Chapter The function f and its graph are shown below: + < x. lim f ( x) (a) Calculate. (b) Which value is greater

Size: px
Start display at page:

Download "Chapter The function f and its graph are shown below: + < x. lim f ( x) (a) Calculate. (b) Which value is greater"

Transcription

1 Chapter The function f and its graph are shown below: f( ) = < 0 1 = 1 1< < 3 (a) Calculate lim f ( ) (b) Which value is greater lim f ( ) or f (1)? Justify your conclusion. (c) At what value(s) of c on the interval [ ] 0, 4 does lim f ( ) not eist? Justify your conclusion.

2 Chapter 1 1. The function f and its graph are shown below: f( ) = < 0 1 = 1 1< < 3 (a) Calculate lim f ( ) As we approach = from the left, the graph of f ( ) nears 4 so lim f( ) = 4. 1 lim f( ) = 4 (b) Which value is greater lim f ( ) or f (1)? Justify your conclusion. Since lim f( ) = 1 and lim f( ) = 1, lim f( ) = 1. From the function equation and graph, we see f (1) =. Therefore, f (1) > lim f( ). (c) At what value(s) of c on the interval [ ] 0, 4 does lim f ( ) not eist? Justify your conclusion. If the function f is continuous at = c, then lim f ( ) eists and lim f ( ) = f( c). We find the discontinuities in the graph of f ( ). Discontinuities occur at = 1 and =. Consider lim f ( ) and lim f ( ). In part (b), we showed lim f( ) = 1 so the limit eists at = 1. Consider lim f ( ). lim f( ) = 4 and lim f( ) = 3. Since the left and right hand limits are not equal, lim f ( ) does not eist. 1 lim f( ) = 1 1 f (1) = f (1) > lim f( ) 1 If f is continuous at = c, then lim f ( ) eists. 1 lim f( ) = 1 1 lim f( ) = 4 and lim f( ) = 3 1 At =, lim f ( ) does not eist.

3 Chapter 1 3. The function f and its graph are shown below: 0 < 1 3 = 1 f( ) = 1< < 1 (a) Calculate lim f ( ) (b) Which value is greater lim f ( ) or f ()? Justify your conclusion. (c) At what value(s) of c on the interval [ ] 0,3 does lim f ( ) not eist? Justify your conclusion.

4 Chapter 1 4. The function f and its graph are shown below: 0 < 1 3 = 1 f( ) = 1< < 1 (a) Calculate lim f ( ) As we approach = from the right, the graph of f ( ) nears 1 so lim f( ) = 1. 1 lim f( ) = 1 (b) Which value is greater lim f ( ) or f ()? Justify your conclusion. Since lim f( ) = and lim f( ) =, lim f( ) =. From the function equation and graph, we see f () = 1. Therefore, lim f ( ) > f(). 1 lim f( ) = 1 f () = 1 lim f ( ) > f() (c) At what value(s) of c on the interval [ ] Justify your conclusion. 0,3 does lim f ( ) not eist? If the function f is continuous at = c, then lim f ( ) eists and lim f ( ) = f( c). We find the discontinuities in the graph of f ( ). Discontinuities occur at = 1 and =. Consider lim f ( ) and lim f ( ). In part (b), we showed lim f( ) = so the limit eists at = 1. Consider lim f ( ). lim f( ) = 4 and lim f( ) = 1. Since the left and right hand limits are not equal, lim f ( ) does not eist. 1 If f is continuous at = c, then lim f ( ) eists. 1 lim f( ) = 1 lim f( ) = 4 and lim f( ) = 1 1 At =, lim f ( ) does not eist.

5 Chapter The function g is defined as follows: g ( ) = (a) Use a table of values to estimate lim g ( ) work that leads to your conclusion. accurate to three decimal places. Show the (b) Calculate lim g ( ) and lim g ( )? Show the work that leads to your conclusion. 3 3 (c) g ( ) is undefined at = and = 3. Eplain why not eist. lim g ( ) eists but lim g ( ) 3 does

