AB.Q103.NOTES: Chapter 2.4, 3.1, 3.2 LESSON 1. Discovering the derivative at x = a: Slopes of secants and tangents to a curve

Size: px
Start display at page:

Download "AB.Q103.NOTES: Chapter 2.4, 3.1, 3.2 LESSON 1. Discovering the derivative at x = a: Slopes of secants and tangents to a curve"

Transcription

1 AB.Q103.NOTES: Chapter 2.4, 3.1, 3.2 LESSON 1 Discovering the derivative at x = a: Slopes of secants and tangents to a curve 1

2 1. Instantaneous rate of change versus average rate of change Equation of tangent lines. Consider the function y f (x) where f ( x) 3x 2 2 a. Find the average rate of change in f on the interval [-1, 2] b. Find the slope of the tangent line to the graph of f (x) at, i.e. the derivative of f at x = 1. (Precede your answer with Lagrange notation). c. Write an equation of the tangent line to the graph of f (x) at. 2

3 2. Instantaneous rate of change versus average rate of change Let s( t) 5t. Find the average rate of change from t 0 hrs to t 4 hrs. Find the instantaneous rate of change at t 3hrs. 3. Instantaneous rate of change versus average rate of change Let s ( t) t 1. Find the average rate of change from t 0 hrs to t 8hrs. Find the instantaneous rate of change at t 3hrs. 3

4 4. Estimating the derivative with average on a small neighborhood The coordinates f of a moving body for various values of t are given. t (sec) f (ft) Assuming a smooth curve represents the motion of the body, estimate the velocity at t 1. 0 and t 2.5 4

5 5. The derivative at a breaking point x = a. 5 2x; Let f ( x) Find f 1, if it exists. 2 x 1; 5

6 Details and Summary What is the derivative of f at x = a? DEF: The derivative of the function f at the point provided it exists. x a is f f ( a h) f ( a) a) lim h, h ( 0 DEF (Alt): The derivative of the function f at the point provided it exists. x a is f ( a) lim xa f ( x) f ( a), x a Is the function differentiable at x = a? f ( a h) f ( a) DEF: A function f is differentiable at x = a if lim h 0 exists. h If the limit does not exists then we say that the function is not differentiable at x = a. f ( x) f ( a) DEF (alt): A function f is differentiable at x = a if lim xa exists. x a If the limit does not exists then we say that the function is not differentiable at x = a. Theorem: 6

7 AB.Q103.LESSON 1 HW: 1. If f ( 2) 3 and f (2) 5, find an equation of (a) the tangent line, and (b) the normal line to the graph of y f (x) at the point where x Consider the function y f (x) where f ( x) x 2 4x a. Find the average rate of change in f on the interval [-2, 4] b. Find the slope of the tangent line to the graph of f (x) at 1 c. Write an equation of the tangent line to the graph of f (x) at. x, i.e. the derivative of f at x = 1. x; x 0 3. Consider the function y f (x) where f ( x) 2 x x; x 0 a. Find the average rate of change in f on the interval [-2, 4] b. Find the slope of the tangent line to the graph of f (x) at x 0, i.e. the derivative of f at x = 0. c. Write an equation of the tangent line to the graph of f (x) at x Consider the function g( x). x a. Find g (2) using the standard definition of the derivative at x = a. b. Find g (2) using the alternate definition of the derivative at x = a. 5. Use the table below to estimate a) f (1.57) and b) f (3) t f(t)

8 LESSON 2 f ( a h) The Derivative of a Function f at x = a is f ( a) = lim h 0 h f ( a), provided it exists. Right Hand Derivative of f at x = a is f f ( a h) h ( a) lim h0 f ( a), provided it exists. Left Hand Derivative of f at x = a is f f ( a h) h ( a) lim h0 f ( a), provided it exists. f ( a h) f ( a) f ( a) lim or h0 exists when f ( a) f ( a) h (which is important for determining differentiability at the break in a piecewise function) What does it mean that a function fails to be differentiable at x = a? 8

9 EX1. Prove that g is or is not differentiable at x = 0. x 3; x 0 g ( x) 3 2x; x 0 9

10 EX2: Prove that f is or is not differentiable at x = 1. x 1; f ( x) 2 x 3x; 10

11 EX3: Prove that b is or is not differentiable at x = 1. x; b ( x) 2 x; 11

12 3 EX4: Prove that q is or is not differentiable at x = 0. q( x) x 12

13 A function fails the be differentiable at x = a if the following exist at x = a: a discontinuity, corner, cusp, or a vertical line tangent. Corner: Cusp: Vertical Line Tangent: 13

14 LESSON 2 HW: 2 x ; x 0 1. Prove that f ( x) is or is not differentiable at x 0. x; x 0 Classify f (x) as either smooth, a corner, a cusp, a vertical line tangent, or discontinuous at x 0. 2; 2. Prove that f ( x) is or is not differentiable at. 2x; Classify f (x) as either smooth, a corner, a cusp, a vertical line tangent, or discontinuous at. x; 3. Prove that f ( x) is or is not differentiable at. 2x 1; Classify f (x) as either smooth, a corner, a cusp, a vertical line tangent, or discontinuous at 1 x. 3 x ; 4. Prove that f ( x) is or is not differentiable at. 3x; Classify f (x) as either smooth, a corner, a cusp, a vertical line tangent, or discontinuous at. x; 5. Prove that f ( x) is or is not differentiable at. 1 x; Classify f (x) as either smooth, a corner, a cusp, a vertical line tangent, or discontinuous at 1 x. 6. Prove that f ( x) x x 2 2 is or is not differentiable at x 0. Classify f (x) as either smooth a corner, a cusp, a vertical line tangent, or discontinuous at 0 x. 7. Prove that f ( x) 3 x is or is not differentiable at x 0. Classify f (x) as either smooth, a corner, a cusp, a vertical line tangent, or discontinuous at 0 x. 8. Find the unique values of a and b that will make g both continuous and differentiable. 3 x; g ( x) 2 ax bx; 14

