The derivative: Definition

Size: px
Start display at page:

Download "The derivative: Definition"

Transcription

1 The derivative: Definition The derivative of a function at a point x = a is defined as * +,' -*(+) lim ' ) ' = f (a) Alternative notation: let h = x a = δx * 5 -*(+) 7* lim = lim = f (a) ) 75 This means: we can make the quotient 7* to be as 75 close as we like to the number f (a) by taking values of h (or δx) sufficiently close to 0 (or values of x sufficiently close to a).

2 The derivative function * 5,' -*(5) f (x) = lim ' ) ' Different notation f 8 x 9* f x Df x D 5f f

3 The derivative: Interpretation Physical interpretation: f (a) = rate of change of f at the point x = a. Geometrical interpretation: f (a) = slope of tangent line to graph of f(x) at (a, f(a)).

4 Problem: Show that there are two lines tangent to y = x > that go through the point (a, b) where b < a >. Solution: Let (t, t > ) be the tangency point. The tangent line has slope m = 2t. The tangent line also goes through (a, b) so its slope must be m = E F -G E-+. Thus, t must satisfy 2t = EF -G E-+ t > 2at + b = 0. This equation has two solutions if (2a) > 4b > 0, that is, if a > b > 0, which is a true condition.

5 Derivatives of Elementary Functions We use the definition of derivative to obtain derivative formulae for elementary functions. 9 sin x = cos x and cos x = sin x 9 95 e 5 = e 5 (you should also recall 9 ln x = Q, this formula is 95 5 obtained by implicit differentiation)

6 When is f differentiable? i.e. for what values of x is f 8 (x) defined? Defn: A function is differentiable at x = a if * +,' -*(+) f (a) = lim ' ) ' exists.

7 When is f differentiable? i.e. for what values of x is f 8 (x) defined? Defn: A function is differentiable at x = a if * +,' -*(+) f (a) = lim ' ) ' exists. e.g., functions that fail to be differentiable at 0: 1/x : not differentiable at x=0 because f(0) DNE. x : not differentiable at x=0 because left and right limits of difference quotient are different. x : not differentiable at x=0 because the limit of difference quotient diverges to infinity.

8 Question: Let f(x) = x x. Then f (0)= A. 0. B. DNE because x is not differentiable at x=0. C. DNE because f is defined piecewise. D. DNE because the left and right limits do not agree. E. DNE because f is discontinuous at 0.

9 Question: Let f(x) = x x. Then f (0)= A. 0. B. DNE because x is not differentiable at x=0. C. DNE because f is defined piecewise. D. DNE because the left and right limits do not agree. E. DNE because f is discontinuous at 0.

10 If we know the derivative of a function at a point, we have a lot of information about the function at that point. Think about this: If f (a) exists, then lim 5 + f(x) A. must exist, but there is not enough information to determine it exactly. B. equals f(a). C. equals f (a). D. it may not exist.

11 Start with lim 5 + f(x). Add zero and multiply by 1. lim 5 + x a f(x) = lim[f(x) + f a f(a)] 5 + x a = lim 5 + f x f a x a x a + f(a) (x a) (x a) = f(a) f is continuous at x = a! So If f (a) exists, then lim 5 + f(x) = f a.

12 Theorem: If f is differentiable at x = a, then f is continuous at x = a. Let s see what this means

13 If f is differentiable at x = a, f is continuous at x = a means A. if f is not continuous at a, f is not differentiable at a. B. if f is not differentiable at a, f is not continuous at a. C. Both A and B.

14 If f is differentiable at x=a, f is continuous at x=a means A. if f is not continuous at a, f is not differentiable at a. B. if f is not differentiable at a, f is not continuous at a. C. Both A and B. Note that if f is continuous at a, we don t know if it is also differentiable at a.

15 Continuity is a necessary condition for differentiability, but it is not sufficient. (Think x at 0!)

16 Then you should say what you mean, the March Hare went on. I do, Alice hastily replied; at least at least I mean what I say that s the same thing, you know. Not the same thing a bit! said the Hatter. You might just as well say that I see what I eat is the same thing as I eat what I see! You might just as well say, added the Dormouse, who seemed to be talking in his sleep, that I breathe when I sleep is the same thing as I sleep when I breathe! It IS the same thing with you, said the Hatter, and here the conversation dropped. Alice s Adventures in Wonderland, Lewis Carroll

17 Problem (Midterm 2015) e x x < 0 f(x) = ax + b 0 x 1 x 2 1 x > 1 i) Find a and b that make f continuous everywhere. ii) With the values you found above, at which points is f differentiable? i) Find a function g which is defined and differentiable everywhere that is equal to f if x < 0 or x > 1.

The Derivative of a Function Measuring Rates of Change of a function. Secant line. f(x) f(x 0 ) Average rate of change of with respect to over,

The Derivative of a Function Measuring Rates of Change of a function. Secant line. f(x) f(x 0 ) Average rate of change of with respect to over, The Derivative of a Function Measuring Rates of Change of a function y f(x) f(x 0 ) P Q Secant line x 0 x x Average rate of change of with respect to over, " " " " - Slope of secant line through, and,

More information

COMP Intro to Logic for Computer Scientists. Lecture 11

COMP Intro to Logic for Computer Scientists. Lecture 11 COMP 1002 Intro to Logic for Computer Scientists Lecture 11 B 5 2 J Puzzle 10 The first formulation of the famous liar s paradox, attributed to a Cretan philosopher Epimenides, stated All Cretans are liars.

