A Local Regret in Nonconvex Online Learning

Size: px
Start display at page:

Download "A Local Regret in Nonconvex Online Learning"

Transcription

1 Sergul Aydore Lee Dicker Dean Foser Absrac We consider an online learning process o forecas a sequence of oucomes for nonconvex models. A ypical measure o evaluae online learning policies is regre bu such sandard definiion of regre is inracable for nonconvex models even in offline seings. Gradien based definiion of regres are common for boh offline and online nonconvex problems. A noion of local gradien based regre was recenly inroduced. Inspired by he concep of calibraion, we provide anoher local gradien definiion and we discuss why our definiion is more inerpreable for forecasing problems.. Inroducion In ypical forecasing problems, we make probabilisic esimaes of fuure oucomes based on he previous observaions. Recenly, i has been shown ha forecasing models can be complex nonconvex models (Flunker e al., 07; Wen e al., 07). Frequen updae of hese models is desired as he relaionship beween he arges and oupus migh change over ime. However, re-raining hese models can be ime consuming. Online learning is a mehod of updaing he model on each paern as i is observed as opposed o bach learning where he raining is performed over groups of paern. I is a common echnique o dynamically adap o new paerns in he daa or when raining over he enire daa se is infeasible. The lieraure in online learning is rich wih ineresing heoreical and pracical applicaions bu i is usually limied o he convex problems where global opimizaion is compuaionally racable (Zinkevich, 003). On he oher hand, i is NP-hard o compue he global minimum of nonconvex funcions over a convex domain (Hazan e al., 07). Due o he inracabiliy of he nonconvex problems, various assumpions on he inpu have been used o design polynomial-ime algorihms (Arora e al., 04; Hsu e al., 0). However, hese were oo specific o he models and Amazon, NY, USA. Correspondence o: Sergul Aydore <sergulaydore@gmail.com>. Proceedings of he 35 h Inernaional Conference on Machine Learning, Sockholm, Sweden, PMLR 80, 08. Copyrigh 08 by he auhor(s). more generic approach was needed. One way o achieve his is by replacing he global opimaliy requiremen wih a more modes requiremen of saionariy (Allen-Zhu & Hazan, 06). The idea of online learning was borrowed from game heory where an online player answers a sequence of quesions. The rue answers o he quesions are unknown o he player a he ime of each decision and he player suffers a loss afer commiing o a decision. These losses are unknown o he player and he performance of he sequence of decisions will be evaluaed by he difference beween his accumulaed loss and he bes fixed decision in hindsigh. Mos recenly, Hazan e al. (07) proposed a noion of gradien based local regre for nonconvex games. Inspired by Hazan s approach and incorporaing he noion of calibraion, we inroduce a novel gradien based local regre for forecasing problems. Calibraion is a well-sudied concep in forecasing (Foser & Vohra, 998). From game heoreic poin of view, we call a forecasing procedure calibraed if he forecass are consisen in hindsigh. To he bes of our knowledge, such definiion of regre is new. We show ha he proposed regre has logarihmic bound. Furhermore, we provide insighs o he proposed regre for inerior poins of he feasible se.. Seing In online forecasing, our goal is o updae x a each in order o incorporae he mos recenly available informaion. Assume ha T {,, T } represens a collecion of T consecuive poins where T is an ineger and represens an iniial forecas poin. The follow-heleader algorihm for online opimizaion provides soluion as: x arg min x s f s (x; x, x,, x ) where f,, f T : K R are nonconvex funcions on some convex subse K R d... Regre Analysis The performance of online learning algorihms is commonly evaluaed by he regre, which is defined as he difference beween he real cumulaive loss and he minimum cumulaive loss across T : R f (x ) min x K f (x) ()

2 If he regre grows linearly wih T, i can be concluded ha he player is no learning. If, on he oher hand, he regre grows sub-linearly, he player is learning and is accuracy is improving. While such a definiion of regre makes sense for convex opimizaion problems, i is no appropriae for nonconvex problems, due o NP-hardness of nonconvex global opimizaion even in offline seings. Indeed, mos research on nonconvex problems focuses on finding local opima. In lieraure on nonconvex opimizaion algorihms, i is common o use he magniude of he gradien o analyze convergence. Hazan e al. (07) inroduced a local regre measure - a new noion of regre ha quanifies he objecive of predicing poins wih small gradiens on average. A each round of he game, he gradiens of he loss funcions from w where w T mos recen rounds of play are evaluaed a he curren forecas, and hese gradiens are hen averaged. Hazan e al. (07) s local regre is defined o be he sum of he squared magniude of he gradiens averages. Definiion..(Hazan s Local Regre) The w-local regre of an online algorihm is defined as: HR F,w (x ) () when K R d and F,w (x ) w w i0 f i(x ). Hazan e al. (07) proposed various gradien descen algorihms where he regre HR is sublinear... Proposed Local Regre In order o inroduce he concep of calibraion (Foser & Vohra, 998), le s consider he firs order Taylor series expansion of he cumulaive loss: f (proj K (x + u)) f (x ) + f (x + D u (x )) D u (x ), f (x ) (3) where D u (x ) proj K (x +u)x for any u R d. If he forecass {x,, x T } are well-calibraed, hen perurbing x by any u canno subsanially reduce he cumulaive loss. Hence, we can say ha he sequence {x,, x T } is asympoically calibraed wih respec o {f,, f T }, if: lim sup T sup u R d T D u (x ), f (x ) 0 (4) Definiion..(Proposed Regre) We propose a w-local regre as: PR D u (x s ), (5) w sw+ where f (x ) 0 for 0. To moivae equaion 5, we use he following equaliy: lim δ 0 δ sup u δ w sw+ D u (x s ), w sw+ which holds for he inerior poins. Using our definiion of regre, we effecively evaluae an online learning algorihm by compuing he average of losses a he corresponding forecas values over a sliding window. Hazan e al. (07) s definiion of regre, on he oher hand, compues average of previous losses compued on he mos recen forecas. We believe ha our definiion of regre is more applicable o forecasing problems as evaluaing oday s forecas on previous loss funcions migh be misleading..3. Toy example We illusrae he behavior of our and Hazan e al. (07) s definiion of regre via a oy example. We simulae wo nonconvex loss funcions: f (x) and f (x) and compare pairs of policies. We use he original definiion of regre given in equaion as ground ruh. Figure shows hese wo funcions ogeher wih heir gradiens. We inroduce following hree policies: - Good Policy: play 5, 0, 5, 0, - Bad Policy: play 0, 5, 0, 5, - Fixed Policy: play.5,.5,.5,.5, Among hese policies; good policy should give he lowes regre since i is he bes policy we can play. Bad policy should give he larges regre. The value we play in fixed policy corresponds o he dip of he dashed black line (i.e. he sum of gradiens of he wo funcions os zero) in Figure and he loss of his policy should be beween good and bad f (x) f (x) f (x) f (x) f (x) + f (x) x Figure. Simulaion of a game wih wo alernaing nonconvex loss funcions. (6)

