Solution to Review Problems for Midterm #1

Size: px
Start display at page:

Download "Solution to Review Problems for Midterm #1"

Transcription

1 Solution to Review Problems for Midterm # Midterm I: Wednesday, September in class Topics:.,.3 and.-.6 (ecept.3) Office hours before the eam: Monday - and 4-6 p.m., Tuesday - pm and 4-6 pm at UH 080B) Topics Find the equation of the tangent line to y f() at a,. We need to find the slope of the tangent line by finding the limit f(a+h) f(a) m lim h 0 h. Use the point slope formula to find the equation of the tangent line thru (a, f(a)) with slope m: y f(a) m( a).. Let f() Find an equation of the tangent line to the curve at P (, f()). Solution: To find the slope of the tangent line at, we need to f(+h) f() find the limit m lim h 0. Since f( ) + 3 +, we h have f( + h) ( + h) + 3( + h) + }{{} ( + h + h ) + } 3 + 3h {{ + } 4h h + } 4 + {{ 3h } h h, f() and f( + h) f() h h h h h( h). So m f(+h) f() lim h 0 h h( h) lim h 0 lim h h 0 h. Now we have the point P (, f()) (, ) and the slope of the tangent line m. By the point slope formula, we have the equation of the tangent line y ( ) + and y Hence the equation of the tangent line to the curve at P (, f()) is y Let f(). Find an equation of the tangent line to the curve at + P (, f()). Solution: To find the slope of the tangent line at, we need f(+h) f() to find the limit m lim h 0. Since f( ), we have h + f( + h), f() and (+h) + (+h+h )+ +h+h + f(+h) f() +h+h (+h+h ) h h +h+h +h+h +h+h +h+h +h+h h h +h+h lim h 0 h( h) f(+h) f() +h+h. So m lim +h+h h 0 lim h( h) h h 0 lim h h 0. Now we have the point P (, f()) h( h) ( h) (+h+h ) (+h+h )h (, ) and the slope of the tangent line m. By the point slope formula, we have the equation of the tangent line y () + and y Hence the equation of the tangent line to the curve at P (, f()) is y +. MATH 850: page of 8

2 Solution to Review Problems for Midterm # MATH 850: page of 8 3. Let f(). Find an equation of the tangent line to the curve at +3 P (, f()). Solution: To find the slope of the tangent line at, we need f(+h) f() to find the limit m lim h 0. Since f( ) h, we have +3 f( + h) (+h) +3 (+h+h )+3, f() and +3 f( + h) f() rationalize the epression by multiplying + + to get f( + h) f() h h ) ( )(+ ) h h ) ( )(+ ). f(+h) f() So m lim h 0 h h( h)) lim h 0 ( )(+ )h ( ) ( )(+ ) h h ) ( )(+. Now we 4+h+h lim ) h 0 h (factoring out h from the top and the ( h) ( )(+ ) 0 4 (+ 4) bottom) lim h 0. Now we 4 4 have the point P (, f()) (, ) and the slope of the tangent line m. By the point slope formula, we have the equation of the 4 tangent line y 4 ( ) and y Hence the equation of the tangent line to the curve at P (, f()) is y Topic Left continuity: To determine if a function is left continuous at a, we need to find lim a f() and f(a). If lim a f() f(a) then f is not left continuous. If lim a f() f(a) then f is left continuous. Right continuity at a: To determine if a function is right continuous at a, we need to find lim a +f() and f(a). If lim a +f() f(a) then f is not left continuous. If lim a +f() f(a) then f is left continuous. Continuity at a:to determine if a function is t continuous at a, we need to find lim a f(), lim a +f() and f(a). If lim a f() lim a +f() then f is not continuous. (either jump or infinite discontinuity). If lim a f() lim a +f() f(a) then f is not continuous. (This is called the removable discontinuity.) If lim a f() lim a +f() f(a) then f is continuous.

3 MATH 850: page 3 of 8 Solution to Review Problems for Midterm # 4. A piecewise defined function is given by, < f(), < +, Determine if f is left continuous, right continuous or continuous at or. Solution: At, we have lim f() lim 0, lim + f() lim + ( ) 0 and f() 0. So lim f() lim + f() f(). Hence f is left continuous, right continuous and continuous at. At, we have lim f() lim 4 3, lim + f() lim and f() + 4. So lim f() f() and f is not left continuous at. Now lim + f() f() and f is right continuous. But lim f() 3 4 lim + f() and f has a jump discontinuity at. 5. Classify the discontinuity of the following functions (removable, infinite, jump or oscillating discontinuity). Redefine the value of the function if it s removable. (a) f() Solution: Note that ( )( 3). The domain of f is { and 3}. So f is discontinuous at and 3. At 3, lim lim lim ()( 3) () 0 3 and lim + lim So f has an infinite () 0 + discontinuity at. 3 At 3, lim 3 lim and lim 3 () lim 3 +. So f has an removable discontinuity at 3. () We can define f(3) to make f continuous at 3. (b) f() +, < +, 8, <

4 Solution to Review Problems for Midterm # MATH 850: page 4 of 8 Solution: The only points where f may not be continuous is and. At, lim f() lim + lim + lim (+)(), lim + f() lim and f( ) + 0. Hence 8 8 lim f() f( ) and f is not left continuous at Now lim + f() f( ) and f is right continuous at. Since lim f() 0 lim + f() and f has a jump discontinuity at. At, lim f() lim +, lim f() lim + lim ( )( +) + ( )( +) lim + ( )( lim +) + ()(+)( lim +) + and f() +. Since lim 8 4 f() lim + f() f() and f has is left continuous, right continuous and continuous at. (+)( +) 4 6. A piecewise defined function is given by, < f() a + b, <, (a) Find the graph of y f() over the interval (, ) [, ). (b) Determine the value of a and b so that f is continuous everywhere. Also eplain your answer geometrically. Solution: The only possible discontinuity are at and. We first compute lim f() lim, lim + f() lim + a + b a + b and f( ) a + b To make f continuous at, we must have lim f() lim + f() f( ). This gives a + b. Net we compute lim f() lim a+b a+b, lim + f() lim + and f() To make f continuous at, we must have lim f() lim + f() f(). This gives a + b. Now we have two equations a + b and a + b. From a + b, we get b + a. Plugging b + a to a + b, we get a + ( + a), a 3 and a 3. Use b + a to get b + 3. Thus a 3 and b will make f continuous everywhere.

