IT og Sundhed 2010/11

Size: px
Start display at page:

Download "IT og Sundhed 2010/11"

Transcription

1 IT og Sundhed 2010/11 Sequence based predictors. Secondary structure and surface accessibility Bent Petersen 13 January

2 NetSurfP Real Value Solvent Accessibility predictions with amino acid associated reliability 2

3 Objective Predict residues as being either buried or exposed (25 % threshold) - Two states/classes, Buried/Exposed Predict the Relative Solvent Accessibility, RSA - Real Value 3

4 What is ASA? Accessible Solvent Area, Å 2 Surface area accessible to a rolling water molecule 4

5 RSA RSA = ACC protein ASA tripeptid RSA = Relative Solvent Accessibility ACC = Accessible area in protein structure ASA = Accessible Surface Area in Gly-X-Gly or Ala-X-Ala Classification Networks Real value Networks Classification: Buried = RSA < 25 %, Exposed = RSA > 25 % Real Value: values 0-1, RSA > 1 set to 1 5

6 Why predict RSA? Residues exposed on surface can be: - Involved in PTM s - Potential epitopes - Involved in Protein-Protein interactions - Prediction of Disease-SNP s 6

7 How to start? What do we want? - We want to be able to predict the exposure of an AA What do we need? - A training dataset and an independent evaluation dataset What information do we need? - True structural information the Neural Network can train on Where do we get that? - PDB, DSSP 7

8 Protein Data Bank, PDB Berman, H.M., et al., The Protein Data Bank. Nucl. Acids Res., (1): p

9 Define Secondary Structure of Proteins, DSSP ==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=23-MAR REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) HEADER TOXIN 12-AUG-98 3BTA. COMPND 2 MOLECULE: PROTEIN (BOTULINUM NEUROTOXIN TYPE A);. SOURCE 2 ORGANISM_SCIENTIFIC: CLOSTRIDIUM BOTULINUM;. AUTHOR R.C.STEVENS,D.B.LACY TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J), SAME NUMBER PER 100 RESIDUES TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES *** HISTOGRAMS OF *** RESIDUES PER ALPHA HELIX PARALLEL BRIDGES PER LADDER ANTIPARALLEL BRIDGES PER LADDER LADDERS PER SHEET. # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A P , 0.0 2,-3.8 0, 0.0 3, A F , ,-0.1 1, , A V , , ,-0.1-1, A N S S ,-0.3 2,-0.5-3, , A K S S ,-0.1 2,-0.5 1,-0.0-1, A Q ,-0.5 2,-0.1 1, , A F ,-0.5 2, ,-0.1 3, A N > ,-0.1 3,-0.9 1, , A Y T 3 S ,-0.3-1,-0.1 1, , A K T 3 S ,-0.1-1, ,-0.1 3, A D S < S ,-0.9 3,-0.1 1,-0.1 2, A P , 0.0-1,-0.1 0, 0.0-2, A V ,-0.1 6,-0.2 1,-0.1 4, A N ,-3.7 2,-1.4 2,-0.2 5, A G S S ,-0.4 2,-0.3 3,-0.2 4, A V S S ,-1.4-2,-0.2 2, , A D S S , , ,-0.1 2, A I E S+A 35 0A 6 17,-0.3-4, ,-0.0-2, Kabsch, W. and C. Sander, Dictionary of Protein Secondary Structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers, (12): p

10 Define Secondary Structure of Proteins, DSSP DSSP defines 8 types of secondary structure - G = 3-turn helix (3-10 helix) - H = 4-turn helix (α-helix) - I = 5-turn helix (π-helix) - T = Hydrogen bonded turn (3, 4 or 5 turn) - E = Extended strand - B = Residue in isolated β-bridge - S = Bend - Rest is C = coil 10

11 Required datasets Training/test - Used for optimization of settings using 10-fold crossvalidation Evaluation - Used for final evaluation, less than 25 % homolog to the training/test dataset. 11

12 10-fold Cross Validation 10-fold Cross Validation - Break dataset into 10 sets of size 1/10 - Train on 9 datasets and test on 1 - Repeat 10 times and take a mean accuracy 12

13 Learning / Training dataset Training set: Cull_1764: - Max. Seq. ID: 25 % - Resolution: 2.0 Å - R-Factor: Seq. Length AA - Including X-ray entries only 13

14 PISCES 14

15 Learning / Training dataset Homology reduced towards evaluation set CB513 (302 sequences removed) Final Training set: sequences amino acids Buried: % ( amino acids) Exposed: % ( amino acids) 15

16 Learning / Training dataset ---Sequence/residue statistics--- Number of seq.: 1764 Longest seq.: 1T3T.A (1283) Shortest seq.: 1YTV.M(6) Number of amino acids: Assignment category statistics --- B ( 44.20%) A ( 55.80%) ---Amino acid statistics--- H ( 2.40%) G ( 7.59%) Y ( 3.57%) V ( 7.22%) E ( 6.64%) S ( 5.84%) P ( 4.69%) A ( 8.53%) R ( 5.13%) Q ( 3.72%) C 5202 ( 1.24%) K ( 5.52%) L ( 9.21%) N ( 4.25%) T ( 5.50%) F ( 4.11%) D ( 5.92%) I ( 5.63%) W 6365 ( 1.52%) M 7353 ( 1.76%) 16

17 Evaluation dataset Final Evaluation dataset: CB513: non-homologous sequences - Seq. Length aa amino acids - Buried: % ( amino acids) - Exposed: % ( amino acids) 17

18 Evaluation dataset ---Sequence/residue statistics--- Number of seq.: 513 Longest seq.: 6acn.all(754) Shortest seq.: 1atpi-1(20) Number of amino acids: Assignment category statistics --- B ( 44.19%) A ( 55.81%) ---Amino acid statistics--- R 3812 ( 4.53%) T 5015 ( 5.96%) D 4973 ( 5.91%) C 1381 ( 1.64%) Y 3065 ( 3.64%) G 6657 ( 7.91%) N 3976 ( 4.73%) V 5795 ( 6.89%) I 4642 ( 5.52%) A 7267 ( 8.64%) S 5222 ( 6.21%) K 4976 ( 5.92%) P 3903 ( 4.64%) E 5050 ( 6.00%) L 7134 ( 8.48%) Q 3108 ( 3.69%) M 1710 ( 2.03%) H 1865 ( 2.22%) W 1236 ( 1.47%) F 3268 ( 3.88%) X 19 ( 0.02%) B 31 ( 0.04%) Z 14 ( 0.02%) 18

