive for a computer has the following parameters: number of slots per pole and phase q = 1,

More information

Fachgebiet Leistungselektronik und Elektrische Antriebstechnik. Test Examination: Mechatronics and Electrical Drives

Fachgebiet Leistungselektronik und Elektrische Antriebstechnik. Test Examination: Mechatronics and Electrical Drives Prof. Dr. Ing. Joachim Böcker Test Examination: Mechatronics and Electrical Drives 8.1.214 First Name: Student number: Last Name: Course of Study: Exercise: 1 2 3 Total (Points) (2) (2) (2) (6) Duration:

More information

Revision Guide for Chapter 15

Revision Guide for Chapter 15 Revision Guide for Chapter 15 Contents Revision Checklist Revision otes Transformer...4 Electromagnetic induction...4 Lenz's law...5 Generator...6 Electric motor...7 Magnetic field...9 Magnetic flux...

More information

Bernoulli s equation may be developed as a special form of the momentum or energy equation.

Bernoulli s equation may be developed as a special form of the momentum or energy equation. BERNOULLI S EQUATION Bernoulli equation may be developed a a pecial form of the momentum or energy equation. Here, we will develop it a pecial cae of momentum equation. Conider a teady incompreible flow

More information

Lecture Set 8 Induction Machines

Lecture Set 8 Induction Machines Lecture Set 8 Induction Machine S.D. Sudhoff Spring 2018 Reading Chapter 6, Electromechanical Motion Device, Section 6.1-6.9, 6.12 2 Sample Application Low Power: Shaded pole machine (mall fan) Permanent

More information

CHAPTER 5. The Operational Amplifier 1

CHAPTER 5. The Operational Amplifier 1 EECE22 NETWORK ANALYSIS I Dr. Charle J. Kim Cla Note 9: Oerational Amlifier (OP Am) CHAPTER. The Oerational Amlifier A. INTRODUCTION. The oerational amlifier or o am for hort, i a eratile circuit building

More information

Mechatronics Engineering. Li Wen

Mechatronics Engineering. Li Wen Mechatronics Engineering Li Wen Bio-inspired robot-dc motor drive Unstable system Mirko Kovac,EPFL Modeling and simulation of the control system Problems 1. Why we establish mathematical model of the control

More information

E11 Lecture 13: Motors. Professor Lape Fall 2010

E11 Lecture 13: Motors. Professor Lape Fall 2010 E11 Lecture 13: Motors Professor Lape Fall 2010 Overview How do electric motors work? Electric motor types and general principles of operation How well does your motor perform? Torque and power output

More information

USE OF INTERNET TO DO EXPERIMENTS IN DYNAMICS AND CONTROL FROM ZACATECAS MEXICO IN THE LABORATORY OF THE UNIVERSITY OF TENNESSEE AT CHATANOOGAA.

USE OF INTERNET TO DO EXPERIMENTS IN DYNAMICS AND CONTROL FROM ZACATECAS MEXICO IN THE LABORATORY OF THE UNIVERSITY OF TENNESSEE AT CHATANOOGAA. USE OF INTERNET TO DO EXPERIMENTS IN DYNAMICS AND CONTROL FROM ZACATECAS MEXICO IN TE LABORATORY OF TE UNIVERSITY OF TENNESSEE AT CATANOOGAA. Jim enry *, Joé Alberto González Guerrero, Benito Serrano Roale..

More information

Chapter 4. The Laplace Transform Method

Chapter 4. The Laplace Transform Method Chapter 4. The Laplace Tranform Method The Laplace Tranform i a tranformation, meaning that it change a function into a new function. Actually, it i a linear tranformation, becaue it convert a linear combination

More information

Analysis the Transient Process of Wind Power Resources when there are Voltage Sags in Distribution Grid

Analysis the Transient Process of Wind Power Resources when there are Voltage Sags in Distribution Grid Analyi the Tranient Proce of Wind Power Reource when there are Voltage Sag in Ditribution Grid Do Nhu Y 1,* 1 Hanoi Univerity of ining and Geology, Deartment of Electrification, Electromechanic Faculty,

