3.3 Increasing & Decreasing Functions and The First Derivative Test

Size: px
Start display at page:

Download "3.3 Increasing & Decreasing Functions and The First Derivative Test"

Transcription

1 3.3 Increasing & Decreasing Functions and The First Derivative Test Definitions of Increasing and Decreasing Functions: A funcon f is increasing on an interval if for any two numbers x 1 and x 2 in the interval, x 1 < x 2 implies f(x 1 ) < f(x 2 ). A funcon f is decreasing on an interval if for any two numbers x 1 and x 2 in the interval, x 1 < x 2 implies f(x 1 ) > f(x 2 ). A function is increasing if, as x moves to the right, its graph moves up, and is decreasing if its graph moves down. The function is decreasing on the interval, is constant on the interval (a, b), and is increasing on the interval 1

2 Using the graph of f(x), sketch a possible f '(x). f(x) x Notice where f(x) has tangent lines with slope = 0. x= This is where f '(x) =, so the graph of f '(x) at these points should cross. Where f(x) decreases = slope; therefore, f '(x) and is the x axis. Where f(x) increases = slope; therefore, f '(x) and is the x axis. 2

3 f(x) x f '(x) x 3

4 Summary! If you have horizontal tangents If f(x) is decreasing If f(x) is increasing Where f(x) "turns" from inc/dec or dec/inc, then f '(x) will be a 4

5 Theorem 3.5 Test for Increasing and Decreasing Functions Let f be a funcon that is connuous on the closed interval [ a, b] and differenable on the open interval ( a, b). 1. If f '(x) > 0 for all x in (a, b), then f is increasing on [a, b]. 2. If f '(x) < 0 for all x in (a, b), then f is decreasing on [a, b]. 3. If f '(x) = 0 for all x in (a, b), then f is constant on [a, b]. 5

6 Example 1: Find the open intervals on which increasing or decreasing. Note that f is differenable on the enre real number line. To determine the crical numbers of f, set f '(x) equal to zero. is Because there are no points for which f' does not exist, you can conclude that x = and x = are the only crical numbers. 6

7 So, f is increasing on the intervals and decreasing on the interval (0, 1). and 7

8 Steps for Finding Intervals on which a Funcon is Increasing or Decreasing: Let f be connuous on the interval ( a, b). To find the open intervals on which f is increasing or decreasing, use the following steps: 1. Locate the crical numbers of f in (a, b), and use these numbers to determine test intervals. 2. Determine the sign of f '(x) at one test value in each of the intervals. 3. Use Theorem 3.5 to determine whether f is increasing or decreasing on each interval. These guidelines are also valid if the interval (a, b) is replaced by an interval of the form (, b), (a, ), or (, ). 8

9 A function is strictly monotonic on an interval if it is either increasing on the entire interval or decreasing on the entire interval. For instance, the function f(x) = x 3 is strictly monotonic on the entire real number line because it is increasing on the entire real number line. The function below is not strictly monotonic on the entire real number line because it is constant on the interval [0, 1]. 9

10 The First Derivative Test Once you've found the intervals on which a function is increasing or decreasing, it is not difficult to locate the relative extrema of the function. The function has a relative maximum at the point (0, 0) because f is increasing immediately to the left of x = 0 and decreasing immediately to the right of x = 0. Similarly, the opposite is true for the relative minimum. 10

11 Theorem 3.6 The First Derivave Test Let c be a crical number of a funcon f that is connuous on an open interval I containing c. If f is differenable on the interval, except possibly at c, then f(c) can be classified as follows: 1. If f '(x) changes from negave to posive at c, then f has a relave (local) minimum at (c, f(c)). 2. If f '(x) changes from posive to negave at c, then f has a relave (local) maximum at (c, f(c)). 3. If f '(x) is posive on both sides of c or negave on both sides of c, then f(c) is neither a relave minimum nor a relave maximum. 11

12 Example 2: Find the relative extrema of the function the interval (0, 2π). in Example 3: Find the relative extrema of f(x) = (x 2 4) 2/3 12

13 Example 4: Find the relative extrema of ***Be sure to consider the domain of this function (and other functions). The function is not defined at x=0. Therefore this value needs to be used with the critical points to determine the test intervals. 13

Example 1: Inverse Functions Show that the functions are inverse functions of each other (if they are inverses, )

Example 1: Inverse Functions Show that the functions are inverse functions of each other (if they are inverses, ) p332 Section 5.3: Inverse Functions By switching the x & y coordinates of an ordered pair, the inverse function can be formed. (The domain and range switch places) Denoted by f 1 Definition of Inverse

More information

Math Section Bekki George: 02/25/19. University of Houston. Bekki George (UH) Math /25/19 1 / 19

Math Section Bekki George: 02/25/19. University of Houston. Bekki George (UH) Math /25/19 1 / 19 Math 1431 Section 12200 Bekki George: rageorge@central.uh.edu University of Houston 02/25/19 Bekki George (UH) Math 1431 02/25/19 1 / 19 Office Hours: Mondays 1-2pm, Tuesdays 2:45-3:30pm (also available

More information

Test for Increasing and Decreasing Theorem 5 Let f(x) be continuous on [a, b] and differentiable on (a, b).