15 LESSON 3 Definition: The derivative of the function f with respect to the variable x is the function f ( x h) f ( x) f ( x) whose value at x is f ( x) lim h 0, provided it exists. h 1. Consider the function f ( x) 3x 2 2. A. Find and describe the meaning of f ( x). B. Write an equation of the tangent line to the graph of f(x) at x 1. C. Write an equation of the normal to the graph of f(x) at x 1. D. Find the points on the graph of f where the slope of the tangent line is parallel to y 4x 5. 15

16 2. Graph f ( x) from f (x) The graph of y g(x) shown here is made of line segments joined end to end. Graph the function s derivative. 3. Graph f (x) from f ( x) Sketch a possible graph of a continuous function f that has domain [-3, 3], where f ( 1) 2 and the equation of y f ( x) is shown below. f ( 1; x 1 x) 0; 1 x 2 3; x 2 16

17 LESSON 3 HW: 1. The graph of the function y f (x) shown here is made of line segments joined end to end. Graph y f ( x) and state its domain. 2. Sketch the graph of a continuous function with domain [-2,2], f ( 0) 1, and 1; x 1 f ( x). 2; x 1 3. TEXTBOOK: Section 3.1 #9, 11, 12, 18 17

MA Lesson 12 Notes Section 3.4 of Calculus part of textbook

MA Lesson 12 Notes Section 3.4 of Calculus part of textbook MA 15910 Lesson 1 Notes Section 3.4 of Calculus part of textbook Tangent Line to a curve: To understand the tangent line, we must first discuss a secant line. A secant line will intersect a curve at more

More information

DRAFT - Math 101 Lecture Note - Dr. Said Algarni

DRAFT - Math 101 Lecture Note - Dr. Said Algarni 2 Limits 2.1 The Tangent Problems The word tangent is derived from the Latin word tangens, which means touching. A tangent line to a curve is a line that touches the curve and a secant line is a line that

More information

Grade 12 (MCV4UE) AP Calculus Page 1 of 5 Derivative of a Function & Differentiability

Grade 12 (MCV4UE) AP Calculus Page 1 of 5 Derivative of a Function & Differentiability Grade 2 (MCV4UE) AP Calculus Page of 5 The Derivative at a Point f ( a h) f ( a) Recall, lim provides the slope of h0 h the tangent to the graph y f ( at the point, f ( a), and the instantaneous rate of

More information

Math 131. The Derivative and the Tangent Line Problem Larson Section 2.1

Math 131. The Derivative and the Tangent Line Problem Larson Section 2.1 Math 131. The Derivative and the Tangent Line Problem Larson Section.1 From precalculus, the secant line through the two points (c, f(c)) and (c +, f(c + )) is given by m sec = rise f(c + ) f(c) f(c +

More information

Slopes and Rates of Change

Slopes and Rates of Change Slopes and Rates of Change If a particle is moving in a straight line at a constant velocity, then the graph of the function of distance versus time is as follows s s = f(t) t s s t t = average velocity

More information

AP Calculus AB Worksheet - Differentiability

AP Calculus AB Worksheet - Differentiability Name AP Calculus AB Worksheet - Differentiability MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. The figure shows the graph of a function. At the

More information

Calculus I Sample Exam #01

Calculus I Sample Exam #01 Calculus I Sample Exam #01 1. Sketch the graph of the function and define the domain and range. 1 a) f( x) 3 b) g( x) x 1 x c) hx ( ) x x 1 5x6 d) jx ( ) x x x 3 6 . Evaluate the following. a) 5 sin 6

More information

Section 3.2 The Derivative as a Function Graphing the Derivative

Section 3.2 The Derivative as a Function Graphing the Derivative Math 80 www.timetodare.com Derivatives Section 3. The Derivative as a Function Graphing the Derivative ( ) In the previous section we defined the slope of the tangent to a curve with equation y= f ( )

More information

Limits, Continuity, and the Derivative

Limits, Continuity, and the Derivative Unit #2 : Limits, Continuity, and the Derivative Goals: Study and define continuity Review limits Introduce the derivative as the limit of a difference quotient Discuss the derivative as a rate of change

More information

3.1 Day 1: The Derivative of a Function

3.1 Day 1: The Derivative of a Function A P Calculus 3.1 Day 1: The Derivative of a Function I CAN DEFINE A DERIVATIVE AND UNDERSTAND ITS NOTATION. Last chapter we learned to find the slope of a tangent line to a point on a graph by using a

More information

CH 2: Limits and Derivatives

CH 2: Limits and Derivatives 2 The tangent and velocity problems CH 2: Limits and Derivatives the tangent line to a curve at a point P, is the line that has the same slope as the curve at that point P, ie the slope of the tangent