3 Regre Regre(Good Policy) Regre(Fixed Policy) Regre(Bad Policy) Regre(Fixed Policy) Original Regre Hazan s regre Proposed regre Table. Comparison of policies using differen regre definiions. policies. We repor he resuls in Table ; our regre has he same sign as he original regre whereas Hazan s regre has opposie sign which indicaes ha Hazan s regre concludes ha he bad policy is beer. 3. Bound Analysis In his secion we assume ha all he poins considered are inerior poins of he feasible se. We consider hree scenarios: (i), w is fixed and K R d (ii) / and w (iii) / and w is fixed. 3.., w is fixed and K R d Since K R d, he updae rule becomes x + x f (x ); in oher words no projecion operaor is necessary. Hence, we can wrie: sw+ u, u, f (x ) sw+ u, sw+ f (x ) (x x + ) u, (x w+ x ) x w+ x M (7) Taking u sw+ f (x )/ sw+ f (x ) ; we can wrie sw+ f s(x s ) M /. Hence; he proposed regre bound can be wrien as: PR w w sw+ M T w (8) which can be made sublinear in T if w is seleced large enough. 3.. /, w Assuming x s + u is in inerior of he feasible se for all u and s and seing w, we can wrie he resul in heorem 5. as: u, u, s (9) s s f s(x s ) s f (0) s(x s ) () s + G () s fs(xs) where u is se o s fs(xs). Hence, we ge: f s (x s ) + G. (3) s Summing his over yields: f s (x s ) + G s + G log(t ). (4) 3.3. / and w is fixed The firs erm on he RHS of he resul in lemma 5. is non-negaive; using similar logic o 3. we can wrie: w + G w. s Summing his resul across yields: + G w s 3 + G T (T + ) (5) w which is quadraic in T bu w can be seleced accordingly o make he upper bound sub-linear. 4. Conclusion We inroduced a new definiion of a local regre o sudy nonconvex problems in forecasing. We used he concep

4 of calibraion and showed ha our regre can be wrien as a local regre for he inerior poins in he feasible se. Our regre differs from Hazan s regre in he sense ha i emphasizes oday s reward as opposed o pas reward. We also showed ha our definiion of regre has a logarihmic bound. As a fuure direcion, we plan o sudy he insighs of our regre for he boundary poins in he feasible se. 5. Appendix We provide a bound for he proposed regre in equaion 5 for he inerior poins in he feasible wih he following assumpions: sup x,y K x y M; sup x K, T f (x) G; he parameer updae a is: x + proj K (x f (x )) where / is he learning rae for some small > 0. Lemma ( 5.. D u (x ), f (x ) u u +, u + u+ x + u x ) G Proof. Le y + x f (x ) and u proj K (x + u). Noe ha x + proj K (y + ). Then we have: D u (x ), f (x ) u x, x y + u x, x x + + u x, x + y + u x, x x + + u x +, x + y + + x + x, x + y + u x, x x + + x x +, y + x + u x, x x + + x x +, x f (x )x + u x, x x + + x x + f (x ), x x + u x, x x + + x x + G ( u x + u x + x + x ) G u u +, u + x + + ( u+ x + u x ) + ( u+ u + x + x ) G u u +, u + u u +, u + (x + + u) + ( u+ x + u x ) + ( u+ u + x + x ) G u u +, u + ( u+ x + u x ) G We can use his resul in he following heorem: Theorem 5.. sw+ D u(x s ), G ( w + ) ( ) + G 3M Proof. sw+ D u (x s ), sw+ s u s u s+, u sw+ s G ( + us+ x s+ u s x s ) sw+ s w + u w+ x, u u + x, u + ( ) s s u x, u sw+ w + + u + x + u w+ x w+ ( s s ) u s x s G w+ sw+ u + x, u w + u w+ x, u + ( ) s s u x, u sw+ s ( ) M + G + G ( w + ) (6) Now, le s explore he bound for u x, u. By definiion of u, we can wrie: x + u x x + u u Hence, x + u x + x u + x + u x, x u x + u x + x u + x x, x u + u, x u x + u x M + u, x u. (7) u, u x M (8) Taking x u + and combining 6 wih 8, we ge: w + D u (x s ), M sw+ ( ) ( ) w + M M + G G ( w + ) + G (9)

5 References Allen-Zhu, Zeyuan and Hazan, Elad. Variance reducion for faser non-convex opimizaion. In Inernaional Conference on Machine Learning, pp , 06. Arora, Sanjeev, Ge, Rong, and Moira, Ankur. New algorihms for learning incoheren and overcomplee dicionaries. In Conference on Learning Theory, pp , 04. Flunker, Valenin, Salinas, David, and Gashaus, Jan. Deepar: Probabilisic forecasing wih auoregressive recurren neworks. arxiv preprin arxiv: , 07. Foser, Dean P and Vohra, Rakesh V. Asympoic calibraion. Biomerika, 85(): , 998. Hazan, Elad, Singh, Karan, and Zhang, Cyril. Efficien regre minimizaion in non-convex games. arxiv preprin arxiv: , 07. Hsu, Daniel, Kakade, Sham M, and Zhang, Tong. A specral algorihm for learning hidden markov models. Journal of Compuer and Sysem Sciences, 78(5): , 0. Wen, Ruofeng, Torkkola, Kari, and Narayanaswamy, Balakrishnan. A muli-horizon quanile recurren forecaser. arxiv preprin arxiv:7.053, 07. Zinkevich, Marin. Online convex programming and generalized infiniesimal gradien ascen. In Proceedings of he 0h Inernaional Conference on Machine Learning (ICML-03), pp , 003.

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation Course Noes for EE7C Spring 018: Convex Opimizaion and Approximaion Insrucor: Moriz Hard Email: hard+ee7c@berkeley.edu Graduae Insrucor: Max Simchowiz Email: msimchow+ee7c@berkeley.edu Ocober 15, 018 3

More information

Online Convex Optimization Example And Follow-The-Leader

Online Convex Optimization Example And Follow-The-Leader CSE599s, Spring 2014, Online Learning Lecure 2-04/03/2014 Online Convex Opimizaion Example And Follow-The-Leader Lecurer: Brendan McMahan Scribe: Sephen Joe Jonany 1 Review of Online Convex Opimizaion

More information

Article from. Predictive Analytics and Futurism. July 2016 Issue 13

Article from. Predictive Analytics and Futurism. July 2016 Issue 13 Aricle from Predicive Analyics and Fuurism July 6 Issue An Inroducion o Incremenal Learning By Qiang Wu and Dave Snell Machine learning provides useful ools for predicive analyics The ypical machine learning

More information

PENALIZED LEAST SQUARES AND PENALIZED LIKELIHOOD

PENALIZED LEAST SQUARES AND PENALIZED LIKELIHOOD PENALIZED LEAST SQUARES AND PENALIZED LIKELIHOOD HAN XIAO 1. Penalized Leas Squares Lasso solves he following opimizaion problem, ˆβ lasso = arg max β R p+1 1 N y i β 0 N x ij β j β j (1.1) for some 0.

