School of Mechanical Engineering Purdue University. ME375 ElectroMechanical - 1

Size: px
Start display at page:

Download "School of Mechanical Engineering Purdue University. ME375 ElectroMechanical - 1"

Transcription

1 Electro-Mechanical Systems DC Motors Principles of Operation Modeling (Derivation of fg Governing Equations (EOM)) Block Diagram Representations Using Block Diagrams to Represent Equations in s - Domain Block Diagram Representation of DC Motors Example ME375 ElectroMechanical - 1

2 DC Motors Motors are actuation devices (actuators) that generate torque as actuation. Terminology Rotor : the rotating part of the motor. Stator : the stationary part of the motor. Field System : the part of the motor that provides the magnetic flux. Armature : the part of the motor which carries current that interacts with the magnetic flux to produce torque. Brushes : the part of the electrical circuit through which the current is supplied to the armature. Commutator : the part of the rotor that is in contact with the brushes. ME375 ElectroMechanical - 2

3 DC Motors - Principles of Operation Torque Generation B B df dl i Force will act on a conductor in a magnetic field with current flowing through the conductor. d f i dl B a Integrate over the entire length: f Total torque generated: Coil B i ME375 ElectroMechanical - 3

4 DC Motors - Principles of Operation Let N be the number of coils in the motor. The total torque generated from the N coils is: m N ( 2 i B L R) a For a given motor, (N, B,, L, R) ) are fixed. We can define K T 2 N B L R Nm /A as the Torque Constant of the motor. The torque generated by a DC motor is proportional to the armature current i a : a m K T i a For a DC motor, it is desirable to have a large K T. However, size and other physical limitations often limits the achievable K T. Large K T : Large (N, L, R). (N, L, R) is limited by the size and weight of the motor. Large B: Need to understand the methods of generating flux... ME375 ElectroMechanical - 4

5 DC Motors - Principles of Operation Back-EMF Generation Electromotive force (EMF) is generated in a conductor moving in a magnetic field: deemf ( v B ) dl v B Integrate over the entire length L: v e emf Since the N armature coils are in series, the total EMF is: Define the Back Eemf 2 N ( R ) L v Back-EMF Constant K b : K N R L The Back-EMF generated due to the rotation of the motor armature is opposing the applied voltage and is proportional to the angular speed of the motor: E emf K b B b 2 B V / (rad / sec) Note: K T = K b is true only if consistent SI units are used! ME375 ElectroMechanical - 5

6 DC Motors - Principles of Operation Generating Magnetic Flux Permanent Magnet Permanent-Magnet DC Motors (PMDC) Field Coil Induced Magnetic Field (a) Series Wound DC Motor High starting torque and no-load speed Unidirectional (b) Shunt Wound DC Motor Low starting torque and no-load speed Good speed regulation Unidirectional (c) Compound DC Motor High starting torque & good speed regulation (d) Separately Excited DC Motor ME375 ElectroMechanical - 6

7 DC Motors - Modeling Schematic + e i (t) _ + e Ra + e La Element Laws: Electrical Subsystem R A i A L A + E emf _ m J A L FBD: B Mechanical Subsystem Interconnection Laws: ME375 ElectroMechanical - 7

8 DC Motors - Modeling Derive I/O Model: I/O Model from e i (t) and L to angular speed : LAJ K T A F HG L B RJ RB A A A A Kb ei() t K K K I/O Model from e i (t) and L to angular position : LAJ K T A T T I F KJ HG T I KJ b L K R A L A L F L B R J I F RB I L R A A A A b A L A L g Kb ei t HG KT KT KJ HG KT KJ KT () T g ME375 ElectroMechanical - 8

9 DC Motors - Modeling Transfer Function: () s E() s () s i L () s E () s () s i L Q: Let the load torque be zero (No Load), what is the steady state t speed (No-Load ds Speed) of the motor for a constant input voltage V? Q: Let the load torque L = T, what is the steady state speed of the motor for a constant input voltage V? ME375 ElectroMechanical - 9

10 Block Diagram Representation Differential Equation Transfer Signal Addition/Subtraction Function (System & Signals) Y ( s ) U 1( s) U 2( s ) Y() s G() s U() s U 1 (s) + Y(s) U(s) Y(s) G(s) ( ) Input Signal Output Signal U 2 (s) Ex: Draw the block diagram for the following DE: J Ex: Draw the block diagram for the following DE: J B ME375 ElectroMechanical - 10

11 Block Diagram Representation Transfer Function in Series Multiple Inputs Ys ( ) G 2 ( s ) Y 1 ( s ), Y 1 ( s ) G 1 ( s ) U ( s ) Y 1 ( s ) G 1 ( s ) U 1 ( s ), Y 2 ( s ) G 2 ( s ) U 2 ( s ) Ys () bg2() sg1() sgus () Ys () Ys 1() Y2() s G1() s U1() s G2() s U2() s U(s) Y 1 (s) Y(s) G 1 (s) G 2 (s) U Input Output 1 (s) Y 1 (s) G Signal 1 (s) Signal Y(s) Transfer Function in Parallel X1() s G1() s U() s, X2() s G2() s U() s Ys () X() s X() s b 1 2 G() s G () s U() s 1 2 g U 2 (s) Input Signals G 2 (s) Y 2 (s) Output Signal U(s) G 1 (s) X 1 (s) Y(s) Input Signal G 2 (s) X 2 (s) Output Signal ME375 ElectroMechanical - 11

12 Block Diagram Representation Feedback Loop U(s) Input Signal X (s) G (s) Y(s) Output Signal H(s) ME375 ElectroMechanical - 12

13 Block Diagram Representation of DC Motors Schematic + e Ra + e La Electro-Mechanical Coupling: Take Laplace Transform of the Eqs. + e i (t) _ R A i A L A + E emf _ m J A L B Governing Equations: d LA ia RAiA Eemf ei( t) ( ) dt J B ( ) A m L m KT ia E emf Kb ME375 ElectroMechanical - 13