More information

2.1 How Do We Measure Speed? Student Notes HH6ed. Time (sec) Position (m)

2.1 How Do We Measure Speed? Student Notes HH6ed. Time (sec) Position (m) 2.1 How Do We Measure Speed? Student Notes HH6ed Part I: Using a table of values for a position function The table below represents the position of an object as a function of time. Use the table to answer

More information

2.4 Rates of Change and Tangent Lines Pages 87-93

2.4 Rates of Change and Tangent Lines Pages 87-93 2.4 Rates of Change and Tangent Lines Pages 87-93 Average rate of change the amount of change divided by the time it takes. EXAMPLE 1 Finding Average Rate of Change Page 87 Find the average rate of change

More information

MATH 151 Engineering Mathematics I

MATH 151 Engineering Mathematics I MATH 151 Engineering Mathematics I Fall, 2016, WEEK 4 JoungDong Kim Week4 Section 2.6, 2.7, 3.1 Limits at infinity, Velocity, Differentiation Section 2.6 Limits at Infinity; Horizontal Asymptotes Definition.

More information

Solution: It could be discontinuous, or have a vertical tangent like y = x 1/3, or have a corner like y = x.

Solution: It could be discontinuous, or have a vertical tangent like y = x 1/3, or have a corner like y = x. 1. Name three different reasons that a function can fail to be differentiable at a point. Give an example for each reason, and explain why your examples are valid. It could be discontinuous, or have a

More information

Topics and Concepts. 1. Limits

Topics and Concepts. 1. Limits Topics and Concepts 1. Limits (a) Evaluating its (Know: it exists if and only if the it from the left is the same as the it from the right) (b) Infinite its (give rise to vertical asymptotes) (c) Limits

More information

Tangent Lines Sec. 2.1, 2.7, & 2.8 (continued)

Tangent Lines Sec. 2.1, 2.7, & 2.8 (continued) Tangent Lines Sec. 2.1, 2.7, & 2.8 (continued) Prove this Result How Can a Derivative Not Exist? Remember that the derivative at a point (or slope of a tangent line) is a LIMIT, so it doesn t exist whenever

More information

Formulas that must be memorized:

Formulas that must be memorized: Formulas that must be memorized: Position, Velocity, Acceleration Speed is increasing when v(t) and a(t) have the same signs. Speed is decreasing when v(t) and a(t) have different signs. Section I: Limits

More information

Section 2.1, Section 3.1 Rate of change, Tangents and Derivatives at a point

Section 2.1, Section 3.1 Rate of change, Tangents and Derivatives at a point Section 2.1, Section 3.1 Rate of change, Tangents and Derivatives at a point Line through P and Q approaches to the tangent line at P as Q approaches P. That is as a + h a = h gets smaller. Slope of the

More information

Announcements. Topics: Homework:

Announcements. Topics: Homework: Topics: Announcements - section 2.6 (limits at infinity [skip Precise Definitions (middle of pg. 134 end of section)]) - sections 2.1 and 2.7 (rates of change, the derivative) - section 2.8 (the derivative

More information

and lim lim 6. The Squeeze Theorem

and lim lim 6. The Squeeze Theorem Limits (day 3) Things we ll go over today 1. Limits of the form 0 0 (continued) 2. Limits of piecewise functions 3. Limits involving absolute values 4. Limits of compositions of functions 5. Limits similar

More information

(2) Let f(x) = a 2 x if x<2, 4 2x 2 ifx 2. (b) Find the lim f(x). (c) Find all values of a that make f continuous at 2. Justify your answer.

(2) Let f(x) = a 2 x if x<2, 4 2x 2 ifx 2. (b) Find the lim f(x). (c) Find all values of a that make f continuous at 2. Justify your answer. (1) Let f(x) = x x 2 9. (a) Find the domain of f. (b) Write an equation for each vertical asymptote of the graph of f. (c) Write an equation for each horizontal asymptote of the graph of f. (d) Is f odd,

More information

2.1 Tangent Lines and Rates of Change

2.1 Tangent Lines and Rates of Change .1 Tangent Lines and Rates of Change Learning Objectives A student will be able to: Demonstrate an understanding of the slope of the tangent line to the graph. Demonstrate an understanding of the instantaneous

More information

Replacing the a in the definition of the derivative of the function f at a with a variable x, gives the derivative function f (x).

Replacing the a in the definition of the derivative of the function f at a with a variable x, gives the derivative function f (x). Definition of The Derivative Function Definition (The Derivative Function) Replacing the a in the definition of the derivative of the function f at a with a variable x, gives the derivative function f

More information

f ', the first derivative of a differentiable function, f. Use the

f ', the first derivative of a differentiable function, f. Use the f, f ', and The graph given to the right is the graph of graph to answer the questions below. f '' Relationships and The Extreme Value Theorem 1. On the interval [0, 8], are there any values where f(x)

More information

Chapter 3: Derivatives

Chapter 3: Derivatives Name: Date: Period: AP Calc AB Mr. Mellina Chapter 3: Derivatives Sections: v 2.4 Rates of Change & Tangent Lines v 3.1 Derivative of a Function v 3.2 Differentiability v 3.3 Rules for Differentiation