More information

CH 2: Limits and Derivatives

CH 2: Limits and Derivatives 2 The tangent and velocity problems CH 2: Limits and Derivatives the tangent line to a curve at a point P, is the line that has the same slope as the curve at that point P, ie the slope of the tangent

More information

Announcements. Topics: Homework:

Announcements. Topics: Homework: Topics: Announcements - section 2.6 (limits at infinity [skip Precise Definitions (middle of pg. 134 end of section)]) - sections 2.1 and 2.7 (rates of change, the derivative) - section 2.8 (the derivative

More information

DRAFT - Math 101 Lecture Note - Dr. Said Algarni

DRAFT - Math 101 Lecture Note - Dr. Said Algarni 2 Limits 2.1 The Tangent Problems The word tangent is derived from the Latin word tangens, which means touching. A tangent line to a curve is a line that touches the curve and a secant line is a line that

More information

Continuity and One-Sided Limits. By Tuesday J. Johnson

Continuity and One-Sided Limits. By Tuesday J. Johnson Continuity and One-Sided Limits By Tuesday J. Johnson Suggested Review Topics Algebra skills reviews suggested: Evaluating functions Rationalizing numerators and/or denominators Trigonometric skills reviews

More information

Math 131. The Derivative and the Tangent Line Problem Larson Section 2.1

Math 131. The Derivative and the Tangent Line Problem Larson Section 2.1 Math 131. The Derivative and the Tangent Line Problem Larson Section.1 From precalculus, the secant line through the two points (c, f(c)) and (c +, f(c + )) is given by m sec = rise f(c + ) f(c) f(c +

More information

Finding local extrema and intervals of increase/decrease

Finding local extrema and intervals of increase/decrease Finding local extrema and intervals of increase/decrease Example 1 Find the relative extrema of f(x) = increasing and decreasing. ln x x. Also, find where f(x) is STEP 1: Find the domain of the function

More information

Limits, Continuity, and the Derivative

Limits, Continuity, and the Derivative Unit #2 : Limits, Continuity, and the Derivative Goals: Study and define continuity Review limits Introduce the derivative as the limit of a difference quotient Discuss the derivative as a rate of change

More information

Chapter 3 Study Guide

Chapter 3 Study Guide Chapter 3 Study Guide I have listed each section of chapter 3 below and given the main points from each. That being said, there may be information I have missed so it is still a good idea to look at the

More information

Absolute and Local Extrema

Absolute and Local Extrema Extrema of Functions We can use the tools of calculus to help us understand and describe the shapes of curves. Here is some of the data that derivatives f (x) and f (x) can provide about the shape of the

More information

and lim lim 6. The Squeeze Theorem

and lim lim 6. The Squeeze Theorem Limits (day 3) Things we ll go over today 1. Limits of the form 0 0 (continued) 2. Limits of piecewise functions 3. Limits involving absolute values 4. Limits of compositions of functions 5. Limits similar

More information

Topics and Concepts. 1. Limits

Topics and Concepts. 1. Limits Topics and Concepts 1. Limits (a) Evaluating its (Know: it exists if and only if the it from the left is the same as the it from the right) (b) Infinite its (give rise to vertical asymptotes) (c) Limits

More information

Lecture 3 (Limits and Derivatives)

Lecture 3 (Limits and Derivatives) Lecture 3 (Limits and Derivatives) Continuity In the previous lecture we saw that very often the limit of a function as is just. When this is the case we say that is continuous at a. Definition: A function

More information

- First-order formula. Instructor: Yu Zhen Xie

- First-order formula. Instructor: Yu Zhen Xie CS2209A 2017 Applied Logic for Computer Science Lecture 10 Predicate Logic - First-order formula Instructor: Yu Zhen Xie 1 Propositions with parameters Is it true? Answer: depends. When x is an integer,

More information

AB.Q103.NOTES: Chapter 2.4, 3.1, 3.2 LESSON 1. Discovering the derivative at x = a: Slopes of secants and tangents to a curve

AB.Q103.NOTES: Chapter 2.4, 3.1, 3.2 LESSON 1. Discovering the derivative at x = a: Slopes of secants and tangents to a curve AB.Q103.NOTES: Chapter 2.4, 3.1, 3.2 LESSON 1 Discovering the derivative at x = a: Slopes of secants and tangents to a curve 1 1. Instantaneous rate of change versus average rate of change Equation of

More information

Convergence Tests. Academic Resource Center

Convergence Tests. Academic Resource Center Convergence Tests Academic Resource Center Series Given a sequence {a 0, a, a 2,, a n } The sum of the series, S n = A series is convergent if, as n gets larger and larger, S n goes to some finite number.

More information

Taylor and Maclaurin Series. Approximating functions using Polynomials.