19 Aminoacid Distribution % A C D E F G H I K L M N P Q R S T V W Y Cull/Learning CB513 Cull/Learning CB Amino acids 19

20 Neural Network - Input Position Specific Scoring Matrices, PSSM A R N D C Q E G H I L K M F P S T W Y V B H 2BEM.A A G 2BEM.A A Y 2BEM.A A V 2BEM.A B E 2BEM.A time iterativ psi-blast against nr70 Secondary Structure predictions B H 2BEM.A A G 2BEM.A A Y 2BEM.A A V 2BEM.A B E 2BEM.A (sec predictor by Pernille Andersen) 20

21 Secondary structure predictor Developed by Pernille Andersen, incorporated in NetSurfP Trained on 2,085 sequences using DSSP - H = H, E = E, C =., G, I, B, S and T - H 30 %, E 20 %, C 50 % Performance of ~80 % Maximum theoretical limit is ~88 % 21

22 Neural Network - Settings Window Size: Hidden units: 10, 20, 25, 30, 40, 50, 75, 150, (200) Learning rate: 0.01 / (0.005) Epocs (training rounds): fold cross-validation - 9/10 used for training, 1/10 for testing 22

23 Neural network window Sliding window of BEM.A mol:aa CHITIN-BINDING PROTEIN HGYVESPASRAYQCKLQLNTQCGSVQYEPQSVEGLKGFPQAGPADGHIASADKSTFFELDQQTPTRWNKLNLKTGPNSFT WKLTARHSTTSWRYFITKPNWDASQPLTRASFDLTPFCQFNDGGAIPAAQVTHQCNIPADRSGSHVILAVWDIADTANAF YQAIDVNLSK BAAABBAAAAAAAABBBBABBABBAABBABAABABBBAABBBABBABAAAABBBBABAAABABBBAABABBABAABABAA ABABBBBAABAAAAAAABBBABABBBAAABAABBBAAAAAABBBBBABBBABABABAABBABBBAAAAAAAAABBBBBAA AAAAAABABB Prediction on middle residue Serine, buried 23

24 Neural network window Sliding window of BEM.A mol:aa CHITIN-BINDING PROTEIN HGYVESPASRAYQCKLQLNTQCGSVQYEPQSVEGLKGFPQAGPADGHIASADKSTFFELDQQTPTRWNKLNLKTGPNSFT WKLTARHSTTSWRYFITKPNWDASQPLTRASFDLTPFCQFNDGGAIPAAQVTHQCNIPADRSGSHVILAVWDIADTANAF YQAIDVNLSK BAAABBAAAAAAAABBBBABBABBAABBABAABABBBAABBBABBABAAAABBBBABAAABABBBAABABBABAABABAA ABABBBBAABAAAAAAABBBABABBBAAABAABBBAAAAAABBBBBABBBABABABAABBABBBAAAAAAAAABBBBBAA AAAAAABABB Prediction on middle residue Proline, exposed 24

25 Neural network window Sliding window of BEM.A mol:aa CHITIN-BINDING PROTEIN HGYVESPASRAYQCKLQLNTQCGSVQYEPQSVEGLKGFPQAGPADGHIASADKSTFFELDQQTPTRWNKLNLKTGPNSFT WKLTARHSTTSWRYFITKPNWDASQPLTRASFDLTPFCQFNDGGAIPAAQVTHQCNIPADRSGSHVILAVWDIADTANAF YQAIDVNLSK BAAABBAAAAAAAABBBBABBABBAABBABAABABBBAABBBABBABAAAABBBBABAAABABBBAABABBABAABABAA ABABBBBAABAAAAAAABBBABABBBAAABAABBBAAAAAABBBBBABBBABABABAABBABBBAAAAAAAAABBBBBAA AAAAAABABB Prediction on middle residue Alanine, exposed 25

26 Method 26

27 Wisdom of the crowd Selecting best performing network architectures based on test performance Better than choosing any single network 10-fold % correct predictions Average of set A-J w. sec. structure % correct Average of top 1 Average of top 2 Average of top 3 Average of top 4 Average of top 5 Average of top 6 Average of top 7 Average of top 8 Average of top 9 Average of top 10 Series Average of top 11 Series1 Average of top 12 Average of top 13 Average of top 14 Average of top 15 Average of top 16 Average of top 17 Average of top 18 Average of top 19 Average of top 20 27

28 Results - Classification networks Training: % Correct MCC #Networks Best Single Architecture All Architectures Top 20 Architectures

29 29

30 Results - Classification networks Training: % Correct MCC #Networks Best Single Architecture All Architectures Top 20 Architectures Evaluation: % Correct MCC Dor and Zhou 78.8 Not Published NetsurfP CB500/CB

31 Results Evaluation 31

32 NetSurfP /usr/cbs/bio/src/netsurfp/netsurfp -h 32

33 NetSurfP 33

34 NetDiseaseSNP Disease-SNP prediction (Morten Bo Johansen) Without NetSurfP: Cross-validation: MCC= Cross-Evaluation: MCC= With NetSurfP: Cross-validation: MCC= Cross-Evaluation: MCC=

35 Paper is out..what then? 35

36 Statistics Submissions to the webserver from CBS website 36

37 Paper is out..what then? 37

38 Paper is out..what then? 38

39 Paper is out..what then? 39

40 40

41 41

42 42

43 As of 12 Jan sequences submitted from unique IP s 43

44 First citation 24 october 2009 :-) 44

45 45

1-D Predictions. Prediction of local features: Secondary structure & surface exposure

1-D Predictions. Prediction of local features: Secondary structure & surface exposure 1-D Predictions Prediction of local features: Secondary structure & surface exposure 1 Learning Objectives After today s session you should be able to: Explain the meaning and usage of the following local

More information

Bioinformatics III Structural Bioinformatics and Genome Analysis Part Protein Secondary Structure Prediction. Sepp Hochreiter

Bioinformatics III Structural Bioinformatics and Genome Analysis Part Protein Secondary Structure Prediction. Sepp Hochreiter Bioinformatics III Structural Bioinformatics and Genome Analysis Part Protein Secondary Structure Prediction Institute of Bioinformatics Johannes Kepler University, Linz, Austria Chapter 4 Protein Secondary