Test for Increasing and Decreasing Theorem 5 Let f(x) be continuous on [a, b] and differentiable on (a, b). Definition of Increasing and Decreasing A function f(x) is increasing on an interval if for any two numbers x 1 and x in the interval with x 1 < x, then f(x 1 ) < f(x ). As x gets larger, y = f(x) gets

More information

Applications of Derivatives

Applications of Derivatives Applications of Derivatives Extrema on an Interval Objective: Understand the definition of extrema of a function on an interval. Understand the definition of relative extrema of a function on an open interval.

More information

3.5: Issues in Curve Sketching

3.5: Issues in Curve Sketching 3.5: Issues in Curve Sketching Mathematics 3 Lecture 20 Dartmouth College February 17, 2010 Typeset by FoilTEX Example 1 Which of the following are the graphs of a function, its derivative and its second

More information

3.4 Using the First Derivative to Test Critical Numbers (4.3)

3.4 Using the First Derivative to Test Critical Numbers (4.3) 118 CHAPTER 3. APPLICATIONS OF THE DERIVATIVE 3.4 Using the First Derivative to Test Critical Numbers (4.3) 3.4.1 Theory: The rst derivative is a very important tool when studying a function. It is important

More information

Sections 4.1 & 4.2: Using the Derivative to Analyze Functions

Sections 4.1 & 4.2: Using the Derivative to Analyze Functions Sections 4.1 & 4.2: Using the Derivative to Analyze Functions f (x) indicates if the function is: Increasing or Decreasing on certain intervals. Critical Point c is where f (c) = 0 (tangent line is horizontal),

More information

Suppose that f is continuous on [a, b] and differentiable on (a, b). Then

Suppose that f is continuous on [a, b] and differentiable on (a, b). Then Lectures 1/18 Derivatives and Graphs When we have a picture of the graph of a function f(x), we can make a picture of the derivative f (x) using the slopes of the tangents to the graph of f. In this section

More information

4 3A : Increasing and Decreasing Functions and the First Derivative. Increasing and Decreasing. then

4 3A : Increasing and Decreasing Functions and the First Derivative. Increasing and Decreasing. then 4 3A : Increasing and Decreasing Functions and the First Derivative Increasing and Decreasing! If the following conditions both occur! 1. f (x) is a continuous function on the closed interval [ a,b] and

More information

The deriva*ve. Analy*c, geometric, computa*onal. UBC Math 102

The deriva*ve. Analy*c, geometric, computa*onal. UBC Math 102 The deriva*ve Analy*c, geometric, computa*onal UBC Math 102 Deriva*ve: Analy*c Use the defini*on of the deriva*ve to compute the deriva*ve of the func*on y = x 3 MT testtype ques*on Done fast? Try to extend

More information

AP Calculus AB. Chapter IV Lesson B. Curve Sketching

AP Calculus AB. Chapter IV Lesson B. Curve Sketching AP Calculus AB Chapter IV Lesson B Curve Sketching local maxima Absolute maximum F I A B E G C J Absolute H K minimum D local minima Summary of trip along curve critical points occur where the derivative

More information

Absolute and Local Extrema

Absolute and Local Extrema Extrema of Functions We can use the tools of calculus to help us understand and describe the shapes of curves. Here is some of the data that derivatives f (x) and f (x) can provide about the shape of the

More information

The Rules. The Math Game. More Rules. Teams. 1. Slope of tangent line. Are you ready??? 10/24/17

The Rules. The Math Game. More Rules. Teams. 1. Slope of tangent line. Are you ready??? 10/24/17 The Rules The Math Game Four Teams 1-2 players per team at the buzzers each =me. First to buzz in gets to answer Q. Correct answer: 1 point for your team, and con=nue playing Incorrect answer/ no answer/

More information

Logarithmic, Exponential, and Other Transcendental Functions

Logarithmic, Exponential, and Other Transcendental Functions 5 Logarithmic, Exponential, and Other Transcendental Functions Copyright Cengage Learning. All rights reserved. 1 5.3 Inverse Functions Copyright Cengage Learning. All rights reserved. 2 Objectives Verify

More information

Bob Brown Math 251 Calculus 1 Chapter 4, Section 1 Completed 1 CCBC Dundalk

Bob Brown Math 251 Calculus 1 Chapter 4, Section 1 Completed 1 CCBC Dundalk Bob Brown Math 251 Calculus 1 Chapter 4, Section 1 Completed 1 Absolute (or Global) Minima and Maxima Def.: Let x = c be a number in the domain of a function f. f has an absolute (or, global ) minimum

More information

The deriva*ve. Geometric view. UBC Math 102

The deriva*ve. Geometric view. UBC Math 102 The deriva*ve Geometric view Math Learning Center The MLC is a space for undergraduate students to study math together, with friendly support from tutors (grad students in math). Located at LSK310 and

