Fundamental Problems In Robotics

Size: px
Start display at page:

Download "Fundamental Problems In Robotics"

Transcription

1 Fundamenal Problems In Roboics Wha does he world looks like? (mapping sense from various posiions inegrae measuremens o produce map assumes perfec knowledge of posiion Where am I in he world? (localizaion Sense relae sensor readings o a world model compue locaion relaive o model assumes a perfec world model Togeher, hese are SLAM (Simulaneous Localizaion and Mapping

2 Sensors Propriocepive Sensors (monior sae of robo IMU (accels & gyros Wheel encoders Doppler radar Eerocepive Sensors (monior environmen Cameras (single, sereo, omni, FLIR Laser scanner MW radar Sonar Tacile CS-47 Inroducion o Roboics and Inelligen Sysems 2

3 Specific eamples acile close-range proimiy angular posiion infrared Sonar laser (various ypes radar compasses, gyroscopes Force GPS vision Types of sensor CS-47 Inroducion o Roboics and Inelligen Sysems 3

4 Orienaion Represenaions Describes he roaion of one coordinae sysem wih respec o anoher B Z A A X A Y A CS-47 Inroducion o Roboics and Inelligen Sysems 4

5 Roaion Mari Roaion Mari: (9 variables Euler Angles [roll, pich, yaw] (Gimbal Lock, disconinuiy, muliple represenaions Angle-Ais [V,q] Quaernions A B R q q4 qi q2 j q3k r r r 2 3 r r r r r r B Z A A X A Y A CS-47 Inroducion o Roboics and Inelligen Sysems 5

6 Pah Planning Visibiliy Graph Bug Algorihms Poenial Fields Skeleons/Voronoi Graphs C-Space PRM s RRT s

7 Generalized Voronoi Graph (GVG Free Space wih Topological Map (GVG

8 Generalized Voronoi Graph (GVG Access GVG Free Space wih Topological Map (GVG

9 Generalized Voronoi Graph (GVG Access GVG Follow Edge Free Space wih Topological Map (GVG

10 Generalized Voronoi Graph (GVG Access GVG Follow Edge Home o he MeePoin Free Space wih Topological Map (GVG

11 Generalized Voronoi Graph (GVG Access GVG Follow Edge Home o he MeePoin Selec Edge Free Space wih Topological Map (GVG

12 Local echniques Poenial Field mehods compue a repulsive force away from obsacles compue an aracive force oward he goal le he sum of he forces conrol he robo To a large een, his is compuable from sensor readings

13 SONAR modeling using Occupancy Grids The key o making accurae maps is combining los of daa. Bu combining hese numbers means we have o know wha hey are! Wha should our map conain? small cells each represens a bi of he robo s environmen larger values => obsacle smaller values => free wha is in each cell of his sonar model / map?

14 Configuraion Space

15 Tool: Configuraion Space (C-Space C q 2 q q 2 q

16 Tool: Configuraion Space (C-Space C q 2 q q 2 q

17 Tool: Configuraion Space (C-Space C

18 RRT-Connec: eample Connecion made!

19 Coverage Firs Disincion Deerminisic Random Second Disincion Complee No Guaranee Third Disincion Known Environmen Unknown Environmen Demining Vacuum Cleaning

20 Cellular Decomposiion Criical Poin (CP Cell 0 Direcion of Coverage

21 Single Cell Coverage Direcion of Coverage

22 Cellular Decomposiion Cell 2 CP 0 CP Cell 0 Cell CP 2 CP 3 Cell N CP m CP m- Direcion of Coverage Reeb Graph

23 Human Robo Ineracion Acive roles Human or Robo Supervisor Operaor Mechanic / Assisan Peer Slave

24 Human Robo Ineracion Levels of Auonomy (LOA [Sheridan 978]. Compuer offers no assisance; human does i all 2. Compuer offers a complee se of acion alernaives 3. Compuer narrows he selecion down o a few choices 4. Compuer suggess a single acion 5. Compuer eecues ha acion if human approves 6. Compuer allows he human limied ime o veo before auomaic eecuion 7. Compuer eecues auomaically hen always informs he human 8. Compuer informs human afer auo-eecuion only if human asks 9. Compuer informs human afer eecuion only if i decides o 0. Compuer decides everyhing and acs auonomously, ignoring he human direc conrol dynamic auonomy

25 Human Robo Ineracion Sliding Auonomy Teleoperaion Confirmaion Inerrupion Full Auonomy

26 Muli-Robo Team size Communicaion range Communicaion opology Communicaion bandwidh Processing abiliy Team Reconfigurabiliy Team Composiion

27 Localizaion Tracking: Known iniial posiion Global Localizaion: Unknown iniial posiion Re-Localizaion: Incorrec known posiion (kidnapped robo problem

28 Graphical Models, Bayes Rule and he Markov Assumpion Acions a Beliefs b T( j a i, i b 2 Observable Hidden Observaions O(z j i Z Z 2 Saes 2 p( y p( Bayes rule: p( y p( y Markov : p(, a, a0, z0, a, z,, z p(, a

29 Derivaion of he Bayesian Filer 0,..., (, ( ( ( d o a p a p o p Bel (, ( ( ( d Bel a p o p Bel Firs-order Markov assumpion shorens middle erm: Finally, subsiuing he definiion of Bel( - : The above is he probabiliy disribuion ha mus be esimaed from he robo s daa

30 Ieraing he Bayesian Filer Propagae he moion model: Bel ( P( a, Bel ( d Updae he sensor model: Compue he curren sae esimae before aking a sensor reading by inegraing over all possible previous sae esimaes and applying he moion model Bel ( P( o Bel ( Compue he curren sae esimae by aking a sensor reading and muliplying by he curren esimae based on he mos recen moion hisory

31 Differen Approaches Kalman filers (lae-60s? Gaussians approimaely linear models posiion racking Eended Kalman Filer Informaion Filer Unscened Kalman Filer Muli-hypohesis ( 00 Miure of Gaussians Muliple Kalman filers Global localizaion, recovery Discree approaches ( 95 Topological represenaion ( 95 uncerainy handling (POMDPs occas. global localizaion, recovery Grid-based, meric represenaion ( 96 global localizaion, recovery Paricle filers ( 98 Condensaion (Isard and Blake 98 Sample-based represenaion Global localizaion, recovery Rao-Blackwellized Paricle Filer

