HILBERT TRANSFORM ALGORITHM IN LABVIEW

Size: px
Start display at page:

Download "HILBERT TRANSFORM ALGORITHM IN LABVIEW"

Transcription

1 Scienific Bullein of he Peru Maior Universiy of îrgu Mureş Vol. 0 (XXVII) no., 03 ISSN-L (Prin, ISSN X (Online), ISSN (CD-ROM) HILBER RANSFORM ALGORIHM IN LABVIEW Oana MUNEAN echnical Universiy of Cluj-Napoca, Romania, Faculy of Elecrical Engineering, George Bariţiu s. no. 6-8, Cluj, Phone , Fax , oana.munean@ehm.ucluj.ro Absrac his paper presens an alernaive algorihm for Hilber ransform calculaion. his algorihm was implemened in LabVIEW sofware. I was esed for some differen elemenary signals. he resuls were compared wih he mehod proposed by LabVIEW programming environmen of Naional Insrumens Company. Keywords: Hilber ransform, Fourier ransform, analyical signal.. Inroducion I is known ha he Discree Fourier ransform is he mahemaical ool used in signal processing and analysis. Also, in programming environmens (such as Malab, Mahcad, LabView, C + +), he procedures for calculaing he Discree Fourier ransform are presened by various algorihms. his paper proposes an algorihm for compuing he Discree Hilber ransform, saring from known mehods for calculaing he discree Fourier ransform. Wih he mehod proposed in he paper, he user of a paricular programming environmen can quickly implemen he algorihm of Discree Hilber ransform. Hilber ransform is a linear operaor, inroduced in 905 by David Hilber. I is used in mahemaics and signal processing. Alhough i was discovered more han a cenury ago, i was lef over a while. Wih he developmen produced in he field of compuer echnology, i was possible o board wih success he Hilber ransform. Hilber ransform has shown is imporance no only as a mahemaical ool bu also in engineering. here are muliple applicaions of Hilber ransform in elecrical drives, auomoive, geophysical, mulimedia, radio and elevision. Hilber ransform is used in signal heory for analyical signals synhesis in he modulaion process. In Elecrical Engineering, Hilber ransform is well known because i manages o do he ± π/ phase shif exising among sinusoidal signals. An imporan aspec abou Hilber ransform is ha i keeps he original signal domain. his presen aricle proposes o develop a ime domain algorihm calculaion of Hilber ransform. I also proposed o sudy he algorihm behavior for differen inpu signals. In he beginning par of his paper, are presened heoreical consideraions of elemenary signals and he ransiion from ime o frequency domain. hen, i is se ou he Hilber ransform boh in ime domain and frequency domain. Hilber ransform of a real signal is inroduced by convoluion, as an imaginary par of he analyical signal and by ±π/ phase shif. Afer he Hilber ransform algorihm is developed, i is implemened in LabVIEW environmen. he procedure sars wih a harmonic signal. his signal is sampled and hen i is passed from ime domain o frequency domain. he signal suppors some mahemaical ransformaion before i reurns o ime domain. hus is obained an algorihm for compuing he Hilber ransform in ime domain. As well, his paper will highligh he Hilber ransform for differen inpu signals. ([3]-[7]). General presenaion here is informaion ha canno be highlighed in ime domain signals. For hose signals i is used frequency domain. Wih Fourier ransform i is possible o pass a signal from ime domain o frequency domain. Coninuous Fourier ransform: j X(j ) F{} e d () F X(j {X(j )e j )} d () A discree signal is given by a vecor of daa acquired from a ime coninuous signal. A ime coninuous signal is called analog. A discree signal is 49

2 called digial. Le here be x ( a ime coninuous signal. x [n] is obained by ime discreizaion of x ( wih. Where is he sampling sep. n, x [n ] x[n] k, X [jk ] X[k], Discree Fourier ransform: N jkn X [k] FD{x[n]} x[n]e N (3) k 0 N jkn X [k] FD {X[k]} X[k]e N (4) N n 0 Elemenary signals: his aricle uses he following signals: sine wave, square wave, riangle wave and sawooh wave. Hilber ransform. Definiions. Properies For x (, Hilber ransform produces a H {} funcion. In signal processing i is found like x ˆ(. H (} xˆ( [] (5) where x ˆ( is called he conjugae of x (. a. Hilber ransform defined by he convoluion produc Hilber ransform represens in fac he convoluion beween x ( and. H {} (6) xˆ ( v.p. ) d (7) xˆ( [lim ) d 0 (8) lim ) d ] 0 he negaive form of he original signal can be obained if Hilber ransform i is applied wice: [ x ˆ( ] H {ˆ( x } (9) he Hilber ransform used four imes on he same real signal gives us he original funcion back. b. Hilber ransform defined as imaginary par of an analyical signal A Hilber pair is formed by x ( signal ogeher wih he x ˆ( signal. An analyical signal is a complex signal. he real par is given by x ( and he imaginary par is given by x ˆ(. Le here be he analyical signal z (, hen: z ( jxˆ( (0) he module of he complex signal z ( is: z( x ( and i is called analyical signal envelope, and he phase of he complex signal is: xˆ ( () xˆ( arg z ( an () H {} Im{z(} (3) c. Hilber ransform defined by phase shif: By applying he Hilber ransform on a signal under harmonic form, each cosine harmonic becomes a specral componen wih he same magniude and wih ( ) phase shif. his mehod can be applied on periodic signals. For example i is given he signal cos( 0 ) and Hilber ransform is calculaed as follows: H{cos( 0 } cos( 0 ) sin( 0 (4) H{sin( 0 } sin( 0 ) cos( 0 (5) where 0 0 Hilber ransform in frequency domain: j,f 0 F { } 0,f 0 (6) j,f 0 In frequency domain, Hilber ransform is obained by muliplying he values of Fourier ransform a posiive frequencies wih j and a negaive frequencies wih j In fac, by muliplying by j he ±π/ phase shif i s realized. H{X(j )} Xˆ (j ) (7) jsgn( )X(j ) Inverse Hilber ransform in frequency domain: [Xˆ (j )] ( jsgn( )) X(j ) sgn ( )X(j ) X(j ) (8) F{[Xˆ (j )] } H{H{}} (9) Le here be z ( jxˆ( he Fourier ransform of z ( is: F{z(} Z(j ) X(j ) j( jsgn( )X(j )) (0) Z (j ) X(j ) sgn( )X(j ) () Where: Z (j ) X(j )[ sgn( )] () 0,if 0 sgn( ) (3),if 0 50