More information

Dynamic Simulation of a Three-Phase Induction Motor Using Matlab Simulink

Dynamic Simulation of a Three-Phase Induction Motor Using Matlab Simulink Dynamic Simulation of a ThreePhae Induction Motor Uing Matlab Simulink Adel Aktaibi & Daw Ghanim, graduate tudent member, IEEE, M. A. Rahman, life fellow, IEEE, Faculty of Engineering and Applied Science,

More information

MODULAR LINEAR TRANSVERSE FLUX RELUCTANCE MOTORS

MODULAR LINEAR TRANSVERSE FLUX RELUCTANCE MOTORS MODULAR LINEAR TRANSVERSE FLUX RELUCTANCE MOTORS Dan-Cristian POPA, Vasile IANCU, Loránd SZABÓ, Deartment of Electrical Machines, Technical University of Cluj-Naoca RO-400020 Cluj-Naoca, Romania; e-mail:

More information

Physics 741 Graduate Quantum Mechanics 1 Solutions to Final Exam, Fall 2014

Physics 741 Graduate Quantum Mechanics 1 Solutions to Final Exam, Fall 2014 Phyic 7 Graduate Quantum Mechanic Solution to inal Eam all 0 Each quetion i worth 5 point with point for each part marked eparately Some poibly ueful formula appear at the end of the tet In four dimenion

More information

Theory and Practice Making use of the Barkhausen Effect

Theory and Practice Making use of the Barkhausen Effect Theory and Practice aking ue of the Barkhauen Effect David C. Jile Anon arton Ditinguihed Profeor Palmer Endowed Chair Department of Electrical & Computer Engineering Iowa State Univerity Workhop on Large

More information

Texas A & M University Department of Mechanical Engineering MEEN 364 Dynamic Systems and Controls Dr. Alexander G. Parlos

Texas A & M University Department of Mechanical Engineering MEEN 364 Dynamic Systems and Controls Dr. Alexander G. Parlos Texas A & M University Department of Mechanical Engineering MEEN 364 Dynamic Systems and Controls Dr. Alexander G. Parlos Lecture 6: Modeling of Electromechanical Systems Principles of Motor Operation

More information

Simulation and Analysis of Linear Permanent Magnet Vernier Motors for Direct Drive Systems

Simulation and Analysis of Linear Permanent Magnet Vernier Motors for Direct Drive Systems Available online at www.ijpe-online.com vol. 3, no. 8, December 07, pp. 304-3 DOI: 0.3940/ijpe.7.08.p.3043 Simulation and Analyi of Linear Permanent Magnet Vernier Motor for Direct Drive Sytem Mingjie

More information

ROEVER COLLEGE OF ENGINEERING & TECHNOLOGY ELAMBALUR, PERAMBALUR DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING ELECTRICAL MACHINES I

ROEVER COLLEGE OF ENGINEERING & TECHNOLOGY ELAMBALUR, PERAMBALUR DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING ELECTRICAL MACHINES I ROEVER COLLEGE OF ENGINEERING & TECHNOLOGY ELAMBALUR, PERAMBALUR-621220 DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING ELECTRICAL MACHINES I Unit I Introduction 1. What are the three basic types

More information

EE C128 / ME C134 Problem Set 1 Solution (Fall 2010) Wenjie Chen and Jansen Sheng, UC Berkeley

EE C128 / ME C134 Problem Set 1 Solution (Fall 2010) Wenjie Chen and Jansen Sheng, UC Berkeley EE C28 / ME C34 Problem Set Solution (Fall 200) Wenjie Chen and Janen Sheng, UC Berkeley. (0 pt) BIBO tability The ytem h(t) = co(t)u(t) i not BIBO table. What i the region of convergence for H()? A bounded

More information

V V The circumflex (^) tells us this is a unit vector

V V The circumflex (^) tells us this is a unit vector Vector 1 Vector have Direction and Magnitude Mike ailey mjb@c.oregontate.edu Magnitude: V V V V x y z vector.pptx Vector Can lo e Defined a the oitional Difference etween Two oint 3 Unit Vector have a

More information

Tutorial Sheet IV. Fig. IV_2.