32 Mone-Carlo Sae Esimaion (Paricle Filering Employing a Bayesian Mone-Carlo simulaion echnique for pose esimaion. A paricle filer uses N samples as a discree represenaion of he probabiliy disribuion funcion (pdf of he variable of ineres: S [, w : i N] i where i is a copy of he variable of ineres and w i is a weigh signifying he qualiy of ha sample. In our case, each paricle can be regarded as an alernaive hypohesis for he robo pose. i CS-47 Inroducion o Roboics and Inelligen Sysems 32

33 Paricle Filer (con. The paricle filer operaes in wo sages: Predicion: Afer a moion (a he se of paricles S is modified according o he acion model S where (n is he added noise. f ( S, a, n The resuling pdf is he prior esimae before collecing any addiional sensory informaion. CS-47 Inroducion o Roboics and Inelligen Sysems 33

34 Paricle Filer (con. Updae: When a sensor measuremen (z becomes available, he weighs of he paricles are updaed based on he likelihood of (z given he paricle i w P( z w i The updaed paricles represen he poserior disribuion of he moving robo. i i CS-47 Inroducion o Roboics and Inelligen Sysems 34

35 Resampling For finie paricle populaions, we mus focus populaion mass where he PDF is subsanive. Failure o do his correcly can lead o divergence. Resampling needlessly also has disadvanages. One way is o esimae he need for resampling based on he variance of he paricle weigh disribuion, in paricular he coefficien of variance: M 2 var( w ( i cv ( Mw ( 2 i E ( w ( i M ESS M cv 2 CS-47 Inroducion o Roboics and Inelligen Sysems i 35 2

36 The Kalman Filer Moion model is Gaussian Sensor model is Gaussian Each belief funcion is uniquely characerized by is mean m and covariance mari Compuing he poserior means compuing a new mean m and covariance from old daa using acions and sensor readings Wha are he key limiaions? Unimodal disribuion 2 Linear assumpions

37 Wha we know Wha we don know We know wha he conrol inpus of our process are We know wha we ve old he sysem o do and have a model for wha he epeced oupu should be if everyhing works righ We don know wha he noise in he sysem ruly is We can only esimae wha he noise migh be and ry o pu some sor of upper bound on i When esimaing he sae of a sysem, we ry o find a se of values ha comes as close o he ruh as possible There will always be some mismach beween our esimae of he sysem and he rue sae of he sysem iself. We jus ry o figure ou how much mismach here is and ry o ge he bes esimae possible

38 Kalman Filer Componens (also known as: Way Too Many Variables Linear discree ime dynamic sysem (moion model Sae Conrol inpu Process noise F B u G w Sae ransiion funcion Conrol inpu funcion Noise inpu funcion wih covariance Q Measuremen equaion (sensor model Sensor reading Sae Sensor noise wih covariance R z H n Sensor funcion Noe:Wrie hese down!!!

39 Compuing he MMSE Esimae of he Sae and Covariance Wha is he minimum mean square error esimae of he sysem sae and covariance? F B u z H P S Esimae of he sae variables Esimae of he sensor reading T T F P F GQ G Covariance mari for he sae T H P H R Covariance mari for he sensors

40 The Kalman Filer Propagaion (moion model: T T G Q G F F P P B u F / / / / Updae (sensor model: T T T P H S H P P P r K S H P K R H P H S z z r H z / / / / / / / / /

41 bu wha does ha mean in English?!? Propagaion (moion model: Updae (sensor model: - Sae esimae is updaed from sysem dynamics - Uncerainy esimae GROWS - Compue epeced value of sensor reading - Compue he difference beween epeced and rue - Compue covariance of sensor reading - Compue he Kalman Gain (how much o correc es. - Muliply residual imes gain o correc sae esimae - Uncerainy esimae SHRINKS T T G Q G F F P P B u F / / / / T T T P H S H P P P r K S H P K R H P H S z z r H z / / / / / / / / /

42 Kalman Filer Block Diagram

43 w w ~ ( ~ ~ Calculaion of CS-47 Inroducion o Roboics and Inelligen Sysems 43

44 Calculaion of ~ ~ y y y ~... ~ cos( sin( ~ ~ cos( cos( sin( ~ cos( ~ cos( cos( ] sin( ~ sin( cos( ~ [cos( ~ cos( cos( ~ cos( ~ cos( cos( cos( cos( ( cos( ~ v v v v v v y y y w v w v v v w v v w v v w v v w v v 44 CS-47 Inroducion o Roboics and Inelligen Sysems

45 Covariance Esimaion 45 CS-47 Inroducion o Roboics and Inelligen Sysems 2 2 / / 0 0 ] [ where ] [ ] ~ ~ [ ] ~ ( ~ [( ] ~ ~ [ v T T T T T T T T T w w E Q G Q G F F P G w w G E F X X F E G w F X G w F X E X X E P

46 Some observaions The larger he error, he smaller he effec on he final sae esimae If process uncerainy is larger, sensor updaes will dominae sae esimae If sensor uncerainy is larger, process propagaion will dominae sae esimae Improper esimaes of he sae and/or sensor covariance may resul in a rapidly diverging esimaor As a rule of humb, he residuals mus always be bounded wihin a ±3 region of uncerainy This measures he healh of he filer Many propagaion cycles can happen beween updaes

47 Eploraion Fronier Based Eploraion Graph Based Eploraion Conflicing goals: Accuracy Efficiency

48 Compuer Vision Projecion 3D->2D Correspondence Problem Sereo Opical Flow Feaures

Data Fusion using Kalman Filter. Ioannis Rekleitis

Data Fusion using Kalman Filter. Ioannis Rekleitis Daa Fusion using Kalman Filer Ioannis Rekleiis Eample of a arameerized Baesian Filer: Kalman Filer Kalman filers (KF represen poserior belief b a Gaussian (normal disribuion A -d Gaussian disribuion is

More information

2016 Possible Examination Questions. Robotics CSCE 574

2016 Possible Examination Questions. Robotics CSCE 574 206 Possible Examinaion Quesions Roboics CSCE 574 ) Wha are he differences beween Hydraulic drive and Shape Memory Alloy drive? Name one applicaion in which each one of hem is appropriae. 2) Wha are he

More information

Zürich. ETH Master Course: L Autonomous Mobile Robots Localization II

Zürich. ETH Master Course: L Autonomous Mobile Robots Localization II Roland Siegwar Margaria Chli Paul Furgale Marco Huer Marin Rufli Davide Scaramuzza ETH Maser Course: 151-0854-00L Auonomous Mobile Robos Localizaion II ACT and SEE For all do, (predicion updae / ACT),