More information

x x implies that f x f x.

x x implies that f x f x. Section 3.3 Intervals of Increase and Decrease and Extreme Values Let f be a function whose domain includes an interval I. We say that f is increasing on I if for every two numbers x 1, x 2 in I, x x implies

More information

It has neither a local maximum value nor an absolute maximum value

It has neither a local maximum value nor an absolute maximum value 1 Here, we learn how derivatives affect the shape of a graph of a function and, in particular, how they help us locate maximum and minimum values of functions. Some of the most important applications of

More information

AP Calculus AB Worksheet - Differentiability

AP Calculus AB Worksheet - Differentiability Name AP Calculus AB Worksheet - Differentiability MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. The figure shows the graph of a function. At the

More information

Absolute and Local Extrema. Critical Points In the proof of Rolle s Theorem, we actually demonstrated the following

Absolute and Local Extrema. Critical Points In the proof of Rolle s Theorem, we actually demonstrated the following Absolute and Local Extrema Definition 1 (Absolute Maximum). A function f has an absolute maximum at c S if f(x) f(c) x S. We call f(c) the absolute maximum of f on S. Definition 2 (Local Maximum). A function

More information

MAT 122 Homework 7 Solutions

MAT 122 Homework 7 Solutions MAT 1 Homework 7 Solutions Section 3.3, Problem 4 For the function w = (t + 1) 100, we take the inside function to be z = t + 1 and the outside function to be z 100. The derivative of the inside function

More information

Math 131. Increasing/Decreasing Functions and First Derivative Test Larson Section 3.3

Math 131. Increasing/Decreasing Functions and First Derivative Test Larson Section 3.3 Math 131. Increasing/Decreasing Functions and First Derivative Test Larson Section 3.3 Increasing and Decreasing Functions. A function f is increasing on an interval if for any two numbers x 1 and x 2

More information

Math 108, Solution of Midterm Exam 3

Math 108, Solution of Midterm Exam 3 Math 108, Solution of Midterm Exam 3 1 Find an equation of the tangent line to the curve x 3 +y 3 = xy at the point (1,1). Solution. Differentiating both sides of the given equation with respect to x,

More information

MA 137 Calculus 1 with Life Science Applications Monotonicity and Concavity (Section 5.2) Extrema, Inflection Points, and Graphing (Section 5.

MA 137 Calculus 1 with Life Science Applications Monotonicity and Concavity (Section 5.2) Extrema, Inflection Points, and Graphing (Section 5. MA 137 Calculus 1 with Life Science Applications Monotonicity and Concavity (Section 52) Extrema, Inflection Points, and Graphing (Section 53) Alberto Corso albertocorso@ukyedu Department of Mathematics

More information

Review Guideline for Final

Review Guideline for Final Review Guideline for Final Here is the outline of the required skills for the final exam. Please read it carefully and find some corresponding homework problems in the corresponding sections to practice.

More information

Lesson 59 Rolle s Theorem and the Mean Value Theorem

Lesson 59 Rolle s Theorem and the Mean Value Theorem Lesson 59 Rolle s Theorem and the Mean Value Theorem HL Math - Calculus After this lesson, you should be able to: Understand and use Rolle s Theorem Understand and use the Mean Value Theorem 1 Rolle s

More information

Lecture 9 - Increasing and Decreasing Functions, Extrema, and the First Derivative Test

Lecture 9 - Increasing and Decreasing Functions, Extrema, and the First Derivative Test Lecture 9 - Increasing and Decreasing Functions, Extrema, and the First Derivative Test 9.1 Increasing and Decreasing Functions One of our goals is to be able to solve max/min problems, especially economics

More information

Math 131. The Derivative and the Tangent Line Problem Larson Section 2.1

Math 131. The Derivative and the Tangent Line Problem Larson Section 2.1 Math 131. The Derivative and the Tangent Line Problem Larson Section.1 From precalculus, the secant line through the two points (c, f(c)) and (c +, f(c + )) is given by m sec = rise f(c + ) f(c) f(c +

More information

NOTES 5: APPLICATIONS OF DIFFERENTIATION

NOTES 5: APPLICATIONS OF DIFFERENTIATION NOTES 5: APPLICATIONS OF DIFFERENTIATION Name: Date: Period: Mrs. Nguyen s Initial: LESSON 5.1 EXTREMA ON AN INTERVAL Definition of Etrema Let f be defined on an interval I containing c. 1. f () c is the

More information

ExtremeValuesandShapeofCurves

ExtremeValuesandShapeofCurves ExtremeValuesandShapeofCurves Philippe B. Laval Kennesaw State University March 23, 2005 Abstract This handout is a summary of the material dealing with finding extreme values and determining the shape

More information

Math 211 Lecture Notes: Chapter 2 Graphing

Math 211 Lecture Notes: Chapter 2 Graphing Math 211 Lecture Notes: Chapter 2 Graphing 1. Math 211 Business Calculus Applications of Derivatives Professor Richard Blecksmith richard@math.niu.edu Dept. of Mathematical Sciences Northern Illinois University

