A Solution of Kepler s Equation

Size: px
Start display at page:

Download "A Solution of Kepler s Equation"

Transcription

1 Itratioal Joural of Astroomy ad Astrohysics, 4, 4, Publishd Oli Dcmbr 4 i SciRs. htt:// htt://dx.doi.org/.46/ijaa A Solutio of Klr s Equatio Joh N. Tokis Tchological Educatioal Istitut of Eirus, Ioaia, Grc JohTokis@ioa.ti.gr Rcivd 7 Octobr 4; rvisd 4 Novmbr 4; acctd Dcmbr 4 Acadmic Editor: Ra Zhou, Thortical High Ergy Physics Grou, Frmi Natioal Acclrator Laboratory, Chia Coyright 4 by author ad Scitific Rsarch Publishig Ic. This work is licsd udr th Crativ Commos Attributio Itratioal Lics (CC BY). htt://crativcommos.org/licss/by/4./ Abstract Th rst study dals with a traditioal hysical roblm: th solutio of th Klr s quatio for all coics (llis, hyrbola or arabola). Solutio of th uivrsal Klr s quatio i closd form is obtaid with th hl of th two-dimsioal Lalac tchiqu, xrssig th uivrsal fuctios as a fuctio of th uivrsal aomaly ad th tim. Combiig ths w xrssios of th uivrsal fuctios ad thir idtitis, w stablish o biquadratic quatio for uivrsal aomaly ( ) for all coics; solvig this w quatio, w hav a w xact solutio of th rst roblm for th uivrsal aomaly as a fuctio of th tim. Th vrifyig of th uivrsal Klr s quatio ad th traditioal forms of Klr s quatio from this w solutio ar discussd. Th lots of th llitic, hyrbolic or arabolic Klria orbits ar also giv, usig this w solutio. Kywords Klria otio, Uivrsal Klr s Equatio, Uivrsal Aomaly, Two-Dimsioal Lalac Trasforms. Itroductio I th Klria roblm, a body of mass m follows a coic orbit, for which th focus is idtifid to th ctr of attractig body (with mass m ). Th Klria motio is dscribd by th fudamtal diffrtial quatio of th hysical two-body roblm: d r r = µ () dt r whr r is th vctor ositio of th movig body rlatd to th attractio ctr ad µ th gravitatioal a- How to cit this ar: Tokis, J.N. (4) A Solutio of Klr s Equatio. Itratioal Joural of Astroomy ad Astrohysics, 4, htt://dx.doi.org/.46/ijaa.4.446

2 µ = + > (whr G th Nwtoia gravitatioal costat) (s [], Equatio (6..)). Th traditioal form of Klr s quatio, which ca b obtaid dirctly from Equatio () (s [], Sctio 6. ad []), is ormally writt as: ramtr dfid by G( m m ) For llitic orbits ( ) for hyrbolic orbits ( ) E sie = (a) E sihe = (b) whr is th cctricity, E th cctric aomaly ad th ma aomaly, which is dfid as h µ = t, < a µ = t, < ( a) ( q ) h (c) (d) µ = t, = () (s [], Equatio () ad [], Equatios (4.5) ad (4.5)). Rmark that th tim t is masurd from rictr ad a is th smimajor axis, which is ositiv for lliss, gativ for hyrbolas, ad ifiit for arabolas; also, q is th rictr distac of th orbit. Th cas of = lads to a circular orbit ad th siml solutio E = (cf., Equatio (a)), so that w will rgard > hraftr i th rst work. Johas Klr aoucd th rlvat laws of abov quatio arly i 69 ad 69 [4]. H has usd hysics as a guid i this discovry [5]. For four cturis, th Klr s roblm is to solv th oliar Klr s Equatio () for th cctric aomaly. Early aalytical solutio of Klr s quatio was cosidrd i a comrhsiv study of Tissrad [6]. Rctly, aalytical works of th solutio ad us of Klr s quatio hav b roosd by various authors (s,.g., [7]-[]). I virtually vry dcad from 65 to th rst, thr hav aard ars dvotd to th solutio of this Klr s quatio. Its xact aalytical solutio is ukow, ad thrfor, fficit rocdurs to solv it umrically hav b wll discussd i may stadard txt books of Clstial chaics ad Astrodyamics as wll as i a larg umbr of ars. Colwll [] cotais xtsiv rfrcs to th Klr roblm i his book. Durig last two dcads, studis wr carrid out by svral ivstigators of th rst roblm [] [4]-[8]. I ths studis, thy usd umrical or aroximatios mthods for solutio of th Klr s quatio. Hc, it aars that a aalytical solutio of th Klr s quatio will b of grat itrst. I th currt study, a aalytical ivstigatio of th Klr s quatio ral roots i closd form is rstd. I Sctio, w will stablish th gral form of Klr s quatio ad will clar u th usful idtitis of th uivrsal fuctios. I Sctio, usig th two-dimsioal Lalac trasform tchiqu, w will rst a aalytical solutio for th uivrsal Klr s quatio, obtaiig th uivrsal fuctios ( U, =,,,) as fuctio of th uivrsal aomaly ( ) ad th tim ( t ). I Sctio 4, i th first st w will stablish o w biquadratic quatio for uivrsal aomaly for all coics with th hl of Nwma s quatio (cf. Equatio ()) ad som idtitis of th w xrssios of uivrsal fuctios. Th, th solutio = ( t) of th rst roblm has b obtaid, solvig this biquadratic quatio for all coics. Fially, discussio of th rsults, thus obtaid, is rstd i Sctio 5; th w solutio of th roblm will rov that vrifis th traditioal form of Klr s quatios for llitic, hyrbolic or arabolic orbits. Th llitic, hyrbolic or arabolic Klria motio is asily lottd, usig this w solutio.. Gral Form of Klr s Equatio I ordr to solv th Klr s Equatio (), w us hr th gralizd form of this quatio with th uivrsal fuctios ad th uivrsal aomaly istad of th cctric aomaly (s [], Sctio 4.5). 684

3 Workig for th Klr s Equatio (), w cosidr a objct followig a ath of sam cctricity about th ctr of attractig body; th objct is at tim t i (vctor) ositio r( t ) with (vctor) vlocity v. Th tim t is masurd from th rictr assag; so, wh t = this objct was at ositio r (with r = r ) of th rictr with vlocity v (with v = υ) ad cctric aomaly E =. W mhasiz that th vctors r ad r origiat at th ctr of attractio. Th, w itroduc th uivrsal aomaly, which is dfid by Sudma trasformatio: (s [], Equatio (4.7)) ad rlatd to th classical cctric aomaly by µ dt = rd () E a, a > (4a) E a, a < (4b) D, a = (4c) whr E is th cctric aomaly agl of llitic or hyrbolic orbit ad D th arabolic cctric aomaly of arabolic orbit with dimsio L (s [9], Equatio (8)). Th α dots th rcirocal of th smimajor axis a, amly υ υ a = a r µ r µ (5a,b,c) Ddig o th sig of α or th valu of th cctricity, th ty of th orbit is dtrmid such that: α > (or < ) for llitic orbits; α < (or > ) for hyrbolic orbits ad α = (or = ) for arabolic orbits. Not that th uivrsal aomaly is a w iddt variabl with dimsio L (s [], Equatio (4.7)). From th iitial coditio E = ad th kow rlatios: cose = ra, sie = σ a for llitic orbits ad coshe = ra, sihe = σ a for hyrbolic orbits (s [], Sctios 4. ad 4.4), w hav also for th rst roblm r v q = r = a ( ), σ = (6a,b) µ whr q stads for th rictr distac of th orbit rlatd to th aramtr with th rlatio ( ) q( ) = a = + (7) Rmark that th is a o-gativ aramtr ad th rictr distac q may b ositiv or zro; both of thm hav dimsios of lgth (s [], Sctio 4.). Now, usig th uivrsal fuctios dfid by with thir followig usful rortis: U ( α) k = ( α) + ( + k) k k ; =, =,,,, (8)! (9a) U α ; = U α ; d, =,,, U( α ; ) + αu+ ( α ; ) =, =,,,, (9b)! U U ( α ; ) ( α ; ) ( α) = U ;, =,,, = au ( α ; ) (s [], Equatio (9.7)), th two forms of Klr s Equatio () ar icororatd i o uivrsal quatio (9c) (9d) 685