More information

Probabilistic Robotics SLAM

Probabilistic Robotics SLAM Probabilisic Roboics SLAM The SLAM Problem SLAM is he process by which a robo builds a map of he environmen and, a he same ime, uses his map o compue is locaion Localizaion: inferring locaion given a map

More information

Probabilistic Robotics SLAM

Probabilistic Robotics SLAM Probabilisic Roboics SLAM The SLAM Problem SLAM is he process by which a robo builds a map of he environmen and, a he same ime, uses his map o compue is locaion Localizaion: inferring locaion given a map

More information

Announcements. Recap: Filtering. Recap: Reasoning Over Time. Example: State Representations for Robot Localization. Particle Filtering

Announcements. Recap: Filtering. Recap: Reasoning Over Time. Example: State Representations for Robot Localization. Particle Filtering Inroducion o Arificial Inelligence V22.0472-001 Fall 2009 Lecure 18: aricle & Kalman Filering Announcemens Final exam will be a 7pm on Wednesday December 14 h Dae of las class 1.5 hrs long I won ask anyhing

More information

Using the Kalman filter Extended Kalman filter

Using the Kalman filter Extended Kalman filter Using he Kalman filer Eended Kalman filer Doz. G. Bleser Prof. Sricker Compuer Vision: Objec and People Tracking SA- Ouline Recap: Kalman filer algorihm Using Kalman filers Eended Kalman filer algorihm

More information

Probabilistic Robotics

Probabilistic Robotics Probabilisic Roboics Bayes Filer Implemenaions Gaussian filers Bayes Filer Reminder Predicion bel p u bel d Correcion bel η p z bel Gaussians : ~ π e p N p - Univariae / / : ~ μ μ μ e p Ν p d π Mulivariae

More information

Two Popular Bayesian Estimators: Particle and Kalman Filters. McGill COMP 765 Sept 14 th, 2017

Two Popular Bayesian Estimators: Particle and Kalman Filters. McGill COMP 765 Sept 14 th, 2017 Two Popular Bayesian Esimaors: Paricle and Kalman Filers McGill COMP 765 Sep 14 h, 2017 1 1 1, dx x Bel x u x P x z P Recall: Bayes Filers,,,,,,, 1 1 1 1 u z u x P u z u x z P Bayes z = observaion u =

More information

Introduction to Mobile Robotics

Introduction to Mobile Robotics Inroducion o Mobile Roboics Bayes Filer Kalman Filer Wolfram Burgard Cyrill Sachniss Giorgio Grisei Maren Bennewiz Chrisian Plagemann Bayes Filer Reminder Predicion bel p u bel d Correcion bel η p z bel

More information

Sequential Importance Resampling (SIR) Particle Filter

Sequential Importance Resampling (SIR) Particle Filter Paricle Filers++ Pieer Abbeel UC Berkeley EECS Many slides adaped from Thrun, Burgard and Fox, Probabilisic Roboics 1. Algorihm paricle_filer( S -1, u, z ): 2. Sequenial Imporance Resampling (SIR) Paricle

More information

Anno accademico 2006/2007. Davide Migliore

Anno accademico 2006/2007. Davide Migliore Roboica Anno accademico 2006/2007 Davide Migliore migliore@ele.polimi.i Today Eercise session: An Off-side roblem Robo Vision Task Measuring NBA layers erformance robabilisic Roboics Inroducion The Bayesian

More information

7630 Autonomous Robotics Probabilistic Localisation

7630 Autonomous Robotics Probabilistic Localisation 7630 Auonomous Roboics Probabilisic Localisaion Principles of Probabilisic Localisaion Paricle Filers for Localisaion Kalman Filer for Localisaion Based on maerial from R. Triebel, R. Käsner, R. Siegwar,

More information

Robot Motion Model EKF based Localization EKF SLAM Graph SLAM

Robot Motion Model EKF based Localization EKF SLAM Graph SLAM Robo Moion Model EKF based Localizaion EKF SLAM Graph SLAM General Robo Moion Model Robo sae v r Conrol a ime Sae updae model Noise model of robo conrol Noise model of conrol Robo moion model

More information

Estimation of Poses with Particle Filters

Estimation of Poses with Particle Filters Esimaion of Poses wih Paricle Filers Dr.-Ing. Bernd Ludwig Chair for Arificial Inelligence Deparmen of Compuer Science Friedrich-Alexander-Universiä Erlangen-Nürnberg 12/05/2008 Dr.-Ing. Bernd Ludwig (FAU

More information

SEIF, EnKF, EKF SLAM. Pieter Abbeel UC Berkeley EECS

SEIF, EnKF, EKF SLAM. Pieter Abbeel UC Berkeley EECS SEIF, EnKF, EKF SLAM Pieer Abbeel UC Berkeley EECS Informaion Filer From an analyical poin of view == Kalman filer Difference: keep rack of he inverse covariance raher han he covariance marix [maer of

More information

CSE-473. A Gentle Introduction to Particle Filters

CSE-473. A Gentle Introduction to Particle Filters CSE-473 A Genle Inroducion o Paricle Filers Bayes Filers for Robo Localizaion Dieer Fo 2 Bayes Filers: Framework Given: Sream of observaions z and acion daa u: d Sensor model Pz. = { u, z2, u 1, z 1 Dynamics

More information

Tracking. Many slides adapted from Kristen Grauman, Deva Ramanan

Tracking. Many slides adapted from Kristen Grauman, Deva Ramanan Tracking Man slides adaped from Krisen Grauman Deva Ramanan Coures G. Hager Coures G. Hager J. Kosecka cs3b Adapive Human-Moion Tracking Acquisiion Decimaion b facor 5 Moion deecor Grascale convers. Image

More information

CSE-571 Robotics. Sample-based Localization (sonar) Motivation. Bayes Filter Implementations. Particle filters. Density Approximation

CSE-571 Robotics. Sample-based Localization (sonar) Motivation. Bayes Filter Implementations. Particle filters. Density Approximation Moivaion CSE57 Roboics Bayes Filer Implemenaions Paricle filers So far, we discussed he Kalman filer: Gaussian, linearizaion problems Paricle filers are a way o efficienly represen nongaussian disribuions

More information

Overview. COMP14112: Artificial Intelligence Fundamentals. Lecture 0 Very Brief Overview. Structure of this course