More information

Math Worksheet 1. f(x) = (x a) 2 + b. = x 2 6x = (x 2 6x + 9) = (x 3) 2 1

Math Worksheet 1. f(x) = (x a) 2 + b. = x 2 6x = (x 2 6x + 9) = (x 3) 2 1 Names Date Math 00 Worksheet. Consider the function f(x) = x 6x + 8 (a) Complete the square and write the function in the form f(x) = (x a) + b. f(x) = x 6x + 8 ( ) ( ) 6 6 = x 6x + + 8 = (x 6x + 9) 9

More information

Review for Chapter 2 Test

Review for Chapter 2 Test Review for Chapter 2 Test This test will cover Chapter (sections 2.1-2.7) Know how to do the following: Use a graph of a function to find the limit (as well as left and right hand limits) Use a calculator

More information

2.2 The derivative as a Function

2.2 The derivative as a Function 2.2 The derivative as a Function Recall: The derivative of a function f at a fixed number a: f a f a+h f(a) = lim h 0 h Definition (Derivative of f) For any number x, the derivative of f is f x f x+h f(x)

More information

The Derivative Function. Differentiation

The Derivative Function. Differentiation The Derivative Function If we replace a in the in the definition of the derivative the function f at the point x = a with a variable x, we get the derivative function f (x). Using Formula 2 gives f (x)

More information

REVIEW 2 SOLUTIONS MAT 167

REVIEW 2 SOLUTIONS MAT 167 REVIEW 2 SOLUTIONS MAT 167 p. 138 #15. Equations of tangent lines by definition (1) (a) Use definition (1) (p. 128) to find the slope of the line tangent to the graph of f (x) = x 2 5 at P = (3,4). The

More information

1 Functions and Graphs

1 Functions and Graphs 1 Functions and Graphs 1.1 Functions Cartesian Coordinate System A Cartesian or rectangular coordinate system is formed by the intersection of a horizontal real number line, usually called the x axis,

More information

Tangent Lines and Derivatives

Tangent Lines and Derivatives The Derivative and the Slope of a Graph Tangent Lines and Derivatives Recall that the slope of a line is sometimes referred to as a rate of change. In particular, we are referencing the rate at which the

More information

Unit IV Derivatives 20 Hours Finish by Christmas

Unit IV Derivatives 20 Hours Finish by Christmas Unit IV Derivatives 20 Hours Finish by Christmas Calculus There two main streams of Calculus: Differentiation Integration Differentiation is used to find the rate of change of variables relative to one

More information

Unit IV Derivatives 20 Hours Finish by Christmas

Unit IV Derivatives 20 Hours Finish by Christmas Unit IV Derivatives 20 Hours Finish by Christmas Calculus There two main streams of Calculus: Differentiation Integration Differentiation is used to find the rate of change of variables relative to one

More information

The Mean Value Theorem Rolle s Theorem

The Mean Value Theorem Rolle s Theorem The Mean Value Theorem In this section, we will look at two more theorems that tell us about the way that derivatives affect the shapes of graphs: Rolle s Theorem and the Mean Value Theorem. Rolle s Theorem

More information

. Compute the following limits.

. Compute the following limits. Today: Tangent Lines and te Derivative at a Point Warmup:. Let f(x) =x. Compute te following limits. f( + ) f() (a) lim f( +) f( ) (b) lim. Let g(x) = x. Compute te following limits. g(3 + ) g(3) (a) lim

More information

Jim Lambers MAT 460 Fall Semester Lecture 2 Notes

Jim Lambers MAT 460 Fall Semester Lecture 2 Notes Jim Lambers MAT 460 Fall Semester 2009-10 Lecture 2 Notes These notes correspond to Section 1.1 in the text. Review of Calculus Among the mathematical problems that can be solved using techniques from

More information

Unit #3 : Differentiability, Computing Derivatives

Unit #3 : Differentiability, Computing Derivatives Unit #3 : Differentiability, Computing Derivatives Goals: Determine when a function is differentiable at a point Relate the derivative graph to the the graph of an original function Compute derivative

More information

AB Calculus: Rates of Change and Tangent Lines

AB Calculus: Rates of Change and Tangent Lines AB Calculus: Rates of Change and Tangent Lines Name: The World Record Basketball Shot A group called How Ridiculous became YouTube famous when they successfully made a basket from the top of Tasmania s

More information

Chapter 2 NAME

Chapter 2 NAME QUIZ 1 Chapter NAME 1. Determine 15 - x + x by substitution. 1. xs3 (A) (B) 8 (C) 10 (D) 1 (E) 0 5-6x + x Find, if it exists. xs5 5 - x (A) -4 (B) 0 (C) 4 (D) 6 (E) Does not exist 3. For the function y

More information

What is on today. 1 Linear approximation. MA 123 (Calculus I) Lecture 17: November 2, 2017 Section A2. Professor Jennifer Balakrishnan,

What is on today. 1 Linear approximation. MA 123 (Calculus I) Lecture 17: November 2, 2017 Section A2. Professor Jennifer Balakrishnan, Professor Jennifer Balakrishnan, jbala@bu.edu What is on today 1 Linear approximation 1 1.1 Linear approximation and concavity....................... 2 1.2 Change in y....................................