14 Block Diagram Representation of DC Motors Electrical Subsystem: Take Laplace Transform of the Eqs. Mechanical Subsystem: Take Laplace Transform of the Eqs. Q: Now that we generated a block diagram of a voltage driven DC Motor, can we derive the transfer function of this motor from its block diagram? ( This is the same as asking you to reduce the multiblock diagram to a simpler form just relating inputs e i (t) and L to the output, either or.) ME375 ElectroMechanical - 14

15 Block Diagram Reduction From Block Diagram to Transfer Function Label each signal and block 1 L A s +R A K T 1 J A s +B K b Write down the relationships between signals ME375 ElectroMechanical - 15

16 Block Diagram Reduction Solve for the output signal in terms of the input signals Substitute tute the transfer functions label with the actual formula and simplify () s KT Ei () s LJs ( BL RJ) s( RBKK) LAs RA L() s LJs ( BL RJ) s( RBKK) 2 2 A A A A A A b T A A A A A A b T ( s) KT LAs RA Ei () s sljs ( ( BL RJ) s( RBKK)) sljs ( ( BL RJ) s( RBKK)) 2 2 L A A A A A A b T A A A A A A b T () s ME375 ElectroMechanical - 16

17 Example (A) Given the following specification of a DC motor and assume there is no load, find its transfer function from input voltage to motor angular speed L A = 10 mh R A = 10 K T = 0.06 Nm/A J A = Kg m 2 B = Nm/(rad/sec) (B) Find the poles of the transfer function. (C) Plot the Bode diagram of the transfer function ME375 ElectroMechanical - 17

18 Example 20 Phase (deg) Magnitude (db) Frequency (rad/sec) Q:If we are only interested t in the system response up to 1000 rad/sec, can we simplify our model? How would you simplify the model? ME375 ElectroMechanical - 18

19 Model Reduction Neglect Electrical Dynamics Derive the model for the DC motor, if the armature inductance L A is neglected: 1 L A s+r A K T 1 J A s+b K b () s KT Ei () s LJs ( BL RJ) s( RBKK) Ls A RA L() s LJs ( BL RJ) s( RBKK) 2 2 A A A A A A b T A A A A A A b T KT () s E() s () s By neglecting the effect of armature inductance, we reduced the order of our model from two to one. i L ME375 ElectroMechanical - 19

20 Model Reduction Q: Physically, what do we mean by neglecting armature inductance? By neglecting the armature inductance, we are assuming that it takes no time for the current to reach its steady state value when there is astep change in input voltage, i.e., a sudden change in input voltage will result in a sudden change in the armature current, which in turn will result in a sudden change in the motor torque output. This is equivalent to having direct control over the motor current. Mathematically: L d dt i R i E e () t J E A A A A emf i B K i U K V A m L m T A emf b W From Block Diagram: 1 L A s + R A K T ME375 ElectroMechanical - 20

21 Example Media Advance System in InkJet Printers The figure on the right shows the media advance system of a typical inkjet printer. The objective of the system is to precisely and quickly position the media such that ink droplets can be precisely dropped on to the media to form nice looking images. The system is driven by a DC motor through two sets of gear trains. You, as the new kid on the development team, are given the task of specifying a motor and designing the control system that will achieve the desirable performance. Some time your manager will also walk by your desk and ask you if a certain level of performance is achievable. How would you start your first engineering g project? ME375 ElectroMechanical - 21

22 Example Schematic + e i (t) _ + e Ra R A i A DC Motor + e La L A + E emf _ m J A N 2 N 1 L L J L B L Assumptions: Gears and shafts are rigid and massless. B Block diagram of the load inertia: Block diagram of the gear train: ME375 ElectroMechanical - 22

23 Example Block diagram of the DC motor subsystem: 1 L A s + R A K T 1 J A s + B K b Reduce the mechanical portion of the block diagram: ME375 ElectroMechanical - 23

24 Example Simplified block diagram: 1 L A s + R A K T K b Transfer Function from input voltage E i (s) to the angular position of the load (s): G E i () s () s E() s i Q: Is this system stable? Q: What command (voltage voltage) ) would you use to move the roller s angular position by, say 60 o? ME375 ElectroMechanical - 24

Introduction to Feedback Control

Introduction to Feedback Control Introduction to Feedback Control Control System Design Why Control? Open-Loop vs Closed-Loop (Feedback) Why Use Feedback Control? Closed-Loop Control System Structure Elements of a Feedback Control System

More information

(a) Torsional spring-mass system. (b) Spring element.

(a) Torsional spring-mass system. (b) Spring element. m v s T s v a (a) T a (b) T a FIGURE 2.1 (a) Torsional spring-mass system. (b) Spring element. by ky Wall friction, b Mass M k y M y r(t) Force r(t) (a) (b) FIGURE 2.2 (a) Spring-mass-damper system. (b)

More information

School of Mechanical Engineering Purdue University. ME375 Feedback Control - 1

School of Mechanical Engineering Purdue University. ME375 Feedback Control - 1 Introduction to Feedback Control Control System Design Why Control? Open-Loop vs Closed-Loop (Feedback) Why Use Feedback Control? Closed-Loop Control System Structure Elements of a Feedback Control System

More information

ENGG4420 LECTURE 7. CHAPTER 1 BY RADU MURESAN Page 1. September :29 PM

ENGG4420 LECTURE 7. CHAPTER 1 BY RADU MURESAN Page 1. September :29 PM CHAPTER 1 BY RADU MURESAN Page 1 ENGG4420 LECTURE 7 September 21 10 2:29 PM MODELS OF ELECTRIC CIRCUITS Electric circuits contain sources of electric voltage and current and other electronic elements such

More information

Texas A & M University Department of Mechanical Engineering MEEN 364 Dynamic Systems and Controls Dr. Alexander G. Parlos

Texas A & M University Department of Mechanical Engineering MEEN 364 Dynamic Systems and Controls Dr. Alexander G. Parlos Texas A & M University Department of Mechanical Engineering MEEN 364 Dynamic Systems and Controls Dr. Alexander G. Parlos Lecture 6: Modeling of Electromechanical Systems Principles of Motor Operation