3 X(j ) ( ),if 0 Z (j ) (4) 0,if 0 I can be seen ha he analyical signal has always a null specral characerisic for negaive frequencies. ([]-[], [9], []-[4]) 3. Hilber ransform algorihm o complee he Hilber ransform algorihm, i is necessary o follow he nex seps: ) Discreize he signal ) Deermine he Discree Fourier ransform 3) Muliply he obained signal by ( j ) 4) Apply he Invers Fourier ransform ) he discree signal: x[n] {0;0.063;0.3;0.9;0.5;0.3; 0.37;0.43} ) he Fourier ransform: X[k] {.7 0.0i; i; 0. 0.i; 0. 0.i; 0. 00i; 0. 0.i; 0. 0.i; i} 3) he signal muliplied by ( j ) : Xˆ [k] { 0.7i; i;0. 0.i;0. 0.i; 0.i;0. 0.i;0. 0.i; i} 4) he Inverse Fourier ransform: xˆ( {0.3; 0.06; 0.06; 0.; 0.; 0.06; 0.06;0.4} For example, i is given x ( Fig. : Virual Insrumen Block Diagram 4. Device Descripion he implemened virual insrumen is a relaive simple one and i can be observed in Figure. o generae he signal, he program uses subrouine Simulae Signal. o deermine Hilber ransform i is uses he exising subvi Fas Hilber ransform.vi. o discreize he signal, he program uses subrouine Conver from Dynamic Daa o pass from ime o frequency domain, he program uses subvi FF.vi : o pass from frequency o ime domain, he program uses subvi Inverse FF.vi. o generae he discree signal sir[n]={,,...-,- }, i is creaed a subvi, Generae sir : Fig. : I is generaed a signal wih { } values. 5. Graphical Fig. 3: Virual Insrumen Block Diagram o deermine Hilber ransform by wo differen mehods For a sinusoidal signal inpu: As i can be seen in Figure 4 Hilber ransform is deermined wih wo differen mehods: ) he exising mehod in LabVIEW - Fas Hilber ransform.vi. ) he algorihm creaed and implemened in LabVIEW - Hilber algorim.vi. hen, i was chosen a sine wave signal. he Hilber ransform was deermined wih each mehod. he resuls were compared. 5

4 a) Fig. 6: Hilber ransform for a riangle wave inpu signal For a sawooh wave inpu signal: b) Fig. 4: Hilber ransform of he Sine wave signal inpu a) wih exising mehod b) wih implemened mehod For a square wave inpu signal: a H{ a (} ln (5) a Fig. 5: Hilber ransform for a square wave inpu signal For a riangle wave inpu signal: H { a, a} {ln a a ln } a a (6) Fig.7: Hilber ransform for a saw ooh wave inpu signal ([8], [0], [5]-[9]) 6. Conclusions ime domain calculaion of Hilber ransform was performed using polynomial approximaions. his algorihm is difficul o implemen. he numerical mehod presened in his paper allows he passage form frequency domain o ime domain, and vice versa, using he fas Fourier ransform ool ool which involves a small amoun of compuaion and high compuaion speed. his paper offers an alernaive mehod for Hilber ransform calculaion. he algorihm obained was implemened in LabVIEW sofware. he resuls were compared wih he mehod proposed by LabVIEW environmen. he Hilber ransform can be used o creae an analyic signal form a real signal. As we seen i is possible o use he muliple Hilber ransform o calculae he inverse Hilber ransform. Acknowledgmen his paper was suppored by he projec Docoral sudies in engineering science for developing he knowledge conrac no. 494/

5 References [] Andrade, M. and Messina, A.R. (005), Applicaion of Hilber echniques o he Sudy of Subsynchronous Oscillaions. Inernaional Conference on Power Sysems ransiens (IPS 05) in Monreal, Canada, No. IPS05-7. [] Cakrak, F. and Loughlin, PJ. (00), Muliwindow ime-varying Specrum wih Insananeous Bandwidh and Frequency Consrains, IEEE ransacions on Signal Processing, vol. 49, no. 8, pp [3] Carianu, Gh., Săvescu, M., Consanin, I., Sanomir, D. (980), Semnale, circuie şi siseme [Signals, circuis and signals], Ediura Didacică şi Pedagogică Bucureşi. [4] Creangă, E., Muneanu, I., Bracu, A., Culea, M. (00), Semnale, Circuie şi Siseme [Signals, circuis and sysems], Ediura Academică, Galaţi. [5] Feldman, M. (00), Hilber ransforms, in Encyclopedia of Vibraion, New York: Academic, pp [6] Feldman, M. (006), Considering High Harmonics for Idenificaion of Nonlinear Sysems by Hilber ransform. Mechanical Sysems and Signal Processing. [7] Feldman, M. (006), ime-varying Vibraion Decomposiion and Analysis Based on he Hilber ransform, Journal of Sound and Vibraion, Vol 95/3-5 pp [8] Goswami, J.C., Hoefel, A.E. (004), Algorihms for esimaing insananeous frequency, Signal Processing 84, [9] Hahn, S.L. (996), Hilber ransforms in signal processing, Arech House, Inc., Boson. [0] Johansson, M., he Hilber ransform, Maser hesis Mahemaics / Applied Mahemaics. [] Kerschen, G., Worden, K., Vakakis,A. F. and Golinval, J.C. (006), Pas, presen and fuure of nonlinear sysem idenificaion in srucural dynamics. review aricle, Mechanical Sysems and Signal Processing, Volume 0, Issue 3, Pages [] King F.W. (009), Hilber ransforms: Volume, Volume, Cambridge Universiy Press. [3] Quek, S.., ua, P.S. and Wang, Q. (003), Deecing anomalies in beams and plae based on he Hilber Huang ransform of real signals. Smar Maer, Sruc., pp [4] Srîmbu, C. (007), Semnale şi Circuie Elecronice [Elecronic Signals and Circuis], Ediura Academiei Forelor Aeriene Hernri Coandă, Braşov. [5] awfiq, I., Vinh,. (003), Conribuion o he Exension of Modal Analysis o Non-Linear Srucure Using Volerra Funcional Series, Mechanical Sysems and Signal Processing, Volume 7, Issue, p [6] jahjowidodo,., Al-Bender, F., Brussel, H. Van (006), Idenificaion of Backlash in Mechanical Sysems Experimenal dynamic idenificaion of backlash using skeleon mehods Mechanical Sysems and Signal Processing. [7] Wang, L., Zhang, J., Wang, C. and Hu, S. (003), ime-frequency Analysis of Nonlinear Sysems: he Skeleon Linear Model and he Skeleon Curves. ransacions of he ASME, vol. 5, pp [8] Yang, B., Seve S.C. (004), Inerpreaion ofcrack-induced roor non-linear response using insananeous frequency. Mechanical Sysems and Signal Processin, pp [9] Yang, W.-X., Hull, J.B., Seymour and M.D. (004), A conribuion o he applicabiliy of complex wavele analysis of ulrasonic signals ND and E Inernaional. Vol. 37, no. 6, pp