Overview. COMP14112: Artificial Intelligence Fundamentals. Lecture 0 Very Brief Overview. Structure of this course OMP: Arificial Inelligence Fundamenals Lecure 0 Very Brief Overview Lecurer: Email: Xiao-Jun Zeng x.zeng@mancheser.ac.uk Overview This course will focus mainly on probabilisic mehods in AI We shall presen

More information

Tracking. Many slides adapted from Kristen Grauman, Deva Ramanan

Tracking. Many slides adapted from Kristen Grauman, Deva Ramanan Tracking Man slides adaped from Krisen Grauman Deva Ramanan Coures G. Hager Coures G. Hager J. Kosecka cs3b Adapive Human-Moion Tracking Acquisiion Decimaion b facor 5 Moion deecor Grascale convers. Image

More information

L07. KALMAN FILTERING FOR NON-LINEAR SYSTEMS. NA568 Mobile Robotics: Methods & Algorithms

L07. KALMAN FILTERING FOR NON-LINEAR SYSTEMS. NA568 Mobile Robotics: Methods & Algorithms L07. KALMAN FILTERING FOR NON-LINEAR SYSTEMS NA568 Mobile Roboics: Mehods & Algorihms Today s Topic Quick review on (Linear) Kalman Filer Kalman Filering for Non-Linear Sysems Exended Kalman Filer (EKF)

More information

Localization. Mobile robot localization is the problem of determining the pose of a robot relative to a given map of the environment.

Localization. Mobile robot localization is the problem of determining the pose of a robot relative to a given map of the environment. Localizaion Mobile robo localizaion is he problem of deermining he pose of a robo relaive o a given map of he environmen. Taxonomy of Localizaion Problem 1 Local vs. Global Localizaion Posiion racking

More information

CS 4495 Computer Vision Tracking 1- Kalman,Gaussian

CS 4495 Computer Vision Tracking 1- Kalman,Gaussian CS 4495 Compuer Vision A. Bobick CS 4495 Compuer Vision - KalmanGaussian Aaron Bobick School of Ineracive Compuing CS 4495 Compuer Vision A. Bobick Adminisrivia S5 will be ou his Thurs Due Sun Nov h :55pm

More information

Tracking. Announcements

Tracking. Announcements Tracking Tuesday, Nov 24 Krisen Grauman UT Ausin Announcemens Pse 5 ou onigh, due 12/4 Shorer assignmen Auo exension il 12/8 I will no hold office hours omorrow 5 6 pm due o Thanksgiving 1 Las ime: Moion

More information

Algorithms for Sensor-Based Robotics: Kalman Filters for Mapping and Localization

Algorithms for Sensor-Based Robotics: Kalman Filters for Mapping and Localization Algorihms for Sensor-Based Roboics: Kalman Filers for Mapping and Localizaion Sensors! Laser Robos link o he eernal world (obsession wih deph) Sensors, sensors, sensors! and racking wha is sensed: world

More information

Probabilistic Fundamentals in Robotics

Probabilistic Fundamentals in Robotics Probabilisic Fundamenals in Roboics Probabilisic Models of Mobile Robos Robo localizaion Basilio Bona DAUIN Poliecnico di Torino Course Ouline Basic mahemaical framework Probabilisic models of mobile robos

More information

Recursive Bayes Filtering Advanced AI

Recursive Bayes Filtering Advanced AI Recursive Bayes Filering Advanced AI Wolfram Burgard Tuorial Goal To familiarie you wih probabilisic paradigm in roboics! Basic echniques Advanages ifalls and limiaions! Successful Applicaions! Open research

More information

State-Space Models. Initialization, Estimation and Smoothing of the Kalman Filter

State-Space Models. Initialization, Estimation and Smoothing of the Kalman Filter Sae-Space Models Iniializaion, Esimaion and Smoohing of he Kalman Filer Iniializaion of he Kalman Filer The Kalman filer shows how o updae pas predicors and he corresponding predicion error variances when

More information

Introduction to Mobile Robotics SLAM: Simultaneous Localization and Mapping

Introduction to Mobile Robotics SLAM: Simultaneous Localization and Mapping Inroducion o Mobile Roboics SLAM: Simulaneous Localizaion and Mapping Wolfram Burgard, Maren Bennewiz, Diego Tipaldi, Luciano Spinello Wha is SLAM? Esimae he pose of a robo and he map of he environmen

More information

Introduction to Mobile Robotics Summary

Introduction to Mobile Robotics Summary Inroducion o Mobile Roboics Summary Wolfram Burgard Cyrill Sachniss Maren Bennewiz Diego Tipaldi Luciano Spinello Probabilisic Roboics 2 Probabilisic Roboics Key idea: Eplici represenaion of uncerainy

More information

Notes on Kalman Filtering

Notes on Kalman Filtering Noes on Kalman Filering Brian Borchers and Rick Aser November 7, Inroducion Daa Assimilaion is he problem of merging model predicions wih acual measuremens of a sysem o produce an opimal esimae of he curren

More information

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle Chaper 2 Newonian Mechanics Single Paricle In his Chaper we will review wha Newon s laws of mechanics ell us abou he moion of a single paricle. Newon s laws are only valid in suiable reference frames,

More information

Applications in Industry (Extended) Kalman Filter. Week Date Lecture Title

Applications in Industry (Extended) Kalman Filter. Week Date Lecture Title hp://elec34.com Applicaions in Indusry (Eended) Kalman Filer 26 School of Informaion echnology and Elecrical Engineering a he Universiy of Queensland Lecure Schedule: Week Dae Lecure ile 29-Feb Inroducion

More information

Hidden Markov Models

Hidden Markov Models Hidden Markov Models Probabilisic reasoning over ime So far, we ve mosly deal wih episodic environmens Excepions: games wih muliple moves, planning In paricular, he Bayesian neworks we ve seen so far describe

More information

Chapter 14. (Supplementary) Bayesian Filtering for State Estimation of Dynamic Systems

Chapter 14. (Supplementary) Bayesian Filtering for State Estimation of Dynamic Systems Chaper 4. Supplemenary Bayesian Filering for Sae Esimaion of Dynamic Sysems Neural Neworks and Learning Machines Haykin Lecure Noes on Selflearning Neural Algorihms ByoungTak Zhang School of Compuer Science

More information

Simulation-Solving Dynamic Models ABE 5646 Week 2, Spring 2010

Simulation-Solving Dynamic Models ABE 5646 Week 2, Spring 2010 Simulaion-Solving Dynamic Models ABE 5646 Week 2, Spring 2010 Week Descripion Reading Maerial 2 Compuer Simulaion of Dynamic Models Finie Difference, coninuous saes, discree ime Simple Mehods Euler Trapezoid