More information

AP Calculus Worksheet: Chapter 2 Review Part I

AP Calculus Worksheet: Chapter 2 Review Part I AP Calculus Worksheet: Chapter 2 Review Part I 1. Given y = f(x), what is the average rate of change of f on the interval [a, b]? What is the graphical interpretation of your answer? 2. The derivative

More information

Gradient Descent for High Dimensional Systems

Gradient Descent for High Dimensional Systems Gradient Descent for High Dimensional Systems Lab versus Lab 2 D Geometry Op>miza>on Poten>al Energy Methods: Implemented Equa3ons for op3mizer 3 2 4 Bond length High Dimensional Op>miza>on Applica3ons:

More information

INCREASING AND DECREASING FUNCTIONS

INCREASING AND DECREASING FUNCTIONS f (x) = x 3 x 2 2x + 3.5 5 4 3 2 1.5-0.5 0 0.5 1 1.5 2 increasing Walking uphill means the function is increasing f (x) = x 3 x 2 2x + 3.5 5 4 3 2 1.5-0.5 0 0.5 1 1.5 2 increasing decreasing Walking uphill

More information

Methodological Foundations of Biomedical Informatics (BMSC-GA 4449) Optimization

Methodological Foundations of Biomedical Informatics (BMSC-GA 4449) Optimization Methodological Foundations of Biomedical Informatics (BMSCGA 4449) Optimization Op#miza#on A set of techniques for finding the values of variables at which the objec#ve func#on amains its cri#cal (minimal

More information

Math-2A Lesson 13-3 (Analyzing Functions, Systems of Equations and Inequalities) Which functions are symmetric about the y-axis?

Math-2A Lesson 13-3 (Analyzing Functions, Systems of Equations and Inequalities) Which functions are symmetric about the y-axis? Math-A Lesson 13-3 (Analyzing Functions, Systems of Equations and Inequalities) Which functions are symmetric about the y-axis? f ( x) x x x x x x 3 3 ( x) x We call functions that are symmetric about

More information

Math 106 Answers to Test #1 11 Feb 08

Math 106 Answers to Test #1 11 Feb 08 Math 06 Answers to Test # Feb 08.. A projectile is launched vertically. Its height above the ground is given by y = 9t 6t, where y is the height in feet and t is the time since the launch, in seconds.

More information

AP Calculus AB Class Starter October 30, Given find. 2. Find for. 3. Evaluate at the point (1,2) for

AP Calculus AB Class Starter October 30, Given find. 2. Find for. 3. Evaluate at the point (1,2) for October 30, 2017 1. Given find 2. Find for 3. Evaluate at the point (1,2) for 4. Find all points on the circle x 2 + y 2 = 169 where the slope is 5/12. Oct 31 6:58 AM 1 October 31, 2017 Find the critical

More information

Tangent lines, cont d. Linear approxima5on and Newton s Method

Tangent lines, cont d. Linear approxima5on and Newton s Method Tangent lines, cont d Linear approxima5on and Newton s Method Last 5me: A challenging tangent line problem, because we had to figure out the point of tangency.?? (A) I get it! (B) I think I see how we

More information

MTH 241: Business and Social Sciences Calculus

MTH 241: Business and Social Sciences Calculus MTH 241: Business and Social Sciences Calculus F. Patricia Medina Department of Mathematics. Oregon State University January 28, 2015 Section 2.1 Increasing and decreasing Definition 1 A function is increasing

More information

Acceleration. 3. Changing Direction occurs when the velocity and acceleration are neither parallel nor anti-parallel

Acceleration. 3. Changing Direction occurs when the velocity and acceleration are neither parallel nor anti-parallel Acceleration When the velocity of an object changes, we say that the object is accelerating. This acceleration can take one of three forms: 1. Speeding Up occurs when the object s velocity and acceleration

More information

f (x) = 2x x = 2x2 + 4x 6 x 0 = 2x 2 + 4x 6 = 2(x + 3)(x 1) x = 3 or x = 1.

f (x) = 2x x = 2x2 + 4x 6 x 0 = 2x 2 + 4x 6 = 2(x + 3)(x 1) x = 3 or x = 1. F16 MATH 15 Test November, 016 NAME: SOLUTIONS CRN: Use only methods from class. You must show work to receive credit. When using a theorem given in class, cite the theorem. Reminder: Calculators are not

More information

1,3. f x x f x x. Lim. Lim. Lim. Lim Lim. y 13x b b 10 b So the equation of the tangent line is y 13x

1,3. f x x f x x. Lim. Lim. Lim. Lim Lim. y 13x b b 10 b So the equation of the tangent line is y 13x 1.5 Topics: The Derivative lutions 1. Use the limit definition of derivative (the one with x in it) to find f x given f x 4x 5x 6 4 x x 5 x x 6 4x 5x 6 f x x f x f x x0 x x0 x xx x x x x x 4 5 6 4 5 6