Taylor and Maclaurin Series. Approximating functions using Polynomials. Taylor and Maclaurin Series Approximating functions using Polynomials. Approximating f x = e x near x = 0 In order to approximate the function f x = e x near x = 0, we can use the tangent line (The Linear

More information

Daily WeBWorK. 1. Below is the graph of the derivative f (x) of a function defined on the interval (0, 8).

Daily WeBWorK. 1. Below is the graph of the derivative f (x) of a function defined on the interval (0, 8). Daily WeBWorK 1. Below is the graph of the derivative f (x) of a function defined on the interval (0, 8). (a) On what intervals is f (x) concave down? f (x) is concave down where f (x) is decreasing, so

More information

Taylor and Maclaurin Series. Approximating functions using Polynomials.

Taylor and Maclaurin Series. Approximating functions using Polynomials. Taylor and Maclaurin Series Approximating functions using Polynomials. Approximating f x = e x near x = 0 In order to approximate the function f x = e x near x = 0, we can use the tangent line (The Linear

More information

2.2 The derivative as a Function

2.2 The derivative as a Function 2.2 The derivative as a Function Recall: The derivative of a function f at a fixed number a: f a f a+h f(a) = lim h 0 h Definition (Derivative of f) For any number x, the derivative of f is f x f x+h f(x)

More information

MSM120 1M1 First year mathematics for civil engineers Revision notes 4

MSM120 1M1 First year mathematics for civil engineers Revision notes 4 MSM10 1M1 First year mathematics for civil engineers Revision notes 4 Professor Robert A. Wilson Autumn 001 Series A series is just an extended sum, where we may want to add up infinitely many numbers.

More information

Review Guideline for Final

Review Guideline for Final Review Guideline for Final Here is the outline of the required skills for the final exam. Please read it carefully and find some corresponding homework problems in the corresponding sections to practice.

More information

1.5 Inverse Trigonometric Functions

1.5 Inverse Trigonometric Functions 1.5 Inverse Trigonometric Functions Remember that only one-to-one functions have inverses. So, in order to find the inverse functions for sine, cosine, and tangent, we must restrict their domains to intervals

More information

a k 0, then k + 1 = 2 lim 1 + 1

a k 0, then k + 1 = 2 lim 1 + 1 Math 7 - Midterm - Form A - Page From the desk of C. Davis Buenger. https://people.math.osu.edu/buenger.8/ Problem a) [3 pts] If lim a k = then a k converges. False: The divergence test states that if

More information

Review for the Final Exam

Review for the Final Exam Math 171 Review for the Final Exam 1 Find the limits (4 points each) (a) lim 4x 2 3; x x (b) lim ( x 2 x x 1 )x ; (c) lim( 1 1 ); x 1 ln x x 1 sin (x 2) (d) lim x 2 x 2 4 Solutions (a) The limit lim 4x

More information

1 Lecture 25: Extreme values

1 Lecture 25: Extreme values 1 Lecture 25: Extreme values 1.1 Outline Absolute maximum and minimum. Existence on closed, bounded intervals. Local extrema, critical points, Fermat s theorem Extreme values on a closed interval Rolle

More information

Homework for Section 1.4, Continuity and One sided Limits. Study 1.4, # 1 21, 27, 31, 37 41, 45 53, 61, 69, 87, 91, 93. Class Notes: Prof. G.

Homework for Section 1.4, Continuity and One sided Limits. Study 1.4, # 1 21, 27, 31, 37 41, 45 53, 61, 69, 87, 91, 93. Class Notes: Prof. G. GOAL: 1. Understand definition of continuity at a point. 2. Evaluate functions for continuity at a point, and on open and closed intervals 3. Understand the Intermediate Value Theorum (IVT) Homework for

More information

University of Connecticut Department of Mathematics

University of Connecticut Department of Mathematics University of Connecticut Department of Mathematics Math 1131 Sample Exam 1 Fall 2013 Name: This sample exam is just a guide to prepare for the actual exam. Questions on the actual exam may or may not

More information

Section 3.2 Working with Derivatives

Section 3.2 Working with Derivatives Section 3.2 Working with Derivatives Problem (a) If f 0 (2) exists, then (i) lim f(x) must exist, but lim f(x) 6= f(2) (ii) lim f(x) =f(2). (iii) lim f(x) =f 0 (2) (iv) lim f(x) need not exist. The correct

More information

Tangent Lines and Derivatives

Tangent Lines and Derivatives The Derivative and the Slope of a Graph Tangent Lines and Derivatives Recall that the slope of a line is sometimes referred to as a rate of change. In particular, we are referencing the rate at which the

More information

February 4, 2019 LECTURE 4: THE DERIVATIVE.