More information

Overview of motors and motion control

Overview of motors and motion control Overview of motors and motion control. Elements of a motion-control system Power upply High-level controller ow-level controller Driver Motor. Types of motors discussed here; Brushed, PM DC Motors Cheap,

More information

Introduction to Control (034040) lecture no. 2

Introduction to Control (034040) lecture no. 2 Introduction to Control (034040) lecture no. 2 Leonid Mirkin Faculty of Mechanical Engineering Technion IIT Setup: Abstract control problem to begin with y P(s) u where P is a plant u is a control signal

More information

DC Motor Position: System Modeling

DC Motor Position: System Modeling 1 of 7 01/03/2014 22:07 Tips Effects TIPS ABOUT BASICS INDEX NEXT INTRODUCTION CRUISE CONTROL MOTOR SPEED MOTOR POSITION SUSPENSION INVERTED PENDULUM SYSTEM MODELING ANALYSIS DC Motor Position: System

More information

EE 410/510: Electromechanical Systems Chapter 4

EE 410/510: Electromechanical Systems Chapter 4 EE 410/510: Electromechanical Systems Chapter 4 Chapter 4. Direct Current Electric Machines and Motion Devices Permanent Magnet DC Electric Machines Radial Topology Simulation and Experimental Studies

More information

MODELING AND HIGH-PERFORMANCE CONTROL OF ELECTRIC MACHINES

MODELING AND HIGH-PERFORMANCE CONTROL OF ELECTRIC MACHINES MODELING AND HIGH-PERFORMANCE CONTROL OF ELECTRIC MACHINES JOHN CHIASSON IEEE PRESS ü t SERIES ON POWER ENGINEERING IEEE Press Series on Power Engineering Mohamed E. El-Hawary, Series Editor The Institute

More information

MATHEMATICAL MODELING OF OPEN LOOP PMDC MOTOR USING MATLAB/SIMULINK

MATHEMATICAL MODELING OF OPEN LOOP PMDC MOTOR USING MATLAB/SIMULINK MATHEMATICAL MODELING OF OPEN LOOP PMDC MOTOR USING MATLAB/SIMULINK 1 Mr.Dhaval K.Patel 1 Assistant Professor, Dept. of Electrical Engineering. Gidc Degree Engineering College Abrama, Navsari. ABSTRACT:

More information

Mechatronics Engineering. Li Wen

Mechatronics Engineering. Li Wen Mechatronics Engineering Li Wen Bio-inspired robot-dc motor drive Unstable system Mirko Kovac,EPFL Modeling and simulation of the control system Problems 1. Why we establish mathematical model of the control

More information

Introduction. Energy is needed in different forms: Light bulbs and heaters need electrical energy Fans and rolling miles need mechanical energy

Introduction. Energy is needed in different forms: Light bulbs and heaters need electrical energy Fans and rolling miles need mechanical energy Introduction Energy is needed in different forms: Light bulbs and heaters need electrical energy Fans and rolling miles need mechanical energy What does AC and DC stand for? Electrical machines Motors

More information

An Introduction to Electrical Machines. P. Di Barba, University of Pavia, Italy

An Introduction to Electrical Machines. P. Di Barba, University of Pavia, Italy An Introduction to Electrical Machines P. Di Barba, University of Pavia, Italy Academic year 0-0 Contents Transformer. An overview of the device. Principle of operation of a single-phase transformer 3.

More information

Equal Pitch and Unequal Pitch:

Equal Pitch and Unequal Pitch: Equal Pitch and Unequal Pitch: Equal-Pitch Multiple-Stack Stepper: For each rotor stack, there is a toothed stator segment around it, whose pitch angle is identical to that of the rotor (θs = θr). A stator

More information

Lesson 17: Synchronous Machines

Lesson 17: Synchronous Machines Lesson 17: Synchronous Machines ET 332b Ac Motors, Generators and Power Systems Lesson 17_et332b.pptx 1 Learning Objectives After this presentation you will be able to: Explain how synchronous machines

More information

MCE380: Measurements and Instrumentation Lab. Chapter 5: Electromechanical Transducers

MCE380: Measurements and Instrumentation Lab. Chapter 5: Electromechanical Transducers MCE380: Measurements and Instrumentation Lab Chapter 5: Electromechanical Transducers Part I Topics: Transducers and Impedance Magnetic Electromechanical Coupling Reference: Holman, CH 4. Cleveland State

More information

Applied Electronics and Electrical Machines

Applied Electronics and Electrical Machines School of Electrical and Computer Engineering Applied Electronics and Electrical Machines (ELEC 365) Fall 2015 DC Machines 1 DC Machines Key educational goals: Develop the basic principle of operation

More information

E11 Lecture 13: Motors. Professor Lape Fall 2010

E11 Lecture 13: Motors. Professor Lape Fall 2010 E11 Lecture 13: Motors Professor Lape Fall 2010 Overview How do electric motors work? Electric motor types and general principles of operation How well does your motor perform? Torque and power output

More information

FEEDBACK CONTROL SYSTEMS

FEEDBACK CONTROL SYSTEMS FEEDBAC CONTROL SYSTEMS. Control System Design. Open and Closed-Loop Control Systems 3. Why Closed-Loop Control? 4. Case Study --- Speed Control of a DC Motor 5. Steady-State Errors in Unity Feedback Control

More information

Example: DC Motor Speed Modeling

Example: DC Motor Speed Modeling Page 1 of 5 Example: DC Motor Speed Modeling Physical setup and system equations Design requirements MATLAB representation and open-loop response Physical setup and system equations A common actuator in

More information

Lezione 9 30 March. Scribes: Arianna Marangon, Matteo Vitturi, Riccardo Prota

Lezione 9 30 March. Scribes: Arianna Marangon, Matteo Vitturi, Riccardo Prota Control Laboratory: a.a. 2015/2016 Lezione 9 30 March Instructor: Luca Schenato Scribes: Arianna Marangon, Matteo Vitturi, Riccardo Prota What is left to do is how to design the low pass pole τ L for the