More information

Protein Secondary Structure Prediction using Pattern Recognition Neural Network

Protein Secondary Structure Prediction using Pattern Recognition Neural Network Protein Secondary Structure Prediction using Pattern Recognition Neural Network P.V. Nageswara Rao 1 (nagesh@gitam.edu), T. Uma Devi 1, DSVGK Kaladhar 1, G.R. Sridhar 2, Allam Appa Rao 3 1 GITAM University,

More information

Statistical Machine Learning Methods for Bioinformatics IV. Neural Network & Deep Learning Applications in Bioinformatics

Statistical Machine Learning Methods for Bioinformatics IV. Neural Network & Deep Learning Applications in Bioinformatics Statistical Machine Learning Methods for Bioinformatics IV. Neural Network & Deep Learning Applications in Bioinformatics Jianlin Cheng, PhD Department of Computer Science University of Missouri, Columbia

More information

Basics of protein structure

Basics of protein structure Today: 1. Projects a. Requirements: i. Critical review of one paper ii. At least one computational result b. Noon, Dec. 3 rd written report and oral presentation are due; submit via email to bphys101@fas.harvard.edu

More information

Physiochemical Properties of Residues

Physiochemical Properties of Residues Physiochemical Properties of Residues Various Sources C N Cα R Slide 1 Conformational Propensities Conformational Propensity is the frequency in which a residue adopts a given conformation (in a polypeptide)

More information

Neural Networks for Protein Structure Prediction Brown, JMB CS 466 Saurabh Sinha

Neural Networks for Protein Structure Prediction Brown, JMB CS 466 Saurabh Sinha Neural Networks for Protein Structure Prediction Brown, JMB 1999 CS 466 Saurabh Sinha Outline Goal is to predict secondary structure of a protein from its sequence Artificial Neural Network used for this

More information

Bioinformatics: Secondary Structure Prediction

Bioinformatics: Secondary Structure Prediction Bioinformatics: Secondary Structure Prediction Prof. David Jones d.t.jones@ucl.ac.uk Possibly the greatest unsolved problem in molecular biology: The Protein Folding Problem MWMPPRPEEVARK LRRLGFVERMAKG

More information

Optimization of the Sliding Window Size for Protein Structure Prediction

Optimization of the Sliding Window Size for Protein Structure Prediction Optimization of the Sliding Window Size for Protein Structure Prediction Ke Chen* 1, Lukasz Kurgan 1 and Jishou Ruan 2 1 University of Alberta, Department of Electrical and Computer Engineering, Edmonton,

More information

SUPPLEMENTARY MATERIALS

SUPPLEMENTARY MATERIALS SUPPLEMENTARY MATERIALS Enhanced Recognition of Transmembrane Protein Domains with Prediction-based Structural Profiles Baoqiang Cao, Aleksey Porollo, Rafal Adamczak, Mark Jarrell and Jaroslaw Meller Contact:

More information

Protein Structure Prediction and Display

Protein Structure Prediction and Display Protein Structure Prediction and Display Goal Take primary structure (sequence) and, using rules derived from known structures, predict the secondary structure that is most likely to be adopted by each

More information

Introduction to Comparative Protein Modeling. Chapter 4 Part I

Introduction to Comparative Protein Modeling. Chapter 4 Part I Introduction to Comparative Protein Modeling Chapter 4 Part I 1 Information on Proteins Each modeling study depends on the quality of the known experimental data. Basis of the model Search in the literature

More information

Presentation Outline. Prediction of Protein Secondary Structure using Neural Networks at Better than 70% Accuracy

Presentation Outline. Prediction of Protein Secondary Structure using Neural Networks at Better than 70% Accuracy Prediction of Protein Secondary Structure using Neural Networks at Better than 70% Accuracy Burkhard Rost and Chris Sander By Kalyan C. Gopavarapu 1 Presentation Outline Major Terminology Problem Method

More information

Protein Secondary Structure Assignment and Prediction

Protein Secondary Structure Assignment and Prediction 1 Protein Secondary Structure Assignment and Prediction Defining SS features - Dihedral angles, alpha helix, beta stand (Hydrogen bonds) Assigned manually by crystallographers or Automatic DSSP (Kabsch

More information

Bioinformatics: Secondary Structure Prediction

Bioinformatics: Secondary Structure Prediction Bioinformatics: Secondary Structure Prediction Prof. David Jones d.jones@cs.ucl.ac.uk LMLSTQNPALLKRNIIYWNNVALLWEAGSD The greatest unsolved problem in molecular biology:the Protein Folding Problem? Entries

More information

Protein structure. Protein structure. Amino acid residue. Cell communication channel. Bioinformatics Methods

Protein structure. Protein structure. Amino acid residue. Cell communication channel. Bioinformatics Methods Cell communication channel Bioinformatics Methods Iosif Vaisman Email: ivaisman@gmu.edu SEQUENCE STRUCTURE DNA Sequence Protein Sequence Protein Structure Protein structure ATGAAATTTGGAAACTTCCTTCTCACTTATCAGCCACCT...

More information

Analysis and Prediction of Protein Structure (I)

Analysis and Prediction of Protein Structure (I) Analysis and Prediction of Protein Structure (I) Jianlin Cheng, PhD School of Electrical Engineering and Computer Science University of Central Florida 2006 Free for academic use. Copyright @ Jianlin Cheng

More information

Week 10: Homology Modelling (II) - HHpred

Week 10: Homology Modelling (II) - HHpred Week 10: Homology Modelling (II) - HHpred Course: Tools for Structural Biology Fabian Glaser BKU - Technion 1 2 Identify and align related structures by sequence methods is not an easy task All comparative

More information

CMPS 6630: Introduction to Computational Biology and Bioinformatics. Structure Comparison

CMPS 6630: Introduction to Computational Biology and Bioinformatics. Structure Comparison CMPS 6630: Introduction to Computational Biology and Bioinformatics Structure Comparison Protein Structure Comparison Motivation Understand sequence and structure variability Understand Domain architecture