Tutorial Sheet IV. Fig. IV_2. Tutorial Sheet IV 1. Two identical inductors 1 H each are connected in series as shown. Deduce the combined inductance. If a third and then a fourth are similarly connected in series with this combined

More information

Lecture 4: Losses and Heat Transfer

Lecture 4: Losses and Heat Transfer 1 / 26 Lecture 4: Losses and Heat Transfer ELEC-E845 Electric Drives (5 ECTS) Marko Hinkkanen Aalto University School of Electrical Engineering Autumn 215 2 / 26 Learning Outcomes After this lecture and

More information

USEFUL TECHNIQUES FOR FIELD ANALYSTS IN THE DESIGN AND OPTIMIZATION OF LINEAR INDUCTION MOTORS

USEFUL TECHNIQUES FOR FIELD ANALYSTS IN THE DESIGN AND OPTIMIZATION OF LINEAR INDUCTION MOTORS USEFUL TECHNIQUES FOR FIELD ANALYSTS IN THE DESIGN AND OPTIMIZATION OF LINEAR INDUCTION MOTORS By: K.R. Davey R.C. Zowarka Twelfth Biennial IEEE Conference on Electromagnetic Field Comutation (CEFC 006),

More information

Midterm 3 Review Solutions by CC

Midterm 3 Review Solutions by CC Midterm Review Solution by CC Problem Set u (but do not evaluate) the iterated integral to rereent each of the following. (a) The volume of the olid encloed by the arabaloid z x + y and the lane z, x :

More information

R L R L L sl C L 1 sc

R L R L L sl C L 1 sc 2260 N. Cotter PRACTICE FINAL EXAM SOLUTION: Prob 3 3. (50 point) u(t) V i(t) L - R v(t) C - The initial energy tored in the circuit i zero. 500 Ω L 200 mh a. Chooe value of R and C to accomplih the following:

More information

Definition Application of electrical machines Electromagnetism: review Analogies between electric and magnetic circuits Faraday s Law Electromagnetic

Definition Application of electrical machines Electromagnetism: review Analogies between electric and magnetic circuits Faraday s Law Electromagnetic Definition Application of electrical machines Electromagnetism: review Analogies between electric and magnetic circuits Faraday s Law Electromagnetic Force Motor action Generator action Types and parts

More information

School of Mechanical Engineering Purdue University. ME375 ElectroMechanical - 1

School of Mechanical Engineering Purdue University. ME375 ElectroMechanical - 1 Electro-Mechanical Systems DC Motors Principles of Operation Modeling (Derivation of fg Governing Equations (EOM)) Block Diagram Representations Using Block Diagrams to Represent Equations in s - Domain

More information

Mechanics. Free rotational oscillations. LD Physics Leaflets P Measuring with a hand-held stop-clock. Oscillations Torsion pendulum

Mechanics. Free rotational oscillations. LD Physics Leaflets P Measuring with a hand-held stop-clock. Oscillations Torsion pendulum Mechanic Ocillation Torion pendulum LD Phyic Leaflet P.5.. Free rotational ocillation Meauring with a hand-held top-clock Object of the experiment g Meauring the amplitude of rotational ocillation a function

More information

Übung zu Globale Geophysik I 05 Answers

Übung zu Globale Geophysik I 05 Answers Übung zu Globale Geohyik I 05 Anwer Übung zu Globale Geohyik I: Wedneday, 6:00 8:00, Thereientr. 4, Room C49 Lecturer: Heather McCreadie Comanion cla to Globale Geohyik I: Monday, :00 4:00, Thereientr.

More information

RFIC Inductor Introduction

RFIC Inductor Introduction FIC Inductor Introduction Dror egev.07.08 Dror egev July 008 Layout of a Siral Inductor Mot lanar inductor are iral. Shae can be: Octagonal, Square or ectangle. Goal i to obtain the needed inductance within

More information

Introduction to Synchronous. Machines. Kevin Gaughan

Introduction to Synchronous. Machines. Kevin Gaughan Introduction to Synchronous Machines Kevin Gaughan The Synchronous Machine An AC machine (generator or motor) with a stator winding (usually 3 phase) generating a rotating magnetic field and a rotor carrying

More information

PHYS 110B - HW #6 Spring 2004, Solutions by David Pace Any referenced equations are from Griffiths Problem statements are paraphrased

PHYS 110B - HW #6 Spring 2004, Solutions by David Pace Any referenced equations are from Griffiths Problem statements are paraphrased PHYS B - HW #6 Spring 4, Solution by David Pace Any referenced equation are from Griffith Problem tatement are paraphraed. Problem. from Griffith Show that the following, A µo ɛ o A V + A ρ ɛ o Eq..4 A