More information

1 Review of Zero-Sum Games

1 Review of Zero-Sum Games COS 5: heoreical Machine Learning Lecurer: Rob Schapire Lecure #23 Scribe: Eugene Brevdo April 30, 2008 Review of Zero-Sum Games Las ime we inroduced a mahemaical model for wo player zero-sum games. Any

More information

Simulation-Solving Dynamic Models ABE 5646 Week 2, Spring 2010

Simulation-Solving Dynamic Models ABE 5646 Week 2, Spring 2010 Simulaion-Solving Dynamic Models ABE 5646 Week 2, Spring 2010 Week Descripion Reading Maerial 2 Compuer Simulaion of Dynamic Models Finie Difference, coninuous saes, discree ime Simple Mehods Euler Trapezoid

More information

Supplement for Stochastic Convex Optimization: Faster Local Growth Implies Faster Global Convergence

Supplement for Stochastic Convex Optimization: Faster Local Growth Implies Faster Global Convergence Supplemen for Sochasic Convex Opimizaion: Faser Local Growh Implies Faser Global Convergence Yi Xu Qihang Lin ianbao Yang Proof of heorem heorem Suppose Assumpion holds and F (w) obeys he LGC (6) Given

More information

CHAPTER 10 VALIDATION OF TEST WITH ARTIFICAL NEURAL NETWORK

CHAPTER 10 VALIDATION OF TEST WITH ARTIFICAL NEURAL NETWORK 175 CHAPTER 10 VALIDATION OF TEST WITH ARTIFICAL NEURAL NETWORK 10.1 INTRODUCTION Amongs he research work performed, he bes resuls of experimenal work are validaed wih Arificial Neural Nework. From he

More information

MATH 5720: Gradient Methods Hung Phan, UMass Lowell October 4, 2018

MATH 5720: Gradient Methods Hung Phan, UMass Lowell October 4, 2018 MATH 5720: Gradien Mehods Hung Phan, UMass Lowell Ocober 4, 208 Descen Direcion Mehods Consider he problem min { f(x) x R n}. The general descen direcions mehod is x k+ = x k + k d k where x k is he curren

More information

STATE-SPACE MODELLING. A mass balance across the tank gives:

STATE-SPACE MODELLING. A mass balance across the tank gives: B. Lennox and N.F. Thornhill, 9, Sae Space Modelling, IChemE Process Managemen and Conrol Subjec Group Newsleer STE-SPACE MODELLING Inroducion: Over he pas decade or so here has been an ever increasing

More information

An introduction to the theory of SDDP algorithm

An introduction to the theory of SDDP algorithm An inroducion o he heory of SDDP algorihm V. Leclère (ENPC) Augus 1, 2014 V. Leclère Inroducion o SDDP Augus 1, 2014 1 / 21 Inroducion Large scale sochasic problem are hard o solve. Two ways of aacking

More information

INTRODUCTION TO MACHINE LEARNING 3RD EDITION

INTRODUCTION TO MACHINE LEARNING 3RD EDITION ETHEM ALPAYDIN The MIT Press, 2014 Lecure Slides for INTRODUCTION TO MACHINE LEARNING 3RD EDITION alpaydin@boun.edu.r hp://www.cmpe.boun.edu.r/~ehem/i2ml3e CHAPTER 2: SUPERVISED LEARNING Learning a Class

More information

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle Chaper 2 Newonian Mechanics Single Paricle In his Chaper we will review wha Newon s laws of mechanics ell us abou he moion of a single paricle. Newon s laws are only valid in suiable reference frames,

More information

Lecture 9: September 25

Lecture 9: September 25 0-725: Opimizaion Fall 202 Lecure 9: Sepember 25 Lecurer: Geoff Gordon/Ryan Tibshirani Scribes: Xuezhi Wang, Subhodeep Moira, Abhimanu Kumar Noe: LaTeX emplae couresy of UC Berkeley EECS dep. Disclaimer:

More information

Vehicle Arrival Models : Headway

Vehicle Arrival Models : Headway Chaper 12 Vehicle Arrival Models : Headway 12.1 Inroducion Modelling arrival of vehicle a secion of road is an imporan sep in raffic flow modelling. I has imporan applicaion in raffic flow simulaion where

More information

A Forward-Backward Splitting Method with Component-wise Lazy Evaluation for Online Structured Convex Optimization

A Forward-Backward Splitting Method with Component-wise Lazy Evaluation for Online Structured Convex Optimization A Forward-Backward Spliing Mehod wih Componen-wise Lazy Evaluaion for Online Srucured Convex Opimizaion Yukihiro Togari and Nobuo Yamashia March 28, 2016 Absrac: We consider large-scale opimizaion problems

More information

A Shooting Method for A Node Generation Algorithm

A Shooting Method for A Node Generation Algorithm A Shooing Mehod for A Node Generaion Algorihm Hiroaki Nishikawa W.M.Keck Foundaion Laboraory for Compuaional Fluid Dynamics Deparmen of Aerospace Engineering, Universiy of Michigan, Ann Arbor, Michigan

More information

Georey E. Hinton. University oftoronto. Technical Report CRG-TR February 22, Abstract

Georey E. Hinton. University oftoronto.   Technical Report CRG-TR February 22, Abstract Parameer Esimaion for Linear Dynamical Sysems Zoubin Ghahramani Georey E. Hinon Deparmen of Compuer Science Universiy oftorono 6 King's College Road Torono, Canada M5S A4 Email: zoubin@cs.orono.edu Technical

More information

Deep Learning: Theory, Techniques & Applications - Recurrent Neural Networks -

Deep Learning: Theory, Techniques & Applications - Recurrent Neural Networks - Deep Learning: Theory, Techniques & Applicaions - Recurren Neural Neworks - Prof. Maeo Maeucci maeo.maeucci@polimi.i Deparmen of Elecronics, Informaion and Bioengineering Arificial Inelligence and Roboics

More information

Random Walk with Anti-Correlated Steps

Random Walk with Anti-Correlated Steps Random Walk wih Ani-Correlaed Seps John Noga Dirk Wagner 2 Absrac We conjecure he expeced value of random walks wih ani-correlaed seps o be exacly. We suppor his conjecure wih 2 plausibiliy argumens and