More information

THE TANGO ALGORITHM: SECONDARY STRUCTURE PROPENSITIES, STATISTICAL MECHANICS APPROXIMATION

THE TANGO ALGORITHM: SECONDARY STRUCTURE PROPENSITIES, STATISTICAL MECHANICS APPROXIMATION THE TANGO ALGORITHM: SECONDARY STRUCTURE PROPENSITIES, STATISTICAL MECHANICS APPROXIMATION AND CALIBRATION Calculation of turn and beta intrinsic propensities. A statistical analysis of a protein structure

More information

Conformational Geometry of Peptides and Proteins:

Conformational Geometry of Peptides and Proteins: Conformational Geometry of Peptides and Proteins: Before discussing secondary structure, it is important to appreciate the conformational plasticity of proteins. Each residue in a polypeptide has three

More information

Programme Last week s quiz results + Summary Fold recognition Break Exercise: Modelling remote homologues

Programme Last week s quiz results + Summary Fold recognition Break Exercise: Modelling remote homologues Programme 8.00-8.20 Last week s quiz results + Summary 8.20-9.00 Fold recognition 9.00-9.15 Break 9.15-11.20 Exercise: Modelling remote homologues 11.20-11.40 Summary & discussion 11.40-12.00 Quiz 1 Feedback

More information

Protein Secondary Structure Prediction using Feed-Forward Neural Network

Protein Secondary Structure Prediction using Feed-Forward Neural Network COPYRIGHT 2010 JCIT, ISSN 2078-5828 (PRINT), ISSN 2218-5224 (ONLINE), VOLUME 01, ISSUE 01, MANUSCRIPT CODE: 100713 Protein Secondary Structure Prediction using Feed-Forward Neural Network M. A. Mottalib,

More information

Protein Secondary Structure Prediction

Protein Secondary Structure Prediction part of Bioinformatik von RNA- und Proteinstrukturen Computational EvoDevo University Leipzig Leipzig, SS 2011 the goal is the prediction of the secondary structure conformation which is local each amino

More information

Lecture 7. Protein Secondary Structure Prediction. Secondary Structure DSSP. Master Course DNA/Protein Structurefunction.

Lecture 7. Protein Secondary Structure Prediction. Secondary Structure DSSP. Master Course DNA/Protein Structurefunction. C N T R F O R N T G R A T V B O N F O R M A T C S V U Master Course DNA/Protein Structurefunction Analysis and Prediction Lecture 7 Protein Secondary Structure Prediction Protein primary structure 20 amino

More information

Can protein model accuracy be. identified? NO! CBS, BioCentrum, Morten Nielsen, DTU

Can protein model accuracy be. identified? NO! CBS, BioCentrum, Morten Nielsen, DTU Can protein model accuracy be identified? Morten Nielsen, CBS, BioCentrum, DTU NO! Identification of Protein-model accuracy Why is it important? What is accuracy RMSD, fraction correct, Protein model correctness/quality

More information

Secondary Structure. Bioch/BIMS 503 Lecture 2. Structure and Function of Proteins. Further Reading. Φ, Ψ angles alone determine protein structure

Secondary Structure. Bioch/BIMS 503 Lecture 2. Structure and Function of Proteins. Further Reading. Φ, Ψ angles alone determine protein structure Bioch/BIMS 503 Lecture 2 Structure and Function of Proteins August 28, 2008 Robert Nakamoto rkn3c@virginia.edu 2-0279 Secondary Structure Φ Ψ angles determine protein structure Φ Ψ angles are restricted

More information

Bioinformatics. Macromolecular structure

Bioinformatics. Macromolecular structure Bioinformatics Macromolecular structure Contents Determination of protein structure Structure databases Secondary structure elements (SSE) Tertiary structure Structure analysis Structure alignment Domain

More information

Outline. Levels of Protein Structure. Primary (1 ) Structure. Lecture 6:Protein Architecture II: Secondary Structure or From peptides to proteins

Outline. Levels of Protein Structure. Primary (1 ) Structure. Lecture 6:Protein Architecture II: Secondary Structure or From peptides to proteins Lecture 6:Protein Architecture II: Secondary Structure or From peptides to proteins Margaret Daugherty Fall 2003 Outline Four levels of structure are used to describe proteins; Alpha helices and beta sheets

More information

Ranjit P. Bahadur Assistant Professor Department of Biotechnology Indian Institute of Technology Kharagpur, India. 1 st November, 2013

Ranjit P. Bahadur Assistant Professor Department of Biotechnology Indian Institute of Technology Kharagpur, India. 1 st November, 2013 Hydration of protein-rna recognition sites Ranjit P. Bahadur Assistant Professor Department of Biotechnology Indian Institute of Technology Kharagpur, India 1 st November, 2013 Central Dogma of life DNA

More information

Bayesian Models and Algorithms for Protein Beta-Sheet Prediction

Bayesian Models and Algorithms for Protein Beta-Sheet Prediction 0 Bayesian Models and Algorithms for Protein Beta-Sheet Prediction Zafer Aydin, Student Member, IEEE, Yucel Altunbasak, Senior Member, IEEE, and Hakan Erdogan, Member, IEEE Abstract Prediction of the three-dimensional

More information

Protein Bioinformatics Computer lab #1 Friday, April 11, 2008 Sean Prigge and Ingo Ruczinski

Protein Bioinformatics Computer lab #1 Friday, April 11, 2008 Sean Prigge and Ingo Ruczinski Protein Bioinformatics 260.655 Computer lab #1 Friday, April 11, 2008 Sean Prigge and Ingo Ruczinski Goals: Approx. Time [1] Use the Protein Data Bank PDB website. 10 minutes [2] Use the WebMol Viewer.

More information

Number sequence representation of protein structures based on the second derivative of a folded tetrahedron sequence

Number sequence representation of protein structures based on the second derivative of a folded tetrahedron sequence Number sequence representation of protein structures based on the second derivative of a folded tetrahedron sequence Naoto Morikawa (nmorika@genocript.com) October 7, 2006. Abstract A protein is a sequence

More information

HOMOLOGY MODELING. The sequence alignment and template structure are then used to produce a structural model of the target.