More information

2.160 System Identification, Estimation, and Learning. Lecture Notes No. 8. March 6, 2006

2.160 System Identification, Estimation, and Learning. Lecture Notes No. 8. March 6, 2006 2.160 Sysem Idenificaion, Esimaion, and Learning Lecure Noes No. 8 March 6, 2006 4.9 Eended Kalman Filer In many pracical problems, he process dynamics are nonlinear. w Process Dynamics v y u Model (Linearized)

More information

EKF SLAM vs. FastSLAM A Comparison

EKF SLAM vs. FastSLAM A Comparison vs. A Comparison Michael Calonder, Compuer Vision Lab Swiss Federal Insiue of Technology, Lausanne EPFL) michael.calonder@epfl.ch The wo algorihms are described wih a planar robo applicaion in mind. Generalizaion

More information

AUTONOMOUS SYSTEMS. Probabilistic Robotics Basics Kalman Filters Particle Filters. Sebastian Thrun

AUTONOMOUS SYSTEMS. Probabilistic Robotics Basics Kalman Filters Particle Filters. Sebastian Thrun AUTONOMOUS SYSTEMS robabilisic Roboics Basics Kalman Filers aricle Filers Sebasian Thrun slides based on maerial from hp://robos.sanford.edu/probabilisic-roboics/pp/ Revisions and Add-Ins by edro U. Lima

More information

Some Basic Information about M-S-D Systems

Some Basic Information about M-S-D Systems Some Basic Informaion abou M-S-D Sysems 1 Inroducion We wan o give some summary of he facs concerning unforced (homogeneous) and forced (non-homogeneous) models for linear oscillaors governed by second-order,

More information

Probabilistic Robotics The Sparse Extended Information Filter

Probabilistic Robotics The Sparse Extended Information Filter Probabilisic Roboics The Sparse Exended Informaion Filer MSc course Arificial Inelligence 2018 hps://saff.fnwi.uva.nl/a.visser/educaion/probabilisicroboics/ Arnoud Visser Inelligen Roboics Lab Informaics

More information

Temporal probability models

Temporal probability models Temporal probabiliy models CS194-10 Fall 2011 Lecure 25 CS194-10 Fall 2011 Lecure 25 1 Ouline Hidden variables Inerence: ilering, predicion, smoohing Hidden Markov models Kalman ilers (a brie menion) Dynamic

More information

A PROBABILISTIC MULTIMODAL ALGORITHM FOR TRACKING MULTIPLE AND DYNAMIC OBJECTS

A PROBABILISTIC MULTIMODAL ALGORITHM FOR TRACKING MULTIPLE AND DYNAMIC OBJECTS A PROBABILISTIC MULTIMODAL ALGORITHM FOR TRACKING MULTIPLE AND DYNAMIC OBJECTS MARTA MARRÓN, ELECTRONICS. ALCALÁ UNIV. SPAIN mara@depeca.uah.es MIGUEL A. SOTELO, ELECTRONICS. ALCALÁ UNIV. SPAIN soelo@depeca.uah.es

More information

Augmented Reality II - Kalman Filters - Gudrun Klinker May 25, 2004

Augmented Reality II - Kalman Filters - Gudrun Klinker May 25, 2004 Augmened Realiy II Kalman Filers Gudrun Klinker May 25, 2004 Ouline Moivaion Discree Kalman Filer Modeled Process Compuing Model Parameers Algorihm Exended Kalman Filer Kalman Filer for Sensor Fusion Lieraure

More information

Uncertainty & Localization I

Uncertainty & Localization I Advanced Roboics Uncerain & Localiaion I Moivaion Inrodcion basics represening ncerain Gassian Filers Kalman Filer eended Kalman Filer nscened Kalman Filer Agenda Localiaion Eample For Legged Leage Non-arameric

More information

Temporal probability models. Chapter 15, Sections 1 5 1

Temporal probability models. Chapter 15, Sections 1 5 1 Temporal probabiliy models Chaper 15, Secions 1 5 Chaper 15, Secions 1 5 1 Ouline Time and uncerainy Inerence: ilering, predicion, smoohing Hidden Markov models Kalman ilers (a brie menion) Dynamic Bayesian

More information

Tom Heskes and Onno Zoeter. Presented by Mark Buller

Tom Heskes and Onno Zoeter. Presented by Mark Buller Tom Heskes and Onno Zoeer Presened by Mark Buller Dynamic Bayesian Neworks Direced graphical models of sochasic processes Represen hidden and observed variables wih differen dependencies Generalize Hidden

More information

Simultaneous Localisation and Mapping. IAR Lecture 10 Barbara Webb

Simultaneous Localisation and Mapping. IAR Lecture 10 Barbara Webb Simuaneous Locaisaion and Mapping IAR Lecure 0 Barbara Webb Wha is SLAM? Sar in an unknown ocaion and unknown environmen and incremenay buid a map of he environmen whie simuaneousy using his map o compue

More information

Localization and Map Making

Localization and Map Making Localiaion and Map Making My old office DILab a UTK ar of he following noes are from he book robabilisic Roboics by S. Thrn W. Brgard and D. Fo Two Remaining Qesions Where am I? Localiaion Where have I

More information

Kinematics and kinematic functions

Kinematics and kinematic functions Kinemaics and kinemaic funcions Kinemaics deals wih he sudy of four funcions (called kinemaic funcions or KFs) ha mahemaically ransform join variables ino caresian variables and vice versa Direc Posiion

More information

m = 41 members n = 27 (nonfounders), f = 14 (founders) 8 markers from chromosome 19

m = 41 members n = 27 (nonfounders), f = 14 (founders) 8 markers from chromosome 19 Sequenial Imporance Sampling (SIS) AKA Paricle Filering, Sequenial Impuaion (Kong, Liu, Wong, 994) For many problems, sampling direcly from he arge disribuion is difficul or impossible. One reason possible

More information

Book Corrections for Optimal Estimation of Dynamic Systems, 2 nd Edition

Book Corrections for Optimal Estimation of Dynamic Systems, 2 nd Edition Boo Correcions for Opimal Esimaion of Dynamic Sysems, nd Ediion John L. Crassidis and John L. Junins November 17, 017 Chaper 1 This documen provides correcions for he boo: Crassidis, J.L., and Junins,

More information

Written HW 9 Sol. CS 188 Fall Introduction to Artificial Intelligence

Written HW 9 Sol. CS 188 Fall Introduction to Artificial Intelligence CS 188 Fall 2018 Inroducion o Arificial Inelligence Wrien HW 9 Sol. Self-assessmen due: Tuesday 11/13/2018 a 11:59pm (submi via Gradescope) For he self assessmen, fill in he self assessmen boxes in your

More information

Problemas das Aulas Práticas

Problemas das Aulas Práticas Mesrado Inegrado em Engenharia Elecroécnica e de Compuadores Conrolo em Espaço de Esados Problemas das Aulas Práicas J. Miranda Lemos Fevereiro de 3 Translaed o English by José Gaspar, 6 J. M. Lemos, IST

More information

This is an example to show you how SMath can calculate the movement of kinematic mechanisms.