More information

Maximum and Minimum Values (4.2)

Maximum and Minimum Values (4.2) Math 111.01 July 17, 2003 Summer 2003 Maximum and Minimum Values (4.2) Example. Determine the points at which f(x) = sin x attains its maximum and minimum. Solution: sin x attains the value 1 whenever

More information

Section 3.9. The Geometry of Graphs. Difference Equations to Differential Equations

Section 3.9. The Geometry of Graphs. Difference Equations to Differential Equations Difference Equations to Differential Equations Section 3.9 The Geometry of Graphs In Section. we discussed the graph of a function y = f(x) in terms of plotting points (x, f(x)) for many different values

More information

1 Lecture 25: Extreme values

1 Lecture 25: Extreme values 1 Lecture 25: Extreme values 1.1 Outline Absolute maximum and minimum. Existence on closed, bounded intervals. Local extrema, critical points, Fermat s theorem Extreme values on a closed interval Rolle

More information

Mathematics Lecture. 6 Chapter. 4 APPLICATIONS OF DERIVATIVES. By Dr. Mohammed Ramidh

Mathematics Lecture. 6 Chapter. 4 APPLICATIONS OF DERIVATIVES. By Dr. Mohammed Ramidh Mathematics Lecture. 6 Chapter. 4 APPLICATIONS OF DERIVATIVES By Dr. Mohammed Ramidh OVERVIEW: This chapter studies some of the important applications of derivatives. We learn how derivatives are used

More information

Sections Practice AP Calculus AB Name

Sections Practice AP Calculus AB Name Sections 4.1-4.5 Practice AP Calculus AB Name Be sure to show work, giving written explanations when requested. Answers should be written exactly or rounded to the nearest thousandth. When the calculator

More information

Math 19 Practice Exam 2B, Winter 2011

Math 19 Practice Exam 2B, Winter 2011 Math 19 Practice Exam 2B, Winter 2011 Name: SUID#: Complete the following problems. In order to receive full credit, please show all of your work and justify your answers. You do not need to simplify your

More information

Exponen'al func'ons and exponen'al growth. UBC Math 102

Exponen'al func'ons and exponen'al growth. UBC Math 102 Exponen'al func'ons and exponen'al growth Course Calendar: OSH 4 due by 12:30pm in MX 1111 You are here Coming up (next week) Group version of Quiz 3 distributed by email Group version of Quiz 3 due in

More information

Extrema and the Extreme Value Theorem

Extrema and the Extreme Value Theorem Extrema and the Extreme Value Theorem Local and Absolute Extrema. Extrema are the points where we will find a maximum or minimum on the curve. If they are local or relative extrema, then they will be the

More information

= c, we say that f ( c ) is a local

= c, we say that f ( c ) is a local Section 3.4 Extreme Values Local Extreme Values Suppose that f is a function defined on open interval I and c is an interior point of I. The function f has a local minimum at x= c if f ( c) f ( x) for

More information

Calculus 221 worksheet

Calculus 221 worksheet Calculus 221 worksheet Graphing A function has a global maximum at some a in its domain if f(x) f(a) for all other x in the domain of f. Global maxima are sometimes also called absolute maxima. A function

More information

Curve Sketching. Warm up

Curve Sketching. Warm up Curve Sketching Warm up Below are pictured six functions: f,f 0,f 00,g,g 0, and g 00. Pick out the two functions that could be f and g, andmatchthemtotheir first and second derivatives, respectively. (a)

More information

Increasing or Decreasing Nature of a Function

Increasing or Decreasing Nature of a Function Öğr. Gör. Volkan ÖĞER FBA 1021 Calculus 1/ 46 Increasing or Decreasing Nature of a Function Examining the graphical behavior of functions is a basic part of mathematics and has applications to many areas

More information

Math 131. Rolle s and Mean Value Theorems Larson Section 3.2

Math 131. Rolle s and Mean Value Theorems Larson Section 3.2 Math 3. Rolle s and Mean Value Theorems Larson Section 3. Many mathematicians refer to the Mean Value theorem as one of the if not the most important theorems in mathematics. Rolle s Theorem. Suppose f

More information

Determining the Intervals on Which a Function is Increasing or Decreasing From the Graph of f

Determining the Intervals on Which a Function is Increasing or Decreasing From the Graph of f Math 1314 Applications of the First Derivative Determining the Intervals on Which a Function is Increasing or Decreasing From the Graph of f Definition: A function is increasing on an interval (a, b) if,

More information

f ', the first derivative of a differentiable function, f. Use the

f ', the first derivative of a differentiable function, f. Use the f, f ', and The graph given to the right is the graph of graph to answer the questions below. f '' Relationships and The Extreme Value Theorem 1. On the interval [0, 8], are there any values where f(x)

More information

Increasing and Decreasing Functions and the First Derivative Test. By Tuesday J. Johnson