February 4, 2019 LECTURE 4: THE DERIVATIVE. February 4, 29 LECTURE 4: THE DERIVATIVE 2 HONORS MULTIVARIABLE CALCULUS PROFESSOR RICHARD BROWN Synopsis Today, we finish our discussion on its and pass through the concept of continuity Really, there

More information

MATH 1902: Mathematics for the Physical Sciences I

MATH 1902: Mathematics for the Physical Sciences I MATH 1902: Mathematics for the Physical Sciences I Dr Dana Mackey School of Mathematical Sciences Room A305 A Email: Dana.Mackey@dit.ie Dana Mackey (DIT) MATH 1902 1 / 46 Module content/assessment Functions

More information

For a function f(x) and a number a in its domain, the derivative of f at a, denoted f (a), is: D(h) = lim

For a function f(x) and a number a in its domain, the derivative of f at a, denoted f (a), is: D(h) = lim Name: Section: Names of collaborators: Main Points: 1. Definition of derivative as limit of difference quotients 2. Interpretation of derivative as slope of graph 3. Interpretation of derivative as instantaneous

More information

Solution to Review Problems for Midterm #1

Solution to Review Problems for Midterm #1 Solution to Review Problems for Midterm # Midterm I: Wednesday, September in class Topics:.,.3 and.-.6 (ecept.3) Office hours before the eam: Monday - and 4-6 p.m., Tuesday - pm and 4-6 pm at UH 080B)

More information

Calculus II Lecture Notes

Calculus II Lecture Notes Calculus II Lecture Notes David M. McClendon Department of Mathematics Ferris State University 206 edition Contents Contents 2 Review of Calculus I 5. Limits..................................... 7.2 Derivatives...................................3

More information

Infinite Limits. Infinite Limits. Infinite Limits. Previously, we discussed the limits of rational functions with the indeterminate form 0/0.

Infinite Limits. Infinite Limits. Infinite Limits. Previously, we discussed the limits of rational functions with the indeterminate form 0/0. Infinite Limits Return to Table of Contents Infinite Limits Infinite Limits Previously, we discussed the limits of rational functions with the indeterminate form 0/0. Now we will consider rational functions

More information

Math 261 Calculus I. Test 1 Study Guide. Name. Decide whether the limit exists. If it exists, find its value. 1) lim x 1. f(x) 2) lim x -1/2 f(x)

Math 261 Calculus I. Test 1 Study Guide. Name. Decide whether the limit exists. If it exists, find its value. 1) lim x 1. f(x) 2) lim x -1/2 f(x) Math 261 Calculus I Test 1 Study Guide Name Decide whether the it exists. If it exists, find its value. 1) x 1 f(x) 2) x -1/2 f(x) Complete the table and use the result to find the indicated it. 3) If

More information

MATH 408N PRACTICE MIDTERM 1

MATH 408N PRACTICE MIDTERM 1 02/0/202 Bormashenko MATH 408N PRACTICE MIDTERM Show your work for all the problems. Good luck! () (a) [5 pts] Solve for x if 2 x+ = 4 x Name: TA session: Writing everything as a power of 2, 2 x+ = (2

More information

Section 4.2: The Mean Value Theorem

Section 4.2: The Mean Value Theorem Section 4.2: The Mean Value Theorem Before we continue with the problem of describing graphs using calculus we shall briefly pause to examine some interesting applications of the derivative. In previous

More information

Math 111, Introduction to the Calculus, Fall 2011 Midterm I Practice Exam 1 Solutions

Math 111, Introduction to the Calculus, Fall 2011 Midterm I Practice Exam 1 Solutions Math 111, Introduction to the Calculus, Fall 2011 Midterm I Practice Exam 1 Solutions For each question, there is a model solution (showing you the level of detail I expect on the exam) and then below

More information

Lesson Objectives: we will learn:

Lesson Objectives: we will learn: Lesson Objectives: Setting the Stage: Lesson 66 Improper Integrals HL Math - Santowski we will learn: How to solve definite integrals where the interval is infinite and where the function has an infinite

More information

Wed. Sept 28th: 1.3 New Functions from Old Functions: o vertical and horizontal shifts o vertical and horizontal stretching and reflecting o

Wed. Sept 28th: 1.3 New Functions from Old Functions: o vertical and horizontal shifts o vertical and horizontal stretching and reflecting o Homework: Appendix A: 1, 2, 3, 5, 6, 7, 8, 11, 13-33(odd), 34, 37, 38, 44, 45, 49, 51, 56. Appendix B: 3, 6, 7, 9, 11, 14, 16-21, 24, 29, 33, 36, 37, 42. Appendix D: 1, 2, 4, 9, 11-20, 23, 26, 28, 29,

More information

Slide 1. Slide 2. Slide 3 Remark is a new function derived from called derivative. 2.2 The derivative as a Function

Slide 1. Slide 2. Slide 3 Remark is a new function derived from called derivative. 2.2 The derivative as a Function Slide 1 2.2 The derivative as a Function Slide 2 Recall: The derivative of a function number : at a fixed Definition (Derivative of ) For any number, the derivative of is Slide 3 Remark is a new function

More information

Last week we looked at limits generally, and at finding limits using substitution.

Last week we looked at limits generally, and at finding limits using substitution. Math 1314 ONLINE Week 4 Notes Lesson 4 Limits (continued) Last week we looked at limits generally, and at finding limits using substitution. Indeterminate Forms What do you do when substitution gives you

More information

Math Lecture 4 Limit Laws

Math Lecture 4 Limit Laws Math 1060 Lecture 4 Limit Laws Outline Summary of last lecture Limit laws Motivation Limits of constants and the identity function Limits of sums and differences Limits of products Limits of polynomials

More information

Chapter 12: Differentiation. SSMth2: Basic Calculus Science and Technology, Engineering and Mathematics (STEM) Strands Mr. Migo M.