4.2 The Fourier Transform

4.2 The Fourier Transform 4.2. THE FOURIER TRANSFORM 57 4.2 The Fourier Transform 4.2.1 Inroducion One way o look a Fourier series is ha i is a ransformaion from he ime domain o he frequency domain. Given a signal f (), finding

More information

Chapter 3: Signal Transmission and Filtering. A. Bruce Carlson Paul B. Crilly 2010 The McGraw-Hill Companies

Chapter 3: Signal Transmission and Filtering. A. Bruce Carlson Paul B. Crilly 2010 The McGraw-Hill Companies Communicaion Sysems, 5e Chaper 3: Signal Transmission and Filering A. Bruce Carlson Paul B. Crilly 00 The McGraw-Hill Companies Chaper 3: Signal Transmission and Filering Response of LTI sysems Signal

More information

Variational Iteration Method for Solving System of Fractional Order Ordinary Differential Equations

Variational Iteration Method for Solving System of Fractional Order Ordinary Differential Equations IOSR Journal of Mahemaics (IOSR-JM) e-issn: 2278-5728, p-issn: 2319-765X. Volume 1, Issue 6 Ver. II (Nov - Dec. 214), PP 48-54 Variaional Ieraion Mehod for Solving Sysem of Fracional Order Ordinary Differenial

More information

Application of a Stochastic-Fuzzy Approach to Modeling Optimal Discrete Time Dynamical Systems by Using Large Scale Data Processing

Application of a Stochastic-Fuzzy Approach to Modeling Optimal Discrete Time Dynamical Systems by Using Large Scale Data Processing Applicaion of a Sochasic-Fuzzy Approach o Modeling Opimal Discree Time Dynamical Sysems by Using Large Scale Daa Processing AA WALASZE-BABISZEWSA Deparmen of Compuer Engineering Opole Universiy of Technology

More information

Random Walk with Anti-Correlated Steps

Random Walk with Anti-Correlated Steps Random Walk wih Ani-Correlaed Seps John Noga Dirk Wagner 2 Absrac We conjecure he expeced value of random walks wih ani-correlaed seps o be exacly. We suppor his conjecure wih 2 plausibiliy argumens and

More information

Improved Approximate Solutions for Nonlinear Evolutions Equations in Mathematical Physics Using the Reduced Differential Transform Method

Improved Approximate Solutions for Nonlinear Evolutions Equations in Mathematical Physics Using the Reduced Differential Transform Method Journal of Applied Mahemaics & Bioinformaics, vol., no., 01, 1-14 ISSN: 179-660 (prin), 179-699 (online) Scienpress Ld, 01 Improved Approimae Soluions for Nonlinear Evoluions Equaions in Mahemaical Physics

More information

Some Basic Information about M-S-D Systems

Some Basic Information about M-S-D Systems Some Basic Informaion abou M-S-D Sysems 1 Inroducion We wan o give some summary of he facs concerning unforced (homogeneous) and forced (non-homogeneous) models for linear oscillaors governed by second-order,

More information

Chapter 2. First Order Scalar Equations

Chapter 2. First Order Scalar Equations Chaper. Firs Order Scalar Equaions We sar our sudy of differenial equaions in he same way he pioneers in his field did. We show paricular echniques o solve paricular ypes of firs order differenial equaions.

More information

On the Solutions of First and Second Order Nonlinear Initial Value Problems

On the Solutions of First and Second Order Nonlinear Initial Value Problems Proceedings of he World Congress on Engineering 13 Vol I, WCE 13, July 3-5, 13, London, U.K. On he Soluions of Firs and Second Order Nonlinear Iniial Value Problems Sia Charkri Absrac In his paper, we

More information

Accurate RMS Calculations for Periodic Signals by. Trapezoidal Rule with the Least Data Amount

Accurate RMS Calculations for Periodic Signals by. Trapezoidal Rule with the Least Data Amount Adv. Sudies Theor. Phys., Vol. 7, 3, no., 3-33 HIKARI Ld, www.m-hikari.com hp://dx.doi.org/.988/asp.3.3999 Accurae RS Calculaions for Periodic Signals by Trapezoidal Rule wih he Leas Daa Amoun Sompop Poomjan,

More information

Matlab and Python programming: how to get started

Matlab and Python programming: how to get started Malab and Pyhon programming: how o ge sared Equipping readers he skills o wrie programs o explore complex sysems and discover ineresing paerns from big daa is one of he main goals of his book. In his chaper,

More information

Simulation-Solving Dynamic Models ABE 5646 Week 2, Spring 2010

Simulation-Solving Dynamic Models ABE 5646 Week 2, Spring 2010 Simulaion-Solving Dynamic Models ABE 5646 Week 2, Spring 2010 Week Descripion Reading Maerial 2 Compuer Simulaion of Dynamic Models Finie Difference, coninuous saes, discree ime Simple Mehods Euler Trapezoid

More information

Representing a Signal. Continuous-Time Fourier Methods. Linearity and Superposition. Real and Complex Sinusoids. Jean Baptiste Joseph Fourier

Representing a Signal. Continuous-Time Fourier Methods. Linearity and Superposition. Real and Complex Sinusoids. Jean Baptiste Joseph Fourier Represening a Signal Coninuous-ime ourier Mehods he convoluion mehod for finding he response of a sysem o an exciaion aes advanage of he lineariy and imeinvariance of he sysem and represens he exciaion

More information

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still.

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still. Lecure - Kinemaics in One Dimension Displacemen, Velociy and Acceleraion Everyhing in he world is moving. Nohing says sill. Moion occurs a all scales of he universe, saring from he moion of elecrons in

More information

Explaining Total Factor Productivity. Ulrich Kohli University of Geneva December 2015

Explaining Total Factor Productivity. Ulrich Kohli University of Geneva December 2015 Explaining Toal Facor Produciviy Ulrich Kohli Universiy of Geneva December 2015 Needed: A Theory of Toal Facor Produciviy Edward C. Presco (1998) 2 1. Inroducion Toal Facor Produciviy (TFP) has become

More information

( ) ( ) if t = t. It must satisfy the identity. So, bulkiness of the unit impulse (hyper)function is equal to 1. The defining characteristic is

( ) ( ) if t = t. It must satisfy the identity. So, bulkiness of the unit impulse (hyper)function is equal to 1. The defining characteristic is UNIT IMPULSE RESPONSE, UNIT STEP RESPONSE, STABILITY. Uni impulse funcion (Dirac dela funcion, dela funcion) rigorously defined is no sricly a funcion, bu disribuion (or measure), precise reamen requires

More information

EE 315 Notes. Gürdal Arslan CLASS 1. (Sections ) What is a signal?