This is an example to show you how SMath can calculate the movement of kinematic mechanisms. Dec :5:6 - Kinemaics model of Simple Arm.sm This file is provided for educaional purposes as guidance for he use of he sofware ool. I is no guaraeed o be free from errors or ommissions. The mehods and

More information

Self assessment due: Monday 4/29/2019 at 11:59pm (submit via Gradescope)

Self assessment due: Monday 4/29/2019 at 11:59pm (submit via Gradescope) CS 188 Spring 2019 Inroducion o Arificial Inelligence Wrien HW 10 Due: Monday 4/22/2019 a 11:59pm (submi via Gradescope). Leave self assessmen boxes blank for his due dae. Self assessmen due: Monday 4/29/2019

More information

מקורות לחומר בשיעור ספר הלימוד: Forsyth & Ponce מאמרים שונים חומר באינטרנט! פרק פרק 18

מקורות לחומר בשיעור ספר הלימוד: Forsyth & Ponce מאמרים שונים חומר באינטרנט! פרק פרק 18 עקיבה מקורות לחומר בשיעור ספר הלימוד: פרק 5..2 Forsh & once פרק 8 מאמרים שונים חומר באינטרנט! Toda Tracking wih Dnamics Deecion vs. Tracking Tracking as probabilisic inference redicion and Correcion Linear

More information

CS376 Computer Vision Lecture 6: Optical Flow

CS376 Computer Vision Lecture 6: Optical Flow CS376 Compuer Vision Lecure 6: Opical Flow Qiing Huang Feb. 11 h 2019 Slides Credi: Krisen Grauman and Sebasian Thrun, Michael Black, Marc Pollefeys Opical Flow mage racking 3D compuaion mage sequence

More information

Georey E. Hinton. University oftoronto. Technical Report CRG-TR February 22, Abstract

Georey E. Hinton. University oftoronto.   Technical Report CRG-TR February 22, Abstract Parameer Esimaion for Linear Dynamical Sysems Zoubin Ghahramani Georey E. Hinon Deparmen of Compuer Science Universiy oftorono 6 King's College Road Torono, Canada M5S A4 Email: zoubin@cs.orono.edu Technical

More information

Basilio Bona ROBOTICA 03CFIOR 1

Basilio Bona ROBOTICA 03CFIOR 1 Indusrial Robos Kinemaics 1 Kinemaics and kinemaic funcions Kinemaics deals wih he sudy of four funcions (called kinemaic funcions or KFs) ha mahemaically ransform join variables ino caresian variables

More information

1 Review of Zero-Sum Games

1 Review of Zero-Sum Games COS 5: heoreical Machine Learning Lecurer: Rob Schapire Lecure #23 Scribe: Eugene Brevdo April 30, 2008 Review of Zero-Sum Games Las ime we inroduced a mahemaical model for wo player zero-sum games. Any

More information

Phys 221 Fall Chapter 2. Motion in One Dimension. 2014, 2005 A. Dzyubenko Brooks/Cole

Phys 221 Fall Chapter 2. Motion in One Dimension. 2014, 2005 A. Dzyubenko Brooks/Cole Phys 221 Fall 2014 Chaper 2 Moion in One Dimension 2014, 2005 A. Dzyubenko 2004 Brooks/Cole 1 Kinemaics Kinemaics, a par of classical mechanics: Describes moion in erms of space and ime Ignores he agen

More information

Assisted Teleoperation of Quadcopters Using Obstacle Avoidance

Assisted Teleoperation of Quadcopters Using Obstacle Avoidance Assised Teleoperaion of Quadcopers Using Obsacle Avoidance Received 0 h Ocober 202; acceped 22 nd November 202. João Mendes, Rodrigo Venura Absrac: Teleoperaion of unmanned aerial vehicles ofen demands

More information

Planning in POMDPs. Dominik Schoenberger Abstract

Planning in POMDPs. Dominik Schoenberger Abstract Planning in POMDPs Dominik Schoenberger d.schoenberger@sud.u-darmsad.de Absrac This documen briefly explains wha a Parially Observable Markov Decision Process is. Furhermore i inroduces he differen approaches

More information

Econ107 Applied Econometrics Topic 7: Multicollinearity (Studenmund, Chapter 8)

Econ107 Applied Econometrics Topic 7: Multicollinearity (Studenmund, Chapter 8) I. Definiions and Problems A. Perfec Mulicollineariy Econ7 Applied Economerics Topic 7: Mulicollineariy (Sudenmund, Chaper 8) Definiion: Perfec mulicollineariy exiss in a following K-variable regression

More information

AUV positioning based on Interactive Multiple Model

AUV positioning based on Interactive Multiple Model AUV posiioning based on Ineracive Muliple Model H. Q. Liu ARL, Tropical Marine Science Insiue Naional Universiy of Singapore 18 Ken Ridge Road, Singapore 1197 Email: hongqing@arl.nus.edu.sg Mandar Chire

More information

Speech and Language Processing

Speech and Language Processing Speech and Language rocessing Lecure 4 Variaional inference and sampling Informaion and Communicaions Engineering Course Takahiro Shinozaki 08//5 Lecure lan (Shinozaki s par) I gives he firs 6 lecures

More information

Data Assimilation. Alan O Neill National Centre for Earth Observation & University of Reading

Data Assimilation. Alan O Neill National Centre for Earth Observation & University of Reading Daa Assimilaion Alan O Neill Naional Cenre for Earh Observaion & Universiy of Reading Conens Moivaion Univariae scalar) daa assimilaion Mulivariae vecor) daa assimilaion Opimal Inerpoleion BLUE) 3d-Variaional