Chapter 12: Differentiation. SSMth2: Basic Calculus Science and Technology, Engineering and Mathematics (STEM) Strands Mr. Migo M. Chapter 12: Differentiation SSMth2: Basic Calculus Science and Technology, Engineering and Mathematics (STEM) Strands Mr. Migo M. Mendoza Chapter 12: Differentiation Lecture 12.1: The Derivative Lecture

More information

Test 3 Review. y f(a) = f (a)(x a) y = f (a)(x a) + f(a) L(x) = f (a)(x a) + f(a)

Test 3 Review. y f(a) = f (a)(x a) y = f (a)(x a) + f(a) L(x) = f (a)(x a) + f(a) MATH 2250 Calculus I Eric Perkerson Test 3 Review Sections Covered: 3.11, 4.1 4.6. Topics Covered: Linearization, Extreme Values, The Mean Value Theorem, Consequences of the Mean Value Theorem, Concavity

More information

AP Calculus AB. Limits & Continuity.

AP Calculus AB. Limits & Continuity. 1 AP Calculus AB Limits & Continuity 2015 10 20 www.njctl.org 2 Table of Contents click on the topic to go to that section Introduction The Tangent Line Problem Definition of a Limit and Graphical Approach

More information

Continuity. To handle complicated functions, particularly those for which we have a reasonable formula or formulas, we need a more precise definition.

Continuity. To handle complicated functions, particularly those for which we have a reasonable formula or formulas, we need a more precise definition. Continuity Intuitively, a function is continuous if its graph can be traced on paper in one motion without lifting the pencil from the paper. Thus the graph has no tears or holes. To handle complicated

More information

Midterm Study Guide and Practice Problems

Midterm Study Guide and Practice Problems Midterm Study Guide and Practice Problems Coverage of the midterm: Sections 10.1-10.7, 11.2-11.6 Sections or topics NOT on the midterm: Section 11.1 (The constant e and continuous compound interest, Section

More information

1 Functions and Graphs

1 Functions and Graphs 1 Functions and Graphs 1.1 Functions Cartesian Coordinate System A Cartesian or rectangular coordinate system is formed by the intersection of a horizontal real number line, usually called the x axis,

More information

2.1 The Tangent and Velocity Problems

2.1 The Tangent and Velocity Problems 2.1 The Tangent and Velocity Problems Tangents What is a tangent? Tangent lines and Secant lines Estimating slopes from discrete data: Example: 1. A tank holds 1000 gallons of water, which drains from

More information

2.2 The Derivative Function

2.2 The Derivative Function 2.2 The Derivative Function Arkansas Tech University MATH 2914: Calculus I Dr. Marcel B. Finan Recall that a function f is differentiable at x if the following it exists f f(x + h) f(x) (x) =. (2.2.1)

More information

Math 131 Exam 2 Spring 2016

Math 131 Exam 2 Spring 2016 Math 3 Exam Spring 06 Name: ID: 7 multiple choice questions worth 4.7 points each. hand graded questions worth 0 points each. 0. free points (so the total will be 00). Exam covers sections.7 through 3.0

More information

1.10 Continuity Brian E. Veitch

1.10 Continuity Brian E. Veitch 1.10 Continuity Definition 1.5. A function is continuous at x = a if 1. f(a) exists 2. lim x a f(x) exists 3. lim x a f(x) = f(a) If any of these conditions fail, f is discontinuous. Note: From algebra

More information

Review for Chapter 2 Test

Review for Chapter 2 Test Review for Chapter 2 Test This test will cover Chapter (sections 2.1-2.7) Know how to do the following: Use a graph of a function to find the limit (as well as left and right hand limits) Use a calculator

More information

Replacing the a in the definition of the derivative of the function f at a with a variable x, gives the derivative function f (x).

Replacing the a in the definition of the derivative of the function f at a with a variable x, gives the derivative function f (x). Definition of The Derivative Function Definition (The Derivative Function) Replacing the a in the definition of the derivative of the function f at a with a variable x, gives the derivative function f

More information

2.1 Derivatives and Rates of Change

2.1 Derivatives and Rates of Change 1a 1b 2.1 Derivatives an Rates of Change Tangent Lines Example. Consier y f x x 2 0 2 x-, 0 4 y-, f(x) axes, curve C Consier a smooth curve C. A line tangent to C at a point P both intersects C at P an

More information

The integral test and estimates of sums

The integral test and estimates of sums The integral test Suppose f is a continuous, positive, decreasing function on [, ) and let a n = f (n). Then the series n= a n is convergent if and only if the improper integral f (x)dx is convergent.