EE 315 Notes. Gürdal Arslan CLASS 1. (Sections ) What is a signal? EE 35 Noes Gürdal Arslan CLASS (Secions.-.2) Wha is a signal? In his class, a signal is some funcion of ime and i represens how some physical quaniy changes over some window of ime. Examples: velociy of

More information

From Complex Fourier Series to Fourier Transforms

From Complex Fourier Series to Fourier Transforms Topic From Complex Fourier Series o Fourier Transforms. Inroducion In he previous lecure you saw ha complex Fourier Series and is coeciens were dened by as f ( = n= C ne in! where C n = T T = T = f (e

More information

ADDITIONAL PROBLEMS (a) Find the Fourier transform of the half-cosine pulse shown in Fig. 2.40(a). Additional Problems 91

ADDITIONAL PROBLEMS (a) Find the Fourier transform of the half-cosine pulse shown in Fig. 2.40(a). Additional Problems 91 ddiional Problems 9 n inverse relaionship exiss beween he ime-domain and freuency-domain descripions of a signal. Whenever an operaion is performed on he waveform of a signal in he ime domain, a corresponding

More information

UNIVERSITY OF TRENTO MEASUREMENTS OF TRANSIENT PHENOMENA WITH DIGITAL OSCILLOSCOPES. Antonio Moschitta, Fabrizio Stefani, Dario Petri.

UNIVERSITY OF TRENTO MEASUREMENTS OF TRANSIENT PHENOMENA WITH DIGITAL OSCILLOSCOPES. Antonio Moschitta, Fabrizio Stefani, Dario Petri. UNIVERSIY OF RENO DEPARMEN OF INFORMAION AND COMMUNICAION ECHNOLOGY 385 Povo reno Ialy Via Sommarive 4 hp://www.di.unin.i MEASUREMENS OF RANSIEN PHENOMENA WIH DIGIAL OSCILLOSCOPES Anonio Moschia Fabrizio

More information

6.003: Signal Processing

6.003: Signal Processing 6.003: Signal Processing Working wih Signals Overview of Subjec Signals: Definiions, Examples, and Operaions Basis Funcions and Transforms Sepember 6, 2018 Welcome o 6.003 Piloing a new version of 6.003

More information

STATE-SPACE MODELLING. A mass balance across the tank gives:

STATE-SPACE MODELLING. A mass balance across the tank gives: B. Lennox and N.F. Thornhill, 9, Sae Space Modelling, IChemE Process Managemen and Conrol Subjec Group Newsleer STE-SPACE MODELLING Inroducion: Over he pas decade or so here has been an ever increasing

More information

Spring Ammar Abu-Hudrouss Islamic University Gaza

Spring Ammar Abu-Hudrouss Islamic University Gaza Chaper 7 Reed-Solomon Code Spring 9 Ammar Abu-Hudrouss Islamic Universiy Gaza ١ Inroducion A Reed Solomon code is a special case of a BCH code in which he lengh of he code is one less han he size of he

More information

An introduction to the theory of SDDP algorithm

An introduction to the theory of SDDP algorithm An inroducion o he heory of SDDP algorihm V. Leclère (ENPC) Augus 1, 2014 V. Leclère Inroducion o SDDP Augus 1, 2014 1 / 21 Inroducion Large scale sochasic problem are hard o solve. Two ways of aacking

More information

A complex discrete (or digital) signal x(n) is defined in a

A complex discrete (or digital) signal x(n) is defined in a Chaper Complex Signals A number of signal processing applicaions make use of complex signals. Some examples include he characerizaion of he Fourier ransform, blood velociy esimaions, and modulaion of signals

More information

Air Traffic Forecast Empirical Research Based on the MCMC Method

Air Traffic Forecast Empirical Research Based on the MCMC Method Compuer and Informaion Science; Vol. 5, No. 5; 0 ISSN 93-8989 E-ISSN 93-8997 Published by Canadian Cener of Science and Educaion Air Traffic Forecas Empirical Research Based on he MCMC Mehod Jian-bo Wang,

More information

Institute for Mathematical Methods in Economics. University of Technology Vienna. Singapore, May Manfred Deistler

Institute for Mathematical Methods in Economics. University of Technology Vienna. Singapore, May Manfred Deistler MULTIVARIATE TIME SERIES ANALYSIS AND FORECASTING Manfred Deisler E O S Economerics and Sysems Theory Insiue for Mahemaical Mehods in Economics Universiy of Technology Vienna Singapore, May 2004 Inroducion

More information

14 Autoregressive Moving Average Models

14 Autoregressive Moving Average Models 14 Auoregressive Moving Average Models In his chaper an imporan parameric family of saionary ime series is inroduced, he family of he auoregressive moving average, or ARMA, processes. For a large class

More information

d 1 = c 1 b 2 - b 1 c 2 d 2 = c 1 b 3 - b 1 c 3

d 1 = c 1 b 2 - b 1 c 2 d 2 = c 1 b 3 - b 1 c 3 and d = c b - b c c d = c b - b c c This process is coninued unil he nh row has been compleed. The complee array of coefficiens is riangular. Noe ha in developing he array an enire row may be divided or

More information

CHAPTER 2 Signals And Spectra

CHAPTER 2 Signals And Spectra CHAPER Signals And Specra Properies of Signals and Noise In communicaion sysems he received waveform is usually caegorized ino he desired par conaining he informaion, and he undesired par. he desired par

More information

6.2 Transforms of Derivatives and Integrals.

6.2 Transforms of Derivatives and Integrals. SEC. 6.2 Transforms of Derivaives and Inegrals. ODEs 2 3 33 39 23. Change of scale. If l( f ()) F(s) and c is any 33 45 APPLICATION OF s-shifting posiive consan, show ha l( f (c)) F(s>c)>c (Hin: In Probs.