More information

Notes on online convex optimization

Notes on online convex optimization Noes on online convex opimizaion Karl Sraos Online convex opimizaion (OCO) is a principled framework for online learning: OnlineConvexOpimizaion Inpu: convex se S, number of seps T For =, 2,..., T : Selec

More information

Notes on Kalman Filtering

Notes on Kalman Filtering Noes on Kalman Filering Brian Borchers and Rick Aser November 7, Inroducion Daa Assimilaion is he problem of merging model predicions wih acual measuremens of a sysem o produce an opimal esimae of he curren

More information

Econ107 Applied Econometrics Topic 7: Multicollinearity (Studenmund, Chapter 8)

Econ107 Applied Econometrics Topic 7: Multicollinearity (Studenmund, Chapter 8) I. Definiions and Problems A. Perfec Mulicollineariy Econ7 Applied Economerics Topic 7: Mulicollineariy (Sudenmund, Chaper 8) Definiion: Perfec mulicollineariy exiss in a following K-variable regression

More information

EE 330 Lecture 23. Small Signal Analysis Small Signal Modelling

EE 330 Lecture 23. Small Signal Analysis Small Signal Modelling EE 330 Lecure 23 Small Signal Analysis Small Signal Modelling Exam 2 Friday March 9 Exam 3 Friday April 13 Review Session for Exam 2: 6:00 p.m. on Thursday March 8 in Room Sweeney 1116 Review from Las

More information

Modal identification of structures from roving input data by means of maximum likelihood estimation of the state space model

Modal identification of structures from roving input data by means of maximum likelihood estimation of the state space model Modal idenificaion of srucures from roving inpu daa by means of maximum likelihood esimaion of he sae space model J. Cara, J. Juan, E. Alarcón Absrac The usual way o perform a forced vibraion es is o fix

More information

Chapter 4. Truncation Errors

Chapter 4. Truncation Errors Chaper 4. Truncaion Errors and he Taylor Series Truncaion Errors and he Taylor Series Non-elemenary funcions such as rigonomeric, eponenial, and ohers are epressed in an approimae fashion using Taylor

More information

23.5. Half-Range Series. Introduction. Prerequisites. Learning Outcomes

23.5. Half-Range Series. Introduction. Prerequisites. Learning Outcomes Half-Range Series 2.5 Inroducion In his Secion we address he following problem: Can we find a Fourier series expansion of a funcion defined over a finie inerval? Of course we recognise ha such a funcion

More information

ACE 562 Fall Lecture 5: The Simple Linear Regression Model: Sampling Properties of the Least Squares Estimators. by Professor Scott H.

ACE 562 Fall Lecture 5: The Simple Linear Regression Model: Sampling Properties of the Least Squares Estimators. by Professor Scott H. ACE 56 Fall 005 Lecure 5: he Simple Linear Regression Model: Sampling Properies of he Leas Squares Esimaors by Professor Sco H. Irwin Required Reading: Griffihs, Hill and Judge. "Inference in he Simple

More information

Matrix Versions of Some Refinements of the Arithmetic-Geometric Mean Inequality

Matrix Versions of Some Refinements of the Arithmetic-Geometric Mean Inequality Marix Versions of Some Refinemens of he Arihmeic-Geomeric Mean Inequaliy Bao Qi Feng and Andrew Tonge Absrac. We esablish marix versions of refinemens due o Alzer ], Carwrigh and Field 4], and Mercer 5]

More information

Lecture 2 October ε-approximation of 2-player zero-sum games

Lecture 2 October ε-approximation of 2-player zero-sum games Opimizaion II Winer 009/10 Lecurer: Khaled Elbassioni Lecure Ocober 19 1 ε-approximaion of -player zero-sum games In his lecure we give a randomized ficiious play algorihm for obaining an approximae soluion

More information

Zürich. ETH Master Course: L Autonomous Mobile Robots Localization II

Zürich. ETH Master Course: L Autonomous Mobile Robots Localization II Roland Siegwar Margaria Chli Paul Furgale Marco Huer Marin Rufli Davide Scaramuzza ETH Maser Course: 151-0854-00L Auonomous Mobile Robos Localizaion II ACT and SEE For all do, (predicion updae / ACT),

More information

14 Autoregressive Moving Average Models

14 Autoregressive Moving Average Models 14 Auoregressive Moving Average Models In his chaper an imporan parameric family of saionary ime series is inroduced, he family of he auoregressive moving average, or ARMA, processes. For a large class

More information

Diebold, Chapter 7. Francis X. Diebold, Elements of Forecasting, 4th Edition (Mason, Ohio: Cengage Learning, 2006). Chapter 7. Characterizing Cycles

Diebold, Chapter 7. Francis X. Diebold, Elements of Forecasting, 4th Edition (Mason, Ohio: Cengage Learning, 2006). Chapter 7. Characterizing Cycles Diebold, Chaper 7 Francis X. Diebold, Elemens of Forecasing, 4h Ediion (Mason, Ohio: Cengage Learning, 006). Chaper 7. Characerizing Cycles Afer compleing his reading you should be able o: Define covariance

More information

Rainbow saturation and graph capacities

Rainbow saturation and graph capacities Rainbow sauraion and graph capaciies Dániel Korándi Absrac The -colored rainbow sauraion number rsa (n, F ) is he minimum size of a -edge-colored graph on n verices ha conains no rainbow copy of F, bu

More information

2.7. Some common engineering functions. Introduction. Prerequisites. Learning Outcomes

2.7. Some common engineering functions. Introduction. Prerequisites. Learning Outcomes Some common engineering funcions 2.7 Inroducion This secion provides a caalogue of some common funcions ofen used in Science and Engineering. These include polynomials, raional funcions, he modulus funcion

More information

3.1 More on model selection

3.1 More on model selection 3. More on Model selecion 3. Comparing models AIC, BIC, Adjused R squared. 3. Over Fiing problem. 3.3 Sample spliing. 3. More on model selecion crieria Ofen afer model fiing you are lef wih a handful of

More information

Ensamble methods: Bagging and Boosting

Ensamble methods: Bagging and Boosting Lecure 21 Ensamble mehods: Bagging and Boosing Milos Hauskrech milos@cs.pi.edu 5329 Senno Square Ensemble mehods Mixure of expers Muliple base models (classifiers, regressors), each covers a differen par

More information

The Rosenblatt s LMS algorithm for Perceptron (1958) is built around a linear neuron (a neuron with a linear

The Rosenblatt s LMS algorithm for Perceptron (1958) is built around a linear neuron (a neuron with a linear In The name of God Lecure4: Percepron and AALIE r. Majid MjidGhoshunih Inroducion The Rosenbla s LMS algorihm for Percepron 958 is buil around a linear neuron a neuron ih a linear acivaion funcion. Hoever,