More information

Synchronous Machines

Synchronous Machines Synchronous Machines Synchronous generators or alternators are used to convert mechanical power derived from steam, gas, or hydraulic-turbine to ac electric power Synchronous generators are the primary

More information

DESIGN OF ELECTRICAL APPARATUS SOLVED PROBLEMS

DESIGN OF ELECTRICAL APPARATUS SOLVED PROBLEMS DESIGN OF ELECTRICAL APPARATUS SOLVED PROBLEMS 1. A 350 KW, 500V, 450rpm, 6-pole, dc generator is built with an armature diameter of 0.87m and core length of 0.32m. The lap wound armature has 660 conductors.

More information

Finite Element Analysis of Hybrid Excitation Axial Flux Machine for Electric Cars

Finite Element Analysis of Hybrid Excitation Axial Flux Machine for Electric Cars 223 Finite Element Analysis of Hybrid Excitation Axial Flux Machine for Electric Cars Pelizari, A. ademir.pelizari@usp.br- University of Sao Paulo Chabu, I.E. ichabu@pea.usp.br - University of Sao Paulo

More information

DC motors. 1. Parallel (shunt) excited DC motor

DC motors. 1. Parallel (shunt) excited DC motor DC motors 1. Parallel (shunt) excited DC motor A shunt excited DC motor s terminal voltage is 500 V. The armature resistance is 0,5 Ω, field resistance is 250 Ω. On a certain load it takes 20 A current

More information

E p,rms = 240 V E rms = 120 V N p N s C. f = 60 Hz R = 3.8 L

E p,rms = 240 V E rms = 120 V N p N s C. f = 60 Hz R = 3.8 L Discussion Question 1A P1, Week 1 Power in AC Circuits An electronic device, consisting of a simle C circuit, is designed to be connected to an American-standard ower outlet delivering an EMF of 1 V at

More information

Electric Vehicle Performance Power and Efficiency

Electric Vehicle Performance Power and Efficiency Electric Vehicle Performance Power and Efficiency 1 Assignment a) Examine measurement guide and electric vehicle (EV) arrangement. b) Drive the route according to teacher s instruction and download measured

More information

Prince Sattam bin Abdulaziz University College of Engineering. Electrical Engineering Department EE 3360 Electrical Machines (II)

Prince Sattam bin Abdulaziz University College of Engineering. Electrical Engineering Department EE 3360 Electrical Machines (II) Chapter # 4 Three-Phase Induction Machines 1- Introduction (General Principles) Generally, conversion of electrical power into mechanical power takes place in the rotating part of an electric motor. In

More information

Mathematical Modeling and Dynamic Simulation of a Class of Drive Systems with Permanent Magnet Synchronous Motors

Mathematical Modeling and Dynamic Simulation of a Class of Drive Systems with Permanent Magnet Synchronous Motors Applied and Computational Mechanics 3 (2009) 331 338 Mathematical Modeling and Dynamic Simulation of a Class of Drive Systems with Permanent Magnet Synchronous Motors M. Mikhov a, a Faculty of Automatics,

More information

MATHEMATICAL MODELING OF INDUCTION MOTORS

MATHEMATICAL MODELING OF INDUCTION MOTORS 37 CHAPTER 3 MATHEMATICAL MODELING OF INDUCTION MOTORS To tart with, a well-known technique called the SVPWM technique i dicued a thi form the bai of the mathematical modeling of IM. Furthermore, the d

More information

Tutorial Sheet Fig. Q1

Tutorial Sheet Fig. Q1 Tutorial Sheet - 04 1. The magnetic circuit shown in Fig. Q1 has dimensions A c = A g = 9 cm 2, g = 0.050 cm, l c = 30 cm, and N = 500 turns. Assume the value of the relative permeability,µ r = 70,000

More information

Liquid cooling

Liquid cooling SKiiPPACK no. 3 4 [ 1- exp (-t/ τ )] + [( P + P )/P ] R [ 1- exp (-t/ τ )] Z tha tot3 = R ν ν tot1 tot tot3 thaa-3 aa 3 ν= 1 3.3.6. Liquid cooling The following table contain the characteritic R ν and