5 MATH 850: page 5 of 8 Solution to Review Problems for Midterm # Topic 3: Vertical asymptote and horizontal asymptote. To find vertical asymptote, we first find its domain. Let a be a point not in the domain. We find lim a f() and lim a f(). If lim a f(), lim a f(), lim a + f() or lim a + f() then a is a vertical asymptote. To find horizontal asymptote, we find lim f() and lim f(). If lim f() b then y b is a horizontal asymptote. If lim f() c then then y c is a horizontal asymptote. 0 + negative number 0, 0 positive number 0, , ,,, ( )odd power. p n n+p, lim positive number, lim negative number 0, lim positive and even integer, lim positive and odd integer. Given a rational function R(). Suppose we rearrange the order of the power in the top and the bottom so it s in decreasing order, i.e R() ann +a n n + +a +a 0 b m m +b m m + +b +b 0. For eample, R() a lim n n +a n n + +a +a 0 ± b m m +b m m + +b +b 0 lim n (a n+a n + +a n+ +a 0 n ) ± a lim n b m n m. 7. Determine the following limits (a) lim 3+ Solution:lim 3+ lim m (b m+b m + +b m+ +b 0 m ) ()( ) lim. 4 (b) lim +, lim 4 5+6, lim Solution: Plugging in the epression, we get. So we need 0 to factor the bottom to analyze its behavior. lim + 4 lim +. ( )( 3) lim lim ( )( 3) Now we know that lim + lim So lim 5+6 doesn t eist (c) lim + 6 +, lim Solution: lim lim 6 ( ) lim 3 ( ) 3 ( ) ( ) lim 3 (. Note that we have used the fact that lim ) ( ). Similarly, lim lim 6 ( ) lim 3 ( ) 3 ( ) ( ) lim 3 ( ) 3.

6 Solution to Review Problems for Midterm # MATH 850: page 6 of 8 (d) lim 6 + +, lim Solution: lim lim 6 ( ) ( ) (factoring out 6 ( + from the top and the bottom) lim ) ( ). 6 3 Similarly, lim (e) lim 6 + +, lim Solution: lim ( 5) Similarly, lim lim 0. ( 5) lim 6 ( ) lim 6 ( ) ( ) ( ) lim ( ) lim 8 ( ) ( ) ( ) lim ( ) lim 8 ( ) ( ) (f) lim Solution: lim 4 + lim + ( +) 4 + lim ( 4 +) + ( lim ). (+ ) lim ( ) lim lim lim + ( ) (+ ) (g) lim + Solution: lim + lim ( + ) lim ( +) ( ) ++ lim lim ++ lim lim lim ( + + ) (h) lim + Solution:lim + lim ( + ) lim ( +) () ++ lim lim + ++ lim ( + ) ( + + ) lim ( + ) ( + + ) lim lim ( + ) ( + + ). 8. Find the domain of the following functions and determine the vertical and horizontal asymptotes of the graph of the following functions.

7 MATH 850: page 7 of 8 Solution to Review Problems for Midterm # (a) f() 3+ Solution: To find the domain, we factor 3 + ( )( ). So the domain is { and }. At, lim 3+ lim lim ()( ) and lim ( ) + lim 3+ + lim +. So lim ( ). Hence is not a 3+ vertical asymptote. In fact, has a removable discontinuity 3+ at. At, lim lim 3+ lim ()( ) ( ) 0 and lim + lim 3+ + Hence is a vertical asymptote. lim ( ) lim ()( ) +. ( ) 0 + ( ) ( 3 + ) lim 3+ lim ( 3 + ) lim lim ( ) 0 0. Similarly, lim ( 3 + ) ( lim ) ( 3 + ) lim 0 0. Hence y 0 is a hori- lim lim zontal asymptote. ( ) ( 3 + ) ( ) ( 3 + ) 3+ (b) f() 5+6 To find the domain, we factor ( )( 3). the domain is { and 3}. At, lim lim ( )( 3) 0 ( ) and lim lim ( ) Hence is a vertical asymptote. 0 At 3, lim 3 lim lim 3 + lim a vertical asymptote. lim ()( ) So 5+6 ( )( 3) and ( )( 3) 0 0. Hence 3 is ( )( 3) ( ) ( ) ( 5 +6 ) lim 5+6 lim ( 5 +6 ) lim lim ( ) 0 0. Similarly, lim ( 5 +6 ) lim lim ( ) 0 0. Hence y 0 is a horizontal ( 5 +6 ) asymptote. (c) f() To find the domain, we factor ( )( 3). the domain is { and 3}. At, lim 3 lim ( ) ( )( 3) 0 ( ) 7 and lim At 3, lim 3 Hence is a vertical asymptote. 0 3 lim ( )( 3) 5+6 So lim and 3 ( )( 3)

8 Solution to Review Problems for Midterm # MATH 850: page 8 of 8 lim lim a vertical asymptote. 3 ( )( 3) Hence 3 is lim 3 lim 3 ( 3 ) 5+6 lim ( 5 +6 ) ( 3 ) ( 5 +6 ) ( lim lim ). Similarly, lim ( 5 +6 ) ( lim lim ) ( 5 +6 ) a horizontal asymptote.. Hence y 3 ( )( 3) doesn t have (d) f() To find the domain, we factor ( )( 3). the domain is { and 3}. At, lim + lim + ( )( 3) ( ) ( ) So 5+6 and lim lim Hence is a vertical asymptote. 0 At 3, lim 3 + lim ( )( 3) lim lim ( )( 3) is a vertical asymptote. 8 8 and Hence lim + lim 5+6 ( + ) lim ( 5 +6 ) ( + ) ( 5 +6 ). Similarly, lim + lim 5+6 ( + ). Hence ( 5 +6 ) y is a horizontal asymptote. ( )( 3)

Review: Limits of Functions - 10/7/16

Review: Limits of Functions - 10/7/16 Review: Limits of Functions - 10/7/16 1 Right and Left Hand Limits Definition 1.0.1 We write lim a f() = L to mean that the function f() approaches L as approaches a from the left. We call this the left

More information

4. (6 points) Express the domain of the following function in interval notation:

4. (6 points) Express the domain of the following function in interval notation: Eam 1-A L. Ballou Name Math 131 Calculus I September 1, 016 NO Calculator Allowed BOX YOUR ANSWER! Show all work for full credit! 1. (4 points) Write an equation of a line with y-intercept 4 and -intercept

More information

Limits and Continuity

Limits and Continuity Limits and Continuity Philippe B. Laval Kennesaw State University January 2, 2005 Contents Abstract Notes and practice problems on its and continuity. Limits 2. Introduction... 2.2 Theory:... 2.2. GraphicalMethod...