More information

Mathematical Theory and Modeling ISSN (Paper) ISSN (Online) Vol 3, No.3, 2013

Mathematical Theory and Modeling ISSN (Paper) ISSN (Online) Vol 3, No.3, 2013 Mahemaical Theory and Modeling ISSN -580 (Paper) ISSN 5-05 (Online) Vol, No., 0 www.iise.org The ffec of Inverse Transformaion on he Uni Mean and Consan Variance Assumpions of a Muliplicaive rror Model

More information

Cash Flow Valuation Mode Lin Discrete Time

Cash Flow Valuation Mode Lin Discrete Time IOSR Journal of Mahemaics (IOSR-JM) e-issn: 2278-5728,p-ISSN: 2319-765X, 6, Issue 6 (May. - Jun. 2013), PP 35-41 Cash Flow Valuaion Mode Lin Discree Time Olayiwola. M. A. and Oni, N. O. Deparmen of Mahemaics

More information

Inventory Control of Perishable Items in a Two-Echelon Supply Chain

Inventory Control of Perishable Items in a Two-Echelon Supply Chain Journal of Indusrial Engineering, Universiy of ehran, Special Issue,, PP. 69-77 69 Invenory Conrol of Perishable Iems in a wo-echelon Supply Chain Fariborz Jolai *, Elmira Gheisariha and Farnaz Nojavan

More information

Sequential Importance Resampling (SIR) Particle Filter

Sequential Importance Resampling (SIR) Particle Filter Paricle Filers++ Pieer Abbeel UC Berkeley EECS Many slides adaped from Thrun, Burgard and Fox, Probabilisic Roboics 1. Algorihm paricle_filer( S -1, u, z ): 2. Sequenial Imporance Resampling (SIR) Paricle

More information

Bias in Conditional and Unconditional Fixed Effects Logit Estimation: a Correction * Tom Coupé

Bias in Conditional and Unconditional Fixed Effects Logit Estimation: a Correction * Tom Coupé Bias in Condiional and Uncondiional Fixed Effecs Logi Esimaion: a Correcion * Tom Coupé Economics Educaion and Research Consorium, Naional Universiy of Kyiv Mohyla Academy Address: Vul Voloska 10, 04070

More information

Learning a Class from Examples. Training set X. Class C 1. Class C of a family car. Output: Input representation: x 1 : price, x 2 : engine power

Learning a Class from Examples. Training set X. Class C 1. Class C of a family car. Output: Input representation: x 1 : price, x 2 : engine power Alpaydin Chaper, Michell Chaper 7 Alpaydin slides are in urquoise. Ehem Alpaydin, copyrigh: The MIT Press, 010. alpaydin@boun.edu.r hp://www.cmpe.boun.edu.r/ ehem/imle All oher slides are based on Michell.

More information

A Dynamic Model of Economic Fluctuations

A Dynamic Model of Economic Fluctuations CHAPTER 15 A Dynamic Model of Economic Flucuaions Modified for ECON 2204 by Bob Murphy 2016 Worh Publishers, all righs reserved IN THIS CHAPTER, OU WILL LEARN: how o incorporae dynamics ino he AD-AS model

More information

Estimation Uncertainty

Estimation Uncertainty Esimaion Uncerainy The sample mean is an esimae of β = E(y +h ) The esimaion error is = + = T h y T b ( ) = = + = + = = = T T h T h e T y T y T b β β β Esimaion Variance Under classical condiions, where

More information

Ensamble methods: Boosting

Ensamble methods: Boosting Lecure 21 Ensamble mehods: Boosing Milos Hauskrech milos@cs.pi.edu 5329 Senno Square Schedule Final exam: April 18: 1:00-2:15pm, in-class Term projecs April 23 & April 25: a 1:00-2:30pm in CS seminar room

More information

Computational Equivalence of Fixed Points and No Regret Algorithms, and Convergence to Equilibria

Computational Equivalence of Fixed Points and No Regret Algorithms, and Convergence to Equilibria Compuaional Equivalence of Fixed Poins and No Regre Algorihms, and Convergence o Equilibria Elad Hazan IBM Almaden Research Cener 650 Harry Road San Jose, CA 95120 hazan@us.ibm.com Sayen Kale Compuer Science

More information

Hamilton- J acobi Equation: Weak S olution We continue the study of the Hamilton-Jacobi equation:

Hamilton- J acobi Equation: Weak S olution We continue the study of the Hamilton-Jacobi equation: M ah 5 7 Fall 9 L ecure O c. 4, 9 ) Hamilon- J acobi Equaion: Weak S oluion We coninue he sudy of he Hamilon-Jacobi equaion: We have shown ha u + H D u) = R n, ) ; u = g R n { = }. ). In general we canno

More information

Appendix to Online l 1 -Dictionary Learning with Application to Novel Document Detection

Appendix to Online l 1 -Dictionary Learning with Application to Novel Document Detection Appendix o Online l -Dicionary Learning wih Applicaion o Novel Documen Deecion Shiva Prasad Kasiviswanahan Huahua Wang Arindam Banerjee Prem Melville A Background abou ADMM In his secion, we give a brief

More information

Presentation Overview

Presentation Overview Acion Refinemen in Reinforcemen Learning by Probabiliy Smoohing By Thomas G. Dieerich & Didac Busques Speaer: Kai Xu Presenaion Overview Bacground The Probabiliy Smoohing Mehod Experimenal Sudy of Acion

More information

Robust estimation based on the first- and third-moment restrictions of the power transformation model

Robust estimation based on the first- and third-moment restrictions of the power transformation model h Inernaional Congress on Modelling and Simulaion, Adelaide, Ausralia, 6 December 3 www.mssanz.org.au/modsim3 Robus esimaion based on he firs- and hird-momen resricions of he power ransformaion Nawaa,

More information

Multi-scale 2D acoustic full waveform inversion with high frequency impulsive source

Multi-scale 2D acoustic full waveform inversion with high frequency impulsive source Muli-scale D acousic full waveform inversion wih high frequency impulsive source Vladimir N Zubov*, Universiy of Calgary, Calgary AB vzubov@ucalgaryca and Michael P Lamoureux, Universiy of Calgary, Calgary

More information

A Primal-Dual Type Algorithm with the O(1/t) Convergence Rate for Large Scale Constrained Convex Programs

A Primal-Dual Type Algorithm with the O(1/t) Convergence Rate for Large Scale Constrained Convex Programs PROC. IEEE CONFERENCE ON DECISION AND CONTROL, 06 A Primal-Dual Type Algorihm wih he O(/) Convergence Rae for Large Scale Consrained Convex Programs Hao Yu and Michael J. Neely Absrac This paper considers