More information

Outline Chapter 2: Signals and Systems

Outline Chapter 2: Signals and Systems Ouline Chaper 2: Signals and Sysems Signals Basics abou Signal Descripion Fourier Transform Harmonic Decomposiion of Periodic Waveforms (Fourier Analysis) Definiion and Properies of Fourier Transform Imporan

More information

6.003: Signals and Systems

6.003: Signals and Systems 6.3: Signals and Sysems Lecure 7 April 8, 6.3: Signals and Sysems C Fourier ransform C Fourier ransform Represening signals by heir frequency conen. X(j)= x()e j d ( analysis equaion) x()= π X(j)e j d

More information

6.003 Homework #9 Solutions

6.003 Homework #9 Solutions 6.003 Homework #9 Soluions Problems. Fourier varieies a. Deermine he Fourier series coefficiens of he following signal, which is periodic in 0. x () 0 3 0 a 0 5 a k a k 0 πk j3 e 0 e j πk 0 jπk πk e 0

More information

More Digital Logic. t p output. Low-to-high and high-to-low transitions could have different t p. V in (t)

More Digital Logic. t p output. Low-to-high and high-to-low transitions could have different t p. V in (t) EECS 4 Spring 23 Lecure 2 EECS 4 Spring 23 Lecure 2 More igial Logic Gae delay and signal propagaion Clocked circui elemens (flip-flop) Wriing a word o memory Simplifying digial circuis: Karnaugh maps

More information

6.003 Homework #9 Solutions

6.003 Homework #9 Solutions 6.00 Homework #9 Soluions Problems. Fourier varieies a. Deermine he Fourier series coefficiens of he following signal, which is periodic in 0. x () 0 0 a 0 5 a k sin πk 5 sin πk 5 πk for k 0 a k 0 πk j

More information

23.2. Representing Periodic Functions by Fourier Series. Introduction. Prerequisites. Learning Outcomes

23.2. Representing Periodic Functions by Fourier Series. Introduction. Prerequisites. Learning Outcomes Represening Periodic Funcions by Fourier Series 3. Inroducion In his Secion we show how a periodic funcion can be expressed as a series of sines and cosines. We begin by obaining some sandard inegrals

More information

EECS 2602 Winter Laboratory 3 Fourier series, Fourier transform and Bode Plots in MATLAB

EECS 2602 Winter Laboratory 3 Fourier series, Fourier transform and Bode Plots in MATLAB EECS 6 Winer 7 Laboraory 3 Fourier series, Fourier ransform and Bode Plos in MATLAB Inroducion: The objecives of his lab are o use MATLAB:. To plo periodic signals wih Fourier series represenaion. To obain

More information

IE1206 Embedded Electronics

IE1206 Embedded Electronics E06 Embedded Elecronics Le Le3 Le4 Le Ex Ex P-block Documenaion, Seriecom Pulse sensors,, R, P, serial and parallel K LAB Pulse sensors, Menu program Sar of programing ask Kirchhoffs laws Node analysis

More information

Linear Time-invariant systems, Convolution, and Cross-correlation

Linear Time-invariant systems, Convolution, and Cross-correlation Linear Time-invarian sysems, Convoluion, and Cross-correlaion (1) Linear Time-invarian (LTI) sysem A sysem akes in an inpu funcion and reurns an oupu funcion. x() T y() Inpu Sysem Oupu y() = T[x()] An

More information

Stability and Bifurcation in a Neural Network Model with Two Delays

Stability and Bifurcation in a Neural Network Model with Two Delays Inernaional Mahemaical Forum, Vol. 6, 11, no. 35, 175-1731 Sabiliy and Bifurcaion in a Neural Nework Model wih Two Delays GuangPing Hu and XiaoLing Li School of Mahemaics and Physics, Nanjing Universiy

More information

Lecture 2: Optics / C2: Quantum Information and Laser Science

Lecture 2: Optics / C2: Quantum Information and Laser Science Lecure : Opics / C: Quanum Informaion and Laser Science Ocober 9, 8 1 Fourier analysis This branch of analysis is exremely useful in dealing wih linear sysems (e.g. Maxwell s equaions for he mos par),

More information

System Processes input signal (excitation) and produces output signal (response)

System Processes input signal (excitation) and produces output signal (response) Signal A funcion of ime Sysem Processes inpu signal (exciaion) and produces oupu signal (response) Exciaion Inpu Sysem Oupu Response 1. Types of signals 2. Going from analog o digial world 3. An example

More information

Determination of the Sampling Period Required for a Fast Dynamic Response of DC-Motors

Determination of the Sampling Period Required for a Fast Dynamic Response of DC-Motors Deerminaion of he Sampling Period Required for a Fas Dynamic Response of DC-Moors J. A. GA'EB, Deparmen of Elecrical and Compuer Eng, The Hashemie Universiy, P.O.Box 15459, Posal code 13115, Zerka, JORDAN

More information

Modified Iterative Method For the Solution of Fredholm Integral Equations of the Second Kind via Matrices

Modified Iterative Method For the Solution of Fredholm Integral Equations of the Second Kind via Matrices Modified Ieraive Mehod For he Soluion of Fredholm Inegral Equaions of he Second Kind via Marices Shoukralla, E. S 1, Saber. Nermein. A 2 and EL-Serafi, S. A. 3 1s Auhor, Prof. Dr, faculy of engineering

More information

RC, RL and RLC circuits

RC, RL and RLC circuits Name Dae Time o Complee h m Parner Course/ Secion / Grade RC, RL and RLC circuis Inroducion In his experimen we will invesigae he behavior of circuis conaining combinaions of resisors, capaciors, and inducors.

More information

Chapter 5 Digital PID control algorithm. Hesheng Wang Department of Automation,SJTU 2016,03

Chapter 5 Digital PID control algorithm. Hesheng Wang Department of Automation,SJTU 2016,03 Chaper 5 Digial PID conrol algorihm Hesheng Wang Deparmen of Auomaion,SJTU 216,3 Ouline Absrac Quasi-coninuous PID conrol algorihm Improvemen of sandard PID algorihm Choosing parameer of PID regulaor Brief

More information

6.003: Signals and Systems

6.003: Signals and Systems 6.003: Signals and Sysems Relaions among Fourier Represenaions November 5, 20 Mid-erm Examinaion #3 Wednesday, November 6, 7:30-9:30pm, No reciaions on he day of he exam. Coverage: Lecures 8 Reciaions

More information

Signal processing. A. Sestieri Dipartimento di Meccanica e Aeronautica University La Sapienza, Rome

Signal processing. A. Sestieri Dipartimento di Meccanica e Aeronautica University La Sapienza, Rome Signal processing A. Sesieri Diparimeno di Meccanica e Aeronauica Universiy La Sapienza, Rome Presenaion layou - Fourier series and Fourier ransforms - Leakage - Aliasing - Analog versus digial signals

More information

Time Series Forecasting using CCA and Kohonen Maps - Application to Electricity Consumption

Time Series Forecasting using CCA and Kohonen Maps - Application to Electricity Consumption ESANN'2000 proceedings - European Symposium on Arificial Neural Neworks Bruges (Belgium), 26-28 April 2000, D-Faco public., ISBN 2-930307-00-5, pp. 329-334. Time Series Forecasing using CCA and Kohonen

More information

Mechanical Fatigue and Load-Induced Aging of Loudspeaker Suspension. Wolfgang Klippel,