HOMOLOGY MODELING. The sequence alignment and template structure are then used to produce a structural model of the target. HOMOLOGY MODELING Homology modeling, also known as comparative modeling of protein refers to constructing an atomic-resolution model of the "target" protein from its amino acid sequence and an experimental

More information

Advanced Certificate in Principles in Protein Structure. You will be given a start time with your exam instructions

Advanced Certificate in Principles in Protein Structure. You will be given a start time with your exam instructions BIRKBECK COLLEGE (University of London) Advanced Certificate in Principles in Protein Structure MSc Structural Molecular Biology Date: Thursday, 1st September 2011 Time: 3 hours You will be given a start

More information

BIOINF 4120 Bioinformatics 2 - Structures and Systems - Oliver Kohlbacher Summer Protein Structure Prediction I

BIOINF 4120 Bioinformatics 2 - Structures and Systems - Oliver Kohlbacher Summer Protein Structure Prediction I BIOINF 4120 Bioinformatics 2 - Structures and Systems - Oliver Kohlbacher Summer 2013 9. Protein Structure Prediction I Structure Prediction Overview Overview of problem variants Secondary structure prediction

More information

Protein Structure. Hierarchy of Protein Structure. Tertiary structure. independently stable structural unit. includes disulfide bonds

Protein Structure. Hierarchy of Protein Structure. Tertiary structure. independently stable structural unit. includes disulfide bonds Protein Structure Hierarchy of Protein Structure 2 3 Structural element Primary structure Secondary structure Super-secondary structure Domain Tertiary structure Quaternary structure Description amino

More information

Outline. Levels of Protein Structure. Primary (1 ) Structure. Lecture 6:Protein Architecture II: Secondary Structure or From peptides to proteins

Outline. Levels of Protein Structure. Primary (1 ) Structure. Lecture 6:Protein Architecture II: Secondary Structure or From peptides to proteins Lecture 6:Protein Architecture II: Secondary Structure or From peptides to proteins Margaret Daugherty Fall 2004 Outline Four levels of structure are used to describe proteins; Alpha helices and beta sheets

More information

Supersecondary Structures (structural motifs)

Supersecondary Structures (structural motifs) Supersecondary Structures (structural motifs) Various Sources Slide 1 Supersecondary Structures (Motifs) Supersecondary Structures (Motifs): : Combinations of secondary structures in specific geometric

More information

PDBe TUTORIAL. PDBePISA (Protein Interfaces, Surfaces and Assemblies)

PDBe TUTORIAL. PDBePISA (Protein Interfaces, Surfaces and Assemblies) PDBe TUTORIAL PDBePISA (Protein Interfaces, Surfaces and Assemblies) http://pdbe.org/pisa/ This tutorial introduces the PDBePISA (PISA for short) service, which is a webbased interactive tool offered by

More information

PROTEIN FUNCTION PREDICTION WITH AMINO ACID SEQUENCE AND SECONDARY STRUCTURE ALIGNMENT SCORES

PROTEIN FUNCTION PREDICTION WITH AMINO ACID SEQUENCE AND SECONDARY STRUCTURE ALIGNMENT SCORES PROTEIN FUNCTION PREDICTION WITH AMINO ACID SEQUENCE AND SECONDARY STRUCTURE ALIGNMENT SCORES Eser Aygün 1, Caner Kömürlü 2, Zafer Aydin 3 and Zehra Çataltepe 1 1 Computer Engineering Department and 2

More information

Protein Structure: Data Bases and Classification Ingo Ruczinski

Protein Structure: Data Bases and Classification Ingo Ruczinski Protein Structure: Data Bases and Classification Ingo Ruczinski Department of Biostatistics, Johns Hopkins University Reference Bourne and Weissig Structural Bioinformatics Wiley, 2003 More References

More information

09/06/25. Computergestützte Strukturbiologie (Strukturelle Bioinformatik) Non-uniform distribution of folds. Scheme of protein structure predicition

09/06/25. Computergestützte Strukturbiologie (Strukturelle Bioinformatik) Non-uniform distribution of folds. Scheme of protein structure predicition Sequence identity Structural similarity Computergestützte Strukturbiologie (Strukturelle Bioinformatik) Fold recognition Sommersemester 2009 Peter Güntert Structural similarity X Sequence identity Non-uniform

More information

Protein quality assessment

Protein quality assessment Protein quality assessment Speaker: Renzhi Cao Advisor: Dr. Jianlin Cheng Major: Computer Science May 17 th, 2013 1 Outline Introduction Paper1 Paper2 Paper3 Discussion and research plan Acknowledgement

More information

7 Protein secondary structure

7 Protein secondary structure 78 Grundlagen der Bioinformatik, SS 1, D. Huson, June 17, 21 7 Protein secondary structure Sources for this chapter, which are all recommended reading: Introduction to Protein Structure, Branden & Tooze,

More information

HIV protease inhibitor. Certain level of function can be found without structure. But a structure is a key to understand the detailed mechanism.

HIV protease inhibitor. Certain level of function can be found without structure. But a structure is a key to understand the detailed mechanism. Proteins are linear polypeptide chains (one or more) Building blocks: 20 types of amino acids. Range from a few 10s-1000s They fold into varying three-dimensional shapes structure medicine Certain level

More information

Introducing Hippy: A visualization tool for understanding the α-helix pair interface

Introducing Hippy: A visualization tool for understanding the α-helix pair interface Introducing Hippy: A visualization tool for understanding the α-helix pair interface Robert Fraser and Janice Glasgow School of Computing, Queen s University, Kingston ON, Canada, K7L3N6 {robert,janice}@cs.queensu.ca

More information

BCH 4053 Spring 2003 Chapter 6 Lecture Notes

BCH 4053 Spring 2003 Chapter 6 Lecture Notes BCH 4053 Spring 2003 Chapter 6 Lecture Notes 1 CHAPTER 6 Proteins: Secondary, Tertiary, and Quaternary Structure 2 Levels of Protein Structure Primary (sequence) Secondary (ordered structure along peptide

More information

CAP 5510 Lecture 3 Protein Structures

CAP 5510 Lecture 3 Protein Structures CAP 5510 Lecture 3 Protein Structures Su-Shing Chen Bioinformatics CISE 8/19/2005 Su-Shing Chen, CISE 1 Protein Conformation 8/19/2005 Su-Shing Chen, CISE 2 Protein Conformational Structures Hydrophobicity

More information

Predicting Protein Structural Features With Artificial Neural Networks

Predicting Protein Structural Features With Artificial Neural Networks CHAPTER 4 Predicting Protein Structural Features With Artificial Neural Networks Stephen R. Holbrook, Steven M. Muskal and Sung-Hou Kim 1. Introduction The prediction of protein structure from amino acid