More information

Calculus I Practice Test Problems for Chapter 2 Page 1 of 7

Calculus I Practice Test Problems for Chapter 2 Page 1 of 7 Calculus I Practice Test Problems for Chapter Page of 7 This is a set of practice test problems for Chapter This is in no way an inclusive set of problems there can be other types of problems on the actual

More information

SEE and DISCUSS the pictures on pages in your text. Key picture:

SEE and DISCUSS the pictures on pages in your text. Key picture: Math 6 Notes 1.1 A PREVIEW OF CALCULUS There are main problems in calculus: 1. Finding a tangent line to a curve though a point on the curve.. Finding the area under a curve on some interval. SEE and DISCUSS

More information

AP CALCULUS AB UNIT 3 BASIC DIFFERENTIATION RULES TOTAL NAME DATE PERIOD DATE TOPIC ASSIGNMENT /18 9/19 9/24 9/25 9/26 9/27 9/28 10/1 10/2 10/3

AP CALCULUS AB UNIT 3 BASIC DIFFERENTIATION RULES TOTAL NAME DATE PERIOD DATE TOPIC ASSIGNMENT /18 9/19 9/24 9/25 9/26 9/27 9/28 10/1 10/2 10/3 NAME DATE PERIOD AP CALCULUS AB UNIT BASIC DIFFERENTIATION RULES DATE TOPIC ASSIGNMENT 0 0 9/8 9/9 9/ 9/5 9/6 9/7 9/8 0/ 0/ 0/ 0/ 0/5 TOTAL AP Calculus AB Worksheet 9 Average Rates of Change Find the

More information

Limits and Their Properties

Limits and Their Properties Chapter 1 Limits and Their Properties Course Number Section 1.1 A Preview of Calculus Objective: In this lesson you learned how calculus compares with precalculus. I. What is Calculus? (Pages 42 44) Calculus

More information

Midterm 1 Solutions. Monday, 10/24/2011

Midterm 1 Solutions. Monday, 10/24/2011 Midterm Solutions Monday, 0/24/20. (0 points) Consider the function y = f() = e + 2e. (a) (2 points) What is the domain of f? Epress your answer using interval notation. Solution: We must eclude the possibility

More information

Unit 4 Day 8 Symmetry & Compositions

Unit 4 Day 8 Symmetry & Compositions Unit 4 Day 8 Symmetry & Compositions Warm Up Day 8 1. f ( ) 4 3. g( ) 4 a. f(-1)= a. -g()= b. f(3)= b. g(+y)= c. f(-y)= c. g(-)= 3. Write and graph an equation that has the following: -Nonremovable discontinuity

More information

Name Date Period. Pre-Calculus Midterm Review Packet (Chapters 1, 2, 3)

Name Date Period. Pre-Calculus Midterm Review Packet (Chapters 1, 2, 3) Name Date Period Sections and Scoring Pre-Calculus Midterm Review Packet (Chapters,, ) Your midterm eam will test your knowledge of the topics we have studied in the first half of the school year There

More information

Lecture Notes for Math 1000

Lecture Notes for Math 1000 Lecture Notes for Math 1000 Dr. Xiang-Sheng Wang Memorial University of Newfoundland Office: HH-2016, Phone: 864-4321 Office hours: 13:00-15:00 Wednesday, 12:00-13:00 Friday Email: swang@mun.ca Course

More information

Chapter 3.5: Rational Functions

Chapter 3.5: Rational Functions Chapter.5: Rational Functions A rational number is a ratio of two integers. A rational function is a quotient of two polynomials. All rational numbers are, therefore, rational functions as well. Let s

More information

Math Exam 1a. c) lim tan( 3x. 2) Calculate the derivatives of the following. DON'T SIMPLIFY! d) s = t t 3t

Math Exam 1a. c) lim tan( 3x. 2) Calculate the derivatives of the following. DON'T SIMPLIFY! d) s = t t 3t Math 111 - Eam 1a 1) Evaluate the following limits: 7 3 1 4 36 a) lim b) lim 5 1 3 6 + 4 c) lim tan( 3 ) + d) lim ( ) 100 1+ h 1 h 0 h ) Calculate the derivatives of the following. DON'T SIMPLIFY! a) y

More information

Chapter 2. Limits and Continuity. 2.1 Rates of change and Tangents to Curves. The average Rate of change of y = f(x) with respect to x over the

Chapter 2. Limits and Continuity. 2.1 Rates of change and Tangents to Curves. The average Rate of change of y = f(x) with respect to x over the Chapter 2 Limits and Continuity 2.1 Rates of change and Tangents to Curves Definition 2.1.1 : interval [x 1, x 2 ] is The average Rate of change of y = f(x) with respect to x over the y x = f(x 2) f(x

More information

Lecture 3 (Limits and Derivatives)

Lecture 3 (Limits and Derivatives) Lecture 3 (Limits and Derivatives) Continuity In the previous lecture we saw that very often the limit of a function as is just. When this is the case we say that is continuous at a. Definition: A function

More information

CH 2: Limits and Derivatives

CH 2: Limits and Derivatives 2 The tangent and velocity problems CH 2: Limits and Derivatives the tangent line to a curve at a point P, is the line that has the same slope as the curve at that point P, ie the slope of the tangent

More information

Wednesday August 24, 2016

Wednesday August 24, 2016 1.1 Functions Wednesday August 24, 2016 EQs: 1. How to write a relation using set-builder & interval notations? 2. How to identify a function from a relation? 1. Subsets of Real Numbers 2. Set-builder

More information

First Midterm Examination

First Midterm Examination Çankaya University Department of Mathematics 016-017 Fall Semester MATH 155 - Calculus for Engineering I First Midterm Eamination 1) Find the domain and range of the following functions. Eplain your solution.