More information

EXPERIMENTAL COMPARISON OF LAMINATION MATERIAL CASE OF SWITCHING FLUX SYNCHRONOUS MACHINE WITH HYBRID EXCITATION

EXPERIMENTAL COMPARISON OF LAMINATION MATERIAL CASE OF SWITCHING FLUX SYNCHRONOUS MACHINE WITH HYBRID EXCITATION EXPERIMENTAL COMPARISON OF LAMINATION MATERIAL CASE OF SWITCHING FLUX SYNCHRONOUS MACHINE WITH HYBRID EXCITATION Emmanuel Hoang, Sami Hlioui, Michel Lécrivain, Mohamed Gabsi To cite this version: Emmanuel

More information

Modeling in the Frequency Domain

Modeling in the Frequency Domain T W O Modeling in the Frequency Domain SOLUTIONS TO CASE STUDIES CHALLENGES Antenna Control: Tranfer Function Finding each tranfer function: Pot: V i θ i 0 π ; Pre-Amp: V p V i K; Power Amp: E a V p 50

More information

22 ELECTROMAGNETIC INDUCTION

22 ELECTROMAGNETIC INDUCTION CHAPTER ELECTROMAGNETIC INDUCTION ANSWERS TO FOCUS ON CONCEPTS QUESTIONS. 3.5 m/s. (e) The work done by the hand equals the energy dissiated in the bulb. The energy dissiated in the bulb equals the ower

More information

Overview of motors and motion control

Overview of motors and motion control Overview of motors and motion control. Elements of a motion-control system Power upply High-level controller ow-level controller Driver Motor. Types of motors discussed here; Brushed, PM DC Motors Cheap,

More information

Rotational Systems, Gears, and DC Servo Motors

Rotational Systems, Gears, and DC Servo Motors Rotational Systems Rotational Systems, Gears, and DC Servo Motors Rotational systems behave exactly like translational systems, except that The state (angle) is denoted with rather than x (position) Inertia

More information

Bogoliubov Transformation in Classical Mechanics

Bogoliubov Transformation in Classical Mechanics Bogoliubov Tranformation in Claical Mechanic Canonical Tranformation Suppoe we have a et of complex canonical variable, {a j }, and would like to conider another et of variable, {b }, b b ({a j }). How

More information

This is because magnetic lines of force are closed lines and free magnetic poles do not exist.

This is because magnetic lines of force are closed lines and free magnetic poles do not exist. 1 Ch: lectromagnetic nduction Class X Physics Chater Notes Magnetic Flux Magnetic flux through a lane of area da laced in a uniform magnetic field B = B.dA f the surface is closed, then B. d.a 0 This is

More information

Indirect Rotor Field Orientation Vector Control for Induction Motor Drives in the Absence of Current Sensors

Indirect Rotor Field Orientation Vector Control for Induction Motor Drives in the Absence of Current Sensors Indirect Rotor Field Orientation Vector Control for Induction Motor Drives in the Absence of Current Sensors Z. S. WANG *, S. L. HO ** * College of Electrical Engineering, Zhejiang University, Hangzhou

More information

Generators for wind power conversion

Generators for wind power conversion Generators for wind power conversion B. G. Fernandes Department of Electrical Engineering Indian Institute of Technology, Bombay Email : bgf@ee.iitb.ac.in Outline of The Talk Introduction Constant speed

More information

ELECTRICALMACHINES-I QUESTUION BANK

ELECTRICALMACHINES-I QUESTUION BANK ELECTRICALMACHINES-I QUESTUION BANK UNIT-I INTRODUCTION OF MAGNETIC MATERIAL PART A 1. What are the three basic rotating Electric machines? 2. Name the three materials used in machine manufacture. 3. What

More information

Constant Force: Projectile Motion

Constant Force: Projectile Motion Contant Force: Projectile Motion Abtract In thi lab, you will launch an object with a pecific initial velocity (magnitude and direction) and determine the angle at which the range i a maximum. Other tak,

More information

Tutorial 5 Drive dynamics & control

Tutorial 5 Drive dynamics & control UNIVERSITY OF NEW SOUTH WALES Electic Dive Sytem School o Electical Engineeing & Telecommunication ELEC463 Electic Dive Sytem Tutoial 5 Dive dynamic & contol. The ollowing paamete ae known o two high peomance

More information