Increasing and Decreasing Functions and the First Derivative Test. By Tuesday J. Johnson Increasing and Decreasing Functions and the First Derivative Test By Tuesday J. Johnson 1 Suggested Review Topics Algebra skills reviews suggested: None Trigonometric skills reviews suggested: None 2 Applications

More information

Chain Rule. Con,nued: Related Rates. UBC Math 102

Chain Rule. Con,nued: Related Rates. UBC Math 102 Chain Rule Con,nued: Related Rates Midterm Test All sec,ons 60 50 Average = 69% 40 30 20 10 0 0 6 12 18 24 30 36 42 48 I think the test was A Too hard B On the hard side C Fair D On the easy side E too

More information

Wednesday August 24, 2016

Wednesday August 24, 2016 1.1 Functions Wednesday August 24, 2016 EQs: 1. How to write a relation using set-builder & interval notations? 2. How to identify a function from a relation? 1. Subsets of Real Numbers 2. Set-builder

More information

Announcements. Topics: Homework: - sec0ons 1.2, 1.3, and 2.1 * Read these sec0ons and study solved examples in your textbook!

Announcements. Topics: Homework: - sec0ons 1.2, 1.3, and 2.1 * Read these sec0ons and study solved examples in your textbook! Announcements Topics: - sec0ons 1.2, 1.3, and 2.1 * Read these sec0ons and study solved examples in your textbook! Homework: - review lecture notes thoroughly - work on prac0ce problems from the textbook

More information

Announcements. Topics: Homework: - sections , 6.1 (extreme values) * Read these sections and study solved examples in your textbook!

Announcements. Topics: Homework: - sections , 6.1 (extreme values) * Read these sections and study solved examples in your textbook! Announcements Topics: - sections 5.2 5.7, 6.1 (extreme values) * Read these sections and study solved examples in your textbook! Homework: - review lecture notes thoroughly - work on practice problems

More information

April 9, 2009 Name The problems count as marked. The total number of points available is 160. Throughout this test, show your work.

April 9, 2009 Name The problems count as marked. The total number of points available is 160. Throughout this test, show your work. April 9, 009 Name The problems count as marked The total number of points available is 160 Throughout this test, show your work 1 (15 points) Consider the cubic curve f(x) = x 3 + 3x 36x + 17 (a) Build

More information

Student Study Session Topic: Interpreting Graphs

Student Study Session Topic: Interpreting Graphs Student Study Session Topic: Interpreting Graphs Starting with the graph of a function or its derivative, you may be asked all kinds of questions without having (or needing) and equation to work with.

More information

From average to instantaneous rates of change. (and a diversion on con4nuity and limits)

From average to instantaneous rates of change. (and a diversion on con4nuity and limits) From average to instantaneous rates of change (and a diversion on con4nuity and limits) Extra prac4ce problems? Problems in the Book Problems at the end of my slides Math Exam Resource (MER): hcp://wiki.ubc.ca/science:math_exam_resources

More information

Math 1120 Calculus Test 3

Math 1120 Calculus Test 3 March 27, 2002 Your name The first 7 problems count 5 points each Problems 8 through 11 are multiple choice and count 7 points each and the final ones counts as marked In the multiple choice section, circle

More information

1.2 Functions and Their Properties Name:

1.2 Functions and Their Properties Name: 1.2 Functions and Their Properties Name: Objectives: Students will be able to represent functions numerically, algebraically, and graphically, determine the domain and range for functions, and analyze

More information

First Derivative Test

First Derivative Test MA 2231 Lecture 22 - Concavity and Relative Extrema Wednesday, November 1, 2017 Objectives: Introduce the Second Derivative Test and its limitations. First Derivative Test When looking for relative extrema

More information

Test 3 Review. y f(a) = f (a)(x a) y = f (a)(x a) + f(a) L(x) = f (a)(x a) + f(a)

Test 3 Review. y f(a) = f (a)(x a) y = f (a)(x a) + f(a) L(x) = f (a)(x a) + f(a) MATH 2250 Calculus I Eric Perkerson Test 3 Review Sections Covered: 3.11, 4.1 4.6. Topics Covered: Linearization, Extreme Values, The Mean Value Theorem, Consequences of the Mean Value Theorem, Concavity

More information

AP Calculus Summer Prep

AP Calculus Summer Prep AP Calculus Summer Prep Topics from Algebra and Pre-Calculus (Solutions are on the Answer Key on the Last Pages) The purpose of this packet is to give you a review of basic skills. You are asked to have

More information

Math 229 Mock Final Exam Solution

Math 229 Mock Final Exam Solution Name: Math 229 Mock Final Exam Solution Disclaimer: This mock exam is for practice purposes only. No graphing calulators TI-89 is allowed on this test. Be sure that all of your work is shown and that it

More information

APPLICATIONS OF DIFFERENTIATION

APPLICATIONS OF DIFFERENTIATION 4 APPLICATIONS OF DIFFERENTIATION APPLICATIONS OF DIFFERENTIATION Many applications of calculus depend on our ability to deduce facts about a function f from information concerning its derivatives. APPLICATIONS