4 ( α ; ) ( α ; ) µ qu + U = t () which is a stadard form of th traditioal Klr s Equatios () with th och at rictr assag (s [9], Equatio () ad [], Equatio (9)). Th gral formula () is valid for all valus of α ad ; i articular, it is good for arabolic orbits whr a = a =. To fid out th xrssio of may orbital quatitis,.g. th magitud of th ositio vctor r( t ), w must solv th stadard uivrsal form () of th Klr s quatio for th uivrsal aomaly as fuctio of th tim, = t. amly. Solutio of th Uivrsal Klr s Equatio I ordr to obtai th aalytical solutio of th rst roblm, w shall solv first th uivrsal Klr s quatio Equatio (), obtaiig th uivrsal fuctios U, =,,, as a fuctio of th uivrsal aomaly ad th tim. For this uros, w will us th doubl Lalac trasformatio tchiqu, which was aalytically studid by Aghili ad Salkhordh-oghaddam [9] ad by Valkó ad Abat []. Th uivrsal fuctios U : For this cas, w itroduc a w variabl ω(,t) so that U U ( t) ω (a), U = = ω (s Equatios (9)) ad th uivrsal Klr s Equatio () bcoms (b) U = U d = ωd (c) d t (a) qω + ω = µ From th iitial coditio E = or = ad Equatio (9a), w hav th corrsodig iitial coditios to th Equatio (a) ω, t = ω, t = (b) x Th alicatio of doubl Lalac trasform (with rsct to ad t ) to th Equatios () givs th so- Ω s, ξ i trasform domai as lutio ( s, ξ ) Ω = ξ µ ( qs + ) whr s ad ξ ar th trasform variabls of ad tim t, rsctivly. For th solutio of artial diffrtial Equatio (a), w us th Adix. Now, th uivrsal fuctio U ca b obtaid by takig th ivrs trasform of Equatio () (cf., Adix). So, w gt A U = ω(, t) = µ t (4) q whr w hav abbrviatd A = L. with dimsios: [ ] Th uivrsal fuctios ( ) A q q q () si, > (5) U : For this cas, w will us a w variabl (,t) U ψ ( t) U U, ψ so that (6a) U = = U = = ψ ψ (6b) (6c) 686

5 (s Equatios (9c)) ad th uivrsal Klr s Equatio () bcoms + = t (7a) qψ ψ µ For E = or = ad Equatio (9a), w hav th iitial coditios to th Equatio (7a) ( t) ( t) ( t) ψ, = ψ, = ψ, = (7b) Similarly as i th cas of U, usig th doubl Lalac trasform (with rsct to ad t ) for th Equa- Ψ s, ξ i trasform domai as tios (7), w obtaid th solutio (cf., Adix). Ivrtig ( s, ξ ) µ Ψ ( s, ξ ) = ξ s qs ( + ) Ψ w hav th uivrsal fuctio U whr w hav dfid th o-dimsioal fuctio (8) U = ψ, t = B µ t (9) ( ) B cos q, q > () Th, substitutig th rsults of Equatio (4) ad (9) ito th rlatios U+ au = ad U + au = (cf., Equatio (9b)), rsctivly, w ca asily obtai th w uivrsal fuctios U ad U as U = B αµ t () = () U A t q αµ whr A ad B ar giv from Equatios (5) ad (), rsctivly. 4. Aalytical Solutio of th Problm I ordr to obtai a solutio for th uivrsal aomaly ( t) whr σ = r v µ uivrsal fuctios Equatio (4.8)) =, w us th xlicit xrssio for : = αµ t + σ (). This rlatio was discovrd by C.. Nwma ad its dos ot ivolv ay of th U (s [], Equatio (4.86)). Th σ ca b also giv by th kow quatio (s [], ( αqu ) σ = (4) Substitutig Equatio (4) (with U giv by ()) ito Equatio (), th followig rlatio is obtaid ( )( ) q + α q B µ t = µ t (5) To fid out two mor rlatios btw, A ad B, similar to Equatio (5), w will us th basic rlatio si ( q ) + cos ( q ) = ad th dfiitios of A ad B Equatios (5) ad (), rsctivly. Thus, w ca asily obtai th rlatio B A q + = (6) = + (s [], Equatio (4.9)); idd, with th hl of Equatios (4), () ad (), w obtai th rlatio Furthr, w ca fid o mor rlatio usig th basic idtity U U ( U ) A A ( B) αµ t t t q µ q αµ = Th thr Equatios (5), (6) ad (7) ar a systm of th thr ukows:, A ad B. Solvig this systm, w gt from two Equatios (5) ad (6) th followig rlatios (7) 687

6 q = (8a) ( B) µ t µ t ( αµ t) A µ t q µ αµ q q ( t) t = Fially, substitutig Equatios (8) ito Equatio (7), w obtai th followig biquadratic quatio for uivrsal aomaly whr w hav abbrviatd with dimsios: [ z] = L, [ b ] = L ad [ b ] L 4 (8b) z + b z + b = (9) z αµ t (a) µ t b q ( ) + q t t b µ ( ) µ 4 q q =. Th solutio of th biquadratic Equatio (9) givs th rlatio btw th uivrsal aomaly ad th tim t for all coics: llis, hyrbola or arabola. Th solutio of this quatio ca b obtaid usig th stadard formula of th solutio for biquadratic quatio. Solvig th w biquadratic Equatio (9), w gt th solutio of th rst roblm for th uivrsal aomaly at tim t as show blow whr w hav abbrviatd articularly, for llitic orbits ( ) for hyrbolic orbits ( < ) ad for arabolic orbits ( = ) (b) (c) = αµ t+ ϕ t () ϕ ( t) q ( + µ t q ) ( ) µ t q < < w hav (a) ϕ ( t) a ( )( + µ t q ) (b) ϕ ( t) ( a ) ( )( µ t q + ) (c) { } ϕ t q + µ t q (d) = 6 + >, for q >. Cosqutly, th solutio () is ral i th cass of hyrbolic ad arabolic cass sic th corrsodig ϕ ( t), giv from Equatios (c,d), ar always ral-valud. I th cas of th llitic Klria orbits, th Equatio () is ral oly i th scial cas for which ϕ ( t), giv from Equatio (b), bcoms ral, amly for th cas Rmark that th discrimiat of th biquadratic Equatio (9) is q ( µ t q ) whr µ t q 4 < or < ( ) ( ) is th ma aomaly dfid by Equatio (c). Th ur limit of this ma aomaly (,f) is d- 688

7 fid from th rlatio (f) for vry comltd tri of th orbitig body i its llitic orbit about th ctr of th attractig body; this limit is usful for dtrmiatio of ach Klria llis (cf., th alicatios i th xt sctio). I th cas of arabolic orbits whr th limitig cas a (or α = ) ad corrsods to r = q = ad σ = r v µ =, th quatio (9) ad its solutio () ar rducd to 4 + 4q 4µ t q = (a) = ϕ t = q + µ t q Th Equatio () is th solutio of th rst roblm for all coics (llis, hyrbola or arabola) ad xrsss th rlatio btw th uivrsal aomaly ad th tim t. Kowig th solutio of th uivrsal aomaly ( t), w stablish th xact xrssios of th uivrsal fuctios U, =,,, as fuctios of th tim t. Idd, usig Equatio (), th Equatio (8) ar obtaid as fuctios of th tim t : A q µ t = + µ t q q ( B) µ t µ t ϕ( t) (b) (4a) q = (4b) Th, th uivrsal fuctios (9), (4), () ad () ar xrssd as fuctios of th tim t as show blow q = (5a) U µ t ϕ t U q = + µ t q (5b) U = ϕ ( t) (5c) U = ( ) + µ t q Th magitud of th ositio vctor r of th orbitig body is ( α ; ) ( α ; ) ( α ; ) (5d) r = ru + U = q+ U (6a,b) (s [], Equatio (4.8) ad [4], Equatio (8)). Substitutig ito Equatio (6b) th w xrssios of U, giv by Equatio (5b), w obtai th tim-ddt distac r of th orbitig body from th ctr of attractio as r = q + t µ q Furthrmor, if w work i th orbital rfrc systm with th origi at th attractig ctr (or focus), w XY, la to b th la of motio with X -axis oitig toward rictr ad Y -axis i th f is 9 ; i this way th Z -axis is aralll to th agular momtum. P XY, o th coic orbit, w hav X = rcosf ad chos th dirctio for which th tru aomaly Th, if X ad Y ar th coordiats of a oit (7) r = X (8) whr is th o-gativ quatity giv by Equatio (7) (s [], Equatio (4.)). Thus, th X ad Y coordiats ca b xrssd as fuctio of th tim t, usig Equatios (8) ad th idtitis: U + au =, U = U + U ; amly, w gt 689

8 X = q U α (9a) ; ( ) ( α ; ) Y q U = + (9b) whr U ad U ar giv from Equatios (5) (s [4], Equatios (6)-(7)). 5. Discussio Usig th stadard form of th uivrsal Klr s quatio () with th och at rictr assag, w hav drivd a w biquadratic quatio (9) for uivrsal aomaly as a fuctio of th tim t. This quatio govrs th motio of a orbitig body followig a ath with ositio vctor r( t ) from th ctr of attractig body ad with vlocity vctor v ( t). Th w solutio () of th rst roblm was obtaid solvig Equatio (9) with iitial-valu coditios for th orbitig body at tim t = assags from th rictr, with miimum ositio vctor r, vlocity vctor v ad cctric aomaly E =. Th solutio () is a solutio of th rst roblm. Idd, th w xrssios of th uivrsal fuctios U, ad U giv by (5a,c) vrify uivrsal Klr s Equatio (). orovr, th solutio () is a solutio of th Equatio (9), sic it ca b asily vrifid by substitutio of () ito (9). Th solutio () vrifis also th traditioal forms of Klr s Equatio (). Particularly, i th cas of llitic orbits ( < < ) th solutio () of th roblm is rducd for th cctric aomaly (cf. Equatio (4a)) to th form whr E α ϕ t is th ma aomaly giv by Equatio (c) ad = = + (4) ( ) ϕ α ϕ Not that ϕ ( t) < ad Similarly, i th cas of hyrbolic orbits ( ) < th solutio () of th roblm is rducd, for th cctric aomaly (cf. Equatio (4b)), to whr ( t) ( t) = ( ) + ( ) < (cf. Equatio (f)) for < <. (4) ϕ h is th ma aomaly giv by Equatio (d) ad E = a = + t (4) h h ( ) ϕh( t) ( α) ϕ( t) = + ( ) + ( ) Fially, i th cas of arabolic orbits ( = ) th solutio (b) givs for th arabolic cctric aomaly (cf. Equatios (4c) ad ()): ϕ D = x = t = q +. From th othr had, th stadard ad hyrbolic trigoomtric fuctios of Equatios () ar xrssd as si sih E si U ϕ t α α (4) (44) = = = (45a) E sih U ϕ h t = α = α = whr w hav us Equatio (5) ad th rlatioshi btw th fuctio U ad th stadard ad hyrbolic trigoomtric fuctios of Equatios (): ( U = α si α ) ad U = ( α) sih ( α) for llis (45b) 69