6 Chapter The function g is defined as follows: g ( ) = (a) Use a table of values to estimate lim g ( ) accurate to three decimal places. Show the work that leads to your conclusion. g ( ) lim g ( ) = undef (b) Calculate lim g ( ) and lim g ( )? Show the work that leads to 3 your conclusion. 3 g ( ) lim g ( ) = ,001 lim g ( ) = 3 3 undef , (c) g ( ) is undefined at = and = 3. Eplain why eists but lim g ( ) does not eist. 3 lim g ( ) 4 The function g ( ) = may be rewritten as 5 6 ( )( ) g ( ) =. Observe that and 3 because ( )( 3) these values make the denominator zero. With this restriction, g ( ) may be further simplified to g ( ) =. This function has 3 a vertical asymptote at = 3 and a removable discontinuity at =. Therefore, lim g ( ) eists but lim g ( ) does not eist. 3 1 lim g ( ) = Table of values is used 1 Table of values shows two table entries on 1 1 either side of with g ( ) = lim g ( ) = 3 lim g ( ) = 3 Table of values or graph support conclusion 1 Eplains that g ( ) has a vertical asymptote at = 3. 1 Eplains that g ( ) has a removable discontinuity at =.

7 Chapter The function g is defined as follows: g ( ) = 4 (a) Use a table of values to estimate lim g ( ) work that leads to your conclusion. accurate to three decimal places. Show the (b) Calculate lim g ( ) and lim g ( )? Show the work that leads to your conclusion. (c) g ( ) is undefined at = and = not eist.. Eplain whylim g ( ) eists but lim g ( ) does

8 Chapter The function g is defined as follows: g ( ) =. 4 (a) Use a table of values to estimate lim g ( ) accurate to three decimal places. Show the work that leads to your conclusion. g ( ) lim g ( ) = undef (b) Calculate lim g ( ) and lim g ( )? Show the work that leads to your conclusion. g ( ).1 1 lim g ( ) = lim g ( ) = undef (c) g ( ) is undefined at = and =. Eplain whylim g ( ) eists but lim g ( ) does not eist. The function g ( ) = may be rewritten as 4 ( ) g ( ) =. Observe that and because ( )( ) these values make the denominator zero. With this restriction, g ( ) may be further simplified to g ( ) =. This function has a vertical asymptote at = and a removable discontinuity at =. Therefore, lim g ( ) eists but lim g ( ) does not eist. 1 lim g ( ) = Table of values is used 1 Table of values shows two table entries on 1 1 either side of with g ( ) = lim g ( ) = lim g ( ) = Table of values or graph support conclusion 1 Eplains that g ( ) has a vertical asymptote at =. 1 Eplains that g ( ) has a removable discontinuity at =.

9 Chapter Define 4 1 < 1 f( ) = < (a) Show f ( ) is continuous at = 5. (b) Where on the interval [ 1, 4 ] is f discontinuous? Show the work that leads to your conclusion. (c) Eplain the difference between a removable and an irremovable discontinuity.

10 Chapter Define 4 1 < 1 f( ) = < (a) Show f ( ) is continuous at = lim f( ) = lim f( ) = 0.5 so 5 5 to 0.5. f (5) = lim f ( ) = f(5) 5 lim f ( ) 5 eists and is equal 1 Show lim f ( ) eists 5 1 f (5) = lim f ( ) = f(5) 5 (b) Where on the interval [ 1, 4 ] is f discontinuous? Show the work that leads to your conclusion. Since linear functions are continuous, f is continuous on [1, ). Since lim f( ) = and lim f( ) = 1, lim f ( ) does not eist. Therefore, f is discontinuous at =. The 1 function is defined for all values of on [, 4] ecept at 3 = 3. Therefore, a discontinuity occurs at = 3. For every other value c in the interval [,4], lim f ( ) = f( c). Thus f is continuous at every other point. (c) Eplain the difference between a removable and an irremovable discontinuity. If lim f ( ) eists but lim f ( ) f( c), then a removable discontinuity occurs at = c. If lim f ( ) does not eist then an irremovable discontinuity occurs at = c. 1 Show that lim f ( ) does not eist. 1 States f is discontinuous at = 1 State f is discontinuous at = 3 because f is undefined there 1 Provide justification that f is continuous everywhere else. 1 Concept of lim f ( ) eists but lim f ( ) f( c) for removable 1 Concept of lim f ( ) does not eist for irremovable

11 Chapter Define ln 1 f( ) =. (a) Show f ( ) is continuous at =. (b) Where on the interval [, ] is f discontinuous? Show the work that leads to your conclusion. (c) Classify the discontinuities in part (b) as removable or irremovable.