More information

Section 3.2 Polynomial Functions and Their Graphs

Section 3.2 Polynomial Functions and Their Graphs Section 3.2 Polynomial Functions and Their Graphs EXAMPLES: P (x) = 3, Q(x) = 4x 7, R(x) = x 2 + x, S(x) = 2x 3 6x 2 10 QUESTION: Which of the following are polynomial functions? (a) f(x) = x 3 + 2x +

More information

Final Examination 201-NYA-05 May 18, 2018

Final Examination 201-NYA-05 May 18, 2018 . ( points) Evaluate each of the following limits. 3x x + (a) lim x x 3 8 x + sin(5x) (b) lim x sin(x) (c) lim x π/3 + sec x ( (d) x x + 5x ) (e) lim x 5 x lim x 5 + x 6. (3 points) What value of c makes

More information

MATH Midterm 1 Sample 4

MATH Midterm 1 Sample 4 1. (15 marks) (a) (4 marks) Given the function: f(x, y) = arcsin x 2 + y, find its first order partial derivatives at the point (0, 3). Simplify your answers. Solution: Compute the first order partial

More information

Function Terminology and Types of Functions

Function Terminology and Types of Functions 1.2: Rate of Change by Equation, Graph, or Table [AP Calculus AB] Objective: Given a function y = f(x) specified by a graph, a table of values, or an equation, describe whether the y-value is increasing

More information

Section 4.2: The Mean Value Theorem

Section 4.2: The Mean Value Theorem Section 4.2: The Mean Value Theorem Before we continue with the problem of describing graphs using calculus we shall briefly pause to examine some interesting applications of the derivative. In previous

More information

The First Derivative Test for Rise and Fall Suppose that a function f has a derivative at every poin x of an interval A. Then

The First Derivative Test for Rise and Fall Suppose that a function f has a derivative at every poin x of an interval A. Then Derivatives - Applications - c CNMiKnO PG - 1 Increasing and Decreasing Functions A function y = f(x) is said to increase throughout an interval A if y increases as x increases. That is, whenever x 2 >

More information

= first derivative evaluated at that point: ( )

= first derivative evaluated at that point: ( ) Calculus 130, section 5.1-5. Functions: Increasing, Decreasing, Extrema notes by Tim Pilachowski Reminder: You will not be able to use a graphing calculator on tests! First, a quick scan of what we know

More information

5.1 Increasing and Decreasing Functions. A function f is decreasing on an interval I if and only if: for all x 1, x 2 I, x 1 < x 2 = f(x 1 ) > f(x 2 )

5.1 Increasing and Decreasing Functions. A function f is decreasing on an interval I if and only if: for all x 1, x 2 I, x 1 < x 2 = f(x 1 ) > f(x 2 ) 5.1 Increasing and Decreasing Functions increasing and decreasing functions; roughly DEFINITION increasing and decreasing functions Roughly, a function f is increasing if its graph moves UP, traveling

More information

MEMORIAL UNIVERSITY OF NEWFOUNDLAND

MEMORIAL UNIVERSITY OF NEWFOUNDLAND MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS FINAL EXAMINATION Solutions Mathematics 1000 FALL 2010 Marks [12] 1. Evaluate the following limits, showing your work. Assign

More information

Math 41 Second Exam November 4, 2010

Math 41 Second Exam November 4, 2010 Math 41 Second Exam November 4, 2010 Name: SUID#: Circle your section: Olena Bormashenko Ulrik Buchholtz John Jiang Michael Lipnowski Jonathan Lee 03 (11-11:50am) 07 (10-10:50am) 02 (1:15-2:05pm) 04 (1:15-2:05pm)

More information

MATH 115 QUIZ4-SAMPLE December 7, 2016

MATH 115 QUIZ4-SAMPLE December 7, 2016 MATH 115 QUIZ4-SAMPLE December 7, 2016 Please review the following problems from your book: Section 4.1: 11 ( true and false) Section 4.1: 49-70 ( Using table or number line.) Section 4.2: 77-83 Section

More information

Exponen'al growth and differen'al equa'ons

Exponen'al growth and differen'al equa'ons Exponen'al growth and differen'al equa'ons But first.. Thanks for the feedback! Feedback about M102 Which of the following do you find useful? 70 60 50 40 30 20 10 0 How many resources students typically

More information

Differentiation - Important Theorems

Differentiation - Important Theorems Differentiation - Important Theorems Philippe B Laval KSU Spring 2012 Philippe B Laval (KSU) Differentiation - Important Theorems Spring 2012 1 / 10 Introduction We study several important theorems related

More information

3. Find the slope of the tangent line to the curve given by 3x y e x+y = 1 + ln x at (1, 1).

3. Find the slope of the tangent line to the curve given by 3x y e x+y = 1 + ln x at (1, 1). 1. Find the derivative of each of the following: (a) f(x) = 3 2x 1 (b) f(x) = log 4 (x 2 x) 2. Find the slope of the tangent line to f(x) = ln 2 ln x at x = e. 3. Find the slope of the tangent line to