More information

State-Space Models. Initialization, Estimation and Smoothing of the Kalman Filter

State-Space Models. Initialization, Estimation and Smoothing of the Kalman Filter Sae-Space Models Iniializaion, Esimaion and Smoohing of he Kalman Filer Iniializaion of he Kalman Filer The Kalman filer shows how o updae pas predicors and he corresponding predicion error variances when

More information

Wavelet Variance, Covariance and Correlation Analysis of BSE and NSE Indexes Financial Time Series

Wavelet Variance, Covariance and Correlation Analysis of BSE and NSE Indexes Financial Time Series Wavele Variance, Covariance and Correlaion Analysis of BSE and NSE Indexes Financial Time Series Anu Kumar 1*, Sangeea Pan 1, Lokesh Kumar Joshi 1 Deparmen of Mahemaics, Universiy of Peroleum & Energy

More information

Exponential Weighted Moving Average (EWMA) Chart Under The Assumption of Moderateness And Its 3 Control Limits

Exponential Weighted Moving Average (EWMA) Chart Under The Assumption of Moderateness And Its 3 Control Limits DOI: 0.545/mjis.07.5009 Exponenial Weighed Moving Average (EWMA) Char Under The Assumpion of Moderaeness And Is 3 Conrol Limis KALPESH S TAILOR Assisan Professor, Deparmen of Saisics, M. K. Bhavnagar Universiy,

More information

Technical Report Doc ID: TR March-2013 (Last revision: 23-February-2016) On formulating quadratic functions in optimization models.

Technical Report Doc ID: TR March-2013 (Last revision: 23-February-2016) On formulating quadratic functions in optimization models. Technical Repor Doc ID: TR--203 06-March-203 (Las revision: 23-Februar-206) On formulaing quadraic funcions in opimizaion models. Auhor: Erling D. Andersen Convex quadraic consrains quie frequenl appear

More information

SZG Macro 2011 Lecture 3: Dynamic Programming. SZG macro 2011 lecture 3 1

SZG Macro 2011 Lecture 3: Dynamic Programming. SZG macro 2011 lecture 3 1 SZG Macro 2011 Lecure 3: Dynamic Programming SZG macro 2011 lecure 3 1 Background Our previous discussion of opimal consumpion over ime and of opimal capial accumulaion sugges sudying he general decision

More information

Application of a Stochastic-Fuzzy Approach to Modeling Optimal Discrete Time Dynamical Systems by Using Large Scale Data Processing

Application of a Stochastic-Fuzzy Approach to Modeling Optimal Discrete Time Dynamical Systems by Using Large Scale Data Processing Applicaion of a Sochasic-Fuzzy Approach o Modeling Opimal Discree Time Dynamical Sysems by Using Large Scale Daa Processing AA WALASZE-BABISZEWSA Deparmen of Compuer Engineering Opole Universiy of Technology

More information

Improved Approximate Solutions for Nonlinear Evolutions Equations in Mathematical Physics Using the Reduced Differential Transform Method

Improved Approximate Solutions for Nonlinear Evolutions Equations in Mathematical Physics Using the Reduced Differential Transform Method Journal of Applied Mahemaics & Bioinformaics, vol., no., 01, 1-14 ISSN: 179-660 (prin), 179-699 (online) Scienpress Ld, 01 Improved Approimae Soluions for Nonlinear Evoluions Equaions in Mahemaical Physics

More information

15. Vector Valued Functions

15. Vector Valued Functions 1. Vecor Valued Funcions Up o his poin, we have presened vecors wih consan componens, for example, 1, and,,4. However, we can allow he componens of a vecor o be funcions of a common variable. For example,

More information

Essential Microeconomics : OPTIMAL CONTROL 1. Consider the following class of optimization problems

Essential Microeconomics : OPTIMAL CONTROL 1. Consider the following class of optimization problems Essenial Microeconomics -- 6.5: OPIMAL CONROL Consider he following class of opimizaion problems Max{ U( k, x) + U+ ( k+ ) k+ k F( k, x)}. { x, k+ } = In he language of conrol heory, he vecor k is he vecor

More information

Christos Papadimitriou & Luca Trevisan November 22, 2016

Christos Papadimitriou & Luca Trevisan November 22, 2016 U.C. Bereley CS170: Algorihms Handou LN-11-22 Chrisos Papadimiriou & Luca Trevisan November 22, 2016 Sreaming algorihms In his lecure and he nex one we sudy memory-efficien algorihms ha process a sream

More information

12: AUTOREGRESSIVE AND MOVING AVERAGE PROCESSES IN DISCRETE TIME. Σ j =

12: AUTOREGRESSIVE AND MOVING AVERAGE PROCESSES IN DISCRETE TIME. Σ j = 1: AUTOREGRESSIVE AND MOVING AVERAGE PROCESSES IN DISCRETE TIME Moving Averages Recall ha a whie noise process is a series { } = having variance σ. The whie noise process has specral densiy f (λ) = of

More information

The Simple Linear Regression Model: Reporting the Results and Choosing the Functional Form

The Simple Linear Regression Model: Reporting the Results and Choosing the Functional Form Chaper 6 The Simple Linear Regression Model: Reporing he Resuls and Choosing he Funcional Form To complee he analysis of he simple linear regression model, in his chaper we will consider how o measure

More information

ELE 538B: Large-Scale Optimization for Data Science. Introduction. Yuxin Chen Princeton University, Spring 2018

ELE 538B: Large-Scale Optimization for Data Science. Introduction. Yuxin Chen Princeton University, Spring 2018 ELE 538B: Large-Scale Opimizaion for Daa Science Inroducion Yuxin Chen Princeon Universiy, Spring 2018 Surge of daa-inensive applicaions Widespread applicaions in large-scale daa science and learning 2.5

More information

WEEK-3 Recitation PHYS 131. of the projectile s velocity remains constant throughout the motion, since the acceleration a x

WEEK-3 Recitation PHYS 131. of the projectile s velocity remains constant throughout the motion, since the acceleration a x WEEK-3 Reciaion PHYS 131 Ch. 3: FOC 1, 3, 4, 6, 14. Problems 9, 37, 41 & 71 and Ch. 4: FOC 1, 3, 5, 8. Problems 3, 5 & 16. Feb 8, 018 Ch. 3: FOC 1, 3, 4, 6, 14. 1. (a) The horizonal componen of he projecile

More information

Learning a Class from Examples. Training set X. Class C 1. Class C of a family car. Output: Input representation: x 1 : price, x 2 : engine power

Learning a Class from Examples. Training set X. Class C 1. Class C of a family car. Output: Input representation: x 1 : price, x 2 : engine power Alpaydin Chaper, Michell Chaper 7 Alpaydin slides are in urquoise. Ehem Alpaydin, copyrigh: The MIT Press, 010. alpaydin@boun.edu.r hp://www.cmpe.boun.edu.r/ ehem/imle All oher slides are based on Michell.