More information

Revision Guide for Chapter 15

Revision Guide for Chapter 15 Revision Guide for Chapter 15 Contents tudent s Checklist Revision otes Transformer... 4 Electromagnetic induction... 4 Generator... 5 Electric motor... 6 Magnetic field... 8 Magnetic flux... 9 Force on

More information

Rotational Systems, Gears, and DC Servo Motors

Rotational Systems, Gears, and DC Servo Motors Rotational Systems Rotational Systems, Gears, and DC Servo Motors Rotational systems behave exactly like translational systems, except that The state (angle) is denoted with rather than x (position) Inertia

More information

ELECTRICALMACHINES-I QUESTUION BANK

ELECTRICALMACHINES-I QUESTUION BANK ELECTRICALMACHINES-I QUESTUION BANK UNIT-I INTRODUCTION OF MAGNETIC MATERIAL PART A 1. What are the three basic rotating Electric machines? 2. Name the three materials used in machine manufacture. 3. What

More information

ROEVER COLLEGE OF ENGINEERING & TECHNOLOGY ELAMBALUR, PERAMBALUR DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING ELECTRICAL MACHINES I

ROEVER COLLEGE OF ENGINEERING & TECHNOLOGY ELAMBALUR, PERAMBALUR DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING ELECTRICAL MACHINES I ROEVER COLLEGE OF ENGINEERING & TECHNOLOGY ELAMBALUR, PERAMBALUR-621220 DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING ELECTRICAL MACHINES I Unit I Introduction 1. What are the three basic types

More information

INC 341 Feedback Control Systems: Lecture 3 Transfer Function of Dynamic Systems II

INC 341 Feedback Control Systems: Lecture 3 Transfer Function of Dynamic Systems II INC 341 Feedback Control Systems: Lecture 3 Transfer Function of Dynamic Systems II Asst. Prof. Dr.-Ing. Sudchai Boonto Department of Control Systems and Instrumentation Engineering King Mongkut s University

More information

INDUCTION MOTOR MODEL AND PARAMETERS

INDUCTION MOTOR MODEL AND PARAMETERS APPENDIX C INDUCTION MOTOR MODEL AND PARAMETERS C.1 Dynamic Model of the Induction Motor in Stationary Reference Frame A three phase induction machine can be represented by an equivalent two phase machine

More information

Two-Mass, Three-Spring Dynamic System Investigation Case Study

Two-Mass, Three-Spring Dynamic System Investigation Case Study Two-ass, Three-Spring Dynamic System Investigation Case Study easurements, Calculations, anufacturer's Specifications odel Parameter Identification Which Parameters to Identify? What Tests to Perform?

More information

Example: Modeling DC Motor Position Physical Setup System Equations Design Requirements MATLAB Representation and Open-Loop Response

Example: Modeling DC Motor Position Physical Setup System Equations Design Requirements MATLAB Representation and Open-Loop Response Page 1 of 5 Example: Modeling DC Motor Position Physical Setup System Equations Design Requirements MATLAB Representation and Open-Loop Response Physical Setup A common actuator in control systems is the

More information

Tutorial 1 - Drive fundamentals and DC motor characteristics

Tutorial 1 - Drive fundamentals and DC motor characteristics University of New South Wales School of Electrical Engineering & elecommunications ELEC4613 ELECRIC DRIVE SYSEMS utorial 1 - Drive fundamentals and DC motor characteristics 1. In the hoist drive system

More information

Lecture 1: Introduction to System Modeling and Control. Introduction Basic Definitions Different Model Types System Identification

Lecture 1: Introduction to System Modeling and Control. Introduction Basic Definitions Different Model Types System Identification Lecture 1: Introduction to System Modeling and Control Introduction Basic Definitions Different Model Types System Identification What is Mathematical Model? A set of mathematical equations (e.g., differential

More information

EDEXCEL NATIONALS UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES. ASSIGNMENT No. 3 - ELECTRO MAGNETIC INDUCTION

EDEXCEL NATIONALS UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES. ASSIGNMENT No. 3 - ELECTRO MAGNETIC INDUCTION EDEXCEL NATIONALS UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES ASSIGNMENT No. 3 - ELECTRO MAGNETIC INDUCTION NAME: I agree to the assessment as contained in this assignment. I confirm that the work submitted

More information

Feedback Control Systems

Feedback Control Systems ME Homework #0 Feedback Control Systems Last Updated November 06 Text problem 67 (Revised Chapter 6 Homework Problems- attached) 65 Chapter 6 Homework Problems 65 Transient Response of a Second Order Model

More information

Electric Machines I Three Phase Induction Motor. Dr. Firas Obeidat

Electric Machines I Three Phase Induction Motor. Dr. Firas Obeidat Electric Machines I Three Phase Induction Motor Dr. Firas Obeidat 1 Table of contents 1 General Principles 2 Construction 3 Production of Rotating Field 4 Why Does the Rotor Rotate 5 The Slip and Rotor

More information

Definition Application of electrical machines Electromagnetism: review Analogies between electric and magnetic circuits Faraday s Law Electromagnetic

Definition Application of electrical machines Electromagnetism: review Analogies between electric and magnetic circuits Faraday s Law Electromagnetic Definition Application of electrical machines Electromagnetism: review Analogies between electric and magnetic circuits Faraday s Law Electromagnetic Force Motor action Generator action Types and parts

More information

PESIT Bangalore South Campus Hosur road, 1km before Electronic City, Bengaluru -100 Department of Electronics & Communication Engineering

PESIT Bangalore South Campus Hosur road, 1km before Electronic City, Bengaluru -100 Department of Electronics & Communication Engineering QUESTION PAPER INTERNAL ASSESSMENT TEST 2 Date : /10/2016 Marks: 0 Subject & Code: BASIC ELECTRICAL ENGINEERING -15ELE15 Sec : F,G,H,I,J,K Name of faculty : Dhanashree Bhate, Hema B, Prashanth V Time :