Mechanical Fatigue and Load-Induced Aging of Loudspeaker Suspension. Wolfgang Klippel, Mechanical Faigue and Load-Induced Aging of Loudspeaker Suspension Wolfgang Klippel, Insiue of Acousics and Speech Communicaion Dresden Universiy of Technology presened a he ALMA Symposium 2012, Las Vegas

More information

Wavelet Variance, Covariance and Correlation Analysis of BSE and NSE Indexes Financial Time Series

Wavelet Variance, Covariance and Correlation Analysis of BSE and NSE Indexes Financial Time Series Wavele Variance, Covariance and Correlaion Analysis of BSE and NSE Indexes Financial Time Series Anu Kumar 1*, Sangeea Pan 1, Lokesh Kumar Joshi 1 Deparmen of Mahemaics, Universiy of Peroleum & Energy

More information

Modal identification of structures from roving input data by means of maximum likelihood estimation of the state space model

Modal identification of structures from roving input data by means of maximum likelihood estimation of the state space model Modal idenificaion of srucures from roving inpu daa by means of maximum likelihood esimaion of he sae space model J. Cara, J. Juan, E. Alarcón Absrac The usual way o perform a forced vibraion es is o fix

More information

Optimal Control of Dc Motor Using Performance Index of Energy

Optimal Control of Dc Motor Using Performance Index of Energy American Journal of Engineering esearch AJE 06 American Journal of Engineering esearch AJE e-issn: 30-0847 p-issn : 30-0936 Volume-5, Issue-, pp-57-6 www.ajer.org esearch Paper Open Access Opimal Conrol

More information

4/9/2012. Signals and Systems KX5BQY EE235. Today s menu. System properties

4/9/2012. Signals and Systems   KX5BQY EE235. Today s menu. System properties Signals and Sysems hp://www.youube.com/v/iv6fo KX5BQY EE35 oday s menu Good weeend? Sysem properies iy Superposiion! Sysem properies iy: A Sysem is if i mees he following wo crieria: If { x( )} y( ) and

More information

6.003: Signals and Systems. Relations among Fourier Representations

6.003: Signals and Systems. Relations among Fourier Representations 6.003: Signals and Sysems Relaions among Fourier Represenaions April 22, 200 Mid-erm Examinaion #3 W ednesday, April 28, 7:30-9:30pm. No reciaions on he day of he exam. Coverage: Lecures 20 Reciaions 20

More information

6.003: Signals and Systems Lecture 20 November 17, 2011

6.003: Signals and Systems Lecture 20 November 17, 2011 6.3: Signals and Sysems Lecure November 7, 6.3: Signals and Sysems Applicaions of Fourier ransforms Filering Noion of a filer. LI sysems canno creae new frequencies. can only scale magniudes and shif phases

More information

SOLUTIONS TO ECE 3084

SOLUTIONS TO ECE 3084 SOLUTIONS TO ECE 384 PROBLEM 2.. For each sysem below, specify wheher or no i is: (i) memoryless; (ii) causal; (iii) inverible; (iv) linear; (v) ime invarian; Explain your reasoning. If he propery is no

More information

Homotopy Perturbation Method for Solving Some Initial Boundary Value Problems with Non Local Conditions

Homotopy Perturbation Method for Solving Some Initial Boundary Value Problems with Non Local Conditions Proceedings of he World Congress on Engineering and Compuer Science 23 Vol I WCECS 23, 23-25 Ocober, 23, San Francisco, USA Homoopy Perurbaion Mehod for Solving Some Iniial Boundary Value Problems wih

More information

Guest Lectures for Dr. MacFarlane s EE3350 Part Deux

Guest Lectures for Dr. MacFarlane s EE3350 Part Deux Gues Lecures for Dr. MacFarlane s EE3350 Par Deux Michael Plane Mon., 08-30-2010 Wrie name in corner. Poin ou his is a review, so I will go faser. Remind hem o go lisen o online lecure abou geing an A

More information

THE DISCRETE WAVELET TRANSFORM

THE DISCRETE WAVELET TRANSFORM . 4 THE DISCRETE WAVELET TRANSFORM 4 1 Chaper 4: THE DISCRETE WAVELET TRANSFORM 4 2 4.1 INTRODUCTION TO DISCRETE WAVELET THEORY The bes way o inroduce waveles is hrough heir comparison o Fourier ransforms,

More information

Vehicle Arrival Models : Headway

Vehicle Arrival Models : Headway Chaper 12 Vehicle Arrival Models : Headway 12.1 Inroducion Modelling arrival of vehicle a secion of road is an imporan sep in raffic flow modelling. I has imporan applicaion in raffic flow simulaion where

More information

Západočeská Univerzita v Plzni, Czech Republic and Groupe ESIEE Paris, France

Západočeská Univerzita v Plzni, Czech Republic and Groupe ESIEE Paris, France ADAPTIVE SIGNAL PROCESSING USING MAXIMUM ENTROPY ON THE MEAN METHOD AND MONTE CARLO ANALYSIS Pavla Holejšovsá, Ing. *), Z. Peroua, Ing. **), J.-F. Bercher, Prof. Assis. ***) Západočesá Univerzia v Plzni,

More information

Signals and Systems Linear Time-Invariant (LTI) Systems

Signals and Systems Linear Time-Invariant (LTI) Systems Signals and Sysems Linear Time-Invarian (LTI) Sysems Chang-Su Kim Discree-Time LTI Sysems Represening Signals in Terms of Impulses Sifing propery 0 x[ n] x[ k] [ n k] k x[ 2] [ n 2] x[ 1] [ n1] x[0] [

More information

Signal and System (Chapter 3. Continuous-Time Systems)

Signal and System (Chapter 3. Continuous-Time Systems) Signal and Sysem (Chaper 3. Coninuous-Time Sysems) Prof. Kwang-Chun Ho kwangho@hansung.ac.kr Tel: 0-760-453 Fax:0-760-4435 1 Dep. Elecronics and Informaion Eng. 1 Nodes, Branches, Loops A nework wih b

More information

h[n] is the impulse response of the discrete-time system:

h[n] is the impulse response of the discrete-time system: Definiion Examples Properies Memory Inveribiliy Causaliy Sabiliy Time Invariance Lineariy Sysems Fundamenals Overview Definiion of a Sysem x() h() y() x[n] h[n] Sysem: a process in which inpu signals are

More information

Chapter 4 The Fourier Series and Fourier Transform

Chapter 4 The Fourier Series and Fourier Transform Represenaion of Signals in Terms of Frequency Componens Chaper 4 The Fourier Series and Fourier Transform Consider he CT signal defined by x () = Acos( ω + θ ), = The frequencies `presen in he signal are

More information

Lecture 10 - Model Identification

Lecture 10 - Model Identification Lecure - odel Idenificaion Wha is ssem idenificaion? Direc impulse response idenificaion Linear regression Regularizaion Parameric model ID nonlinear LS Conrol Engineering - Wha is Ssem Idenificaion? Experimen