More information

Computer Vision 2 Lecture 6

Computer Vision 2 Lecture 6 Compuer Vision 2 Lecure 6 Beond Kalman Filers (09.05.206) leibe@vision.rwh-aachen.de, sueckler@vision.rwh-aachen.de RWTH Aachen Universi, Compuer Vision Group hp://www.vision.rwh-aachen.de Conen of he

More information

Delivering Better Time-of-Day Using Synchronous Ethernet and Yaakov (J) Stein, Alon Geva, Gabriel Zigelboim RAD Data Communications

Delivering Better Time-of-Day Using Synchronous Ethernet and Yaakov (J) Stein, Alon Geva, Gabriel Zigelboim RAD Data Communications Delivering Beer Time-of-Day Using Synchronous Eherne and 1588 Yaakov (J) Sein, Alon Geva, Gabriel Zigelboim RAD Daa Communicaions The problem I wan discuss he use of 1588 (or NTP for ha maer) for ime of

More information

Deep Learning: Theory, Techniques & Applications - Recurrent Neural Networks -

Deep Learning: Theory, Techniques & Applications - Recurrent Neural Networks - Deep Learning: Theory, Techniques & Applicaions - Recurren Neural Neworks - Prof. Maeo Maeucci maeo.maeucci@polimi.i Deparmen of Elecronics, Informaion and Bioengineering Arificial Inelligence and Roboics

More information

More Digital Logic. t p output. Low-to-high and high-to-low transitions could have different t p. V in (t)

More Digital Logic. t p output. Low-to-high and high-to-low transitions could have different t p. V in (t) EECS 4 Spring 23 Lecure 2 EECS 4 Spring 23 Lecure 2 More igial Logic Gae delay and signal propagaion Clocked circui elemens (flip-flop) Wriing a word o memory Simplifying digial circuis: Karnaugh maps

More information

Recent Developments In Evolutionary Data Assimilation And Model Uncertainty Estimation For Hydrologic Forecasting Hamid Moradkhani

Recent Developments In Evolutionary Data Assimilation And Model Uncertainty Estimation For Hydrologic Forecasting Hamid Moradkhani Feb 6-8, 208 Recen Developmens In Evoluionary Daa Assimilaion And Model Uncerainy Esimaion For Hydrologic Forecasing Hamid Moradkhani Cener for Complex Hydrosysems Research Deparmen of Civil, Consrucion

More information

GMM - Generalized Method of Moments

GMM - Generalized Method of Moments GMM - Generalized Mehod of Momens Conens GMM esimaion, shor inroducion 2 GMM inuiion: Maching momens 2 3 General overview of GMM esimaion. 3 3. Weighing marix...........................................

More information

Institute for Mathematical Methods in Economics. University of Technology Vienna. Singapore, May Manfred Deistler

Institute for Mathematical Methods in Economics. University of Technology Vienna. Singapore, May Manfred Deistler MULTIVARIATE TIME SERIES ANALYSIS AND FORECASTING Manfred Deisler E O S Economerics and Sysems Theory Insiue for Mahemaical Mehods in Economics Universiy of Technology Vienna Singapore, May 2004 Inroducion

More information

Open loop vs Closed Loop. Example: Open Loop. Example: Feedforward Control. Advanced Control I

Open loop vs Closed Loop. Example: Open Loop. Example: Feedforward Control. Advanced Control I Open loop vs Closed Loop Advanced I Moor Command Movemen Overview Open Loop vs Closed Loop Some examples Useful Open Loop lers Dynamical sysems CPG (biologically inspired ), Force Fields Feedback conrol

More information

Linear Response Theory: The connection between QFT and experiments

Linear Response Theory: The connection between QFT and experiments Phys540.nb 39 3 Linear Response Theory: The connecion beween QFT and experimens 3.1. Basic conceps and ideas Q: How do we measure he conduciviy of a meal? A: we firs inroduce a weak elecric field E, and

More information

WATER LEVEL TRACKING WITH CONDENSATION ALGORITHM

WATER LEVEL TRACKING WITH CONDENSATION ALGORITHM WATER LEVEL TRACKING WITH CONDENSATION ALGORITHM Shinsuke KOBAYASHI, Shogo MURAMATSU, Hisakazu KIKUCHI, Masahiro IWAHASHI Dep. of Elecrical and Elecronic Eng., Niigaa Universiy, 8050 2-no-cho Igarashi,

More information

From Particles to Rigid Bodies

From Particles to Rigid Bodies Rigid Body Dynamics From Paricles o Rigid Bodies Paricles No roaions Linear velociy v only Rigid bodies Body roaions Linear velociy v Angular velociy ω Rigid Bodies Rigid bodies have boh a posiion and

More information

ACE 562 Fall Lecture 5: The Simple Linear Regression Model: Sampling Properties of the Least Squares Estimators. by Professor Scott H.

ACE 562 Fall Lecture 5: The Simple Linear Regression Model: Sampling Properties of the Least Squares Estimators. by Professor Scott H. ACE 56 Fall 005 Lecure 5: he Simple Linear Regression Model: Sampling Properies of he Leas Squares Esimaors by Professor Sco H. Irwin Required Reading: Griffihs, Hill and Judge. "Inference in he Simple

More information

Recursive Least-Squares Fixed-Interval Smoother Using Covariance Information based on Innovation Approach in Linear Continuous Stochastic Systems

Recursive Least-Squares Fixed-Interval Smoother Using Covariance Information based on Innovation Approach in Linear Continuous Stochastic Systems 8 Froniers in Signal Processing, Vol. 1, No. 1, July 217 hps://dx.doi.org/1.2266/fsp.217.112 Recursive Leas-Squares Fixed-Inerval Smooher Using Covariance Informaion based on Innovaion Approach in Linear

More information

Kalman filtering for maximum likelihood estimation given corrupted observations.