More information

SOLUTIONS TO EXAM 2, MATH 10550

SOLUTIONS TO EXAM 2, MATH 10550 SOLUTIONS TO EXAM 2, MATH 0550. Find the critical numbers of f(x) = 6 x2 x /3. We have f (x) = 3 x 3 x 2/3 = [ x 5/3 ] 3 x 2/3. So x = 0 is a critical point. For x 0, the equation f (x) = 0 can be written

More information

80 Wyner PreCalculus Spring 2017

80 Wyner PreCalculus Spring 2017 80 Wyner PreCalculus Spring 2017 CHAPTER NINE: DERIVATIVES Review May 16 Test May 23 Calculus begins with the study of rates of change, called derivatives. For example, the derivative of velocity is acceleration

More information

2.2 THE DERIVATIVE 2.3 COMPUTATION OF DERIVATIVES: THE POWER RULE 2.4 THE PRODUCT AND QUOTIENT RULES 2.6 DERIVATIVES OF TRIGONOMETRIC FUNCTIONS

2.2 THE DERIVATIVE 2.3 COMPUTATION OF DERIVATIVES: THE POWER RULE 2.4 THE PRODUCT AND QUOTIENT RULES 2.6 DERIVATIVES OF TRIGONOMETRIC FUNCTIONS Differentiation CHAPTER 2 2.1 TANGENT LINES AND VELOCITY 2.2 THE DERIVATIVE 2.3 COMPUTATION OF DERIVATIVES: THE POWER RULE 2.4 THE PRODUCT AND QUOTIENT RULES 25 2.5 THE CHAIN RULE 2.6 DERIVATIVES OF TRIGONOMETRIC

More information

Grade 12 (MCV4UE) AP Calculus Page 1 of 5 Derivative of a Function & Differentiability

Grade 12 (MCV4UE) AP Calculus Page 1 of 5 Derivative of a Function & Differentiability Grade 2 (MCV4UE) AP Calculus Page of 5 The Derivative at a Point f ( a h) f ( a) Recall, lim provides the slope of h0 h the tangent to the graph y f ( at the point, f ( a), and the instantaneous rate of

More information

Math 10b Ch. 8 Reading 1: Introduction to Taylor Polynomials

Math 10b Ch. 8 Reading 1: Introduction to Taylor Polynomials Math 10b Ch. 8 Reading 1: Introduction to Taylor Polynomials Introduction: In applications, it often turns out that one cannot solve the differential equations or antiderivatives that show up in the real

More information

Advanced Mathematics Unit 2 Limits and Continuity

Advanced Mathematics Unit 2 Limits and Continuity Advanced Mathematics 3208 Unit 2 Limits and Continuity NEED TO KNOW Expanding Expanding Expand the following: A) (a + b) 2 B) (a + b) 3 C) (a + b)4 Pascals Triangle: D) (x + 2) 4 E) (2x -3) 5 Random Factoring

More information

Advanced Mathematics Unit 2 Limits and Continuity

Advanced Mathematics Unit 2 Limits and Continuity Advanced Mathematics 3208 Unit 2 Limits and Continuity NEED TO KNOW Expanding Expanding Expand the following: A) (a + b) 2 B) (a + b) 3 C) (a + b)4 Pascals Triangle: D) (x + 2) 4 E) (2x -3) 5 Random Factoring

More information

Homework 4 Solutions, 2/2/7

Homework 4 Solutions, 2/2/7 Homework 4 Solutions, 2/2/7 Question Given that the number a is such that the following limit L exists, determine a and L: x 3 a L x 3 x 2 7x + 2. We notice that the denominator x 2 7x + 2 factorizes as

More information

Disclaimer: This Final Exam Study Guide is meant to help you start studying. It is not necessarily a complete list of everything you need to know.

Disclaimer: This Final Exam Study Guide is meant to help you start studying. It is not necessarily a complete list of everything you need to know. Disclaimer: This is meant to help you start studying. It is not necessarily a complete list of everything you need to know. The MTH 132 final exam mainly consists of standard response questions where students

More information

Section 2.1, Section 3.1 Rate of change, Tangents and Derivatives at a point

Section 2.1, Section 3.1 Rate of change, Tangents and Derivatives at a point Section 2.1, Section 3.1 Rate of change, Tangents and Derivatives at a point Line through P and Q approaches to the tangent line at P as Q approaches P. That is as a + h a = h gets smaller. Slope of the

More information

Continuity. MATH 161 Calculus I. J. Robert Buchanan. Fall Department of Mathematics

Continuity. MATH 161 Calculus I. J. Robert Buchanan. Fall Department of Mathematics Continuity MATH 161 Calculus I J. Robert Buchanan Department of Mathematics Fall 2017 Intuitive Idea A process or an item can be described as continuous if it exists without interruption. The mathematical

More information

3.9 Derivatives of Exponential and Logarithmic Functions

3.9 Derivatives of Exponential and Logarithmic Functions 322 Chapter 3 Derivatives 3.9 Derivatives of Exponential and Logarithmic Functions Learning Objectives 3.9.1 Find the derivative of exponential functions. 3.9.2 Find the derivative of logarithmic functions.