9 ad hyrbola, rsctivly (s [], Problm 4 - ad [9], Equatio (4)). Now, w will rov that th Equatios (4) ad (4) rrst th solutios of th traditioal forms of Klr s Equatios (). Idd, it ca b show that th lft-had sids of Equatios () ar rducd to th righthad sids, amly ϕ ( t) E sie = + ϕ( t) = (46a) ( t) ϕh E sihe = h + ϕh( t) = h (46b) i accordac with th Equatios (4), (4) ad (45). It should b oitd out that our solutios for cctric aomaly (cf., Equatios (4) ad (4)) ar rady for hysical alicatios i th corrsodig Klria orbits. I additio to abov Klria orbits, th w solutio (b) of th rst roblm for th cas of arabola ( = ad α = ) vrifis th traditioal Barkr s quatio for arabolic orbits + 6q = 6µ t (47) Rmark that th arabolic Klria quatio is calld Barkr s quatio (s [], Equatio (4.4)). Idd, from th dfiitio (8) for th uivrsal fuctios w hav = 6 U ( ;) ad = U ( ;). Usig th solutio (b), ths uivrsal fuctios ar xrssd from Equatios (5a,c), so that whr ( t) = 6 t 6 q t, = t (48a,b) µ ϕ ϕ ϕ is giv from Equatio (d). Th, th lft-had sid of Equatios (47) is rducd to th righthad sid, amly + 6q = 6µ t 6qϕ t + 6qϕ t = 6µ t (49) I ordr to study th Klria orbits with th hl of th w solutios, w us also th cartsia coordiats x ad y with th origi at th ctr of th llis or hyrbola. I this cas th X ad Y coordiats of th orbital ( XY, ) la systm giv by Equatios (9) ar rlatd to th systm ( xy, ) with th rlatios X = x a ad Y = y (s [], Equatio (4.4)); so, for th cas, ths w coordiats ca b obtaid i th xlicit forms x = a ζ (5a) whr w hav dfid th o-dimsioal rlatio ( ) y = ζ a (5b) ζ ( ) + µ t q i accordac to th Equatios (9). Th, w itroduc th o-dimsioal coordiats x ζ a y ζ η = ( ) a Th w xrssios (5) vrify th followig quatios of llis ( < ) ad hyrbola ( > ), rsctivly: ζ ζ η + = η = (5) (5a) (5b) (5a) (5b) 69

10 whr ζ is dfid by Equatio (5). Rmark that th quatios (5) ar th o-dimsioal forms of th llis ad hyrbola, rsctivly, i th cartsia systm ( xy, ) with th origi at th ctr of th llis or hyrbola (s [], Equatios (A..) ad (A.4.)). I th othr had, for th cas of arabola ( = ), th coordiats X ad Y ca b also obtaid, from Equatios (9), as followig Th, w hav, from Equatios (54), ( µ ) X = q + t q ( µ ) Y = q + t q Y = 4q( q X) = ( X ) (55a,b) Th last Equatio (55) is th quatio of arabola, which asss through its rictr with coordiats (, ) (s [], Equatio (.)). Th o-dimsioal form of Equatio (55) is with th o-dimsioal coordiats (54a) (54b) η = 4ζ (56) ( t q ) ζ µ, η ζ + (57a,b) I additio to abov rsults for th o-dimsioal coordiats w hav (for hysical alicatio) th corrsodig xrssios: < < th Equatio (5) bcoms For llitic orbits ζ ( ) + for hyrbolic orbits ( < ) th Equatio (5) bcoms ζ + ( ) + for arabolic orbits ( = ) th Equatio (57a) yilds ( ) ( ) ( ) h (58a) (58b) ζ + (58c) whr, h ad ar th ma aomalis of llis, hyrbola ad arabola, rsctivly (cf., Equatios (c,d,)). Ths ma aomalis ca b varid from to k π, whr k is a itgr. Not that th odimsioal coordiats of attractiv ctr (or focus) F i th o-dimsioal cartsia systm ( ζη, ) is giv by F (,) for all Klria orbits (llis, hyrbola or arabola). I ordr to gt a hysical isight ito th w solutio of th Klr s roblm, w aly th abov rsults for th systm Earth-oo. For this systm th cctricity of th oo is =.549 ad th ur limit for th ma aomaly ca b obtaid from rlatio (f) as <.944. So, varyig th ma aomaly (with.944 ) ad usig Equatios (58a) ad (5b), th llitic Klria motio of th oo about th Earth ca b asily lottd i th o-dimsioal cartsia systm ( ζη, ) (Figur ). Rmark that th o-dimsioal coordiats of th Earth ar obtaid as (., ). Not that th us of th ur limit of th ma aomaly, giv from th rlatio < (cf. rlatio (f)), is imort for th lottig of all llitic Klria orbits. To cofirm that w giv two mor xamls: (a) W cosidr a objct followig a llitic orbit with cctricity =.5 about th ctr of attractig body; th ur limit of th ma aomaly, from rlatio (f), is <.44 ; th, varyig th ma aomaly (with.44 ) ad usig Equatios (58a) ad (5b), w lot th llitic Klria orbit i th ζη, (Figur ). (b) W cosidr aothr objct i a llitic orbit with o-dimsioal cartsia systm 69

11 Figur. Th llitic orbit of th oo ( =.549) about th Earth. Figur. Two llitic Klria orbits with cctricitis =.5 ad =.97. cctricity =.97 about th ctr of aothr attractig body; th ur limit of th w ma aomaly, from rlatio (f), is <.464 ; ad, varyig th ma aomaly (with.45 ), w lot th llitic Klria orbit i th o-dimsioal cartsia systm ( ζη, ) (Figur ). Now, varyig th ma aomaly (with.4 for th rst lot) ad usig quatios (58b) ad h h 69

12 η = ζ (cf., Equatio (5b), w lot of th hyrbolic Klria motio of a orbitig body with th cctricity =. about th attractiv ctr F (.69, ) (Figur ). Fially, varyig th ma aomaly (with for th rst lot) ad usig Equatios (58c), ad (56), w lot of th arabolic Klria motio of a orbitig body with th cctricity = about th attrac- F, (Figur 4). tiv ctr 6. Coclusios This work rsts a solutio to th wll kow Klria two body hysical roblm. From th ivstigatio Figur. Th hyrbola of a orbitig body (with =. ) about th attractiv ctr F (.69,). Figur 4. Th arabola of a orbitig body (with = ) about th attractiv ctr F (,). 694