More information

Positioning Servo Design Example

Positioning Servo Design Example Positioning Servo Design Example 1 Goal. The goal in this design example is to design a control system that will be used in a pick-and-place robot to move the link of a robot between two positions. Usually

More information

International Journal of Advance Research in Computer Science and Management Studies

International Journal of Advance Research in Computer Science and Management Studies Volume 2, Issue 9, September 2014 ISSN: 2321 7782 (Online) International Journal of Advance Research in Computer Science and Management Studies Research Article / Survey Paper / Case Study Available online

More information

Synchronous Machines

Synchronous Machines Synchronous Machines Synchronous generators or alternators are used to convert mechanical power derived from steam, gas, or hydraulic-turbine to ac electric power Synchronous generators are the primary

More information

Automatic Control Systems. -Lecture Note 15-

Automatic Control Systems. -Lecture Note 15- -Lecture Note 15- Modeling of Physical Systems 5 1/52 AC Motors AC Motors Classification i) Induction Motor (Asynchronous Motor) ii) Synchronous Motor 2/52 Advantages of AC Motors i) Cost-effective ii)

More information

Mathematical Modeling and Dynamic Simulation of DC Motors using MATLAB/Simulink Environment

Mathematical Modeling and Dynamic Simulation of DC Motors using MATLAB/Simulink Environment Mathematical Modeling and Dynamic Simulation of DC Motors using MATLAB/Simulink Environment K. Kalaiselvi 1, K.Abinaya 2, P. Ramesh Babu 3 1,2 Under Graduate Scholar, Department of EEE, Saranathan College

More information

JRE SCHOOL OF Engineering

JRE SCHOOL OF Engineering JRE SCHOOL OF Engineering Class Test-1 Examinations September 2014 Subject Name Electromechanical Energy Conversion-II Subject Code EEE -501 Roll No. of Student Max Marks 30 Marks Max Duration 1 hour Date

More information

Step Motor Modeling. Step Motor Modeling K. Craig 1

Step Motor Modeling. Step Motor Modeling K. Craig 1 Step Motor Modeling Step Motor Modeling K. Craig 1 Stepper Motor Models Under steady operation at low speeds, we usually do not need to differentiate between VR motors and PM motors (a hybrid motor is

More information

Prince Sattam bin Abdulaziz University College of Engineering. Electrical Engineering Department EE 3360 Electrical Machines (II)

Prince Sattam bin Abdulaziz University College of Engineering. Electrical Engineering Department EE 3360 Electrical Machines (II) Chapter # 4 Three-Phase Induction Machines 1- Introduction (General Principles) Generally, conversion of electrical power into mechanical power takes place in the rotating part of an electric motor. In

More information

Revised October 6, EEL 3211 ( 2008, H. Zmuda) 7. DC Machines 1

Revised October 6, EEL 3211 ( 2008, H. Zmuda) 7. DC Machines 1 DC Machines Revised October 6, 2008 EEL 3211 ( 2008, H. Zmuda) 7. DC Machines 1 DC Machines: DC Motors are rapidly losing popularity. Until recent advances in power electronics DC motors excelled in terms

More information

International Journal of Advance Engineering and Research Development SIMULATION OF FIELD ORIENTED CONTROL OF PERMANENT MAGNET SYNCHRONOUS MOTOR

International Journal of Advance Engineering and Research Development SIMULATION OF FIELD ORIENTED CONTROL OF PERMANENT MAGNET SYNCHRONOUS MOTOR Scientific Journal of Impact Factor(SJIF): 3.134 e-issn(o): 2348-4470 p-issn(p): 2348-6406 International Journal of Advance Engineering and Research Development Volume 2,Issue 4, April -2015 SIMULATION

More information

DcMotor_ Model Help File

DcMotor_ Model Help File Name of Model: DcMotor_021708 Author: Vladimir L. Chervyakov Date: 2002-10-26 Executable file name DcMotor_021708.vtm Version number: 1.0 Description This model represents a Nonlinear model of a permanent

More information

ECEN 420 LINEAR CONTROL SYSTEMS. Lecture 6 Mathematical Representation of Physical Systems II 1/67

ECEN 420 LINEAR CONTROL SYSTEMS. Lecture 6 Mathematical Representation of Physical Systems II 1/67 1/67 ECEN 420 LINEAR CONTROL SYSTEMS Lecture 6 Mathematical Representation of Physical Systems II State Variable Models for Dynamic Systems u 1 u 2 u ṙ. Internal Variables x 1, x 2 x n y 1 y 2. y m Figure

More information

Mathematical Modeling and Dynamic Simulation of a Class of Drive Systems with Permanent Magnet Synchronous Motors

Mathematical Modeling and Dynamic Simulation of a Class of Drive Systems with Permanent Magnet Synchronous Motors Applied and Computational Mechanics 3 (2009) 331 338 Mathematical Modeling and Dynamic Simulation of a Class of Drive Systems with Permanent Magnet Synchronous Motors M. Mikhov a, a Faculty of Automatics,

More information

EE155/255 Green Electronics

EE155/255 Green Electronics EE155/255 Green Electronics Electric Motors 10/19/16 Prof. William Dally Computer Systems Laboratory Stanford University This week is flipped Course Logistics Discussion on 10/17, Motors on 10/19, Isolated

More information

Exercise 5 - Hydraulic Turbines and Electromagnetic Systems

Exercise 5 - Hydraulic Turbines and Electromagnetic Systems Exercise 5 - Hydraulic Turbines and Electromagnetic Systems 5.1 Hydraulic Turbines Whole courses are dedicated to the analysis of gas turbines. For the aim of modeling hydraulic systems, we analyze here

More information

EE155/255 Green Electronics

EE155/255 Green Electronics EE155/255 Green Electronics Electric Motors 10/16/17 Prof. William Dally Computer Systems Laboratory Stanford University Course Logistics Solar day is Monday 10/23 HW 3 is due today HW 4 out, due next

More information

A FORCE BALANCE TECHNIQUE FOR MEASUREMENT OF YOUNG'S MODULUS. 1 Introduction

A FORCE BALANCE TECHNIQUE FOR MEASUREMENT OF YOUNG'S MODULUS. 1 Introduction A FORCE BALANCE TECHNIQUE FOR MEASUREMENT OF YOUNG'S MODULUS Abhinav A. Kalamdani Dept. of Instrumentation Engineering, R. V. College of Engineering, Bangalore, India. kalamdani@ieee.org Abstract: A new

More information

(a) Torsional spring-mass system. (b) Spring element.