More information

Unit #3 : Differentiability, Computing Derivatives, Trig Review

Unit #3 : Differentiability, Computing Derivatives, Trig Review Unit #3 : Differentiability, Computing Derivatives, Trig Review Goals: Determine when a function is differentiable at a point Relate the derivative graph to the the graph of an original function Compute

More information

a b c d e GOOD LUCK! 3. a b c d e 12. a b c d e 4. a b c d e 13. a b c d e 5. a b c d e 14. a b c d e 6. a b c d e 15. a b c d e

a b c d e GOOD LUCK! 3. a b c d e 12. a b c d e 4. a b c d e 13. a b c d e 5. a b c d e 14. a b c d e 6. a b c d e 15. a b c d e MA Elem. Calculus Fall 07 Exam 07-09- Name: Sec.: Do not remove this answer page you will turn in the entire exam. No books or notes may be used. You may use an ACT-approved calculator during the exam,

More information

Lecture 3 (Limits and Derivatives)

Lecture 3 (Limits and Derivatives) Lecture 3 (Limits and Derivatives) Continuity In the previous lecture we saw that very often the limit of a function as is just. When this is the case we say that is continuous at a. Definition: A function

More information

Student Study Session. Theorems

Student Study Session. Theorems Students should be able to apply and have a geometric understanding of the following: Intermediate Value Theorem Mean Value Theorem for derivatives Extreme Value Theorem Name Formal Statement Restatement

More information

Analysis of Functions

Analysis of Functions Lecture for Week 11 (Secs. 5.1 3) Analysis of Functions (We used to call this topic curve sketching, before students could sketch curves by typing formulas into their calculators. It is still important

More information

MATH 151 Engineering Mathematics I

MATH 151 Engineering Mathematics I MATH 151 Engineering Mathematics I Spring 2018, WEEK 3 JoungDong Kim Week 3 Section 2.5, 2.6, 2.7, Continuity, Limits at Infinity; Horizontal Asymptotes, Derivatives and Rates of Change. Section 2.5 Continuity

More information

x f(x)

x f(x) 1. Name three different reasons that a function can fail to be differential at a point. Give an example for each reason, and explain why your examples are valid. 2. Given the following table of values,

More information

x f(x)

x f(x) 1. Name three different reasons that a function can fail to be differentiable at a point. Give an example for each reason, and explain why your examples are valid. 2. Given the following table of values,

More information

Exploring the Derivative (2.7, 2.8) Prelab: Review Figure 1 (p. 141), Figure 6 (p. 143), Example 7 (p. 147) and Equation 2 (p.

Exploring the Derivative (2.7, 2.8) Prelab: Review Figure 1 (p. 141), Figure 6 (p. 143), Example 7 (p. 147) and Equation 2 (p. Exploring the Derivative (2.7, 2.8) Prelab: Review Figure (p. 4), Figure 6 (p. 43), Example 7 (p. 47) and Equation 2 (p. 52) I. Introduction: We begin by exploring a tangent line geometrically. Suppose

More information

Limits: An Intuitive Approach

Limits: An Intuitive Approach Limits: An Intuitive Approach SUGGESTED REFERENCE MATERIAL: As you work through the problems listed below, you should reference Chapter. of the recommended textbook (or the equivalent chapter in your alternative

More information

Slide 1. Slide 2. Slide 3 Remark is a new function derived from called derivative. 2.2 The derivative as a Function

Slide 1. Slide 2. Slide 3 Remark is a new function derived from called derivative. 2.2 The derivative as a Function Slide 1 2.2 The derivative as a Function Slide 2 Recall: The derivative of a function number : at a fixed Definition (Derivative of ) For any number, the derivative of is Slide 3 Remark is a new function

More information

Section 3.2 Working with Derivatives

Section 3.2 Working with Derivatives Section 3.2 Working with Derivatives Problem (a) If f 0 (2) exists, then (i) lim f(x) must exist, but lim f(x) 6= f(2) (ii) lim f(x) =f(2). (iii) lim f(x) =f 0 (2) (iv) lim f(x) need not exist. The correct

More information

Last week we looked at limits generally, and at finding limits using substitution.

Last week we looked at limits generally, and at finding limits using substitution. Math 1314 ONLINE Week 4 Notes Lesson 4 Limits (continued) Last week we looked at limits generally, and at finding limits using substitution. Indeterminate Forms What do you do when substitution gives you

More information

MATH 2053 Calculus I Review for the Final Exam

MATH 2053 Calculus I Review for the Final Exam MATH 05 Calculus I Review for the Final Exam (x+ x) 9 x 9 1. Find the limit: lim x 0. x. Find the limit: lim x + x x (x ).. Find lim x (x 5) = L, find such that f(x) L < 0.01 whenever 0 < x

More information

4.6: Mean Value Theorem

4.6: Mean Value Theorem 4.6: Mean Value Theorem Problem 1 Given the four functions on the interval [1, 5], answer the questions below. (a) List the function that satisfies (or functions that satisfy) the conditions of the Mean

More information

Math 261 Calculus I. Test 1 Study Guide. Name. Decide whether the limit exists. If it exists, find its value. 1) lim x 1. f(x) 2) lim x -1/2 f(x)

Math 261 Calculus I. Test 1 Study Guide. Name. Decide whether the limit exists. If it exists, find its value. 1) lim x 1. f(x) 2) lim x -1/2 f(x) Math 261 Calculus I Test 1 Study Guide Name Decide whether the it exists. If it exists, find its value. 1) x 1 f(x) 2) x -1/2 f(x) Complete the table and use the result to find the indicated it. 3) If