13 for this w solutio, th mai coclusios hav b draw as followig: ) A aalytical solutio for th uivrsal Klr s quatio has b dtrmid, obtaiig th uivrsal fuctios U, =,,, as fuctio of th uivrsal aomaly ( ) ad th tim ( t ) with th hl of th two-dimsioal Lalac trasform tchiqu. ) Usig a xlicit xrssio for th uivrsal aomaly ( ) without ay of th U fuctios (cf., Equatio ()) ad som idtitis of th w obtaid uivrsal fuctios, w dvlod a biquadratic quatio for uivrsal aomaly for all coics: llis, hyrbola or arabola. ) Th solutio = ( t) of th rst roblm has b obtaid, solvig this biquadratic quatio for all coics. 4) This w aalytical solutio for th uivrsal aomaly has b discussd ad rovd that vrifis th uivrsal Klr s quatio (cf., Equatio ()), sic th tim ddd uivrsal fuctios U ad U vrify this quatio. Th, th solutios for th cctric aomaly (cf., Equatios (4) ad (4)) wr also rovd that vrify th traditioal form of Klr s quatios for llitic or hyrbolic orbits. This w solutio for th uivrsal aomaly has also rovd that vrifis th traditioal Barkr s quatio for arabolic orbits []. Th llitic, hyrbolic or arabolic Klria motio is lottd, usig this aalytical solutio. 5) To our kowldg, this work givs i closd form th actual aalytical solutio of th Klr s roblm. Th advatag of th w solutio is siml ad rady for hysical alicatios i th llitic, hyrbolic or arabolic Klria orbits. Rfrcs [] Dady, J..A. () Fudamtals of Clstial chaics. d Editio, Willma-Bll, Virgiia. [] Fukushima, T. (999) Fast Procdur Solvig Uivrsal Klr s Equatio. Clstial chaics ad Dyamical Astroomy, 75, -6. htt://dx.doi.org/./a:86884 [] Batti, R.H. (999) A Itroductio to th athmatics ad thods Astrodyamics. Rvisd Editio, AIAA Educatio Sris, Nw York. htt://dx.doi.org/.54/ [4] Volkl, J.R. () Th Comositio of Klr s Astroomia Nova. Pricto Uivrsity Prss, Nw York. htt://rss.ricto.du/titls/787.html [5] Bruc, S. (987) Klr s Physical Astroomy. Srigr-Vrlag, Nw York. [6] Tissrad, F. (894) écaiqu Célst. Vol.. Gauthir-Villars, Paris. [7] Siwrt, C.E. ad Buristo, E.E. (97) A Exact Aalytical Solutio of Klr s Equatio. Clstial chaics, 6, htt://lik.srigr.com/articl/.7/bf47#ag- [8] Tokis, J.N. (97) Effcts of Tidal Dissiativ Procsss o Stllar Rotatio. PhD Thsis, Victoria Uivrsity of achstr, achstr. [9] Frads, S.daS. () Uivrsal Closd-form of Lagragia ultilirs for Coast-Arcs of Otimum Sac Trajctoris. Joural of th Brazilia Socity of chaical Scics ad Egirig, 5, -9. htt://dx.doi.org/.59/s [] Codurach, D. ad artiusi, V. (6) Vctorial Rgularizatio ad Tmoral as i Klria otio. Joural of Noliar athmatical Physics (World Scitific),, htt://dx.doi.org/.99/jm [] Patha, A. ad Collyr, T. (6) A Solutio to a Cubic Barkr s Equatio for Parabolic Trajctoris. athmatical Gaztt, 9, [] Boubakr, K. () Aalytical Iitial-Guss-Fr Solutio to Klr s Trascdtal Equatio Usig Boubakr Polyomials Exasio Schm BPES. Airo, 7, -. htt://rdshift.vif.com/jouralfils/v7nopdf/v7nbou.df [] Colwll, P. (99) Solvig Klr s Equatio ovr Thr Cturis. Willma-Bll, Richmod. htt:// [4] Floria, L. (996) A Proof of Uivrsality of Arc Lgth as Tim Paramtr i Klr Problm. Extracta athmatica,, 5-4. htt://dml.cidoc.csic.s/df/extractaatheaticae_996 9.df [5] Fukushima, T. (998) A Fast Procdur Solvig Gauss Form of Klr s Equatio. Clstial chaics ad Dyamical Astroomy, 7, 5-. htt://lik.srigr.com/articl/.%fa%a #ag- [6] Sharaf,.A. ad Sharaf, A.A. (998) Closst Aroach i Uivrsal Variabls. Clstial chaics ad Dyamical Astroomy, 69, -46. htt://lik.srigr.com/articl/.%fa%a85#ag- [7] Sharaf,.A. ad Sharaf, A.A. () Homotoy Cotiuatio thod of Arbitrary Ordr of Covrgc for th 695

14 Two-Body Uivrsal Iitial Valu Problm. Clstial chaics ad Dyamical Astroomy, 86, 5-6. htt://lik.srigr.com/articl/./a: #ag- [8] Jia, L. () Aroximat Klr s Ellitic Orbits with th Rlativistic Effcts. Itratioal Joural of Astroomy ad Astrohysics,, 9-. htt://dx.doi.org/.46/ijaa..4 [9] Aghili, A. ad Salkhordh-oghaddam, B. (8) Lalac Trasform Pairs of N-Dimsios ad Scod Ordr Liar Partial Diffrtial Equatios with Costat Cofficits. Aals athmatica t Iformatica, 5, -. htt:// [] Valkó, P.P. ad Abat, J. (5) Numrical Ivrsio of -D Lalac Trasforms Alid to Fractioal Diffusio Equatio. Alid Numrical athmatics, 5, htt://dx.doi.org/.6/j.aum.4.. [] Ditki, V.A. ad Prudicov, A.P. (96) Oratioal Calculus i Two Variabls ad Its Alicatio. Prgamum Prss, Nw York. 696

15 Adix Solutio of artial diffrtial quatios usig two-dimsioal Lalac trasforms Th gral form of scod-ordr liar artial diffrtial quatio i two variabls is giv as followig b ar costats ad (, ) bf 5 xx + bf 4 xy + bf yy + bf x + bf y + bf = g xy,, < x, y< (A) whr g xy is sourc fuctio of x ad y or costat. W us also th abbrviatios for th iitial coditios f ( x, ) = f( x), f (, y) = f( y), (A) f x, = f x, f, y = f y, f, = f. y ad thir o-dimsioal Lalac trasformatios x 4 f4, whr s ad th trasform variabls of x ad y, rsctivly (s [9] ad [] for dtails). Th, w gt th rlatios for two-dimsioal Lalac trasforms f s, f ( ), f ( s ) ad sx y = L f xy, ;, s F s, f xy, dd xy (Aa) [ ] L f ;,, xx s = s F s sf f4 (Ab) L f ;,, xy s = sf s sf s f f (Ac) L f ;,, yy s = F s f s f s (Ad) [ ] L f ;,, x s = sf s f (A) L ;,, fy s = F s f s (Af) L ;, xy s = (Ag) s L L [ xs ;, ] [ ; s, ] = (Ah) s = (Ai) s i accordac with th two-dimsioal aalysis formula, which ca b writt as o-dimsioal aalysis i th x dirctio followd by o-dimsioal aalysis i th y dirctio: F s f xy x y sx y (, ) = (, ) d d (A4) Now, alyig doubl Lalac trasformatio to both sids of Equatio (A) ad usig Equatios (A), w obtai th solutio of Equatio (A) i th trasform domai as with th abbrviatio (, ) F s (, ) { = g( s, ) + b 5 sf + f4 ++ b 4 sf( s) + f f B s } + b f s + f s + bf + bf s (, ) 5 4. (A5a) B s = bs + bs+ b + bs+ b+ b (A5b) I ordr to ivrt this two-dimsioal Lalac trasform F( s, ), w follow th doubl ivrsio as a two- 697

16 st rocss []. I th first st w ivrt, say, o th s trasform variabl (, ) (, ) f x = L F s (A6) whr w k th scod trasform variabl as a costat. I th scod st w ivrt o th trasform variabl ad obtai, fially, (, ) = (, ) f xy L f x (A7) 698

17

Chapter Five. More Dimensions. is simply the set of all ordered n-tuples of real numbers x = ( x 1

Chapter Five. More Dimensions. is simply the set of all ordered n-tuples of real numbers x = ( x 1 Chatr Fiv Mor Dimsios 51 Th Sac R W ar ow rard to mov o to sacs of dimsio gratr tha thr Ths sacs ar a straightforward gralizatio of our Euclida sac of thr dimsios Lt b a ositiv itgr Th -dimsioal Euclida

More information

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series Chatr Ifiit Sris Pag of Sctio F Itgral Tst Chatr : Ifiit Sris By th d of this sctio you will b abl to valuat imror itgrals tst a sris for covrgc by alyig th itgral tst aly th itgral tst to rov th -sris

More information

1985 AP Calculus BC: Section I

1985 AP Calculus BC: Section I 985 AP Calculus BC: Sctio I 9 Miuts No Calculator Nots: () I this amiatio, l dots th atural logarithm of (that is, logarithm to th bas ). () Ulss othrwis spcifid, th domai of a fuctio f is assumd to b

More information

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z Sris Expasio of Rciprocal of Gamma Fuctio. Fuctios with Itgrs as Roots Fuctio f with gativ itgrs as roots ca b dscribd as follows. f() Howvr, this ifiit product divrgs. That is, such a fuctio caot xist

More information

Hadamard Exponential Hankel Matrix, Its Eigenvalues and Some Norms

Hadamard Exponential Hankel Matrix, Its Eigenvalues and Some Norms Math Sci Ltt Vol No 8-87 (0) adamard Exotial al Matrix, Its Eigvalus ad Som Norms İ ad M bula Mathmatical Scics Lttrs Itratioal Joural @ 0 NSP Natural Scics Publishig Cor Dartmt of Mathmatics, aculty of

More information

PURE MATHEMATICS A-LEVEL PAPER 1

PURE MATHEMATICS A-LEVEL PAPER 1 -AL P MATH PAPER HONG KONG EXAMINATIONS AUTHORITY HONG KONG ADVANCED LEVEL EXAMINATION PURE MATHEMATICS A-LEVEL PAPER 8 am am ( hours) This papr must b aswrd i Eglish This papr cosists of Sctio A ad Sctio

More information

NET/JRF, GATE, IIT JAM, JEST, TIFR

NET/JRF, GATE, IIT JAM, JEST, TIFR Istitut for NET/JRF, GATE, IIT JAM, JEST, TIFR ad GRE i PHYSICAL SCIENCES Mathmatical Physics JEST-6 Q. Giv th coditio φ, th solutio of th quatio ψ φ φ is giv by k. kφ kφ lφ kφ lφ (a) ψ (b) ψ kφ (c) ψ

More information

Lectures 9 IIR Systems: First Order System

Lectures 9 IIR Systems: First Order System EE3054 Sigals ad Systms Lcturs 9 IIR Systms: First Ordr Systm Yao Wag Polytchic Uivrsity Som slids icludd ar xtractd from lctur prstatios prpard by McCllla ad Schafr Lics Ifo for SPFirst Slids This work