(a) Torsional spring-mass system. (b) Spring element. m v s T s v a (a) T a (b) T a FIGURE 2.1 (a) Torsional spring-mass system. (b) Spring element. by ky Wall friction, b Mass M k y M y r(t) Force r(t) (a) (b) FIGURE 2.2 (a) Spring-mass-damper system. (b)

More information

Sliding Conducting Bar

Sliding Conducting Bar Motional emf, final For equilibrium, qe = qvb or E = vb A potential difference is maintained between the ends of the conductor as long as the conductor continues to move through the uniform magnetic field

More information

3 d Calculate the product of the motor constant and the pole flux KΦ in this operating point. 2 e Calculate the torque.

3 d Calculate the product of the motor constant and the pole flux KΦ in this operating point. 2 e Calculate the torque. Exam Electrical Machines and Drives (ET4117) 11 November 011 from 14.00 to 17.00. This exam consists of 5 problems on 4 pages. Page 5 can be used to answer problem 4 question b. The number before a question

More information

Control of Wind Turbine Generators. James Cale Guest Lecturer EE 566, Fall Semester 2014 Colorado State University

Control of Wind Turbine Generators. James Cale Guest Lecturer EE 566, Fall Semester 2014 Colorado State University Control of Wind Turbine Generators James Cale Guest Lecturer EE 566, Fall Semester 2014 Colorado State University Review from Day 1 Review Last time, we started with basic concepts from physics such as

More information

DESIGN OF ELECTRICAL APPARATUS SOLVED PROBLEMS

DESIGN OF ELECTRICAL APPARATUS SOLVED PROBLEMS DESIGN OF ELECTRICAL APPARATUS SOLVED PROBLEMS 1. A 350 KW, 500V, 450rpm, 6-pole, dc generator is built with an armature diameter of 0.87m and core length of 0.32m. The lap wound armature has 660 conductors.

More information

Motion Control. Laboratory assignment. Case study. Lectures. compliance, backlash and nonlinear friction. control strategies to improve performance

Motion Control. Laboratory assignment. Case study. Lectures. compliance, backlash and nonlinear friction. control strategies to improve performance 436-459 Advanced Control and Automation Motion Control Lectures traditional CNC control architecture modelling of components dynamic response of axes effects on contouring performance control strategies

More information

Mechatronics Modeling and Analysis of Dynamic Systems Case-Study Exercise

Mechatronics Modeling and Analysis of Dynamic Systems Case-Study Exercise Mechatronics Modeling and Analysis of Dynamic Systems Case-Study Exercise Goal: This exercise is designed to take a real-world problem and apply the modeling and analysis concepts discussed in class. As

More information

Video 5.1 Vijay Kumar and Ani Hsieh

Video 5.1 Vijay Kumar and Ani Hsieh Video 5.1 Vijay Kumar and Ani Hsieh Robo3x-1.1 1 The Purpose of Control Input/Stimulus/ Disturbance System or Plant Output/ Response Understand the Black Box Evaluate the Performance Change the Behavior

More information

Chapter 4. Synchronous Generators. Basic Topology

Chapter 4. Synchronous Generators. Basic Topology Basic Topology Chapter 4 ynchronous Generators In stator, a three-phase winding similar to the one described in chapter 4. ince the main voltage is induced in this winding, it is also called armature winding.

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Electric Machines

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Electric Machines Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.685 Electric Machines Problem Set 10 Issued November 11, 2013 Due November 20, 2013 Problem 1: Permanent

More information

R10 JNTUWORLD B 1 M 1 K 2 M 2. f(t) Figure 1

R10 JNTUWORLD B 1 M 1 K 2 M 2. f(t) Figure 1 Code No: R06 R0 SET - II B. Tech II Semester Regular Examinations April/May 03 CONTROL SYSTEMS (Com. to EEE, ECE, EIE, ECC, AE) Time: 3 hours Max. Marks: 75 Answer any FIVE Questions All Questions carry

More information

SRV02-Series Rotary Experiment # 1. Position Control. Student Handout

SRV02-Series Rotary Experiment # 1. Position Control. Student Handout SRV02-Series Rotary Experiment # 1 Position Control Student Handout SRV02-Series Rotary Experiment # 1 Position Control Student Handout 1. Objectives The objective in this experiment is to introduce the

More information

(Refer Slide Time: 00:01:30 min)

(Refer Slide Time: 00:01:30 min) Control Engineering Prof. M. Gopal Department of Electrical Engineering Indian Institute of Technology, Delhi Lecture - 3 Introduction to Control Problem (Contd.) Well friends, I have been giving you various

More information

3 Lab 3: DC Motor Transfer Function Estimation by Explicit Measurement

3 Lab 3: DC Motor Transfer Function Estimation by Explicit Measurement 3 Lab 3: DC Motor Transfer Function Estimation by Explicit Measurement 3.1 Introduction There are two common methods for determining a plant s transfer function. They are: 1. Measure all the physical parameters

More information

DYNAMIC ANALYSIS OF DRIVE MECHANISM WITH FUNCTIONAL MODEL

DYNAMIC ANALYSIS OF DRIVE MECHANISM WITH FUNCTIONAL MODEL DYNAMIC ANALYSIS OF DRIVE MECHANISM WITH FUNCTIONAL MODEL Yasunobu Uchino Department of Mechanical Engineering, Hosei University 3-7-2 Kajinocho, Koganei-shi, TOKYO, JAPAN Tatsuhito Aihara Department of