More information

AP Calculus AB Chapter 1 Limits

AP Calculus AB Chapter 1 Limits AP Calculus AB Chapter Limits SY: 206 207 Mr. Kunihiro . Limits Numerical & Graphical Show all of your work on ANOTHER SHEET of FOLDER PAPER. In Exercises and 2, a stone is tossed vertically into the air

More information

2.1 The Tangent and Velocity Problems

2.1 The Tangent and Velocity Problems 2.1 The Tangent and Velocity Problems Tangents What is a tangent? Tangent lines and Secant lines Estimating slopes from discrete data: Example: 1. A tank holds 1000 gallons of water, which drains from

More information

Lesson 31 - Average and Instantaneous Rates of Change

Lesson 31 - Average and Instantaneous Rates of Change Lesson 31 - Average and Instantaneous Rates of Change IBHL Math & Calculus - Santowski 1 Lesson Objectives! 1. Calculate an average rate of change! 2. Estimate instantaneous rates of change using a variety

More information

Answers for Calculus Review (Extrema and Concavity)

Answers for Calculus Review (Extrema and Concavity) Answers for Calculus Review 4.1-4.4 (Extrema and Concavity) 1. A critical number is a value of the independent variable (a/k/a x) in the domain of the function at which the derivative is zero or undefined.

More information

Math 1120 Calculus, sections 1 and 2 Test 1

Math 1120 Calculus, sections 1 and 2 Test 1 February 11, 2015 Name The problems count as marked. The total number of points available is 150. Throughout this test, show your work. Using a calculator to circumvent ideas discussed in class will generally

More information

The Mean Value Theorem and its Applications

The Mean Value Theorem and its Applications The Mean Value Theorem and its Applications Professor Richard Blecksmith richard@math.niu.edu Dept. of Mathematical Sciences Northern Illinois University http://math.niu.edu/ richard/math229 1. Extreme

More information

Announcements. Topics: Homework: - sections , 6.1 (extreme values) * Read these sections and study solved examples in your textbook!

Announcements. Topics: Homework: - sections , 6.1 (extreme values) * Read these sections and study solved examples in your textbook! Announcements Topics: - sections 5.2 5.7, 6.1 (extreme values) * Read these sections and study solved examples in your textbook! Homework: - review lecture notes thoroughly - work on practice problems

More information

MATH The Derivative as a Function - Section 3.2. The derivative of f is the function. f x h f x. f x lim

MATH The Derivative as a Function - Section 3.2. The derivative of f is the function. f x h f x. f x lim MATH 90 - The Derivative as a Function - Section 3.2 The derivative of f is the function f x lim h 0 f x h f x h for all x for which the limit exists. The notation f x is read "f prime of x". Note that

More information

x 3x 1 if x 3 On problems 8 9, use the definition of continuity to find the values of k and/or m that will make the function continuous everywhere.

x 3x 1 if x 3 On problems 8 9, use the definition of continuity to find the values of k and/or m that will make the function continuous everywhere. CALCULUS AB WORKSHEET ON CONTINUITY AND INTERMEDIATE VALUE THEOREM Work the following on notebook paper. On problems 1 4, sketch the graph of a function f that satisfies the stated conditions. 1. f has

More information

Lecture 7 3.5: Derivatives - Graphically and Numerically MTH 124

Lecture 7 3.5: Derivatives - Graphically and Numerically MTH 124 Procedural Skills Learning Objectives 1. Given a function and a point, sketch the corresponding tangent line. 2. Use the tangent line to estimate the value of the derivative at a point. 3. Recognize keywords

More information

Find the slope of the curve at the given point P and an equation of the tangent line at P. 1) y = x2 + 11x - 15, P(1, -3)

Find the slope of the curve at the given point P and an equation of the tangent line at P. 1) y = x2 + 11x - 15, P(1, -3) Final Exam Review AP Calculus AB Find the slope of the curve at the given point P and an equation of the tangent line at P. 1) y = x2 + 11x - 15, P(1, -3) Use the graph to evaluate the limit. 2) lim x

More information

MAT137 Calculus! Lecture 6

MAT137 Calculus! Lecture 6 MAT137 Calculus! Lecture 6 Today: 3.2 Differentiation Rules; 3.3 Derivatives of higher order. 3.4 Related rates 3.5 Chain Rule 3.6 Derivative of Trig. Functions Next: 3.7 Implicit Differentiation 4.10

More information

OBJECTIVE Find limits of functions, if they exist, using numerical or graphical methods.

OBJECTIVE Find limits of functions, if they exist, using numerical or graphical methods. 1.1 Limits: A Numerical and Graphical Approach OBJECTIVE Find limits of functions, if they exist, using numerical or graphical methods. 1.1 Limits: A Numerical and Graphical Approach DEFINITION: As x approaches

More information

The Detective s Hat Function

The Detective s Hat Function The Detective s Hat Function (,) (,) (,) (,) (, ) (4, ) The graph of the function f shown above is a piecewise continuous function defined on [, 4]. The graph of f consists of five line segments. Let g

More information

Section 4.2: The Mean Value Theorem

Section 4.2: The Mean Value Theorem Section 4.2: The Mean Value Theorem Before we continue with the problem of describing graphs using calculus we shall briefly pause to examine some interesting applications of the derivative. In previous