More information

Chapter 11.00C Physical Problem for Fast Fourier Transform Civil Engineering

Chapter 11.00C Physical Problem for Fast Fourier Transform Civil Engineering haptr. Physical Problm for Fast Fourir Trasform ivil Egirig Itroductio I this chaptr, applicatios of FFT algorithms [-5] for solvig ral-lif problms such as computig th dyamical (displacmt rspos [6-7] of

More information

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1 DTFT Proprtis Exampl - Dtrmi th DTFT Y of y α µ, α < Lt x α µ, α < W ca thrfor writ y x x From Tabl 3., th DTFT of x is giv by ω X ω α ω Copyright, S. K. Mitra Copyright, S. K. Mitra DTFT Proprtis DTFT

More information

SOLUTION OF THE HYPERBOLIC KEPLER EQUATION BY ADOMIAN S ASYMPTOTIC DECOMPOSITION METHOD

SOLUTION OF THE HYPERBOLIC KEPLER EQUATION BY ADOMIAN S ASYMPTOTIC DECOMPOSITION METHOD Romaia Rports i Physics 70, XYZ (08) SOLUTION OF THE HYPERBOLIC KEPLER EQUATION BY ADOMIAN S ASYMPTOTIC DECOMPOSITION METHOD ABDULRAHMAN F ALJOHANI, RANDOLPH RACH, ESSAM EL-ZAHAR,4, ABDUL-MAJID WAZWAZ

More information

Thomas J. Osler. 1. INTRODUCTION. This paper gives another proof for the remarkable simple

Thomas J. Osler. 1. INTRODUCTION. This paper gives another proof for the remarkable simple 5/24/5 A PROOF OF THE CONTINUED FRACTION EXPANSION OF / Thomas J Oslr INTRODUCTION This ar givs aothr roof for th rmarkabl siml cotiud fractio = 3 5 / Hr is ay ositiv umbr W us th otatio x= [ a; a, a2,

More information

On the approximation of the constant of Napier

On the approximation of the constant of Napier Stud. Uiv. Babş-Bolyai Math. 560, No., 609 64 O th approximatio of th costat of Napir Adri Vrscu Abstract. Startig from som oldr idas of [] ad [6], w show w facts cocrig th approximatio of th costat of

More information

DFT: Discrete Fourier Transform

DFT: Discrete Fourier Transform : Discrt Fourir Trasform Cogruc (Itgr modulo m) I this sctio, all lttrs stad for itgrs. gcd m, = th gratst commo divisor of ad m Lt d = gcd(,m) All th liar combiatios r s m of ad m ar multils of d. a b

More information

Chapter Taylor Theorem Revisited

Chapter Taylor Theorem Revisited Captr 0.07 Taylor Torm Rvisitd Atr radig tis captr, you sould b abl to. udrstad t basics o Taylor s torm,. writ trascdtal ad trigoomtric uctios as Taylor s polyomial,. us Taylor s torm to id t valus o

More information

Ordinary Differential Equations

Ordinary Differential Equations Ordiary Diffrtial Equatio Aftr radig thi chaptr, you hould b abl to:. dfi a ordiary diffrtial quatio,. diffrtiat btw a ordiary ad partial diffrtial quatio, ad. Solv liar ordiary diffrtial quatio with fid

More information

Discrete Fourier Transform (DFT)

Discrete Fourier Transform (DFT) Discrt Fourir Trasorm DFT Major: All Egirig Majors Authors: Duc guy http://umricalmthods.g.us.du umrical Mthods or STEM udrgraduats 8/3/29 http://umricalmthods.g.us.du Discrt Fourir Trasorm Rcalld th xpotial

More information

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120 Tim : hr. Tst Papr 8 D 4//5 Bch - R Marks : SINGLE CORRECT CHOICE TYPE [4, ]. If th compl umbr z sisfis th coditio z 3, th th last valu of z is qual to : z (A) 5/3 (B) 8/3 (C) /3 (D) o of ths 5 4. Th itgral,

More information

Solution to 1223 The Evil Warden.

Solution to 1223 The Evil Warden. Solutio to 1 Th Evil Ward. This is o of thos vry rar PoWs (I caot thik of aothr cas) that o o solvd. About 10 of you submittd th basic approach, which givs a probability of 47%. I was shockd wh I foud

More information

15/03/1439. Lectures on Signals & systems Engineering

15/03/1439. Lectures on Signals & systems Engineering Lcturs o Sigals & syms Egirig Dsigd ad Prd by Dr. Ayma Elshawy Elsfy Dpt. of Syms & Computr Eg. Al-Azhar Uivrsity Email : aymalshawy@yahoo.com A sigal ca b rprd as a liar combiatio of basic sigals. Th

More information

NEW VERSION OF SZEGED INDEX AND ITS COMPUTATION FOR SOME NANOTUBES

NEW VERSION OF SZEGED INDEX AND ITS COMPUTATION FOR SOME NANOTUBES Digst Joural of Naomatrials ad Biostructurs Vol 4, No, March 009, p 67-76 NEW VERSION OF SZEGED INDEX AND ITS COMPUTATION FOR SOME NANOTUBES A IRANMANESH a*, O KHORMALI b, I NAJAFI KHALILSARAEE c, B SOLEIMANI

More information

Folding of Hyperbolic Manifolds

Folding of Hyperbolic Manifolds It. J. Cotmp. Math. Scics, Vol. 7, 0, o. 6, 79-799 Foldig of Hyprbolic Maifolds H. I. Attiya Basic Scic Dpartmt, Collg of Idustrial Educatio BANE - SUEF Uivrsity, Egypt hala_attiya005@yahoo.com Abstract

More information

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx MONTGOMERY COLLEGE Dpartmt of Mathmatics Rockvill Campus MATH 8 - REVIEW PROBLEMS. Stat whthr ach of th followig ca b itgratd by partial fractios (PF), itgratio by parts (PI), u-substitutio (U), or o of

More information

Ordinary Differential Equations

Ordinary Differential Equations Basi Nomlatur MAE 0 all 005 Egirig Aalsis Ltur Nots o: Ordiar Diffrtial Equatios Author: Profssor Albrt Y. Tog Tpist: Sakurako Takahashi Cosidr a gral O. D. E. with t as th idpdt variabl, ad th dpdt variabl.

More information

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n 07 - SEQUENCES AND SERIES Pag ( Aswrs at h d of all qustios ) ( ) If = a, y = b, z = c, whr a, b, c ar i A.P. ad = 0 = 0 = 0 l a l

More information

Iterative Methods of Order Four for Solving Nonlinear Equations

Iterative Methods of Order Four for Solving Nonlinear Equations Itrativ Mods of Ordr Four for Solvig Noliar Equatios V.B. Kumar,Vatti, Shouri Domii ad Mouia,V Dpartmt of Egirig Mamatis, Formr Studt of Chmial Egirig Adhra Uivrsity Collg of Egirig A, Adhra Uivrsity Visakhapatam

More information

Statistics 3858 : Likelihood Ratio for Exponential Distribution

Statistics 3858 : Likelihood Ratio for Exponential Distribution Statistics 3858 : Liklihood Ratio for Expotial Distributio I ths two xampl th rjctio rjctio rgio is of th form {x : 2 log (Λ(x)) > c} for a appropriat costat c. For a siz α tst, usig Thorm 9.5A w obtai

More information

The Interplay between l-max, l-min, p-max and p-min Stable Distributions

The Interplay between l-max, l-min, p-max and p-min Stable Distributions DOI: 0.545/mjis.05.4006 Th Itrplay btw lma lmi pma ad pmi Stabl Distributios S Ravi ad TS Mavitha Dpartmt of Studis i Statistics Uivrsity of Mysor Maasagagotri Mysuru 570006 Idia. Email:ravi@statistics.uimysor.ac.i

More information

(Reference: sections in Silberberg 5 th ed.)

(Reference: sections in Silberberg 5 th ed.) ALE. Atomic Structur Nam HEM K. Marr Tam No. Sctio What is a atom? What is th structur of a atom? Th Modl th structur of a atom (Rfrc: sctios.4 -. i Silbrbrg 5 th d.) Th subatomic articls that chmists

More information

SOME IDENTITIES FOR THE GENERALIZED POLY-GENOCCHI POLYNOMIALS WITH THE PARAMETERS A, B AND C

SOME IDENTITIES FOR THE GENERALIZED POLY-GENOCCHI POLYNOMIALS WITH THE PARAMETERS A, B AND C Joural of Mathatical Aalysis ISSN: 2217-3412, URL: www.ilirias.co/ja Volu 8 Issu 1 2017, Pags 156-163 SOME IDENTITIES FOR THE GENERALIZED POLY-GENOCCHI POLYNOMIALS WITH THE PARAMETERS A, B AND C BURAK

More information

H2 Mathematics Arithmetic & Geometric Series ( )

H2 Mathematics Arithmetic & Geometric Series ( ) H Mathmatics Arithmtic & Gomtric Sris (08 09) Basic Mastry Qustios Arithmtic Progrssio ad Sris. Th rth trm of a squc is 4r 7. (i) Stat th first four trms ad th 0th trm. (ii) Show that th squc is a arithmtic

More information

An Introduction to Asymptotic Expansions

An Introduction to Asymptotic Expansions A Itroductio to Asmptotic Expasios R. Shaar Subramaia Asmptotic xpasios ar usd i aalsis to dscrib th bhavior of a fuctio i a limitig situatio. Wh a fuctio ( x, dpds o a small paramtr, ad th solutio of

More information

Character sums over generalized Lehmer numbers

Character sums over generalized Lehmer numbers Ma t al. Joural of Iualitis ad Applicatios 206 206:270 DOI 0.86/s3660-06-23-y R E S E A R C H Op Accss Charactr sums ovr gralizd Lhmr umbrs Yuakui Ma, Hui Ch 2, Zhzh Qi 2 ad Tiapig Zhag 2* * Corrspodc:

More information

UNIT 2: MATHEMATICAL ENVIRONMENT

UNIT 2: MATHEMATICAL ENVIRONMENT UNIT : MATHEMATICAL ENVIRONMENT. Itroductio This uit itroducs som basic mathmatical cocpts ad rlats thm to th otatio usd i th cours. Wh ou hav workd through this uit ou should: apprciat that a mathmatical

More information

MILLIKAN OIL DROP EXPERIMENT

MILLIKAN OIL DROP EXPERIMENT 11 Oct 18 Millika.1 MILLIKAN OIL DROP EXPERIMENT This xprimt is dsigd to show th quatizatio of lctric charg ad allow dtrmiatio of th lmtary charg,. As i Millika s origial xprimt, oil drops ar sprayd ito

More information

How many neutrino species?