More information

FITTING EQUATIONS TO DATA

FITTING EQUATIONS TO DATA TANTON S TAKE ON FITTING EQUATIONS TO DATA CURRICULUM TIDBITS FOR THE MATHEMATICS CLASSROOM MAY 013 Sandard algebra courses have sudens fi linear and eponenial funcions o wo daa poins, and quadraic funcions

More information

di Bernardo, M. (1995). A purely adaptive controller to synchronize and control chaotic systems.

di Bernardo, M. (1995). A purely adaptive controller to synchronize and control chaotic systems. di ernardo, M. (995). A purely adapive conroller o synchronize and conrol chaoic sysems. hps://doi.org/.6/375-96(96)8-x Early version, also known as pre-prin Link o published version (if available):.6/375-96(96)8-x

More information

KINEMATICS IN ONE DIMENSION

KINEMATICS IN ONE DIMENSION KINEMATICS IN ONE DIMENSION PREVIEW Kinemaics is he sudy of how hings move how far (disance and displacemen), how fas (speed and velociy), and how fas ha how fas changes (acceleraion). We say ha an objec

More information

Introduction D P. r = constant discount rate, g = Gordon Model (1962): constant dividend growth rate.

Introduction D P. r = constant discount rate, g = Gordon Model (1962): constant dividend growth rate. Inroducion Gordon Model (1962): D P = r g r = consan discoun rae, g = consan dividend growh rae. If raional expecaions of fuure discoun raes and dividend growh vary over ime, so should he D/P raio. Since

More information

L07. KALMAN FILTERING FOR NON-LINEAR SYSTEMS. NA568 Mobile Robotics: Methods & Algorithms

L07. KALMAN FILTERING FOR NON-LINEAR SYSTEMS. NA568 Mobile Robotics: Methods & Algorithms L07. KALMAN FILTERING FOR NON-LINEAR SYSTEMS NA568 Mobile Roboics: Mehods & Algorihms Today s Topic Quick review on (Linear) Kalman Filer Kalman Filering for Non-Linear Sysems Exended Kalman Filer (EKF)

More information

5.1 - Logarithms and Their Properties

5.1 - Logarithms and Their Properties Chaper 5 Logarihmic Funcions 5.1 - Logarihms and Their Properies Suppose ha a populaion grows according o he formula P 10, where P is he colony size a ime, in hours. When will he populaion be 2500? We

More information

Delivering Better Time-of-Day Using Synchronous Ethernet and Yaakov (J) Stein, Alon Geva, Gabriel Zigelboim RAD Data Communications

Delivering Better Time-of-Day Using Synchronous Ethernet and Yaakov (J) Stein, Alon Geva, Gabriel Zigelboim RAD Data Communications Delivering Beer Time-of-Day Using Synchronous Eherne and 1588 Yaakov (J) Sein, Alon Geva, Gabriel Zigelboim RAD Daa Communicaions The problem I wan discuss he use of 1588 (or NTP for ha maer) for ime of

More information

Air Traffic Forecast Empirical Research Based on the MCMC Method

Air Traffic Forecast Empirical Research Based on the MCMC Method Compuer and Informaion Science; Vol. 5, No. 5; 0 ISSN 93-8989 E-ISSN 93-8997 Published by Canadian Cener of Science and Educaion Air Traffic Forecas Empirical Research Based on he MCMC Mehod Jian-bo Wang,

More information

ACE 562 Fall Lecture 4: Simple Linear Regression Model: Specification and Estimation. by Professor Scott H. Irwin

ACE 562 Fall Lecture 4: Simple Linear Regression Model: Specification and Estimation. by Professor Scott H. Irwin ACE 56 Fall 005 Lecure 4: Simple Linear Regression Model: Specificaion and Esimaion by Professor Sco H. Irwin Required Reading: Griffihs, Hill and Judge. "Simple Regression: Economic and Saisical Model

More information

KEY. Math 334 Midterm I Fall 2008 sections 001 and 003 Instructor: Scott Glasgow

KEY. Math 334 Midterm I Fall 2008 sections 001 and 003 Instructor: Scott Glasgow 1 KEY Mah 4 Miderm I Fall 8 secions 1 and Insrucor: Sco Glasgow Please do NOT wrie on his eam. No credi will be given for such work. Raher wrie in a blue book, or on our own paper, preferabl engineering

More information

1.6. Slopes of Tangents and Instantaneous Rate of Change

1.6. Slopes of Tangents and Instantaneous Rate of Change 1.6 Slopes of Tangens and Insananeous Rae of Change When you hi or kick a ball, he heigh, h, in meres, of he ball can be modelled by he equaion h() 4.9 2 v c. In his equaion, is he ime, in seconds; c represens

More information

Refinement of Document Clustering by Using NMF *

Refinement of Document Clustering by Using NMF * Refinemen of Documen Clusering by Using NMF * Hiroyuki Shinnou and Minoru Sasaki Deparmen of Compuer and Informaion Sciences, Ibaraki Universiy, 4-12-1 Nakanarusawa, Hiachi, Ibaraki JAPAN 316-8511 {shinnou,

More information

International Journal of Scientific & Engineering Research, Volume 4, Issue 10, October ISSN

International Journal of Scientific & Engineering Research, Volume 4, Issue 10, October ISSN Inernaional Journal of Scienific & Engineering Research, Volume 4, Issue 10, Ocober-2013 900 FUZZY MEAN RESIDUAL LIFE ORDERING OF FUZZY RANDOM VARIABLES J. EARNEST LAZARUS PIRIYAKUMAR 1, A. YAMUNA 2 1.

More information

Pade and Laguerre Approximations Applied. to the Active Queue Management Model. of Internet Protocol

Pade and Laguerre Approximations Applied. to the Active Queue Management Model. of Internet Protocol Applied Mahemaical Sciences, Vol. 7, 013, no. 16, 663-673 HIKARI Ld, www.m-hikari.com hp://dx.doi.org/10.1988/ams.013.39499 Pade and Laguerre Approximaions Applied o he Acive Queue Managemen Model of Inerne

More information

Financial Econometrics Jeffrey R. Russell Midterm Winter 2009 SOLUTIONS

Financial Econometrics Jeffrey R. Russell Midterm Winter 2009 SOLUTIONS Name SOLUTIONS Financial Economerics Jeffrey R. Russell Miderm Winer 009 SOLUTIONS You have 80 minues o complee he exam. Use can use a calculaor and noes. Try o fi all your work in he space provided. If

More information

GINI MEAN DIFFERENCE AND EWMA CHARTS. Muhammad Riaz, Department of Statistics, Quaid-e-Azam University Islamabad,

GINI MEAN DIFFERENCE AND EWMA CHARTS. Muhammad Riaz, Department of Statistics, Quaid-e-Azam University Islamabad, GINI MEAN DIFFEENCE AND EWMA CHATS Muhammad iaz, Deparmen of Saisics, Quaid-e-Azam Universiy Islamabad, Pakisan. E-Mail: riaz76qau@yahoo.com Saddam Akbar Abbasi, Deparmen of Saisics, Quaid-e-Azam Universiy

More information

PROC NLP Approach for Optimal Exponential Smoothing Srihari Jaganathan, Cognizant Technology Solutions, Newbury Park, CA.