More information

Unit 1 PreCalculus Review & Limits

Unit 1 PreCalculus Review & Limits 1 Unit 1 PreCalculus Review & Limits Factoring: Remove common factors first Terms - Difference of Squares a b a b a b - Sum of Cubes ( )( ) a b a b a ab b 3 3 - Difference of Cubes a b a b a ab b 3 3 3

More information

Differentiability, Computing Derivatives, Trig Review

Differentiability, Computing Derivatives, Trig Review Unit #3 : Differentiability, Computing Derivatives, Trig Review Goals: Determine when a function is ifferentiable at a point Relate the erivative graph to the the graph of an original function Compute

More information

Math 1A UCB, Fall 2010 A. Ogus Solutions 1 for Problem Set 4

Math 1A UCB, Fall 2010 A. Ogus Solutions 1 for Problem Set 4 Math 1A UCB, Fall 010 A. Ogus Solutions 1 for Problem Set 4.5 #. Explain, using Theorems 4, 5, 7, and 9, why the function 3 x(1 + x 3 ) is continuous at every member of its domain. State its domain. By

More information

Workbook for Calculus I

Workbook for Calculus I Workbook for Calculus I By Hüseyin Yüce New York 2007 1 Functions 1.1 Four Ways to Represent a Function 1. Find the domain and range of the function f(x) = 1 + x + 1 and sketch its graph. y 3 2 1-3 -2-1

More information

Calculus I. 1. Limits and Continuity

Calculus I. 1. Limits and Continuity 2301107 Calculus I 1. Limits and Continuity Outline 1.1. Limits 1.1.1 Motivation:Tangent 1.1.2 Limit of a function 1.1.3 Limit laws 1.1.4 Mathematical definition of a it 1.1.5 Infinite it 1.1. Continuity

More information

Section 3.7. Rolle s Theorem and the Mean Value Theorem

Section 3.7. Rolle s Theorem and the Mean Value Theorem Section.7 Rolle s Theorem and the Mean Value Theorem The two theorems which are at the heart of this section draw connections between the instantaneous rate of change and the average rate of change of

More information

For a function f(x) and a number a in its domain, the derivative of f at a, denoted f (a), is: D(h) = lim

For a function f(x) and a number a in its domain, the derivative of f at a, denoted f (a), is: D(h) = lim Name: Section: Names of collaborators: Main Points: 1. Definition of derivative as limit of difference quotients 2. Interpretation of derivative as slope of graph 3. Interpretation of derivative as instantaneous

More information

AP Calculus Chapter 3 Testbank (Mr. Surowski)

AP Calculus Chapter 3 Testbank (Mr. Surowski) AP Calculus Chapter 3 Testbank (Mr. Surowski) Part I. Multiple-Choice Questions (5 points each; please circle the correct answer.). If f(x) = 0x 4 3 + x, then f (8) = (A) (B) 4 3 (C) 83 3 (D) 2 3 (E) 2

More information

Announcements. Topics: Homework: - sections 4.5 and * Read these sections and study solved examples in your textbook!

Announcements. Topics: Homework: - sections 4.5 and * Read these sections and study solved examples in your textbook! Announcements Topics: - sections 4.5 and 5.1-5.5 * Read these sections and study solved examples in your textbook! Homework: - review lecture notes thoroughly - work on practice problems from the textbook

More information

Chapter 3 Derivatives

Chapter 3 Derivatives Chapter Derivatives Section 1 Derivative of a Function What you ll learn about The meaning of differentiable Different ways of denoting the derivative of a function Graphing y = f (x) given the graph of

More information

1.1 Radical Expressions: Rationalizing Denominators

1.1 Radical Expressions: Rationalizing Denominators 1.1 Radical Expressions: Rationalizing Denominators Recall: 1. A rational number is one that can be expressed in the form a, where b 0. b 2. An equivalent fraction is determined by multiplying or dividing

More information

Calculus I Announcements

Calculus I Announcements Slie 1 Calculus I Announcements Office Hours: Amos Eaton 309, Monays 12:50-2:50 Exam 2 is Thursay, October 22n. The stuy guie is now on the course web page. Start stuying now, an make a plan to succee.

More information

Differentiability, Computing Derivatives, Trig Review. Goals:

Differentiability, Computing Derivatives, Trig Review. Goals: Secants vs. Derivatives - Unit #3 : Goals: Differentiability, Computing Derivatives, Trig Review Determine when a function is ifferentiable at a point Relate the erivative graph to the the graph of an

More information

a b c d e GOOD LUCK! 3. a b c d e 12. a b c d e 4. a b c d e 13. a b c d e 5. a b c d e 14. a b c d e 6. a b c d e 15. a b c d e

a b c d e GOOD LUCK! 3. a b c d e 12. a b c d e 4. a b c d e 13. a b c d e 5. a b c d e 14. a b c d e 6. a b c d e 15. a b c d e MA3 Elem. Calculus Spring 06 Exam 06-0- Name: Sec.: Do not remove this answer page you will turn in the entire exam. No books or notes may be used. You may use an ACT-approved calculator during the exam,

More information

Find the indicated derivative. 1) Find y(4) if y = 3 sin x. A) y(4) = 3 cos x B) y(4) = 3 sin x C) y(4) = - 3 cos x D) y(4) = - 3 sin x

Find the indicated derivative. 1) Find y(4) if y = 3 sin x. A) y(4) = 3 cos x B) y(4) = 3 sin x C) y(4) = - 3 cos x D) y(4) = - 3 sin x Assignment 5 Name Find the indicated derivative. ) Find y(4) if y = sin x. ) A) y(4) = cos x B) y(4) = sin x y(4) = - cos x y(4) = - sin x ) y = (csc x + cot x)(csc x - cot x) ) A) y = 0 B) y = y = - csc

More information

Chapter 12: Differentiation. SSMth2: Basic Calculus Science and Technology, Engineering and Mathematics (STEM) Strands Mr. Migo M.