More information

PACKET Unit 4 Honors ICM Functions and Limits 1

PACKET Unit 4 Honors ICM Functions and Limits 1 PACKET Unit 4 Honors ICM Functions and Limits 1 Day 1 Homework For each of the rational functions find: a. domain b. -intercept(s) c. y-intercept Graph #8 and #10 with at least 5 EXACT points. 1. f 6.

More information

AP Calculus AB/IB Math SL2 Unit 1: Limits and Continuity. Name:

AP Calculus AB/IB Math SL2 Unit 1: Limits and Continuity. Name: AP Calculus AB/IB Math SL Unit : Limits and Continuity Name: Block: Date:. A bungee jumper dives from a tower at time t = 0. Her height h (in feet) at time t (in seconds) is given by the graph below. In

More information

MATH 151 Engineering Mathematics I

MATH 151 Engineering Mathematics I MATH 151 Engineering Mathematics I Spring 2018, WEEK 3 JoungDong Kim Week 3 Section 2.5, 2.6, 2.7, Continuity, Limits at Infinity; Horizontal Asymptotes, Derivatives and Rates of Change. Section 2.5 Continuity

More information

Chapter The function f and its graph are shown below: + < x. lim f ( x) (a) Calculate. (b) Which value is greater

Chapter The function f and its graph are shown below: + < x. lim f ( x) (a) Calculate. (b) Which value is greater Chapter 1 1 1. The function f and its graph are shown below: f( ) = < 0 1 = 1 1< < 3 (a) Calculate lim f ( ) (b) Which value is greater lim f ( ) or f (1)? Justify your conclusion. (c) At what value(s)

More information

Pre-Calculus Mathematics Limit Process Calculus

Pre-Calculus Mathematics Limit Process Calculus NOTES : LIMITS AND DERIVATIVES Name: Date: Period: Mrs. Nguyen s Initial: LESSON.1 THE TANGENT AND VELOCITY PROBLEMS Pre-Calculus Mathematics Limit Process Calculus The type of it that is used to find

More information

Topic 3 Outline. What is a Limit? Calculating Limits Infinite Limits Limits at Infinity Continuity. 1 Limits and Continuity

Topic 3 Outline. What is a Limit? Calculating Limits Infinite Limits Limits at Infinity Continuity. 1 Limits and Continuity Topic 3 Outline 1 Limits and Continuity What is a Limit? Calculating Limits Infinite Limits Limits at Infinity Continuity D. Kalajdzievska (University of Manitoba) Math 1520 Fall 2015 1 / 27 Topic 3 Learning

More information

All work must be shown in this course for full credit. Unsupported answers may receive NO credit.

All work must be shown in this course for full credit. Unsupported answers may receive NO credit. AP Calculus.1 Worksheet Day 1 All work must be shown in this course for full credit. Unsupported answers may receive NO credit. 1. The only way to guarantee the eistence of a it is to algebraically prove

More information

TRIG REVIEW NOTES. Co-terminal Angles: Angles that end at the same spot. (sines, cosines, and tangents will equal)

TRIG REVIEW NOTES. Co-terminal Angles: Angles that end at the same spot. (sines, cosines, and tangents will equal) TRIG REVIEW NOTES Convert from radians to degrees: multiply by 0 180 Convert from degrees to radians: multiply by 0. 180 Co-terminal Angles: Angles that end at the same spot. (sines, cosines, and tangents

More information

QUIZ ON CHAPTERS 1 AND 2 - SOLUTIONS REVIEW / LIMITS AND CONTINUITY; MATH 150 SPRING 2017 KUNIYUKI 105 POINTS TOTAL, BUT 100 POINTS = 100%

QUIZ ON CHAPTERS 1 AND 2 - SOLUTIONS REVIEW / LIMITS AND CONTINUITY; MATH 150 SPRING 2017 KUNIYUKI 105 POINTS TOTAL, BUT 100 POINTS = 100% QUIZ ON CHAPTERS AND 2 - SOLUTIONS REVIEW / LIMITS AND CONTINUITY; MATH 50 SPRING 207 KUNIYUKI 05 POINTS TOTAL, BUT 00 POINTS = 00% ) For a), b), and c) below, bo in the correct answer. (6 points total;

More information

Summer Review Packet for Students Entering AP Calculus BC. Complex Fractions

Summer Review Packet for Students Entering AP Calculus BC. Complex Fractions Summer Review Packet for Students Entering AP Calculus BC Comple Fractions When simplifying comple fractions, multiply by a fraction equal to 1 which has a numerator and denominator composed of the common

More information

3.3 Limits and Infinity

3.3 Limits and Infinity Calculus Maimus. Limits Infinity Infinity is not a concrete number, but an abstract idea. It s not a destination, but a really long, never-ending journey. It s one of those mind-warping ideas that is difficult

More information

The main way we switch from pre-calc. to calc. is the use of a limit process. Calculus is a "limit machine".

The main way we switch from pre-calc. to calc. is the use of a limit process. Calculus is a limit machine. A Preview of Calculus Limits and Their Properties Objectives: Understand what calculus is and how it compares with precalculus. Understand that the tangent line problem is basic to calculus. Understand

More information

MATH section 3.4 Curve Sketching Page 1 of 29

MATH section 3.4 Curve Sketching Page 1 of 29 MATH section. Curve Sketching Page of 9 The step by step procedure below is for regular rational and polynomial functions. If a function contains radical or trigonometric term, then proceed carefully because

More information

Roberto s Notes on Differential Calculus Chapter 1: Limits and continuity Section 7. Discontinuities. is the tool to use,

Roberto s Notes on Differential Calculus Chapter 1: Limits and continuity Section 7. Discontinuities. is the tool to use, Roberto s Notes on Differential Calculus Chapter 1: Limits and continuity Section 7 Discontinuities What you need to know already: The concept and definition of continuity. What you can learn here: The

More information

Set 3: Limits of functions:

Set 3: Limits of functions: Set 3: Limits of functions: A. The intuitive approach (.): 1. Watch the video at: https://www.khanacademy.org/math/differential-calculus/it-basics-dc/formal-definition-of-its-dc/v/itintuition-review. 3.