PROC NLP Approach for Optimal Exponential Smoothing Srihari Jaganathan, Cognizant Technology Solutions, Newbury Park, CA. PROC NLP Approach for Opimal Exponenial Smoohing Srihari Jaganahan, Cognizan Technology Soluions, Newbury Park, CA. ABSTRACT Esimaion of smoohing parameers and iniial values are some of he basic requiremens

More information

T L. t=1. Proof of Lemma 1. Using the marginal cost accounting in Equation(4) and standard arguments. t )+Π RB. t )+K 1(Q RB

T L. t=1. Proof of Lemma 1. Using the marginal cost accounting in Equation(4) and standard arguments. t )+Π RB. t )+K 1(Q RB Elecronic Companion EC.1. Proofs of Technical Lemmas and Theorems LEMMA 1. Le C(RB) be he oal cos incurred by he RB policy. Then we have, T L E[C(RB)] 3 E[Z RB ]. (EC.1) Proof of Lemma 1. Using he marginal

More information

An Iterative Method for Solving Two Special Cases of Nonlinear PDEs

An Iterative Method for Solving Two Special Cases of Nonlinear PDEs Conemporary Engineering Sciences, Vol. 10, 2017, no. 11, 55-553 HIKARI Ld, www.m-hikari.com hps://doi.org/10.12988/ces.2017.7651 An Ieraive Mehod for Solving Two Special Cases of Nonlinear PDEs Carlos

More information

!!"#"$%&#'()!"#&'(*%)+,&',-)./0)1-*23)

!!#$%&#'()!#&'(*%)+,&',-)./0)1-*23) "#"$%&#'()"#&'(*%)+,&',-)./)1-*) #$%&'()*+,&',-.%,/)*+,-&1*#$)()5*6$+$%*,7&*-'-&1*(,-&*6&,7.$%$+*&%'(*8$&',-,%'-&1*(,-&*6&,79*(&,%: ;..,*&1$&$.$%&'()*1$$.,'&',-9*(&,%)?%*,('&5

More information

) were both constant and we brought them from under the integral.

) were both constant and we brought them from under the integral. YIELD-PER-RECRUIT (coninued The yield-per-recrui model applies o a cohor, bu we saw in he Age Disribuions lecure ha he properies of a cohor do no apply in general o a collecion of cohors, which is wha

More information

The Asymptotic Behavior of Nonoscillatory Solutions of Some Nonlinear Dynamic Equations on Time Scales

The Asymptotic Behavior of Nonoscillatory Solutions of Some Nonlinear Dynamic Equations on Time Scales Advances in Dynamical Sysems and Applicaions. ISSN 0973-5321 Volume 1 Number 1 (2006, pp. 103 112 c Research India Publicaions hp://www.ripublicaion.com/adsa.hm The Asympoic Behavior of Nonoscillaory Soluions

More information

INDEPENDENT SETS IN GRAPHS WITH GIVEN MINIMUM DEGREE

INDEPENDENT SETS IN GRAPHS WITH GIVEN MINIMUM DEGREE INDEPENDENT SETS IN GRAPHS WITH GIVEN MINIMUM DEGREE JAMES ALEXANDER, JONATHAN CUTLER, AND TIM MINK Absrac The enumeraion of independen ses in graphs wih various resricions has been a opic of much ineres

More information

Chapter 2. First Order Scalar Equations

Chapter 2. First Order Scalar Equations Chaper. Firs Order Scalar Equaions We sar our sudy of differenial equaions in he same way he pioneers in his field did. We show paricular echniques o solve paricular ypes of firs order differenial equaions.

More information

On-line Adaptive Optimal Timing Control of Switched Systems

On-line Adaptive Optimal Timing Control of Switched Systems On-line Adapive Opimal Timing Conrol of Swiched Sysems X.C. Ding, Y. Wardi and M. Egersed Absrac In his paper we consider he problem of opimizing over he swiching imes for a muli-modal dynamic sysem when

More information

Matlab and Python programming: how to get started

Matlab and Python programming: how to get started Malab and Pyhon programming: how o ge sared Equipping readers he skills o wrie programs o explore complex sysems and discover ineresing paerns from big daa is one of he main goals of his book. In his chaper,

More information

10. State Space Methods

10. State Space Methods . Sae Space Mehods. Inroducion Sae space modelling was briefly inroduced in chaper. Here more coverage is provided of sae space mehods before some of heir uses in conrol sysem design are covered in he

More information

EXERCISES FOR SECTION 1.5

EXERCISES FOR SECTION 1.5 1.5 Exisence and Uniqueness of Soluions 43 20. 1 v c 21. 1 v c 1 2 4 6 8 10 1 2 2 4 6 8 10 Graph of approximae soluion obained using Euler s mehod wih = 0.1. Graph of approximae soluion obained using Euler

More information

Semi-Competing Risks on A Trivariate Weibull Survival Model

Semi-Competing Risks on A Trivariate Weibull Survival Model Semi-Compeing Risks on A Trivariae Weibull Survival Model Jenq-Daw Lee Graduae Insiue of Poliical Economy Naional Cheng Kung Universiy Tainan Taiwan 70101 ROC Cheng K. Lee Loss Forecasing Home Loans &

More information

Chapter 3 Boundary Value Problem

Chapter 3 Boundary Value Problem Chaper 3 Boundary Value Problem A boundary value problem (BVP) is a problem, ypically an ODE or a PDE, which has values assigned on he physical boundary of he domain in which he problem is specified. Le

More information

Applying Genetic Algorithms for Inventory Lot-Sizing Problem with Supplier Selection under Storage Capacity Constraints

Applying Genetic Algorithms for Inventory Lot-Sizing Problem with Supplier Selection under Storage Capacity Constraints IJCSI Inernaional Journal of Compuer Science Issues, Vol 9, Issue 1, No 1, January 2012 wwwijcsiorg 18 Applying Geneic Algorihms for Invenory Lo-Sizing Problem wih Supplier Selecion under Sorage Capaciy

More information