More information

Two Coupled Oscillators / Normal Modes

Two Coupled Oscillators / Normal Modes Lecure 3 Phys 3750 Two Coupled Oscillaors / Normal Modes Overview and Moivaion: Today we ake a small, bu significan, sep owards wave moion. We will no ye observe waves, bu his sep is imporan in is own

More information

Zürich. ETH Master Course: L Autonomous Mobile Robots Localization II

Zürich. ETH Master Course: L Autonomous Mobile Robots Localization II Roland Siegwar Margaria Chli Paul Furgale Marco Huer Marin Rufli Davide Scaramuzza ETH Maser Course: 151-0854-00L Auonomous Mobile Robos Localizaion II ACT and SEE For all do, (predicion updae / ACT),

More information

Cash Flow Valuation Mode Lin Discrete Time

Cash Flow Valuation Mode Lin Discrete Time IOSR Journal of Mahemaics (IOSR-JM) e-issn: 2278-5728,p-ISSN: 2319-765X, 6, Issue 6 (May. - Jun. 2013), PP 35-41 Cash Flow Valuaion Mode Lin Discree Time Olayiwola. M. A. and Oni, N. O. Deparmen of Mahemaics

More information

CE 395 Special Topics in Machine Learning

CE 395 Special Topics in Machine Learning CE 395 Special Topics in Machine Learning Assoc. Prof. Dr. Yuriy Mishchenko Fall 2017 DIGITAL FILTERS AND FILTERING Why filers? Digial filering is he workhorse of digial signal processing Filering is a

More information

Continuous Time Linear Time Invariant (LTI) Systems. Dr. Ali Hussein Muqaibel. Introduction

Continuous Time Linear Time Invariant (LTI) Systems. Dr. Ali Hussein Muqaibel. Introduction /9/ Coninuous Time Linear Time Invarian (LTI) Sysems Why LTI? Inroducion Many physical sysems. Easy o solve mahemaically Available informaion abou analysis and design. We can apply superposiion LTI Sysem

More information

Spectral Analysis. Joseph Fourier The two representations of a signal are connected via the Fourier transform. Z x(t)exp( j2πft)dt

Spectral Analysis. Joseph Fourier The two representations of a signal are connected via the Fourier transform. Z x(t)exp( j2πft)dt Specral Analysis Asignalx may be represened as a funcion of ime as x() or as a funcion of frequency X(f). This is due o relaionships developed by a French mahemaician, physicis, and Egypologis, Joseph

More information

The motions of the celt on a horizontal plane with viscous friction

The motions of the celt on a horizontal plane with viscous friction The h Join Inernaional Conference on Mulibody Sysem Dynamics June 8, 18, Lisboa, Porugal The moions of he cel on a horizonal plane wih viscous fricion Maria A. Munisyna 1 1 Moscow Insiue of Physics and

More information

Chapter 1 Fundamental Concepts

Chapter 1 Fundamental Concepts Chaper 1 Fundamenal Conceps 1 Signals A signal is a paern of variaion of a physical quaniy, ofen as a funcion of ime (bu also space, disance, posiion, ec). These quaniies are usually he independen variables

More information

Efficient Solution of Fractional Initial Value Problems Using Expanding Perturbation Approach

Efficient Solution of Fractional Initial Value Problems Using Expanding Perturbation Approach Journal of mahemaics and compuer Science 8 (214) 359-366 Efficien Soluion of Fracional Iniial Value Problems Using Expanding Perurbaion Approach Khosro Sayevand Deparmen of Mahemaics, Faculy of Science,

More information

Wavelet Methods for Time Series Analysis. What is a Wavelet? Part I: Introduction to Wavelets and Wavelet Transforms. sines & cosines are big waves

Wavelet Methods for Time Series Analysis. What is a Wavelet? Part I: Introduction to Wavelets and Wavelet Transforms. sines & cosines are big waves Wavele Mehods for Time Series Analysis Par I: Inroducion o Waveles and Wavele Transforms waveles are analysis ools for ime series and images as a subjec, waveles are relaively new (983 o presen) a synhesis

More information

Lab #2: Kinematics in 1-Dimension

Lab #2: Kinematics in 1-Dimension Reading Assignmen: Chaper 2, Secions 2-1 hrough 2-8 Lab #2: Kinemaics in 1-Dimension Inroducion: The sudy of moion is broken ino wo main areas of sudy kinemaics and dynamics. Kinemaics is he descripion

More information

6.003 Homework #8 Solutions

6.003 Homework #8 Solutions 6.003 Homework #8 Soluions Problems. Fourier Series Deermine he Fourier series coefficiens a k for x () shown below. x ()= x ( + 0) 0 a 0 = 0 a k = e /0 sin(/0) for k 0 a k = π x()e k d = 0 0 π e 0 k d

More information

A FAMILY OF THREE-LEVEL DC-DC CONVERTERS

A FAMILY OF THREE-LEVEL DC-DC CONVERTERS A FAMIY OF THREE-EVE DC-DC CONVERTERS Anonio José Beno Boion, Ivo Barbi Federal Universiy of Sana Caarina - UFSC, Power Elecronics Insiue - INEP PO box 5119, ZIP code 88040-970, Florianópolis, SC, BRAZI

More information

6.003 Homework #13 Solutions

6.003 Homework #13 Solutions 6.003 Homework #3 Soluions Problems. Transformaion Consider he following ransformaion from x() o y(): x() w () w () w 3 () + y() p() cos() where p() = δ( k). Deermine an expression for y() when x() = sin(/)/().

More information

INDEX. Transient analysis 1 Initial Conditions 1

INDEX. Transient analysis 1 Initial Conditions 1 INDEX Secion Page Transien analysis 1 Iniial Condiions 1 Please inform me of your opinion of he relaive emphasis of he review maerial by simply making commens on his page and sending i o me a: Frank Mera

More information

Designing Information Devices and Systems I Spring 2019 Lecture Notes Note 17

Designing Information Devices and Systems I Spring 2019 Lecture Notes Note 17 EES 16A Designing Informaion Devices and Sysems I Spring 019 Lecure Noes Noe 17 17.1 apaciive ouchscreen In he las noe, we saw ha a capacior consiss of wo pieces on conducive maerial separaed by a nonconducive

More information

The expectation value of the field operator.

The expectation value of the field operator. The expecaion value of he field operaor. Dan Solomon Universiy of Illinois Chicago, IL dsolom@uic.edu June, 04 Absrac. Much of he mahemaical developmen of quanum field heory has been in suppor of deermining

More information

The Fourier Transform.