More information

Electromagnetic Induction

Electromagnetic Induction 362 Mechanical Engineering Technician UNIT 7 Electromagnetic Induction Structure 7.1 Introduction 7.2 Faraday s laws of Electromagnetic Induction 7.3. Lenz s law 7.4. Fleming s right and rule 7.5. Self

More information

Quanser NI-ELVIS Trainer (QNET) Series: QNET Experiment #02: DC Motor Position Control. DC Motor Control Trainer (DCMCT) Student Manual

Quanser NI-ELVIS Trainer (QNET) Series: QNET Experiment #02: DC Motor Position Control. DC Motor Control Trainer (DCMCT) Student Manual Quanser NI-ELVIS Trainer (QNET) Series: QNET Experiment #02: DC Motor Position Control DC Motor Control Trainer (DCMCT) Student Manual Table of Contents 1 Laboratory Objectives1 2 References1 3 DCMCT Plant

More information

Revision Guide for Chapter 15

Revision Guide for Chapter 15 Revision Guide for Chapter 15 Contents Revision Checklist Revision otes Transformer...4 Electromagnetic induction...4 Lenz's law...5 Generator...6 Electric motor...7 Magnetic field...9 Magnetic flux...

More information

SAMPLE SOLUTION TO EXAM in MAS501 Control Systems 2 Autumn 2015

SAMPLE SOLUTION TO EXAM in MAS501 Control Systems 2 Autumn 2015 FACULTY OF ENGINEERING AND SCIENCE SAMPLE SOLUTION TO EXAM in MAS501 Control Systems 2 Autumn 2015 Lecturer: Michael Ruderman Problem 1: Frequency-domain analysis and control design (15 pt) Given is a

More information

EC T32 - ELECTRICAL ENGINEERING

EC T32 - ELECTRICAL ENGINEERING EC T32 - ELECTRICAL ENGINEERING UNIT-I - TRANSFORMER 1. What is a transformer? 2. Briefly explain the principle of operation of transformers. 3. What are the parts of a transformer? 4. What are the types

More information

TEMPERATURE EFFECTS ON MOTOR PERFORMANCE

TEMPERATURE EFFECTS ON MOTOR PERFORMANCE TEMPERATURE EFFECTS ON MOTOR PERFORMANCE Authored By: Dan Montone Haydon Kerk Motion Solutions / Pittman Motors hen applying DC motors to any type of application, temperature effects need to be considered

More information

Generalized Theory of Electrical Machines- A Review

Generalized Theory of Electrical Machines- A Review Generalized Theory of Electrical Machines- A Review Dr. Sandip Mehta Department of Electrical and Electronics Engineering, JIET Group of Institutions, Jodhpur Abstract:-This paper provides an overview

More information

UNIT-I INTRODUCTION. 1. State the principle of electromechanical energy conversion.

UNIT-I INTRODUCTION. 1. State the principle of electromechanical energy conversion. UNIT-I INTRODUCTION 1. State the principle of electromechanical energy conversion. The mechanical energy is converted in to electrical energy which takes place through either by magnetic field or electric

More information

Rotary Motion Servo Plant: SRV02. Rotary Experiment #01: Modeling. SRV02 Modeling using QuaRC. Student Manual

Rotary Motion Servo Plant: SRV02. Rotary Experiment #01: Modeling. SRV02 Modeling using QuaRC. Student Manual Rotary Motion Servo Plant: SRV02 Rotary Experiment #01: Modeling SRV02 Modeling using QuaRC Student Manual SRV02 Modeling Laboratory Student Manual Table of Contents 1. INTRODUCTION...1 2. PREREQUISITES...1

More information

Encoders. Understanding. November design for industry: Help clean up the ocean. Horizon failure forensics

Encoders. Understanding. November design for industry: Help clean up the ocean. Horizon failure forensics November 2013 www.designworldonline.com INSIDE: design for industry: Help clean up the ocean Page 18 3D CAD: FEA aids Deepwater Horizon failure forensics Page 37 Understanding NETWORKING: Enhancing enterprise

More information

Chapter 1 Magnetic Circuits

Chapter 1 Magnetic Circuits Principles of Electric Machines and Power Electronics Third Edition P. C. Sen Chapter 1 Magnetic Circuits Chapter 1: Main contents i-h relation, B-H relation Magnetic circuit and analysis Property of magnetic

More information

DC Shunt Excited Motor

DC Shunt Excited Motor A DC motor has DC hunt Excited Motor A constant (DC) magnetic field for the stator, and A constant (DC) magnetic field in the rotor, That switches as the motor rotates. This switching results in a constant

More information

Module 3 Electrical Fundamentals

Module 3 Electrical Fundamentals 3.1 Electron Theory Structure and distribution of electrical charges within: atoms, molecules, ions, compounds; Molecular structure of conductors, semiconductors and insulators. 3.2 Static Electricity

More information

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3. OUTCOME 3 - MAGNETISM and INDUCTION

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3. OUTCOME 3 - MAGNETISM and INDUCTION EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 3 - MAGNETISM and INDUCTION 3 Understand the principles and properties of magnetism Magnetic field:

More information

ELG4112. Electromechanical Systems and Mechatronics

ELG4112. Electromechanical Systems and Mechatronics ELG4112 Electromechanical Systems and Mechatronics 1 Introduction Based on Electromechanical Systems, Electric Machines, and Applied Mechatronics Electromechanical systems integrate the following: Electromechanical

More information

LIAPUNOV S STABILITY THEORY-BASED MODEL REFERENCE ADAPTIVE CONTROL FOR DC MOTOR

LIAPUNOV S STABILITY THEORY-BASED MODEL REFERENCE ADAPTIVE CONTROL FOR DC MOTOR LIAPUNOV S STABILITY THEORY-BASED MODEL REFERENCE ADAPTIVE CONTROL FOR DC MOTOR *Ganta Ramesh, # R. Hanumanth Nayak *#Assistant Professor in EEE, Gudlavalleru Engg College, JNTU, Kakinada University, Gudlavalleru