More information

Math 261 Final Exam - Practice Problem Solutions. 1. A function f is graphed below.

Math 261 Final Exam - Practice Problem Solutions. 1. A function f is graphed below. Math Final Eam - Practice Problem Solutions. A function f is graphed below. f() 8 7 7 8 (a) Find f(), f( ), f(), and f() f() = ;f( ).;f() is undefined; f() = (b) Find the domain and range of f Domain:

More information

Math Section Bekki George: 08/28/18. University of Houston. Bekki George (UH) Math /28/18 1 / 37

Math Section Bekki George: 08/28/18. University of Houston. Bekki George (UH) Math /28/18 1 / 37 Math 1431 Section 14616 Bekki George: bekki@math.uh.edu University of Houston 08/28/18 Bekki George (UH) Math 1431 08/28/18 1 / 37 Office Hours: Tuesdays and Thursdays 12:30-2pm (also available by appointment)

More information

Topic 2 Limits and Continuity c and d) Continuity Handout Notes Assigned Problems: Intro book pg 73, 1-3 and 6-8

Topic 2 Limits and Continuity c and d) Continuity Handout Notes Assigned Problems: Intro book pg 73, 1-3 and 6-8 c&d. Continuity Handout. Page 1 of 5 Topic Limits and Continuity c and d) Continuity Handout Notes Assigned Problems: Intro book pg 73, 1-3 and 6-8 Recall Limits and Function Values: We have already studied

More information

UNIT 3. Recall From Unit 2 Rational Functions

UNIT 3. Recall From Unit 2 Rational Functions UNIT 3 Recall From Unit Rational Functions f() is a rational function if where p() and q() are and. Rational functions often approach for values of. Rational Functions are not graphs There various types

More information

Respect your friends! Do not distract anyone by chatting with people around you Be considerate of others in class.

Respect your friends! Do not distract anyone by chatting with people around you Be considerate of others in class. Math 1431 Dr. Melahat Almus almus@math.uh.edu http://www.math.uh.edu/~almus Visit CASA regularly for announcements and course material! If you e-mail me, please mention your course (1431) in the subject

More information

Section 2.6 Limits at infinity and infinite limits 2 Lectures. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I

Section 2.6 Limits at infinity and infinite limits 2 Lectures. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I Section 2.6 Limits at infinity and infinite its 2 Lectures College of Science MATHS 0: Calculus I (University of Bahrain) Infinite Limits / 29 Finite its as ±. 2 Horizontal Asympotes. 3 Infinite its. 4

More information

Fundamental Theorem of Calculus

Fundamental Theorem of Calculus Fundamental Theorem of Calculus MATH 6 Calculus I J. Robert Buchanan Department of Mathematics Summer 208 Remarks The Fundamental Theorem of Calculus (FTC) will make the evaluation of definite integrals

More information

THS Step By Step Calculus Chapter 1

THS Step By Step Calculus Chapter 1 Name: Class Period: Throughout this packet there will be blanks you are epected to fill in prior to coming to class. This packet follows your Larson Tetbook. Do NOT throw away! Keep in 3 ring binder until

More information

Things to remember: x n a 1. x + a 0. x n + a n-1. P(x) = a n. Therefore, lim g(x) = 1. EXERCISE 3-2

Things to remember: x n a 1. x + a 0. x n + a n-1. P(x) = a n. Therefore, lim g(x) = 1. EXERCISE 3-2 lim f() = lim (0.8-0.08) = 0, " "!10!10 lim f() = lim 0 = 0.!10!10 Therefore, lim f() = 0.!10 lim g() = lim (0.8 - "!10!10 0.042-3) = 1, " lim g() = lim 1 = 1.!10!0 Therefore, lim g() = 1.!10 EXERCISE

More information

EQ: What are limits, and how do we find them? Finite limits as x ± Horizontal Asymptote. Example Horizontal Asymptote

EQ: What are limits, and how do we find them? Finite limits as x ± Horizontal Asymptote. Example Horizontal Asymptote Finite limits as x ± The symbol for infinity ( ) does not represent a real number. We use to describe the behavior of a function when the values in its domain or range outgrow all finite bounds. For example,

More information

AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals

AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals 8. Basic Integration Rules In this section we will review various integration strategies. Strategies: I. Separate

More information

Rational Functions 4.5

Rational Functions 4.5 Math 4 Pre-Calculus Name Date Rational Function Rational Functions 4.5 g ( ) A function is a rational function if f ( ), where g ( ) and ( ) h ( ) h are polynomials. Vertical asymptotes occur at -values

More information

4.3 Division of Polynomials

4.3 Division of Polynomials 4.3 Division of Polynomials Learning Objectives Divide a polynomials by a monomial. Divide a polynomial by a binomial. Rewrite and graph rational functions. Introduction A rational epression is formed

More information

Calculus I Exam 1 Review Fall 2016

Calculus I Exam 1 Review Fall 2016 Problem 1: Decide whether the following statements are true or false: (a) If f, g are differentiable, then d d x (f g) = f g. (b) If a function is continuous, then it is differentiable. (c) If a function

More information

MATH 151 Engineering Mathematics I

MATH 151 Engineering Mathematics I MATH 151 Engineering Mathematics I Fall, 2016, WEEK 4 JoungDong Kim Week4 Section 2.6, 2.7, 3.1 Limits at infinity, Velocity, Differentiation Section 2.6 Limits at Infinity; Horizontal Asymptotes Definition.