The Fourier Transform. The Fourier Transform. Consider an energy signal x(). Is energy is = E x( ) d 2 x() x () T Such signal is neiher finie ime nor periodic. This means ha we canno define a "specrum" for i using Fourier series.

More information

Method For Solving Fuzzy Integro-Differential Equation By Using Fuzzy Laplace Transformation

Method For Solving Fuzzy Integro-Differential Equation By Using Fuzzy Laplace Transformation INERNAIONAL JOURNAL OF SCIENIFIC & ECHNOLOGY RESEARCH VOLUME 3 ISSUE 5 May 4 ISSN 77-866 Meod For Solving Fuzzy Inegro-Differenial Equaion By Using Fuzzy Laplace ransformaion Manmoan Das Danji alukdar

More information

Math Week 15: Section 7.4, mass-spring systems. These are notes for Monday. There will also be course review notes for Tuesday, posted later.

Math Week 15: Section 7.4, mass-spring systems. These are notes for Monday. There will also be course review notes for Tuesday, posted later. Mah 50-004 Week 5: Secion 7.4, mass-spring sysems. These are noes for Monday. There will also be course review noes for Tuesday, posed laer. Mon Apr 3 7.4 mass-spring sysems. Announcemens: Warm up exercise:

More information

Existence of positive solution for a third-order three-point BVP with sign-changing Green s function

Existence of positive solution for a third-order three-point BVP with sign-changing Green s function Elecronic Journal of Qualiaive Theory of Differenial Equaions 13, No. 3, 1-11; hp://www.mah.u-szeged.hu/ejqde/ Exisence of posiive soluion for a hird-order hree-poin BVP wih sign-changing Green s funcion

More information

Chapter 3 Boundary Value Problem

Chapter 3 Boundary Value Problem Chaper 3 Boundary Value Problem A boundary value problem (BVP) is a problem, ypically an ODE or a PDE, which has values assigned on he physical boundary of he domain in which he problem is specified. Le

More information

Multi-scale 2D acoustic full waveform inversion with high frequency impulsive source

Multi-scale 2D acoustic full waveform inversion with high frequency impulsive source Muli-scale D acousic full waveform inversion wih high frequency impulsive source Vladimir N Zubov*, Universiy of Calgary, Calgary AB vzubov@ucalgaryca and Michael P Lamoureux, Universiy of Calgary, Calgary

More information

Haar Wavelet Operational Matrix Method for Solving Fractional Partial Differential Equations

Haar Wavelet Operational Matrix Method for Solving Fractional Partial Differential Equations Copyrigh 22 Tech Science Press CMES, vol.88, no.3, pp.229-243, 22 Haar Wavele Operaional Mari Mehod for Solving Fracional Parial Differenial Equaions Mingu Yi and Yiming Chen Absrac: In his paper, Haar

More information

Removing Useless Productions of a Context Free Grammar through Petri Net

Removing Useless Productions of a Context Free Grammar through Petri Net Journal of Compuer Science 3 (7): 494-498, 2007 ISSN 1549-3636 2007 Science Publicaions Removing Useless Producions of a Conex Free Grammar hrough Peri Ne Mansoor Al-A'ali and Ali A Khan Deparmen of Compuer

More information

APPLICATION OF CHEBYSHEV APPROXIMATION IN THE PROCESS OF VARIATIONAL ITERATION METHOD FOR SOLVING DIFFERENTIAL- ALGEBRAIC EQUATIONS

APPLICATION OF CHEBYSHEV APPROXIMATION IN THE PROCESS OF VARIATIONAL ITERATION METHOD FOR SOLVING DIFFERENTIAL- ALGEBRAIC EQUATIONS Mahemaical and Compuaional Applicaions, Vol., No. 4, pp. 99-978,. Associaion for Scienific Research APPLICATION OF CHEBYSHEV APPROXIMATION IN THE PROCESS OF VARIATIONAL ITERATION METHOD FOR SOLVING DIFFERENTIAL-

More information

Lecture 1: Contents of the course. Advanced Digital Control. IT tools CCSDEMO

Lecture 1: Contents of the course. Advanced Digital Control. IT tools CCSDEMO Goals of he course Lecure : Advanced Digial Conrol To beer undersand discree-ime sysems To beer undersand compuer-conrolled sysems u k u( ) u( ) Hold u k D-A Process Compuer y( ) A-D y ( ) Sampler y k

More information

Signals and Systems Prof. Brian L. Evans Dept. of Electrical and Computer Engineering The University of Texas at Austin

Signals and Systems Prof. Brian L. Evans Dept. of Electrical and Computer Engineering The University of Texas at Austin EE 345S Real-Time Digial Signal Processing Lab Spring 26 Signals and Sysems Prof. Brian L. Evans Dep. of Elecrical and Compuer Engineering The Universiy of Texas a Ausin Review Signals As Funcions of Time

More information

Lectures 29 and 30 BIQUADRATICS AND STATE SPACE OP AMP REALIZATIONS. I. Introduction

Lectures 29 and 30 BIQUADRATICS AND STATE SPACE OP AMP REALIZATIONS. I. Introduction EE-202/445, 3/18/18 9-1 R. A. DeCarlo Lecures 29 and 30 BIQUADRATICS AND STATE SPACE OP AMP REALIZATIONS I. Inroducion 1. The biquadraic ransfer funcion has boh a 2nd order numeraor and a 2nd order denominaor:

More information

Fractional Method of Characteristics for Fractional Partial Differential Equations

Fractional Method of Characteristics for Fractional Partial Differential Equations Fracional Mehod of Characerisics for Fracional Parial Differenial Equaions Guo-cheng Wu* Modern Teile Insiue, Donghua Universiy, 188 Yan-an ilu Road, Shanghai 51, PR China Absrac The mehod of characerisics

More information

9/9/99 (T.F. Weiss) Signals and systems This subject deals with mathematical methods used to describe signals and to analyze and synthesize systems.

9/9/99 (T.F. Weiss) Signals and systems This subject deals with mathematical methods used to describe signals and to analyze and synthesize systems. 9/9/99 (T.F. Weiss) Lecure #: Inroducion o signals Moivaion: To describe signals, boh man-made and naurally occurring. Ouline: Classificaion ofsignals Building-block signals complex exponenials, impulses

More information

t is a basis for the solution space to this system, then the matrix having these solutions as columns, t x 1 t, x 2 t,... x n t x 2 t...

t is a basis for the solution space to this system, then the matrix having these solutions as columns, t x 1 t, x 2 t,... x n t x 2 t... Mah 228- Fri Mar 24 5.6 Marix exponenials and linear sysems: The analogy beween firs order sysems of linear differenial equaions (Chaper 5) and scalar linear differenial equaions (Chaper ) is much sronger

More information