More information

Math 106 Calculus 1 Topics for first exam

Math 106 Calculus 1 Topics for first exam Chapter 2: Limits and Continuity Rates of change and its: Math 06 Calculus Topics for first exam Limit of a function f at a point a = the value the function should take at the point = the value that the

More information

MATH 113: ELEMENTARY CALCULUS

MATH 113: ELEMENTARY CALCULUS MATH 3: ELEMENTARY CALCULUS Please check www.ualberta.ca/ zhiyongz for notes updation! 6. Rates of Change and Limits A fundamental philosophical truth is that everything changes. In physics, the change

More information

Math 106 Answers to Exam 1a Fall 2015

Math 106 Answers to Exam 1a Fall 2015 Math 06 Answers to Exam a Fall 05.. Find the derivative of the following functions. Do not simplify your answers. (a) f(x) = ex cos x x + (b) g(z) = [ sin(z ) + e z] 5 Using the quotient rule on f(x) and

More information

Announcements. Related Rates (last week), Linear approximations (today) l Hôpital s Rule (today) Newton s Method Curve sketching Optimization problems

Announcements. Related Rates (last week), Linear approximations (today) l Hôpital s Rule (today) Newton s Method Curve sketching Optimization problems Announcements Assignment 4 is now posted. Midterm results should be available by the end of the week (assuming the scantron results are back in time). Today: Continuation of applications of derivatives:

More information

MATH 220 CALCULUS I SPRING 2018, MIDTERM I FEB 16, 2018

MATH 220 CALCULUS I SPRING 2018, MIDTERM I FEB 16, 2018 MATH 220 CALCULUS I SPRING 2018, MIDTERM I FEB 16, 2018 DEPARTMENT OF MATHEMATICS UNIVERSITY OF PITTSBURGH NAME: ID NUMBER: (1) Do not open this exam until you are told to begin. (2) This exam has 12 pages

More information

Chapter 5: Limits, Continuity, and Differentiability

Chapter 5: Limits, Continuity, and Differentiability Chapter 5: Limits, Continuity, and Differentiability 63 Chapter 5 Overview: Limits, Continuity and Differentiability Derivatives and Integrals are the core practical aspects of Calculus. They were the

More information

AP CALCULUS AB UNIT 3 BASIC DIFFERENTIATION RULES TOTAL NAME DATE PERIOD DATE TOPIC ASSIGNMENT /18 9/19 9/24 9/25 9/26 9/27 9/28 10/1 10/2 10/3

AP CALCULUS AB UNIT 3 BASIC DIFFERENTIATION RULES TOTAL NAME DATE PERIOD DATE TOPIC ASSIGNMENT /18 9/19 9/24 9/25 9/26 9/27 9/28 10/1 10/2 10/3 NAME DATE PERIOD AP CALCULUS AB UNIT BASIC DIFFERENTIATION RULES DATE TOPIC ASSIGNMENT 0 0 9/8 9/9 9/ 9/5 9/6 9/7 9/8 0/ 0/ 0/ 0/ 0/5 TOTAL AP Calculus AB Worksheet 9 Average Rates of Change Find the

More information

Chapter 1 Functions and Limits

Chapter 1 Functions and Limits Contents Chapter 1 Functions and Limits Motivation to Chapter 1 2 4 Tangent and Velocity Problems 3 4.1 VIDEO - Secant Lines, Average Rate of Change, and Applications......................... 3 4.2 VIDEO

More information

Concepts of graphs of functions:

Concepts of graphs of functions: Concepts of graphs of functions: 1) Domain where the function has allowable inputs (this is looking to find math no-no s): Division by 0 (causes an asymptote) ex: f(x) = 1 x There is a vertical asymptote

More information

2.1 Limits, Rates of Change and Slopes of Tangent Lines

2.1 Limits, Rates of Change and Slopes of Tangent Lines 2.1 Limits, Rates of Change and Slopes of Tangent Lines (1) Average rate of change of y f x over an interval x 0,x 1 : f x 1 f x 0 x 1 x 0 Instantaneous rate of change of f x at x x 0 : f x lim 1 f x 0

More information

AP Calculus AB: Semester Review Notes Information in the box are MASTERY CONCEPTS. Be prepared to apply these concepts on your midterm.

AP Calculus AB: Semester Review Notes Information in the box are MASTERY CONCEPTS. Be prepared to apply these concepts on your midterm. AP Calculus AB: Semester Review Notes Information in the box are MASTERY CONCEPTS. Be prepared to apply these concepts on your midterm. Name: Date: Period: I. Limits and Continuity Definition of Average

More information

e x = 1 + x + x2 2! + x3 If the function f(x) can be written as a power series on an interval I, then the power series is of the form

e x = 1 + x + x2 2! + x3 If the function f(x) can be written as a power series on an interval I, then the power series is of the form Taylor Series Given a function f(x), we would like to be able to find a power series that represents the function. For example, in the last section we noted that we can represent e x by the power series

More information

Solutions to Math 41 First Exam October 15, 2013

Solutions to Math 41 First Exam October 15, 2013 Solutions to Math 41 First Exam October 15, 2013 1. (16 points) Find each of the following its, with justification. If the it does not exist, explain why. If there is an infinite it, then explain whether

More information

Suppose that f is continuous on [a, b] and differentiable on (a, b). Then

Suppose that f is continuous on [a, b] and differentiable on (a, b). Then Lectures 1/18 Derivatives and Graphs When we have a picture of the graph of a function f(x), we can make a picture of the derivative f (x) using the slopes of the tangents to the graph of f. In this section

More information

(x + 3)(x 1) lim(x + 3) = 4. lim. (x 2)( x ) = (x 2)(x + 2) x + 2 x = 4. dt (t2 + 1) = 1 2 (t2 + 1) 1 t. f(x) = lim 3x = 6,

(x + 3)(x 1) lim(x + 3) = 4. lim. (x 2)( x ) = (x 2)(x + 2) x + 2 x = 4. dt (t2 + 1) = 1 2 (t2 + 1) 1 t. f(x) = lim 3x = 6, Math 140 MT1 Sample C Solutions Tyrone Crisp 1 (B): First try direct substitution: you get 0. So try to cancel common factors. We have 0 x 2 + 2x 3 = x 1 and so the it as x 1 is equal to (x + 3)(x 1),

More information

O.K. But what if the chicken didn t have access to a teleporter.