12 Chapter Define ln 1 f( ) =. (a) Show f ( ) is continuous at = lim f( ) = lim f( ) = 0 so ln 1 ln 1 f () = = = 0 lim f ( ) = f() lim f ( ) eists and is equal to 0. 1 Show lim f ( ) eists 1 f () = 0 1 lim f ( ) = f() (b) Where on the interval [, ] is f discontinuous? Show the work that leads to your conclusion. We know y = ln is continuous for positive values of. Consequently, y = ln is continuous for all nonzero values of ; however, it is undefined and thus discontinuous when = 0. Similarly, y = ln 1 is continuous for all values of ecept at = 1, where it is undefined. Therefore, the function ln 1 f( ) = is discontinuous at = 1. It is also discontinuous at = 0 because f is undefined there. Shows that f is undefined at = 0 and = 1. 1 States that f is discontinuous where it is not defined. 1 Provides justification that f is continuous everywhere else. (c) Classify the discontinuities in part (b) as removable or irremovable. f ( ) f ( ) undef 1 undef In the table on the left, we see that lim f( ) = 1. Since the limit 0 eists, = 0 is a removable discontinuity. In the table on the right, it initially appears as if lim f( ) = 9.09 ; however, we notice that the values of f are changing rather dramatically as we near = 1. In fact, f ( ) = which is not at all close to Consequently, we conclude that lim f( ) =. Therefore, = 1 is an irremovable discontinuity. 1 = 0 is a removable discontinuity 1 = 1 is an irremovable discontinuity

13 Chapter Define f( ) = 1. 1 (a) Find lim f ( ) analytically. (b) Define 1 1 g ( ) =. What is the relationship between f and g? 1 (c) Eplain why lim f( ) =.

14 Chapter Define f( ) =. 1 (a) Find lim f ( ) analytically. 1 lim f( ) = lim 1 1 = lim 1 = lim ( 1) ( 1)( 1) ( 1) ( 1) 1 1 = 1 1 = 0 1 (b) Define g ( ) =. What is the relationship between f and g? 1 The graphs of f and g will look essentially the same. However, the graph of f will have a removable discontinuity at =1. or The domain of f is all real numbers ecept =± 1 whereas the domain of g is all real numbers ecept = 1. (c) Eplain why lim f( ) =. We evaluate f ( ) at values of increasingly close to = 1 as we approach = 1 from the right. f (1.1) = 1 f (1.01) = 01 f (1.001) = 001 f (1.0001) = 0001 We see that the values of f become increasingly large as nears = 1 from the right. Thus lim f( ) = 1 Correctly factor numerator and denominator. 1 Cancel 1 lim f( ) = 0 1 Observe that the graphs of f and g differ by a single point OR that the domains of f and g differ by a single value 1 Evaluate f at four or more values of within [ 1,1.1 ] Show a trend of increasing function values as nears 1 from the right.

15 Chapter Define cos 1 f( ) =. sin (a) Use a table of values to estimate lim f ( ) accurate to three decimal places. (b) Define g ( ) = ( ) 0 1 f. Use properties of limits to show that 1 lim g ( ) =. 0 (c) Is g continuous? Show the work that leads to your conclusion.

16 Chapter 1 16 cos 1 8. Define f( ) =. sin (a) Use a table of values to estimate three decimal places. lim f ( ) 0 accurate to f ( ) undef lim f( ) = (b) Define g ( ) =. Use properties of limits to f ( ) 1 show that lim g ( ) =. 0 In part (a), we showed that that lim ( 1) = 1. So 0 lim ( 1) 0 lim g ( ) = 0 lim f( ) 0 lim f( ) = 0. We also know 0 1 = 0 1 = (c) Is g continuous? Show the work that leads to your conclusion. 1 g ( ) = f ( ) 1 = cos 1 sin At = 0, sin = 0. This makes the denominator undefined. Therefore, g is not continuous at = 0 1 lim f( ) = Table of values is used 1 Table of values shows two table entries on either side of 0 with f( ) = ( ) lim 1 = lim f( ) = 0 1 properly apply limit properties to show 1 lim g ( ) = 0 1 Find a discontinuity State that function is not continuous.