Chapter 12: Differentiation. SSMth2: Basic Calculus Science and Technology, Engineering and Mathematics (STEM) Strands Mr. Migo M. Chapter 12: Differentiation SSMth2: Basic Calculus Science and Technology, Engineering and Mathematics (STEM) Strands Mr. Migo M. Mendoza Chapter 12: Differentiation Lecture 12.1: The Derivative Lecture

More information

AP Calculus AB: Semester Review Notes Information in the box are MASTERY CONCEPTS. Be prepared to apply these concepts on your midterm.

AP Calculus AB: Semester Review Notes Information in the box are MASTERY CONCEPTS. Be prepared to apply these concepts on your midterm. AP Calculus AB: Semester Review Notes Information in the box are MASTERY CONCEPTS. Be prepared to apply these concepts on your midterm. Name: Date: Period: I. Limits and Continuity Definition of Average

More information

Exam 1 KEY MATH 142 Summer 18 Version A. Name (printed):

Exam 1 KEY MATH 142 Summer 18 Version A. Name (printed): Exam 1 KEY MATH 1 Summer 18 Version A Name (printed): On my honor, as an Aggie, I have neither given nor received unauthorized aid on this academic work. Name (signature): Section: Instructions: You must

More information

Caculus 221. Possible questions for Exam II. March 19, 2002

Caculus 221. Possible questions for Exam II. March 19, 2002 Caculus 221 Possible questions for Exam II March 19, 2002 These notes cover the recent material in a style more like the lecture than the book. The proofs in the book are in section 1-11. At the end there

More information

Derivatives and Continuity

Derivatives and Continuity Derivatives and Continuity As with limits, derivatives do not exist unless the right and left-hand derivatives both exist and are equal. There are three main instances when this happens: One, if the curve

More information

APPM 1350 Exam 2 Fall 2016

APPM 1350 Exam 2 Fall 2016 APPM 1350 Exam 2 Fall 2016 1. (28 pts, 7 pts each) The following four problems are not related. Be sure to simplify your answers. (a) Let f(x) tan 2 (πx). Find f (1/) (5 pts) f (x) 2π tan(πx) sec 2 (πx)

More information

Chapter (AB/BC, non-calculator) (a) Find the critical numbers of g. (b) For what values of x is g increasing? Justify your answer.

Chapter (AB/BC, non-calculator) (a) Find the critical numbers of g. (b) For what values of x is g increasing? Justify your answer. Chapter 3 1. (AB/BC, non-calculator) Given g ( ) 2 4 3 6 : (a) Find the critical numbers of g. (b) For what values of is g increasing? Justify your answer. (c) Identify the -coordinate of the critical

More information

2.1 Limits, Rates of Change and Slopes of Tangent Lines

2.1 Limits, Rates of Change and Slopes of Tangent Lines 2.1 Limits, Rates of Change and Slopes of Tangent Lines (1) Average rate of change of y f x over an interval x 0,x 1 : f x 1 f x 0 x 1 x 0 Instantaneous rate of change of f x at x x 0 : f x lim 1 f x 0

More information

The derivative: Definition

The derivative: Definition The derivative: Definition The derivative of a function at a point x = a is defined as * +,' -*(+) lim ' ) ' = f (a) Alternative notation: let h = x a = δx * 5 -*(+) 7* lim = lim = f (a) 5 + 5-+ 75 ) 75

More information

Tangent Plane. Nobuyuki TOSE. October 02, Nobuyuki TOSE. Tangent Plane

Tangent Plane. Nobuyuki TOSE. October 02, Nobuyuki TOSE. Tangent Plane October 02, 2017 The Equation of a plane Given a plane α passing through P 0 perpendicular to n( 0). For any point P on α, we have n PP 0 = 0 When P 0 has the coordinates (x 0, y 0, z 0 ), P 0 (x, y, z)

More information

Warm-Up: Sketch a graph of the function and use the table to find the lim 3x 2. lim 3x. x 5. Level 3 Finding Limits Algebraically.

Warm-Up: Sketch a graph of the function and use the table to find the lim 3x 2. lim 3x. x 5. Level 3 Finding Limits Algebraically. Warm-Up: 1. Sketch a graph of the function and use the table to find the lim 3x 2 x 5 lim 3x 2. 2 x 1 finding limits algibraically Ch.15.1 Level 3 2 Target Agenda Purpose Evaluation TSWBAT: Find the limit

More information

Review Sheet 2 Solutions

Review Sheet 2 Solutions Review Sheet Solutions 1. If y x 3 x and dx dt 5, find dy dt when x. We have that dy dt 3 x dx dt dx dt 3 x 5 5, and this is equal to 3 5 10 70 when x.. A spherical balloon is being inflated so that its

More information