More information

MATH 151 Engineering Mathematics I

MATH 151 Engineering Mathematics I MATH 151 Engineering Mathematics I Fall 2018, WEEK 3 JoungDong Kim Week 3 Section 2.3, 2.5, 2.6, Calculating Limits Using the Limit Laws, Continuity, Limits at Infinity; Horizontal Asymptotes. Section

More information

Math 108, Solution of Midterm Exam 3

Math 108, Solution of Midterm Exam 3 Math 108, Solution of Midterm Exam 3 1 Find an equation of the tangent line to the curve x 3 +y 3 = xy at the point (1,1). Solution. Differentiating both sides of the given equation with respect to x,

More information

3.5 Continuity of a Function One Sided Continuity Intermediate Value Theorem... 23

3.5 Continuity of a Function One Sided Continuity Intermediate Value Theorem... 23 Chapter 3 Limit and Continuity Contents 3. Definition of Limit 3 3.2 Basic Limit Theorems 8 3.3 One sided Limit 4 3.4 Infinite Limit, Limit at infinity and Asymptotes 5 3.4. Infinite Limit and Vertical

More information

Math RE - Calculus I Functions Page 1 of 10. Topics of Functions used in Calculus

Math RE - Calculus I Functions Page 1 of 10. Topics of Functions used in Calculus Math 0-03-RE - Calculus I Functions Page of 0 Definition of a function f() : Topics of Functions used in Calculus A function = f() is a relation between variables and such that for ever value onl one value.

More information

Math 180, Final Exam, Spring 2008 Problem 1 Solution. 1. For each of the following limits, determine whether the limit exists and, if so, evaluate it.

Math 180, Final Exam, Spring 2008 Problem 1 Solution. 1. For each of the following limits, determine whether the limit exists and, if so, evaluate it. Math 80, Final Eam, Spring 008 Problem Solution. For each of the following limits, determine whether the limit eists and, if so, evaluate it. + (a) lim 0 (b) lim ( ) 3 (c) lim Solution: (a) Upon substituting

More information

In everyday speech, a continuous. Limits and Continuity. Critical Thinking Exercises

In everyday speech, a continuous. Limits and Continuity. Critical Thinking Exercises 062 Chapter Introduction to Calculus Critical Thinking Eercises Make Sense? In Eercises 74 77, determine whether each statement makes sense or does not make sense, and eplain our reasoning. 74. I evaluated

More information

Concept Category 5. Limits. Limits: graphically & algebraically Rate of Change

Concept Category 5. Limits. Limits: graphically & algebraically Rate of Change Concept Category 5 Limits Limits: graphically & algebraically Rate of Change Skills Factoring and Rational Epressions (Alg, CC1) Behavior of a graph (Alg, CC1) Sketch a graph:,,, Log, (Alg, CC1 & ) 1 Factoring

More information

arb where a A, b B and we say a is related to b. Howdowewritea is not related to b? 2Rw 1Ro A B = {(a, b) a A, b B}

arb where a A, b B and we say a is related to b. Howdowewritea is not related to b? 2Rw 1Ro A B = {(a, b) a A, b B} Functions Functions play an important role in mathematics as well as computer science. A function is a special type of relation. So what s a relation? A relation, R, from set A to set B is defined as arb

More information

1) If f x symmetric about what? (Box in one:) (2 points) the x-axis the y-axis the origin none of these

1) If f x symmetric about what? (Box in one:) (2 points) the x-axis the y-axis the origin none of these QUIZ ON CHAPTERS AND - SOLUTIONS REVIEW / LIMITS AND CONTINUITY; MATH 50 FALL 06 KUNIYUKI 05 POINTS TOTAL, BUT 00 POINTS = 00% = x /, then the graph of y = f ( x) in the usual (Cartesian) xy-plane is )

More information

Continuity. MATH 161 Calculus I. J. Robert Buchanan. Fall Department of Mathematics

Continuity. MATH 161 Calculus I. J. Robert Buchanan. Fall Department of Mathematics Continuity MATH 161 Calculus I J. Robert Buchanan Department of Mathematics Fall 2017 Intuitive Idea A process or an item can be described as continuous if it exists without interruption. The mathematical

More information

80 Wyner PreCalculus Spring 2017

80 Wyner PreCalculus Spring 2017 80 Wyner PreCalculus Spring 2017 CHAPTER NINE: DERIVATIVES Review May 16 Test May 23 Calculus begins with the study of rates of change, called derivatives. For example, the derivative of velocity is acceleration

More information

(ii) y = ln 1 ] t 3 t x x2 9

(ii) y = ln 1 ] t 3 t x x2 9 Study Guide for Eam 1 1. You are supposed to be able to determine the domain of a function, looking at the conditions for its epression to be well-defined. Some eamples of the conditions are: What is inside

More information

An Intro to Limits Sketch to graph of 3

An Intro to Limits Sketch to graph of 3 Limits and Their Properties A Preview of Calculus Objectives: Understand what calculus is and how it compares with precalculus.understand that the tangent line problem is basic to calculus. Understand

More information

Solutions to Math 41 First Exam October 12, 2010

Solutions to Math 41 First Exam October 12, 2010 Solutions to Math 41 First Eam October 12, 2010 1. 13 points) Find each of the following its, with justification. If the it does not eist, eplain why. If there is an infinite it, then eplain whether it

More information

This Week. Professor Christopher Hoffman Math 124

This Week. Professor Christopher Hoffman Math 124 This Week Sections 2.1-2.3,2.5,2.6 First homework due Tuesday night at 11:30 p.m. Average and instantaneous velocity worksheet Tuesday available at http://www.math.washington.edu/ m124/ (under week 2)

More information

UNIT 3. Rational Functions Limits at Infinity (Horizontal and Slant Asymptotes) Infinite Limits (Vertical Asymptotes) Graphing Rational Functions

UNIT 3. Rational Functions Limits at Infinity (Horizontal and Slant Asymptotes) Infinite Limits (Vertical Asymptotes) Graphing Rational Functions UNIT 3 Rational Functions Limits at Infinity (Horizontal and Slant Asymptotes) Infinite Limits (Vertical Asymptotes) Graphing Rational Functions Recall From Unit Rational Functions f() is a rational function

More information

Math 2414 Activity 1 (Due by end of class July 23) Precalculus Problems: 3,0 and are tangent to the parabola axis. Find the other line.