How many neutrino species? ow may utrio scis? Two mthods for dtrmii it lium abudac i uivrs At a collidr umbr of utrio scis Exasio of th uivrs is ovrd by th Fridma quatio R R 8G tot Kc R Whr: :ubblcostat G :Gravitatioal costat 6.

More information

Restricted Factorial And A Remark On The Reduced Residue Classes

Restricted Factorial And A Remark On The Reduced Residue Classes Applid Mathmatics E-Nots, 162016, 244-250 c ISSN 1607-2510 Availabl fr at mirror sits of http://www.math.thu.du.tw/ am/ Rstrictd Factorial Ad A Rmark O Th Rducd Rsidu Classs Mhdi Hassai Rcivd 26 March

More information

Triple Play: From De Morgan to Stirling To Euler to Maclaurin to Stirling

Triple Play: From De Morgan to Stirling To Euler to Maclaurin to Stirling Tripl Play: From D Morga to Stirlig To Eulr to Maclauri to Stirlig Augustus D Morga (186-1871) was a sigificat Victoria Mathmaticia who mad cotributios to Mathmatics History, Mathmatical Rcratios, Mathmatical

More information

Digital Signal Processing, Fall 2006

Digital Signal Processing, Fall 2006 Digital Sigal Procssig, Fall 6 Lctur 9: Th Discrt Fourir Trasfor Zhg-Hua Ta Dpartt of Elctroic Systs Aalborg Uivrsity, Dar zt@o.aau.d Digital Sigal Procssig, I, Zhg-Hua Ta, 6 Cours at a glac MM Discrt-ti

More information

Calculus & analytic geometry

Calculus & analytic geometry Calculus & aalytic gomtry B Sc MATHEMATICS Admissio owards IV SEMESTER CORE COURSE UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION CALICUT UNIVERSITYPO, MALAPPURAM, KERALA, INDIA 67 65 5 School of Distac

More information

Class #24 Monday, April 16, φ φ φ

Class #24 Monday, April 16, φ φ φ lass #4 Moday, April 6, 08 haptr 3: Partial Diffrtial Equatios (PDE s First of all, this sctio is vry, vry difficult. But it s also supr cool. PDE s thr is mor tha o idpdt variabl. Exampl: φ φ φ φ = 0

More information

Probability & Statistics,

Probability & Statistics, Probability & Statistics, BITS Pilai K K Birla Goa Campus Dr. Jajati Kshari Sahoo Dpartmt of Mathmatics BITS Pilai, K K Birla Goa Campus Poisso Distributio Poisso Distributio: A radom variabl X is said

More information

A Review of Complex Arithmetic

A Review of Complex Arithmetic /0/005 Rviw of omplx Arithmti.do /9 A Rviw of omplx Arithmti A omplx valu has both a ral ad imagiary ompot: { } ad Im{ } a R b so that w a xprss this omplx valu as: whr. a + b Just as a ral valu a b xprssd

More information

THERMAL STATES IN THE k-generalized HYPERGEOMETRIC COHERENT STATES REPRESENTATION

THERMAL STATES IN THE k-generalized HYPERGEOMETRIC COHERENT STATES REPRESENTATION THE PULISHING HOUSE PROCEEDINGS O THE ROMNIN CDEMY Sris O THE ROMNIN CDEMY Volum 9 Numbr 3/8 43 438 THERML STTES IN THE -GENERLIED HYPERGEOMETRIC COHERENT STTES REPRESENTTION Duša POPOV Uivrsity Polithica

More information

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2 MATHEMATIS --RE Itgral alculus Marti Huard Witr 9 Rviw Erciss. Evaluat usig th dfiitio of th dfiit itgral as a Rima Sum. Dos th aswr rprst a ara? a ( d b ( d c ( ( d d ( d. Fid f ( usig th Fudamtal Thorm

More information

Narayana IIT Academy

Narayana IIT Academy INDIA Sc: LT-IIT-SPARK Dat: 9--8 6_P Max.Mars: 86 KEY SHEET PHYSIS A 5 D 6 7 A,B 8 B,D 9 A,B A,,D A,B, A,B B, A,B 5 A 6 D 7 8 A HEMISTRY 9 A B D B B 5 A,B,,D 6 A,,D 7 B,,D 8 A,B,,D 9 A,B, A,B, A,B,,D A,B,

More information

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net Taylor s Thorm & Lagrag Error Bouds Actual Error This is th ral amout o rror, ot th rror boud (worst cas scario). It is th dirc btw th actual () ad th polyomial. Stps:. Plug -valu ito () to gt a valu.

More information

ln x = n e = 20 (nearest integer)

ln x = n e = 20 (nearest integer) H JC Prlim Solutios 6 a + b y a + b / / dy a b 3/ d dy a b at, d Giv quatio of ormal at is y dy ad y wh. d a b () (,) is o th curv a+ b () y.9958 Qustio Solvig () ad (), w hav a, b. Qustio d.77 d d d.77

More information

Journal of Modern Applied Statistical Methods

Journal of Modern Applied Statistical Methods Joural of Modr Applid Statistical Mthods Volum Issu Articl 6 --03 O Som Proprtis of a Htrogous Trasfr Fuctio Ivolvig Symmtric Saturatd Liar (SATLINS) with Hyprbolic Tagt (TANH) Trasfr Fuctios Christophr

More information

A Simple Proof that e is Irrational

A Simple Proof that e is Irrational Two of th most bautiful ad sigificat umbrs i mathmatics ar π ad. π (approximatly qual to 3.459) rprsts th ratio of th circumfrc of a circl to its diamtr. (approximatly qual to.788) is th bas of th atural

More information

COLLECTION OF SUPPLEMENTARY PROBLEMS CALCULUS II

COLLECTION OF SUPPLEMENTARY PROBLEMS CALCULUS II COLLECTION OF SUPPLEMENTARY PROBLEMS I. CHAPTER 6 --- Trscdtl Fuctios CALCULUS II A. FROM CALCULUS BY J. STEWART:. ( How is th umbr dfid? ( Wht is pproimt vlu for? (c ) Sktch th grph of th turl potil fuctios.

More information

Chapter At each point (x, y) on the curve, y satisfies the condition

Chapter At each point (x, y) on the curve, y satisfies the condition Chaptr 6. At ach poit (, y) o th curv, y satisfis th coditio d y 6; th li y = 5 is tagt to th curv at th poit whr =. I Erciss -6, valuat th itgral ivolvig si ad cosi.. cos si. si 5 cos 5. si cos 5. cos

More information

Chapter 4 - The Fourier Series

Chapter 4 - The Fourier Series M. J. Robrts - 8/8/4 Chaptr 4 - Th Fourir Sris Slctd Solutios (I this solutio maual, th symbol,, is usd for priodic covolutio bcaus th prfrrd symbol which appars i th txt is ot i th fot slctio of th word

More information

Global Chaos Synchronization of the Hyperchaotic Qi Systems by Sliding Mode Control

Global Chaos Synchronization of the Hyperchaotic Qi Systems by Sliding Mode Control Dr. V. Sudarapadia t al. / Itratioal Joural o Computr Scic ad Egirig (IJCSE) Global Chaos Sychroizatio of th Hyprchaotic Qi Systms by Slidig Mod Cotrol Dr. V. Sudarapadia Profssor, Rsarch ad Dvlopmt Ctr

More information

STIRLING'S 1 FORMULA AND ITS APPLICATION

STIRLING'S 1 FORMULA AND ITS APPLICATION MAT-KOL (Baja Luka) XXIV ()(08) 57-64 http://wwwimviblorg/dmbl/dmblhtm DOI: 075/МК80057A ISSN 0354-6969 (o) ISSN 986-588 (o) STIRLING'S FORMULA AND ITS APPLICATION Šfkt Arslaagić Sarajvo B&H Abstract:

More information

Session : Plasmas in Equilibrium

Session : Plasmas in Equilibrium Sssio : Plasmas i Equilibrium Ioizatio ad Coductio i a High-prssur Plasma A ormal gas at T < 3000 K is a good lctrical isulator, bcaus thr ar almost o fr lctros i it. For prssurs > 0.1 atm, collisio amog

More information

POSTERIOR ESTIMATES OF TWO PARAMETER EXPONENTIAL DISTRIBUTION USING S-PLUS SOFTWARE

POSTERIOR ESTIMATES OF TWO PARAMETER EXPONENTIAL DISTRIBUTION USING S-PLUS SOFTWARE Joural of Rliabilit ad tatistial tudis [IN: 0974-804 Prit 9-5666 Oli] Vol. 3 Issu 00:7-34 POTERIOR ETIMATE OF TWO PARAMETER EXPONENTIAL DITRIBUTION UING -PLU OFTWARE.P. Ahmad ad Bilal Ahmad Bhat. Dartmt

More information

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges.