More information

1. Protein Data Bank (PDB) 1. Protein Data Bank (PDB)

1. Protein Data Bank (PDB) 1. Protein Data Bank (PDB) Protein structure databases; visualization; and classifications 1. Introduction to Protein Data Bank (PDB) 2. Free graphic software for 3D structure visualization 3. Hierarchical classification of protein

More information

8 Protein secondary structure

8 Protein secondary structure Grundlagen der Bioinformatik, SoSe 11, D. Huson, June 6, 211 13 8 Protein secondary structure Sources for this chapter, which are all recommended reading: Introduction to Protein Structure, Branden & Tooze,

More information

We used the PSI-BLAST program (http://www.ncbi.nlm.nih.gov/blast/) to search the

We used the PSI-BLAST program (http://www.ncbi.nlm.nih.gov/blast/) to search the SUPPLEMENTARY METHODS - in silico protein analysis We used the PSI-BLAST program (http://www.ncbi.nlm.nih.gov/blast/) to search the Protein Data Bank (PDB, http://www.rcsb.org/pdb/) and the NCBI non-redundant

More information

Giri Narasimhan. CAP 5510: Introduction to Bioinformatics. ECS 254; Phone: x3748

Giri Narasimhan. CAP 5510: Introduction to Bioinformatics. ECS 254; Phone: x3748 CAP 5510: Introduction to Bioinformatics Giri Narasimhan ECS 254; Phone: x3748 giri@cis.fiu.edu www.cis.fiu.edu/~giri/teach/bioinfs07.html 2/15/07 CAP5510 1 EM Algorithm Goal: Find θ, Z that maximize Pr

More information

An Artificial Neural Network Classifier for the Prediction of Protein Structural Classes

An Artificial Neural Network Classifier for the Prediction of Protein Structural Classes International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347 5161 2017 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article An Artificial

More information

PROTEIN SECONDARY STRUCTURE PREDICTION USING NEURAL NETWORKS AND SUPPORT VECTOR MACHINES

PROTEIN SECONDARY STRUCTURE PREDICTION USING NEURAL NETWORKS AND SUPPORT VECTOR MACHINES PROTEIN SECONDARY STRUCTURE PREDICTION USING NEURAL NETWORKS AND SUPPORT VECTOR MACHINES by Lipontseng Cecilia Tsilo A thesis submitted to Rhodes University in partial fulfillment of the requirements for

More information

Protein Secondary Structure Prediction

Protein Secondary Structure Prediction C E N T R F O R I N T E G R A T I V E B I O I N F O R M A T I C S V U E Master Course DNA/Protein Structurefunction Analysis and Prediction Lecture 7 Protein Secondary Structure Prediction Protein primary

More information

Biomolecules: lecture 10

Biomolecules: lecture 10 Biomolecules: lecture 10 - understanding in detail how protein 3D structures form - realize that protein molecules are not static wire models but instead dynamic, where in principle every atom moves (yet

More information

Objective: Students will be able identify peptide bonds in proteins and describe the overall reaction between amino acids that create peptide bonds.

Objective: Students will be able identify peptide bonds in proteins and describe the overall reaction between amino acids that create peptide bonds. Scott Seiple AP Biology Lesson Plan Lesson: Primary and Secondary Structure of Proteins Purpose:. To understand how amino acids can react to form peptides through peptide bonds.. Students will be able

More information

Research Article Extracting Physicochemical Features to Predict Protein Secondary Structure

Research Article Extracting Physicochemical Features to Predict Protein Secondary Structure The Scientific World Journal Volume 2013, Article ID 347106, 8 pages http://dx.doi.org/10.1155/2013/347106 Research Article Extracting Physicochemical Features to Predict Protein Secondary Structure Yin-Fu

More information

Intro Secondary structure Transmembrane proteins Function End. Last time. Domains Hidden Markov Models

Intro Secondary structure Transmembrane proteins Function End. Last time. Domains Hidden Markov Models Last time Domains Hidden Markov Models Today Secondary structure Transmembrane proteins Structure prediction NAD-specific glutamate dehydrogenase Hard Easy >P24295 DHE2_CLOSY MSKYVDRVIAEVEKKYADEPEFVQTVEEVL

More information

Today. Last time. Secondary structure Transmembrane proteins. Domains Hidden Markov Models. Structure prediction. Secondary structure

Today. Last time. Secondary structure Transmembrane proteins. Domains Hidden Markov Models. Structure prediction. Secondary structure Last time Today Domains Hidden Markov Models Structure prediction NAD-specific glutamate dehydrogenase Hard Easy >P24295 DHE2_CLOSY MSKYVDRVIAEVEKKYADEPEFVQTVEEVL SSLGPVVDAHPEYEEVALLERMVIPERVIE FRVPWEDDNGKVHVNTGYRVQFNGAIGPYK

More information

Examples of Protein Modeling. Protein Modeling. Primary Structure. Protein Structure Description. Protein Sequence Sources. Importing Sequences to MOE

Examples of Protein Modeling. Protein Modeling. Primary Structure. Protein Structure Description. Protein Sequence Sources. Importing Sequences to MOE Examples of Protein Modeling Protein Modeling Visualization Examination of an experimental structure to gain insight about a research question Dynamics To examine the dynamics of protein structures To

More information

CMPS 6630: Introduction to Computational Biology and Bioinformatics. Tertiary Structure Prediction

CMPS 6630: Introduction to Computational Biology and Bioinformatics. Tertiary Structure Prediction CMPS 6630: Introduction to Computational Biology and Bioinformatics Tertiary Structure Prediction Tertiary Structure Prediction Why Should Tertiary Structure Prediction Be Possible? Molecules obey the

More information

Packing of Secondary Structures

Packing of Secondary Structures 7.88 Lecture Notes - 4 7.24/7.88J/5.48J The Protein Folding and Human Disease Professor Gossard Retrieving, Viewing Protein Structures from the Protein Data Base Helix helix packing Packing of Secondary

More information

CMPS 3110: Bioinformatics. Tertiary Structure Prediction

CMPS 3110: Bioinformatics. Tertiary Structure Prediction CMPS 3110: Bioinformatics Tertiary Structure Prediction Tertiary Structure Prediction Why Should Tertiary Structure Prediction Be Possible? Molecules obey the laws of physics! Conformation space is finite