More information

4.3 - How Derivatives Affect the Shape of a Graph

4.3 - How Derivatives Affect the Shape of a Graph 4.3 - How Derivatives Affect the Shape of a Graph 1. Increasing and Decreasing Functions Definition: A function f is (strictly) increasing on an interval I if for every 1, in I with 1, f 1 f. A function

More information

Limits, Continuity, and the Derivative

Limits, Continuity, and the Derivative Unit #2 : Limits, Continuity, and the Derivative Goals: Study and define continuity Review limits Introduce the derivative as the limit of a difference quotient Discuss the derivative as a rate of change

More information

A function is actually a simple concept; if it were not, history would have replaced it with a simpler one by now! Here is the definition:

A function is actually a simple concept; if it were not, history would have replaced it with a simpler one by now! Here is the definition: 1.2 Functions and Their Properties A function is actually a simple concept; if it were not, history would have replaced it with a simpler one by now! Here is the definition: Definition: Function, Domain,

More information

2. (12 points) Find an equation for the line tangent to the graph of f(x) =

2. (12 points) Find an equation for the line tangent to the graph of f(x) = November 23, 2010 Name The total number of points available is 153 Throughout this test, show your work Throughout this test, you are expected to use calculus to solve problems Graphing calculator solutions

More information

Section 3.1 Extreme Values

Section 3.1 Extreme Values Math 132 Extreme Values Section 3.1 Section 3.1 Extreme Values Example 1: Given the following is the graph of f(x) Where is the maximum (x-value)? What is the maximum (y-value)? Where is the minimum (x-value)?

More information

1.1 Functions and Their Representations

1.1 Functions and Their Representations Arkansas Tech University MATH 2914: Calculus I Dr. Marcel B. Finan 1.1 Functions and Their Representations Functions play a crucial role in mathematics. A function describes how one quantity depends on

More information

Rewriting Absolute Value Functions as Piece-wise Defined Functions

Rewriting Absolute Value Functions as Piece-wise Defined Functions Rewriting Absolute Value Functions as Piece-wise Defined Functions Consider the absolute value function f ( x) = 2x+ 4-3. Sketch the graph of f(x) using the strategies learned in Algebra II finding the

More information

November 13, 2018 MAT186 Week 8 Justin Ko

November 13, 2018 MAT186 Week 8 Justin Ko 1 Mean Value Theorem Theorem 1 (Mean Value Theorem). Let f be a continuous on [a, b] and differentiable on (a, b). There eists a c (a, b) such that f f(b) f(a) (c) =. b a Eample 1: The Mean Value Theorem

More information

SOLUTIONS FOR PROBLEMS 1-30

SOLUTIONS FOR PROBLEMS 1-30 . Answer: 5 Evaluate x x + 9 for x SOLUTIONS FOR PROBLEMS - 0 When substituting x in x be sure to do the exponent before the multiplication by to get (). + 9 5 + When multiplying ( ) so that ( 7) ( ).

More information

11 /2 12 /2 13 /6 14 /14 15 /8 16 /8 17 /25 18 /2 19 /4 20 /8

11 /2 12 /2 13 /6 14 /14 15 /8 16 /8 17 /25 18 /2 19 /4 20 /8 MAC 1147 Exam #1a Answer Key Name: Answer Key ID# Summer 2012 HONOR CODE: On my honor, I have neither given nor received any aid on this examination. Signature: Instructions: Do all scratch work on the

More information

AP Calculus BC Fall Final Part IIa

AP Calculus BC Fall Final Part IIa AP Calculus BC 18-19 Fall Final Part IIa Calculator Required Name: 1. At time t = 0, there are 120 gallons of oil in a tank. During the time interval 0 t 10 hours, oil flows into the tank at a rate of

More information

AB.Q103.NOTES: Chapter 2.4, 3.1, 3.2 LESSON 1. Discovering the derivative at x = a: Slopes of secants and tangents to a curve

AB.Q103.NOTES: Chapter 2.4, 3.1, 3.2 LESSON 1. Discovering the derivative at x = a: Slopes of secants and tangents to a curve AB.Q103.NOTES: Chapter 2.4, 3.1, 3.2 LESSON 1 Discovering the derivative at x = a: Slopes of secants and tangents to a curve 1 1. Instantaneous rate of change versus average rate of change Equation of

More information

Math 117: Honours Calculus I Fall, 2002 List of Theorems. a n k b k. k. Theorem 2.1 (Convergent Bounded) A convergent sequence is bounded.

Math 117: Honours Calculus I Fall, 2002 List of Theorems. a n k b k. k. Theorem 2.1 (Convergent Bounded) A convergent sequence is bounded. Math 117: Honours Calculus I Fall, 2002 List of Theorems Theorem 1.1 (Binomial Theorem) For all n N, (a + b) n = n k=0 ( ) n a n k b k. k Theorem 2.1 (Convergent Bounded) A convergent sequence is bounded.

More information