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges. Optio Chaptr Ercis. Covrgs to Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Divrgs 8 Divrgs Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Covrgs to Covrgs to 8 Proof Covrgs to π l 8 l a b Divrgt π Divrgt

More information

Concatenated Processes in Commercial Business and in Global Economy

Concatenated Processes in Commercial Business and in Global Economy ibusiss, 22, 4, 293-299 htt://d.doi.org/.4236/ib.22.4437 Publishd Oli Dcmbr 22 (htt://www.scirp.org/joural/ib) 293 Cocatatd Procsss i Commrcial Busiss ad i Global Ecoomy Gustav Cciasy, Ladislav Schwart

More information

2.29 Numerical Fluid Mechanics Spring 2015 Lecture 12

2.29 Numerical Fluid Mechanics Spring 2015 Lecture 12 REVIEW Lctur 11: Numrical Fluid Mchaics Sprig 2015 Lctur 12 Fiit Diffrcs basd Polyomial approximatios Obtai polyomial (i gral u-qually spacd), th diffrtiat as dd Nwto s itrpolatig polyomial formulas Triagular

More information

Further Results on Pair Sum Graphs

Further Results on Pair Sum Graphs Applid Mathmatis, 0,, 67-75 http://dx.doi.org/0.46/am.0.04 Publishd Oli Marh 0 (http://www.sirp.org/joural/am) Furthr Rsults o Pair Sum Graphs Raja Poraj, Jyaraj Vijaya Xavir Parthipa, Rukhmoi Kala Dpartmt

More information

International Journal of Advanced and Applied Sciences

International Journal of Advanced and Applied Sciences Itratioal Joural of Advacd ad Applid Scics x(x) xxxx Pags: xx xx Cotts lists availabl at Scic Gat Itratioal Joural of Advacd ad Applid Scics Joural hompag: http://wwwscic gatcom/ijaashtml Symmtric Fuctios

More information

Ideal crystal : Regulary ordered point masses connected via harmonic springs

Ideal crystal : Regulary ordered point masses connected via harmonic springs Statistical thrmodyamics of crystals Mooatomic crystal Idal crystal : Rgulary ordrd poit masss coctd via harmoic sprigs Itratomic itractios Rprstd by th lattic forc-costat quivalt atom positios miima o

More information

Chapter 4 : Laplace Transform

Chapter 4 : Laplace Transform 4. Itroductio Laplace trasform is a alterative to solve the differetial equatio by the complex frequecy domai ( s = σ + jω), istead of the usual time domai. The DE ca be easily trasformed ito a algebraic

More information

Discrete Fourier Transform. Nuno Vasconcelos UCSD

Discrete Fourier Transform. Nuno Vasconcelos UCSD Discrt Fourir Trasform uo Vascoclos UCSD Liar Shift Ivariat (LSI) systms o of th most importat cocpts i liar systms thory is that of a LSI systm Dfiitio: a systm T that maps [ ito y[ is LSI if ad oly if

More information

Application of spectral elements method to calculation of stress-strain state of anisotropic laminated shells

Application of spectral elements method to calculation of stress-strain state of anisotropic laminated shells IOP Cofrc Sris: Matrials Scic ad Egirig PAPER OPE ACCESS Alicatio of sctral lmts mthod to calculatio of strss-strai stat of aisotroic lamiatd shlls To cit this articl: K A Ptrovsiy t al 16 IOP Cof. Sr.:

More information

Empirical Study in Finite Correlation Coefficient in Two Phase Estimation

Empirical Study in Finite Correlation Coefficient in Two Phase Estimation M. Khoshvisa Griffith Uivrsity Griffith Busiss School Australia F. Kaymarm Massachustts Istitut of Tchology Dpartmt of Mchaical girig USA H. P. Sigh R. Sigh Vikram Uivrsity Dpartmt of Mathmatics ad Statistics

More information

Linear Algebra Existence of the determinant. Expansion according to a row.

Linear Algebra Existence of the determinant. Expansion according to a row. Lir Algbr 2270 1 Existc of th dtrmit. Expsio ccordig to row. W dfi th dtrmit for 1 1 mtrics s dt([]) = (1) It is sy chck tht it stisfis D1)-D3). For y othr w dfi th dtrmit s follows. Assumig th dtrmit

More information

Normal Form for Systems with Linear Part N 3(n)

Normal Form for Systems with Linear Part N 3(n) Applid Mathmatics 64-647 http://dxdoiorg/46/am7 Publishd Oli ovmbr (http://wwwscirporg/joural/am) ormal Form or Systms with Liar Part () Grac Gachigua * David Maloza Johaa Sigy Dpartmt o Mathmatics Collg

More information

APPENDIX: STATISTICAL TOOLS

APPENDIX: STATISTICAL TOOLS I. Nots o radom samplig Why do you d to sampl radomly? APPENDI: STATISTICAL TOOLS I ordr to masur som valu o a populatio of orgaisms, you usually caot masur all orgaisms, so you sampl a subst of th populatio.

More information

Chapter 3 Linear Equations of Higher Order (Page # 144)

Chapter 3 Linear Equations of Higher Order (Page # 144) Ma Modr Dirial Equaios Lcur wk 4 Jul 4-8 Dr Firozzama Darm o Mahmaics ad Saisics Arizoa Sa Uivrsi This wk s lcur will covr har ad har 4 Scios 4 har Liar Equaios o Highr Ordr Pag # 44 Scio Iroducio: Scod

More information

The Sumudu transform and its application to fractional differential equations

The Sumudu transform and its application to fractional differential equations ISSN : 30-97 (Olie) Iteratioal e-joural for Educatio ad Mathematics www.iejem.org vol. 0, No. 05, (Oct. 03), 9-40 The Sumudu trasform ad its alicatio to fractioal differetial equatios I.A. Salehbhai, M.G.

More information

Chapter 3 Fourier Series Representation of Periodic Signals

Chapter 3 Fourier Series Representation of Periodic Signals Chptr Fourir Sris Rprsttio of Priodic Sigls If ritrry sigl x(t or x[] is xprssd s lir comitio of som sic sigls th rspos of LI systm coms th sum of th idividul rsposs of thos sic sigls Such sic sigl must:

More information

Robust Tracking Control for Constrained Robots

Robust Tracking Control for Constrained Robots Aailabl oli at www.scicirct.com Procia Egirig 4 ( 9 97 Itratioal Symosium o Robotics a Itlligt Ssors (IRIS Robust rackig Cotrol for Costrai Robots Haifa Mhi, Olfa Boubakr* Natioal Istitut of Ali Scics

More information

Bipolar Junction Transistors

Bipolar Junction Transistors ipolar Juctio Trasistors ipolar juctio trasistors (JT) ar activ 3-trmial dvics with aras of applicatios: amplifirs, switch tc. high-powr circuits high-spd logic circuits for high-spd computrs. JT structur:

More information

Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform

Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform Discrt Fourir Trasform Dfiitio - T simplst rlatio btw a lt- squc x dfid for ω ad its DTFT X ( ) is ω obtaid by uiformly sampli X ( ) o t ω-axis btw ω < at ω From t dfiitio of t DTFT w tus av X X( ω ) ω

More information

Traveling Salesperson Problem and Neural Networks. A Complete Algorithm in Matrix Form

Traveling Salesperson Problem and Neural Networks. A Complete Algorithm in Matrix Form Procdigs of th th WSEAS Itratioal Cofrc o COMPUTERS, Agios Nikolaos, Crt Islad, Grc, July 6-8, 7 47 Travlig Salsprso Problm ad Nural Ntworks A Complt Algorithm i Matrix Form NICOLAE POPOVICIU Faculty of

More information

10. Joint Moments and Joint Characteristic Functions

10. Joint Moments and Joint Characteristic Functions 0 Joit Momts ad Joit Charactristic Fctios Followig sctio 6 i this sctio w shall itrodc varios paramtrs to compactly rprst th iformatio cotaid i th joit pdf of two rvs Giv two rvs ad ad a fctio g x y dfi

More information

CORRECTIONS TO THE WU-SPRUNG POTENTIAL FOR THE RIEMANN ZEROS AND A NEW HAMILTONIAN WHOSE ENERGIES ARE THE PRIME NUMBERS

CORRECTIONS TO THE WU-SPRUNG POTENTIAL FOR THE RIEMANN ZEROS AND A NEW HAMILTONIAN WHOSE ENERGIES ARE THE PRIME NUMBERS CORRECTIONS TO THE WU-SPRUNG POTENTIAL FOR THE RIEMANN ZEROS AND A NEW HAMILTONIAN WHOSE ENERGIES ARE THE PRIME NUMBERS Jos Javir Garcia Morta Graduat studt of Physics at th UPV/EHU (Uivrsity of Basqu