Math 2414 Activity 1 (Due by end of class July 23) Precalculus Problems: 3,0 and are tangent to the parabola axis. Find the other line. Math 44 Activity (Due by end of class July 3) Precalculus Problems: 3, and are tangent to the parabola ais. Find the other line.. One of the two lines that pass through y is the - {Hint: For a line through

More information

Feedback D. Incorrect! Exponential functions are continuous everywhere. Look for features like square roots or denominators that could be made 0.

Feedback D. Incorrect! Exponential functions are continuous everywhere. Look for features like square roots or denominators that could be made 0. Calculus Problem Solving Drill 07: Trigonometric Limits and Continuity No. of 0 Instruction: () Read the problem statement and answer choices carefully. () Do your work on a separate sheet of paper. (3)

More information

Math Section Bekki George: 01/16/19. University of Houston. Bekki George (UH) Math /16/19 1 / 31

Math Section Bekki George: 01/16/19. University of Houston. Bekki George (UH) Math /16/19 1 / 31 Math 1431 Section 12200 Bekki George: bekki@math.uh.edu University of Houston 01/16/19 Bekki George (UH) Math 1431 01/16/19 1 / 31 Office Hours: Mondays 1-2pm, Tuesdays 2:45-3:30pm (also available by appointment)

More information

Math Section Bekki George: 02/25/19. University of Houston. Bekki George (UH) Math /25/19 1 / 19

Math Section Bekki George: 02/25/19. University of Houston. Bekki George (UH) Math /25/19 1 / 19 Math 1431 Section 12200 Bekki George: rageorge@central.uh.edu University of Houston 02/25/19 Bekki George (UH) Math 1431 02/25/19 1 / 19 Office Hours: Mondays 1-2pm, Tuesdays 2:45-3:30pm (also available

More information

MA 123 Calculus I Midterm II Practice Exam Answer Key

MA 123 Calculus I Midterm II Practice Exam Answer Key MA 1 Midterm II Practice Eam Note: Be aware that there may be more than one method to solving any one question. Keep in mind that the beauty in math is that you can often obtain the same answer from more

More information

Daily WeBWorK. 1. Below is the graph of the derivative f (x) of a function defined on the interval (0, 8).

Daily WeBWorK. 1. Below is the graph of the derivative f (x) of a function defined on the interval (0, 8). Daily WeBWorK 1. Below is the graph of the derivative f (x) of a function defined on the interval (0, 8). (a) On what intervals is f (x) concave down? f (x) is concave down where f (x) is decreasing, so

More information

DRAFT - Math 101 Lecture Note - Dr. Said Algarni

DRAFT - Math 101 Lecture Note - Dr. Said Algarni 2 Limits 2.1 The Tangent Problems The word tangent is derived from the Latin word tangens, which means touching. A tangent line to a curve is a line that touches the curve and a secant line is a line that

More information

Chapter 1 Functions and Limits

Chapter 1 Functions and Limits Contents Chapter 1 Functions and Limits Motivation to Chapter 1 2 4 Tangent and Velocity Problems 3 4.1 VIDEO - Secant Lines, Average Rate of Change, and Applications......................... 3 4.2 VIDEO

More information

Algebra Review. Unit 7 Polynomials

Algebra Review. Unit 7 Polynomials Algebra Review Below is a list of topics and practice problems you have covered so far this semester. You do not need to work out every question on the review. Skip around and work the types of questions

More information

Continuity at a Point

Continuity at a Point Continuity at a Point When we eplored the limit of f() as approaches c, the emphasis was on the function values close to = c rather than what happens to the function at = c. We will now consider the following

More information

MATH 113: ELEMENTARY CALCULUS

MATH 113: ELEMENTARY CALCULUS MATH 3: ELEMENTARY CALCULUS Please check www.ualberta.ca/ zhiyongz for notes updation! 6. Rates of Change and Limits A fundamental philosophical truth is that everything changes. In physics, the change

More information

Math 1314 Lesson 1: Prerequisites

Math 1314 Lesson 1: Prerequisites Math 131 Lesson 1: Prerequisites Prerequisites are topics you should have mastered before you enter this class. Because of the emphasis on technology in this course, there are few skills which you will

More information

. Show the work that leads to your answer. (c) State the equation(s) for the vertical asymptote(s) for the graph of y f( x).

. Show the work that leads to your answer. (c) State the equation(s) for the vertical asymptote(s) for the graph of y f( x). Chapter 1 1. (AB/BC, non-calculator) The function f is defined as follows: f( ) 5 6. 7 3 (a) State the value(s) of for which f is not continuous. (b) Evaluate f ( ). Show the work that leads to your answer.

More information

1.5 Inverse Trigonometric Functions

1.5 Inverse Trigonometric Functions 1.5 Inverse Trigonometric Functions Remember that only one-to-one functions have inverses. So, in order to find the inverse functions for sine, cosine, and tangent, we must restrict their domains to intervals

More information

4.3 1st and 2nd derivative tests

4.3 1st and 2nd derivative tests CHAPTER 4. APPLICATIONS OF DERIVATIVES 08 4.3 st and nd derivative tests Definition. If f 0 () > 0 we say that f() is increasing. If f 0 () < 0 we say that f() is decreasing. f 0 () > 0 f 0 () < 0 Theorem

More information

CHAPTER 1 Limits and Their Properties

CHAPTER 1 Limits and Their Properties CHAPTER Limits and Their Properties Section. A Preview of Calculus................... 305 Section. Finding Limits Graphically and Numerically....... 305 Section.3 Evaluating Limits Analytically...............

More information

West Essex Regional School District. AP Calculus AB. Summer Packet

West Essex Regional School District. AP Calculus AB. Summer Packet West Esse Regional School District AP Calculus AB Summer Packet 05-06 Calculus AB Calculus AB covers the equivalent of a one semester college calculus course. Our focus will be on differential and integral

More information

Math 2414 Activity 1 (Due by end of class Jan. 26) Precalculus Problems: 3,0 and are tangent to the parabola axis. Find the other line.