Kalman filtering for maximum likelihood estimation given corrupted observations. alman filering maimum likelihood esimaion given corruped observaions... Holmes Naional Marine isheries Service Inroducion he alman filer is used o eend likelihood esimaion o cases wih hidden saes such

More information

Testing for a Single Factor Model in the Multivariate State Space Framework

Testing for a Single Factor Model in the Multivariate State Space Framework esing for a Single Facor Model in he Mulivariae Sae Space Framework Chen C.-Y. M. Chiba and M. Kobayashi Inernaional Graduae School of Social Sciences Yokohama Naional Universiy Japan Faculy of Economics

More information

1. VELOCITY AND ACCELERATION

1. VELOCITY AND ACCELERATION 1. VELOCITY AND ACCELERATION 1.1 Kinemaics Equaions s = u + 1 a and s = v 1 a s = 1 (u + v) v = u + as 1. Displacemen-Time Graph Gradien = speed 1.3 Velociy-Time Graph Gradien = acceleraion Area under

More information

Bias in Conditional and Unconditional Fixed Effects Logit Estimation: a Correction * Tom Coupé

Bias in Conditional and Unconditional Fixed Effects Logit Estimation: a Correction * Tom Coupé Bias in Condiional and Uncondiional Fixed Effecs Logi Esimaion: a Correcion * Tom Coupé Economics Educaion and Research Consorium, Naional Universiy of Kyiv Mohyla Academy Address: Vul Voloska 10, 04070

More information

2.3 SCHRÖDINGER AND HEISENBERG REPRESENTATIONS

2.3 SCHRÖDINGER AND HEISENBERG REPRESENTATIONS Andrei Tokmakoff, MIT Deparmen of Chemisry, 2/22/2007 2-17 2.3 SCHRÖDINGER AND HEISENBERG REPRESENTATIONS The mahemaical formulaion of he dynamics of a quanum sysem is no unique. So far we have described

More information

Resource Allocation in Visible Light Communication Networks NOMA vs. OFDMA Transmission Techniques

Resource Allocation in Visible Light Communication Networks NOMA vs. OFDMA Transmission Techniques Resource Allocaion in Visible Ligh Communicaion Neworks NOMA vs. OFDMA Transmission Techniques Eirini Eleni Tsiropoulou, Iakovos Gialagkolidis, Panagiois Vamvakas, and Symeon Papavassiliou Insiue of Communicaions

More information

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still.

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still. Lecure - Kinemaics in One Dimension Displacemen, Velociy and Acceleraion Everyhing in he world is moving. Nohing says sill. Moion occurs a all scales of he universe, saring from he moion of elecrons in

More information

LAPLACE TRANSFORM AND TRANSFER FUNCTION

LAPLACE TRANSFORM AND TRANSFER FUNCTION CHBE320 LECTURE V LAPLACE TRANSFORM AND TRANSFER FUNCTION Professor Dae Ryook Yang Spring 2018 Dep. of Chemical and Biological Engineering 5-1 Road Map of he Lecure V Laplace Transform and Transfer funcions

More information

An recursive analytical technique to estimate time dependent physical parameters in the presence of noise processes

An recursive analytical technique to estimate time dependent physical parameters in the presence of noise processes WHAT IS A KALMAN FILTER An recursive analyical echnique o esimae ime dependen physical parameers in he presence of noise processes Example of a ime and frequency applicaion: Offse beween wo clocks PREDICTORS,

More information

Kinematics Vocabulary. Kinematics and One Dimensional Motion. Position. Coordinate System in One Dimension. Kinema means movement 8.

Kinematics Vocabulary. Kinematics and One Dimensional Motion. Position. Coordinate System in One Dimension. Kinema means movement 8. Kinemaics Vocabulary Kinemaics and One Dimensional Moion 8.1 WD1 Kinema means movemen Mahemaical descripion of moion Posiion Time Inerval Displacemen Velociy; absolue value: speed Acceleraion Averages

More information

Visual Object Tracking based on Real-time Particle Filters. Dong- Hun Lee*, Yong-Gun Jo **, and Hoon Kang ***

Visual Object Tracking based on Real-time Particle Filters. Dong- Hun Lee*, Yong-Gun Jo **, and Hoon Kang *** Visual Objec racking based on Real-ime Paricle Filers Dong- Hun Lee*, Yong-Gun Jo **, and Hoon Kang *** * School of Elecrical and Elecronics Engineering, Chung-Ang Universiy, Seoul, Korea (el : +82-2-86-8234;

More information

Licenciatura de ADE y Licenciatura conjunta Derecho y ADE. Hoja de ejercicios 2 PARTE A

Licenciatura de ADE y Licenciatura conjunta Derecho y ADE. Hoja de ejercicios 2 PARTE A Licenciaura de ADE y Licenciaura conjuna Derecho y ADE Hoja de ejercicios PARTE A 1. Consider he following models Δy = 0.8 + ε (1 + 0.8L) Δ 1 y = ε where ε and ε are independen whie noise processes. In

More information

Computer-Aided Analysis of Electronic Circuits Course Notes 3

Computer-Aided Analysis of Electronic Circuits Course Notes 3 Gheorghe Asachi Technical Universiy of Iasi Faculy of Elecronics, Telecommunicaions and Informaion Technologies Compuer-Aided Analysis of Elecronic Circuis Course Noes 3 Bachelor: Telecommunicaion Technologies

More information

Solutions from Chapter 9.1 and 9.2

Solutions from Chapter 9.1 and 9.2 Soluions from Chaper 9 and 92 Secion 9 Problem # This basically boils down o an exercise in he chain rule from calculus We are looking for soluions of he form: u( x) = f( k x c) where k x R 3 and k is

More information

Lecture Notes 2. The Hilbert Space Approach to Time Series

Lecture Notes 2. The Hilbert Space Approach to Time Series Time Series Seven N. Durlauf Universiy of Wisconsin. Basic ideas Lecure Noes. The Hilber Space Approach o Time Series The Hilber space framework provides a very powerful language for discussing he relaionship

More information

SPH3U: Projectiles. Recorder: Manager: Speaker:

SPH3U: Projectiles. Recorder: Manager: Speaker: SPH3U: Projeciles Now i s ime o use our new skills o analyze he moion of a golf ball ha was ossed hrough he air. Le s find ou wha is special abou he moion of a projecile. Recorder: Manager: Speaker: 0

More information

Simulating models with heterogeneous agents

Simulating models with heterogeneous agents Simulaing models wih heerogeneous agens Wouer J. Den Haan London School of Economics c by Wouer J. Den Haan Individual agen Subjec o employmen shocks (ε i, {0, 1}) Incomplee markes only way o save is hrough

More information

Online Convex Optimization Example And Follow-The-Leader

Online Convex Optimization Example And Follow-The-Leader CSE599s, Spring 2014, Online Learning Lecure 2-04/03/2014 Online Convex Opimizaion Example And Follow-The-Leader Lecurer: Brendan McMahan Scribe: Sephen Joe Jonany 1 Review of Online Convex Opimizaion

More information