More information

CHAPTER 5. Theory and Solution Using Matrix Techniques

CHAPTER 5. Theory and Solution Using Matrix Techniques A SERIES OF CLASS NOTES FOR 2005-2006 TO INTRODUCE LINEAR AND NONLINEAR PROBLEMS TO ENGINEERS, SCIENTISTS, AND APPLIED MATHEMATICIANS DE CLASS NOTES 3 A COLLECTION OF HANDOUTS ON SYSTEMS OF ORDINARY DIFFERENTIAL

More information

WHAT LIES BETWEEN + AND (and beyond)? H.P.Williams

WHAT LIES BETWEEN + AND (and beyond)? H.P.Williams Working Par LSEOR 10-119 ISSN 2041-4668 (Onlin) WHAT LIES BETWEEN + AND (and byond)? HPWilliams London School of Economics hwilliams@lsacuk First ublishd in Grat Britain in 2010 by th Orational Rsarch

More information

Chapter (8) Estimation and Confedence Intervals Examples

Chapter (8) Estimation and Confedence Intervals Examples Chaptr (8) Estimatio ad Cofdc Itrvals Exampls Typs of stimatio: i. Poit stimatio: Exampl (1): Cosidr th sampl obsrvatios, 17,3,5,1,18,6,16,10 8 X i i1 17 3 5 118 6 16 10 116 X 14.5 8 8 8 14.5 is a poit

More information

Introduction to Quantum Information Processing. Overview. A classical randomised algorithm. q 3,3 00 0,0. p 0,0. Lecture 10.

Introduction to Quantum Information Processing. Overview. A classical randomised algorithm. q 3,3 00 0,0. p 0,0. Lecture 10. Itroductio to Quatum Iformatio Procssig Lctur Michl Mosca Ovrviw! Classical Radomizd vs. Quatum Computig! Dutsch-Jozsa ad Brsti- Vazirai algorithms! Th quatum Fourir trasform ad phas stimatio A classical

More information

CDS 101: Lecture 5.1 Reachability and State Space Feedback

CDS 101: Lecture 5.1 Reachability and State Space Feedback CDS, Lctur 5. CDS : Lctur 5. Rachability ad Stat Spac Fdback Richard M. Murray ad Hido Mabuchi 5 Octobr 4 Goals: Di rachability o a cotrol systm Giv tsts or rachability o liar systms ad apply to ampls

More information

2008 AP Calculus BC Multiple Choice Exam

2008 AP Calculus BC Multiple Choice Exam 008 AP Multipl Choic Eam Nam 008 AP Calculus BC Multipl Choic Eam Sction No Calculator Activ AP Calculus 008 BC Multipl Choic. At tim t 0, a particl moving in th -plan is th acclration vctor of th particl

More information

Chapter 4. Fourier Series

Chapter 4. Fourier Series Chapter 4. Fourier Series At this poit we are ready to ow cosider the caoical equatios. Cosider, for eample the heat equatio u t = u, < (4.) subject to u(, ) = si, u(, t) = u(, t) =. (4.) Here,

More information

+ x. x 2x. 12. dx. 24. dx + 1)

+ x. x 2x. 12. dx. 24. dx + 1) INTEGRATION of FUNCTION of ONE VARIABLE INDEFINITE INTEGRAL Fidig th idfiit itgrals Rductio to basic itgrals, usig th rul f ( ) f ( ) d =... ( ). ( )d. d. d ( ). d. d. d 7. d 8. d 9. d. d. d. d 9. d 9.

More information

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia Part B: Trasform Mthods Chaptr 3: Discrt-Tim Fourir Trasform (DTFT) 3. Discrt Tim Fourir Trasform (DTFT) 3. Proprtis of DTFT 3.3 Discrt Fourir Trasform (DFT) 3.4 Paddig with Zros ad frqucy Rsolutio 3.5

More information

Outline. Ionizing Radiation. Introduction. Ionizing radiation

Outline. Ionizing Radiation. Introduction. Ionizing radiation Outli Ioizig Radiatio Chaptr F.A. Attix, Itroductio to Radiological Physics ad Radiatio Dosimtry Radiological physics ad radiatio dosimtry Typs ad sourcs of ioizig radiatio Dscriptio of ioizig radiatio

More information

Figure 2-18 Thevenin Equivalent Circuit of a Noisy Resistor

Figure 2-18 Thevenin Equivalent Circuit of a Noisy Resistor .8 NOISE.8. Th Nyquist Nois Thorm W ow wat to tur our atttio to ois. W will start with th basic dfiitio of ois as usd i radar thory ad th discuss ois figur. Th typ of ois of itrst i radar thory is trmd

More information

New Sixteenth-Order Derivative-Free Methods for Solving Nonlinear Equations

New Sixteenth-Order Derivative-Free Methods for Solving Nonlinear Equations Amrica Joural o Computatioal ad Applid Mathmatics 0 (: -8 DOI: 0.59/j.ajcam.000.08 Nw Sixtth-Ordr Drivativ-Fr Mthods or Solvig Noliar Equatios R. Thukral Padé Rsarch Ctr 9 Daswood Hill Lds Wst Yorkshir

More information

COMPUTING FOLRIER AND LAPLACE TRANSFORMS. Sven-Ake Gustafson. be a real-valued func'cion, defined for nonnegative arguments.

COMPUTING FOLRIER AND LAPLACE TRANSFORMS. Sven-Ake Gustafson. be a real-valued func'cion, defined for nonnegative arguments. 77 COMPUTNG FOLRER AND LAPLACE TRANSFORMS BY MEANS OF PmER SERES EVALU\TON Sv-Ak Gustafso 1. NOTATONS AND ASSUMPTONS Lt f b a ral-valud fuc'cio, dfid for ogativ argumts. W shall discuss som aspcts of th

More information

Solid State Device Fundamentals

Solid State Device Fundamentals 8 Biasd - Juctio Solid Stat Dvic Fudamtals 8. Biasd - Juctio ENS 345 Lctur Cours by Aladr M. Zaitsv aladr.zaitsv@csi.cuy.du Tl: 718 98 81 4N101b Dartmt of Egirig Scic ad Physics Biasig uiolar smicoductor

More information

1973 AP Calculus BC: Section I

1973 AP Calculus BC: Section I 97 AP Calculus BC: Scio I 9 Mius No Calculaor No: I his amiaio, l dos h aural logarihm of (ha is, logarihm o h bas ).. If f ( ) =, h f ( ) = ( ). ( ) + d = 7 6. If f( ) = +, h h s of valus for which f

More information

EFFECT OF P-NORMS ON THE ACCURACY ORDER OF NUMERICAL SOLUTION ERRORS IN CFD

EFFECT OF P-NORMS ON THE ACCURACY ORDER OF NUMERICAL SOLUTION ERRORS IN CFD rocdigs of NIT 00 opyright 00 by ABM 3 th Brazilia ogrss of Thrmal Scics ad girig Dcmbr 05-0, 00, brladia, MG, Brazil T O -NORMS ON TH ARAY ORDR O NMRIAL SOLTION RRORS IN D arlos Hriqu Marchi, marchi@ufpr.br

More information

The Higher Derivatives Of The Inverse Tangent Function Revisited

The Higher Derivatives Of The Inverse Tangent Function Revisited Alied Mathematics E-Notes, 0), 4 3 c ISSN 607-50 Available free at mirror sites of htt://www.math.thu.edu.tw/ame/ The Higher Derivatives Of The Iverse Taget Fuctio Revisited Vito Lamret y Received 0 October

More information

The z-transform. 7.1 Introduction. 7.2 The z-transform Derivation of the z-transform: x[n] = z n LTI system, h[n] z = re j

The z-transform. 7.1 Introduction. 7.2 The z-transform Derivation of the z-transform: x[n] = z n LTI system, h[n] z = re j The -Trasform 7. Itroductio Geeralie the complex siusoidal represetatio offered by DTFT to a represetatio of complex expoetial sigals. Obtai more geeral characteristics for discrete-time LTI systems. 7.

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by D. Klain Vrsion 207.0.05 Corrctions and commnts ar wlcom. Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix A A k I + A + k!

More information

INCOMPLETE KLOOSTERMAN SUMS AND MULTIPLICATIVE INVERSES IN SHORT INTERVALS. xy 1 (mod p), (x, y) I (j)

INCOMPLETE KLOOSTERMAN SUMS AND MULTIPLICATIVE INVERSES IN SHORT INTERVALS. xy 1 (mod p), (x, y) I (j) INCOMPLETE KLOOSTERMAN SUMS AND MULTIPLICATIVE INVERSES IN SHORT INTERVALS T D BROWNING AND A HAYNES Abstract W invstigat th solubility of th congrunc xy (mod ), whr is a rim and x, y ar rstrictd to li

More information

Euler s Method for Solving Initial Value Problems in Ordinary Differential Equations.

Euler s Method for Solving Initial Value Problems in Ordinary Differential Equations. Eulr s Mthod for Solvig Iitial Valu Problms i Ordiar Diffrtial Equatios. Suda Fadugba, M.Sc. * ; Bosd Ogurid, Ph.D. ; ad Tao Okulola, M.Sc. 3 Dpartmt of Mathmatical ad Phsical Scics, Af Babalola Uivrsit,

More information