More information

Template Based Protein Structure Modeling Jianlin Cheng, PhD

Template Based Protein Structure Modeling Jianlin Cheng, PhD Template Based Protein Structure Modeling Jianlin Cheng, PhD Professor Department of EECS Informatics Institute University of Missouri, Columbia 2018 Sequence, Structure and Function AGCWY Cell Protein

More information

12 Protein secondary structure

12 Protein secondary structure Grundlagen der Bioinformatik, SoSe 14, D. Huson, July 2, 214 147 12 Protein secondary structure Sources for this chapter, which are all recommended reading: Introduction to Protein Structure, Branden &

More information

Conditional Graphical Models

Conditional Graphical Models PhD Thesis Proposal Conditional Graphical Models for Protein Structure Prediction Yan Liu Language Technologies Institute University Thesis Committee Jaime Carbonell (Chair) John Lafferty Eric P. Xing

More information

Structure and evolution of the spliceosomal peptidyl-prolyl cistrans isomerase Cwc27

Structure and evolution of the spliceosomal peptidyl-prolyl cistrans isomerase Cwc27 Acta Cryst. (2014). D70, doi:10.1107/s1399004714021695 Supporting information Volume 70 (2014) Supporting information for article: Structure and evolution of the spliceosomal peptidyl-prolyl cistrans isomerase

More information

C h a p t e r 2 A n a l y s i s o f s o m e S e q u e n c e... methods use different attributes related to mis sense mutations such as

C h a p t e r 2 A n a l y s i s o f s o m e S e q u e n c e... methods use different attributes related to mis sense mutations such as C h a p t e r 2 A n a l y s i s o f s o m e S e q u e n c e... 2.1Introduction smentionedinchapter1,severalmethodsareavailabletoclassifyhuman missensemutationsintoeitherbenignorpathogeniccategoriesandthese

More information

3D Structure. Prediction & Assessment Pt. 2. David Wishart 3-41 Athabasca Hall

3D Structure. Prediction & Assessment Pt. 2. David Wishart 3-41 Athabasca Hall 3D Structure Prediction & Assessment Pt. 2 David Wishart 3-41 Athabasca Hall david.wishart@ualberta.ca Objectives Become familiar with methods and algorithms for secondary Structure Prediction Become familiar

More information

Protein 8-class Secondary Structure Prediction Using Conditional Neural Fields

Protein 8-class Secondary Structure Prediction Using Conditional Neural Fields 2010 IEEE International Conference on Bioinformatics and Biomedicine Protein 8-class Secondary Structure Prediction Using Conditional Neural Fields Zhiyong Wang, Feng Zhao, Jian Peng, Jinbo Xu* Toyota

More information

DATE A DAtabase of TIM Barrel Enzymes

DATE A DAtabase of TIM Barrel Enzymes DATE A DAtabase of TIM Barrel Enzymes 2 2.1 Introduction.. 2.2 Objective and salient features of the database 2.2.1 Choice of the dataset.. 2.3 Statistical information on the database.. 2.4 Features....

More information

Protein Structures. Sequences of amino acid residues 20 different amino acids. Quaternary. Primary. Tertiary. Secondary. 10/8/2002 Lecture 12 1

Protein Structures. Sequences of amino acid residues 20 different amino acids. Quaternary. Primary. Tertiary. Secondary. 10/8/2002 Lecture 12 1 Protein Structures Sequences of amino acid residues 20 different amino acids Primary Secondary Tertiary Quaternary 10/8/2002 Lecture 12 1 Angles φ and ψ in the polypeptide chain 10/8/2002 Lecture 12 2

More information

Protein Structure Prediction II Lecturer: Serafim Batzoglou Scribe: Samy Hamdouche

Protein Structure Prediction II Lecturer: Serafim Batzoglou Scribe: Samy Hamdouche Protein Structure Prediction II Lecturer: Serafim Batzoglou Scribe: Samy Hamdouche The molecular structure of a protein can be broken down hierarchically. The primary structure of a protein is simply its

More information

Protein Structures: Experiments and Modeling. Patrice Koehl

Protein Structures: Experiments and Modeling. Patrice Koehl Protein Structures: Experiments and Modeling Patrice Koehl Structural Bioinformatics: Proteins Proteins: Sources of Structure Information Proteins: Homology Modeling Proteins: Ab initio prediction Proteins:

More information

Lecture 26: Polymers: DNA Packing and Protein folding 26.1 Problem Set 4 due today. Reading for Lectures 22 24: PKT Chapter 8 [ ].

Lecture 26: Polymers: DNA Packing and Protein folding 26.1 Problem Set 4 due today. Reading for Lectures 22 24: PKT Chapter 8 [ ]. Lecture 26: Polymers: DA Packing and Protein folding 26.1 Problem Set 4 due today. eading for Lectures 22 24: PKT hapter 8 DA Packing for Eukaryotes: The packing problem for the larger eukaryotic genomes

More information

ALL LECTURES IN SB Introduction

ALL LECTURES IN SB Introduction 1. Introduction 2. Molecular Architecture I 3. Molecular Architecture II 4. Molecular Simulation I 5. Molecular Simulation II 6. Bioinformatics I 7. Bioinformatics II 8. Prediction I 9. Prediction II ALL

More information

Accurate Prediction of Protein Disordered Regions by Mining Protein Structure Data

Accurate Prediction of Protein Disordered Regions by Mining Protein Structure Data Data Mining and Knowledge Discovery, 11, 213 222, 2005 c 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands. DOI: 10.1007/s10618-005-0001-y Accurate Prediction of Protein Disordered

More information

PRI-Modeler: Extracting RNA structural elements from PDB files of protein RNA complexes

PRI-Modeler: Extracting RNA structural elements from PDB files of protein RNA complexes PRI-Modeler: Extracting RNA structural elements from PDB files of protein RNA complexes Kyungsook Han *, Chirag Nepal School of Computer Science and Engineering, Inha University, Inchon 402-751, Republic

More information

PROTEIN SECONDARY STRUCTURE PREDICTION: AN APPLICATION OF CHOU-FASMAN ALGORITHM IN A HYPOTHETICAL PROTEIN OF SARS VIRUS

PROTEIN SECONDARY STRUCTURE PREDICTION: AN APPLICATION OF CHOU-FASMAN ALGORITHM IN A HYPOTHETICAL PROTEIN OF SARS VIRUS Int. J. LifeSc. Bt & Pharm. Res. 2012 Kaladhar, 2012 Research Paper ISSN 2250-3137 www.ijlbpr.com Vol.1, Issue. 1, January 2012 2012 IJLBPR. All Rights Reserved PROTEIN SECONDARY STRUCTURE PREDICTION:

More information

Prediction of protein secondary structure by mining structural fragment database

Prediction of protein secondary structure by mining structural fragment database Polymer 46 (2005) 4314 4321 www.elsevier.com/locate/polymer Prediction of protein secondary structure by mining structural fragment database Haitao Cheng a, Taner Z. Sen a, Andrzej Kloczkowski a, Dimitris

More information

Student Questions and Answers October 8, 2002

Student Questions and Answers October 8, 2002 Student Questions and Answers October 8, 2002 Q l. Is the Cα of Proline also chiral? Answer: FK: Yes, there are 4 different residues bound to this C. Only in a strictly planar molecule this would not hold,

More information

Pymol Practial Guide

Pymol Practial Guide Pymol Practial Guide Pymol is a powerful visualizor very convenient to work with protein molecules. Its interface may seem complex at first, but you will see that with a little practice is simple and powerful

More information

Protein-Protein Interaction Classification Using Jordan Recurrent Neural Network

Protein-Protein Interaction Classification Using Jordan Recurrent Neural Network Protein-Protein Interaction Classification Using Jordan Recurrent Neural Network Dilpreet Kaur Department of Computer Science and Engineering PEC University of Technology Chandigarh, India dilpreet.kaur88@gmail.com

More information

Problem Set 1

Problem Set 1 2006 7.012 Problem Set 1 Due before 5 PM on FRIDAY, September 15, 2006. Turn answers in to the box outside of 68-120. PLEASE WRITE YOUR ANSWERS ON THIS PRINTOUT. 1. For each of the following parts, pick

More information

Improving Protein Secondary-Structure Prediction by Predicting Ends of Secondary-Structure Segments

Improving Protein Secondary-Structure Prediction by Predicting Ends of Secondary-Structure Segments Improving Protein Secondary-Structure Prediction by Predicting Ends of Secondary-Structure Segments Uros Midic 1 A. Keith Dunker 2 Zoran Obradovic 1* 1 Center for Information Science and Technology Temple

More information

Lecture 14 Secondary Structure Prediction

Lecture 14 Secondary Structure Prediction C N T R F O R I N T G R A T I V Protein structure B I O I N F O R M A T I C S V U Lecture 14 Secondary Structure Prediction Bioinformatics Center IBIVU James Watson & Francis Crick (1953) Linus Pauling

More information

Protein Structure and Visualisation. Introduction to PDB and PyMOL

Protein Structure and Visualisation. Introduction to PDB and PyMOL Protein Structure and Visualisation Introduction to PDB and PyMOL 1 Feedback Persons http://www.bio-evaluering.dk/ 2 Program 8.00-8.15 Quiz results 8.15-8.50 Introduction to PDB & PyMOL 8.50-9.00 Break

More information

4 Proteins: Structure, Function, Folding W. H. Freeman and Company

4 Proteins: Structure, Function, Folding W. H. Freeman and Company 4 Proteins: Structure, Function, Folding 2013 W. H. Freeman and Company CHAPTER 4 Proteins: Structure, Function, Folding Learning goals: Structure and properties of the peptide bond Structural hierarchy

More information

Useful background reading

Useful background reading Overview of lecture * General comment on peptide bond * Discussion of backbone dihedral angles * Discussion of Ramachandran plots * Description of helix types. * Description of structures * NMR patterns

More information

IMPORTANCE OF SECONDARY STRUCTURE ELEMENTS FOR PREDICTION OF GO ANNOTATIONS

IMPORTANCE OF SECONDARY STRUCTURE ELEMENTS FOR PREDICTION OF GO ANNOTATIONS IMPORTANCE OF SECONDARY STRUCTURE ELEMENTS FOR PREDICTION OF GO ANNOTATIONS Aslı Filiz 1, Eser Aygün 2, Özlem Keskin 3 and Zehra Cataltepe 2 1 Informatics Institute and 2 Computer Engineering Department,

More information

Protein structure alignments

Protein structure alignments Protein structure alignments Proteins that fold in the same way, i.e. have the same fold are often homologs. Structure evolves slower than sequence Sequence is less conserved than structure If BLAST gives

More information

Template Free Protein Structure Modeling Jianlin Cheng, PhD

Template Free Protein Structure Modeling Jianlin Cheng, PhD Template Free Protein Structure Modeling Jianlin Cheng, PhD Associate Professor Computer Science Department Informatics Institute University of Missouri, Columbia 2013 Protein Energy Landscape & Free Sampling

More information

Protein Secondary Structure Prediction

Protein Secondary Structure Prediction Protein Secondary Structure Prediction Doug Brutlag & Scott C. Schmidler Overview Goals and problem definition Existing approaches Classic methods Recent successful approaches Evaluating prediction algorithms

More information

Matching Protein/3-Sheet Partners by Feedforward and Recurrent Neural Networks

Matching Protein/3-Sheet Partners by Feedforward and Recurrent Neural Networks From: ISMB-00 Proceedings. Copyright 2000, AAAI (www.aaai.org). All rights reserved. Matching Protein/3-Sheet Partners by Feedforward and Recurrent Neural Networks Pierre Baldi* and Gianluca Pollastri

More information

Orientational degeneracy in the presence of one alignment tensor.

Orientational degeneracy in the presence of one alignment tensor. Orientational degeneracy in the presence of one alignment tensor. Rotation about the x, y and z axes can be performed in the aligned mode of the program to examine the four degenerate orientations of two

More information

Variable-Length Protein Sequence Motif Extraction Using Hierarchically-Clustered Hidden Markov Models

Variable-Length Protein Sequence Motif Extraction Using Hierarchically-Clustered Hidden Markov Models 2013 12th International Conference on Machine Learning and Applications Variable-Length Protein Sequence Motif Extraction Using Hierarchically-Clustered Hidden Markov Models Cody Hudson, Bernard Chen Department

More information

Section II Understanding the Protein Data Bank

Section II Understanding the Protein Data Bank Section II Understanding the Protein Data Bank The focus of Section II of the MSOE Center for BioMolecular Modeling Jmol Training Guide is to learn about the Protein Data Bank, the worldwide repository

More information