More information

Electric Machines I DC Machines - DC Generators. Dr. Firas Obeidat

Electric Machines I DC Machines - DC Generators. Dr. Firas Obeidat Electric Machines I DC Machines DC Generators Dr. Firas Obeidat 1 Table of contents 1 Construction of Simple Loop Generator 2 Working of Simple Loop Generator 3 Types of DC Generators 4 The Terminal Characteristic

More information

Electrical Machines and Energy Systems: Operating Principles (Part 2) SYED A Rizvi

Electrical Machines and Energy Systems: Operating Principles (Part 2) SYED A Rizvi Electrical Machines and Energy Systems: Operating Principles (Part 2) SYED A Rizvi AC Machines Operating Principles: Synchronous Motor In synchronous motors, the stator of the motor has a rotating magnetic

More information

Chapter 23 Magnetic Flux and Faraday s Law of Induction

Chapter 23 Magnetic Flux and Faraday s Law of Induction Chapter 23 Magnetic Flux and Faraday s Law of Induction 1 Overview of Chapter 23 Induced Electromotive Force Magnetic Flux Faraday s Law of Induction Lenz s Law Mechanical Work and Electrical Energy Generators

More information

Flux: Examples of Devices

Flux: Examples of Devices Flux: Examples of Devices xxx Philippe Wendling philippe.wendling@magsoft-flux.com Create, Design, Engineer! www.magsoft-flux.com www.cedrat.com Solenoid 2 1 The Domain Axisymmetry Open Boundary 3 Mesh

More information

DESIGN AND MODELLING OF SENSORLESS VECTOR CONTROLLED INDUCTION MOTOR USING MODEL REFERENCE ADAPTIVE SYSTEMS

DESIGN AND MODELLING OF SENSORLESS VECTOR CONTROLLED INDUCTION MOTOR USING MODEL REFERENCE ADAPTIVE SYSTEMS DESIGN AND MODELLING OF SENSORLESS VECTOR CONTROLLED INDUCTION MOTOR USING MODEL REFERENCE ADAPTIVE SYSTEMS Janaki Pakalapati 1 Assistant Professor, Dept. of EEE, Avanthi Institute of Engineering and Technology,

More information

Introduction to Synchronous. Machines. Kevin Gaughan

Introduction to Synchronous. Machines. Kevin Gaughan Introduction to Synchronous Machines Kevin Gaughan The Synchronous Machine An AC machine (generator or motor) with a stator winding (usually 3 phase) generating a rotating magnetic field and a rotor carrying

More information

Magnetic inductance & Solenoids. P.Ravindran, PHY041: Electricity & Magnetism 22 February 2013: Magnetic inductance, and Solenoid

Magnetic inductance & Solenoids. P.Ravindran, PHY041: Electricity & Magnetism 22 February 2013: Magnetic inductance, and Solenoid Magnetic inductance & Solenoids Changing Magnetic Flux A changing magnetic flux in a wire loop induces an electric current. The induced current is always in a direction that opposes the change in flux.

More information

How an Induction Motor Works by Equations (and Physics)

How an Induction Motor Works by Equations (and Physics) How an Induction Motor Works by Equations (and Physics) The magnetic field in the air gap from the voltage applied to the stator: The stator has three sets of windings that are aligned at 10 degrees to

More information

ELECTROMAGNETIC FIELD

ELECTROMAGNETIC FIELD UNIT-III INTRODUCTION: In our study of static fields so far, we have observed that static electric fields are produced by electric charges, static magnetic fields are produced by charges in motion or by

More information

Chapter 3 AUTOMATIC VOLTAGE CONTROL

Chapter 3 AUTOMATIC VOLTAGE CONTROL Chapter 3 AUTOMATIC VOLTAGE CONTROL . INTRODUCTION TO EXCITATION SYSTEM The basic function of an excitation system is to provide direct current to the field winding of the synchronous generator. The excitation

More information

-magnetic dipoles are largely analogous to electric dipole moments -both types of dipoles

-magnetic dipoles are largely analogous to electric dipole moments -both types of dipoles Student Name Date Manipulating Magnetization Electric dipole moment: Magnetic dipole moment: -magnetic dipoles are largely analogous to electric dipole moments -both types of dipoles -physical separation

More information

a. Type 0 system. b. Type I system. c. Type 2 system. d. Type 3 system.

a. Type 0 system. b. Type I system. c. Type 2 system. d. Type 3 system. 1-The steady-state error of a feedback control system with an acceleration input becomes finite in a a. Type 0 system. b. Type I system. c. Type 2 system. d. Type 3 system. 2-A good control system has

More information

Basic Electrical Engineering SYLLABUS. Total No. of Lecture Hrs. : 50 Exam Marks : 80

Basic Electrical Engineering SYLLABUS. Total No. of Lecture Hrs. : 50 Exam Marks : 80 SYLLABUS Subject Code: /25 No. of Lecture Hrs./ Week : 04 IA Marks : 20 Exam Hours : 03 Total No. of Lecture Hrs. : 50 Exam Marks : 80 Course objectives: Impart a basic knowledge of electrical quantities

More information

UNIT-III Maxwell's equations (Time varying fields)

UNIT-III Maxwell's equations (Time varying fields) UNIT-III Maxwell's equations (Time varying fields) Faraday s law, transformer emf &inconsistency of ampere s law Displacement current density Maxwell s equations in final form Maxwell s equations in word

More information

ME 3210 Mechatronics II Laboratory Lab 4: DC Motor Characteristics

ME 3210 Mechatronics II Laboratory Lab 4: DC Motor Characteristics ME 3210 Mechatronics II Laboratory Lab 4: DC Motor Characteristics Introduction Often, due to budget constraints or convenience, engineers must use whatever tools are available to create new or improved

More information