Math 2414 Activity 1 (Due by end of class Jan. 26) Precalculus Problems: 3,0 and are tangent to the parabola axis. Find the other line. Math Activity (Due by end of class Jan. 6) Precalculus Problems: 3, and are tangent to the parabola ais. Find the other line.. One of the two lines that pass through y is the - {Hint: For a line through

More information

2.4 The Precise Definition of a Limit

2.4 The Precise Definition of a Limit 2.4 The Precise Definition of a Limit Reminders/Remarks: x 4 < 3 means that the distance between x and 4 is less than 3. In other words, x lies strictly between 1 and 7. So, x a < δ means that the distance

More information

AP Calculus Notes: Unit 1 Limits & Continuity. Syllabus Objective: 1.1 The student will calculate limits using the basic limit theorems.

AP Calculus Notes: Unit 1 Limits & Continuity. Syllabus Objective: 1.1 The student will calculate limits using the basic limit theorems. Syllabus Objective:. The student will calculate its using the basic it theorems. LIMITS how the outputs o a unction behave as the inputs approach some value Finding a Limit Notation: The it as approaches

More information

x = c of N if the limit of f (x) = L and the right-handed limit lim f ( x)

x = c of N if the limit of f (x) = L and the right-handed limit lim f ( x) Limit We say the limit of f () as approaches c equals L an write, lim L. One-Sie Limits (Left an Right-Hane Limits) Suppose a function f is efine near but not necessarily at We say that f has a left-hane

More information

Math 2003 Test D This part of the Exam is to be done without a calculator

Math 2003 Test D This part of the Exam is to be done without a calculator Math 00 Test D This part of the Eam is to be done without a calculator. Which of the following is the correct graph of =? b) c) d) e). Find all the intercepts of = -intercept: 0 -intercepts: 0, -, b) -intercepts:

More information

2.1 The Tangent and Velocity Problems

2.1 The Tangent and Velocity Problems 2.1 The Tangent and Velocity Problems Tangents What is a tangent? Tangent lines and Secant lines Estimating slopes from discrete data: Example: 1. A tank holds 1000 gallons of water, which drains from

More information

Homework Assignments Math /02 Spring 2015

Homework Assignments Math /02 Spring 2015 Homework Assignments Math 1-01/0 Spring 015 Assignment 1 Due date : Frida, Januar Section 5.1, Page 159: #1-, 10, 11, 1; Section 5., Page 16: Find the slope and -intercept, and then plot the line in problems:

More information

Analysis of Functions

Analysis of Functions Lecture for Week 11 (Secs. 5.1 3) Analysis of Functions (We used to call this topic curve sketching, before students could sketch curves by typing formulas into their calculators. It is still important

More information

AP Calculus BC Final Exam Preparatory Materials December 2016

AP Calculus BC Final Exam Preparatory Materials December 2016 AP Calculus BC Final Eam Preparatory Materials December 06 Your first semester final eam will consist of both multiple choice and free response questions, similar to the AP Eam The following practice problems

More information

Pre-Calculus Assignment Sheet Unit 8-3rd term January 20 th to February 6 th 2015 Polynomials

Pre-Calculus Assignment Sheet Unit 8-3rd term January 20 th to February 6 th 2015 Polynomials Pre-Calculus Assignment Sheet Unit 8- rd term January 0 th to February 6 th 01 Polynomials Date Topic Assignment Calculator Did it Tuesday Multiplicity of zeroes of 1/0/1 a function TI-nspire activity

More information

AP Calculus AB Summer Assignment School Year

AP Calculus AB Summer Assignment School Year AP Calculus AB Summer Assignment School Year 018-019 Objective of the summer assignment: The AP Calculus summer assignment is designed to serve as a review for many of the prerequisite math skills required

More information

Continuity and One-Sided Limits. By Tuesday J. Johnson

Continuity and One-Sided Limits. By Tuesday J. Johnson Continuity and One-Sided Limits By Tuesday J. Johnson Suggested Review Topics Algebra skills reviews suggested: Evaluating functions Rationalizing numerators and/or denominators Trigonometric skills reviews

More information

Math 106 Calculus 1 Topics for first exam

Math 106 Calculus 1 Topics for first exam Chapter 2: Limits and Continuity Rates of change and its: Math 06 Calculus Topics for first exam Limit of a function f at a point a = the value the function should take at the point = the value that the

More information

Pre-Calculus and Trigonometry Capacity Matrix

Pre-Calculus and Trigonometry Capacity Matrix Pre-Calculus and Capacity Matri Review Polynomials A1.1.4 A1.2.5 Add, subtract, multiply and simplify polynomials and rational epressions Solve polynomial equations and equations involving rational epressions

More information

Limits and Continuity

Limits and Continuity Limits and Continuity MATH 151 Calculus for Management J. Robert Buchanan Department of Mathematics Fall 2018 Objectives After this lesson we will be able to: Determine the left-hand and right-hand limits

More information

Calculus - Chapter 2 Solutions

Calculus - Chapter 2 Solutions Calculus - Chapter Solutions. a. See graph at right. b. The velocity is decreasing over the entire interval. It is changing fastest at the beginning and slowest at the end. c. A = (95 + 85)(5) = 450 feet

More information

Solutions to Problem Sheet for Week 6

Solutions to Problem Sheet for Week 6 THE UNIVERSITY OF SYDNEY SCHOOL OF MATHEMATICS AND STATISTICS Solutions to Problem Sheet for Week 6 MATH90: Differential Calculus (Advanced) Semester, 07 Web Page: sydney.edu.au/science/maths/u/ug/jm/math90/

More information

18.01 Single Variable Calculus Fall 2006

18.01 Single Variable Calculus Fall 2006 MIT OpenCourseWare http://ocw.mit.edu 8.0 Single Variable Calculus Fall 2006 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Lecture 0 8.0 Fall 2006 Lecture

More information

Properties of Derivatives

Properties of Derivatives 6 CHAPTER Properties of Derivatives To investigate derivatives using first principles, we will look at the slope of f ( ) = at the point P (,9 ). Let Q1, Q, Q, Q4, be a sequence of points on the curve

More information