O.K. But what if the chicken didn t have access to a teleporter. The intermediate value theorem, and performing algebra on its. This is a dual topic lecture. : The Intermediate value theorem First we should remember what it means to be a continuous function: A function

More information

Lecture 5 - Logarithms, Slope of a Function, Derivatives

Lecture 5 - Logarithms, Slope of a Function, Derivatives Lecture 5 - Logarithms, Slope of a Function, Derivatives 5. Logarithms Note the graph of e x This graph passes the horizontal line test, so f(x) = e x is one-to-one and therefore has an inverse function.

More information

AP Calculus AB. Introduction. Slide 1 / 233 Slide 2 / 233. Slide 4 / 233. Slide 3 / 233. Slide 6 / 233. Slide 5 / 233. Limits & Continuity

AP Calculus AB. Introduction. Slide 1 / 233 Slide 2 / 233. Slide 4 / 233. Slide 3 / 233. Slide 6 / 233. Slide 5 / 233. Limits & Continuity Slide 1 / 233 Slide 2 / 233 AP Calculus AB Limits & Continuity 2015-10-20 www.njctl.org Slide 3 / 233 Slide 4 / 233 Table of Contents click on the topic to go to that section Introduction The Tangent Line

More information

AB Calculus: Rates of Change and Tangent Lines

AB Calculus: Rates of Change and Tangent Lines AB Calculus: Rates of Change and Tangent Lines Name: The World Record Basketball Shot A group called How Ridiculous became YouTube famous when they successfully made a basket from the top of Tasmania s

More information

AP Calculus AB. Slide 1 / 233. Slide 2 / 233. Slide 3 / 233. Limits & Continuity. Table of Contents

AP Calculus AB. Slide 1 / 233. Slide 2 / 233. Slide 3 / 233. Limits & Continuity. Table of Contents Slide 1 / 233 Slide 2 / 233 AP Calculus AB Limits & Continuity 2015-10-20 www.njctl.org Table of Contents click on the topic to go to that section Slide 3 / 233 Introduction The Tangent Line Problem Definition

More information

Math 112 Rahman. Week Taylor Series Suppose the function f has the following power series:

Math 112 Rahman. Week Taylor Series Suppose the function f has the following power series: Math Rahman Week 0.8-0.0 Taylor Series Suppose the function f has the following power series: fx) c 0 + c x a) + c x a) + c 3 x a) 3 + c n x a) n. ) Can we figure out what the coefficients are? Yes, yes

More information

Section 3.5: Implicit Differentiation

Section 3.5: Implicit Differentiation Section 3.5: Implicit Differentiation In the previous sections, we considered the problem of finding the slopes of the tangent line to a given function y = f(x). The idea of a tangent line however is not

More information

Ma 530 Power Series II

Ma 530 Power Series II Ma 530 Power Series II Please note that there is material on power series at Visual Calculus. Some of this material was used as part of the presentation of the topics that follow. Operations on Power Series

More information

Science One Integral Calculus

Science One Integral Calculus Science One Integral Calculus January 018 Happy New Year! Differential Calculus central idea: The Derivative What is the derivative f (x) of a function f(x)? Differential Calculus central idea: The Derivative

More information

MAT 1339-S14 Class 4

MAT 1339-S14 Class 4 MAT 9-S4 Class 4 July 4, 204 Contents Curve Sketching. Concavity and the Second Derivative Test.................4 Simple Rational Functions........................ 2.5 Putting It All Together.........................

More information

MAPLE Worksheet Number 7 Derivatives in Calculus

MAPLE Worksheet Number 7 Derivatives in Calculus MAPLE Worksheet Number 7 Derivatives in Calculus The MAPLE command for computing the derivative of a function depends on which of the two ways we used to define the function, as a symbol or as an operation.

More information

MA4001 Engineering Mathematics 1 Lecture 15 Mean Value Theorem Increasing and Decreasing Functions Higher Order Derivatives Implicit Differentiation

MA4001 Engineering Mathematics 1 Lecture 15 Mean Value Theorem Increasing and Decreasing Functions Higher Order Derivatives Implicit Differentiation MA4001 Engineering Mathematics 1 Lecture 15 Mean Value Theorem Increasing and Decreasing Functions Higher Order Derivatives Implicit Differentiation Dr. Sarah Mitchell Autumn 2014 Rolle s Theorem Theorem

More information

Lecture 9: Taylor Series

Lecture 9: Taylor Series Math 8 Instructor: Padraic Bartlett Lecture 9: Taylor Series Week 9 Caltech 212 1 Taylor Polynomials and Series When we first introduced the idea of the derivative, one of the motivations we offered was

More information