17 Chapter Define 1 cos f( ) = and g ( ) = on the interval (0, ). (a) Show g( ) f ( ) 0 (b) Identify all vertical asymptotes of f or g. Show the work that leads to your conclusion. f ( ) (c) Determine lim. Show the work that leads to your conclusion. 0 g ( )

18 Chapter cos 9. Define f( ) = and (a) Show g( ) f ( ) 0. 1 cos 1 1 cos 1 1 cos 0 1 cos g ( ) = on the interval (0, ).

1 DL3. Infinite Limits and Limits at Infinity

1 DL3. Infinite Limits and Limits at Infinity Daily Lessons and Assessments for AP* Calculus AB, A Complete Course Page 78 Mark Sparks 01 Infinite Limits and Limits at Infinity In our graphical analysis of its, we have already seen both an infinite

More information

So, t = 1 is a point of inflection of s(). Use s () t to find the velocity at t = Because 0, use 144.

So, t = 1 is a point of inflection of s(). Use s () t to find the velocity at t = Because 0, use 144. AP Eam Practice Questions for Chapter AP Eam Practice Questions for Chapter f 4 + 6 7 9 f + 7 0 + 6 0 ( + )( ) 0,. The critical numbers of f( ) are and.. Evaluate each point. A: d d C: d d B: D: d d d

More information

. Show the work that leads to your answer. (c) State the equation(s) for the vertical asymptote(s) for the graph of y f( x).

. Show the work that leads to your answer. (c) State the equation(s) for the vertical asymptote(s) for the graph of y f( x). Chapter 1 1. (AB/BC, non-calculator) The function f is defined as follows: f( ) 5 6. 7 3 (a) State the value(s) of for which f is not continuous. (b) Evaluate f ( ). Show the work that leads to your answer.

More information

Roberto s Notes on Differential Calculus Chapter 1: Limits and continuity Section 7. Discontinuities. is the tool to use,

Roberto s Notes on Differential Calculus Chapter 1: Limits and continuity Section 7. Discontinuities. is the tool to use, Roberto s Notes on Differential Calculus Chapter 1: Limits and continuity Section 7 Discontinuities What you need to know already: The concept and definition of continuity. What you can learn here: The

More information

4. (6 points) Express the domain of the following function in interval notation:

4. (6 points) Express the domain of the following function in interval notation: Eam 1-A L. Ballou Name Math 131 Calculus I September 1, 016 NO Calculator Allowed BOX YOUR ANSWER! Show all work for full credit! 1. (4 points) Write an equation of a line with y-intercept 4 and -intercept

More information

Chapter (AB/BC, non-calculator) (a) Find the critical numbers of g. (b) For what values of x is g increasing? Justify your answer.

Chapter (AB/BC, non-calculator) (a) Find the critical numbers of g. (b) For what values of x is g increasing? Justify your answer. Chapter 3 1. (AB/BC, non-calculator) Given g ( ) 2 4 3 6 : (a) Find the critical numbers of g. (b) For what values of is g increasing? Justify your answer. (c) Identify the -coordinate of the critical

More information

Things to remember: x n a 1. x + a 0. x n + a n-1. P(x) = a n. Therefore, lim g(x) = 1. EXERCISE 3-2

Things to remember: x n a 1. x + a 0. x n + a n-1. P(x) = a n. Therefore, lim g(x) = 1. EXERCISE 3-2 lim f() = lim (0.8-0.08) = 0, " "!10!10 lim f() = lim 0 = 0.!10!10 Therefore, lim f() = 0.!10 lim g() = lim (0.8 - "!10!10 0.042-3) = 1, " lim g() = lim 1 = 1.!10!0 Therefore, lim g() = 1.!10 EXERCISE

More information

PACKET Unit 4 Honors ICM Functions and Limits 1

PACKET Unit 4 Honors ICM Functions and Limits 1 PACKET Unit 4 Honors ICM Functions and Limits 1 Day 1 Homework For each of the rational functions find: a. domain b. -intercept(s) c. y-intercept Graph #8 and #10 with at least 5 EXACT points. 1. f 6.

More information

QUIZ ON CHAPTERS 1 AND 2 - SOLUTIONS REVIEW / LIMITS AND CONTINUITY; MATH 150 SPRING 2017 KUNIYUKI 105 POINTS TOTAL, BUT 100 POINTS = 100%

QUIZ ON CHAPTERS 1 AND 2 - SOLUTIONS REVIEW / LIMITS AND CONTINUITY; MATH 150 SPRING 2017 KUNIYUKI 105 POINTS TOTAL, BUT 100 POINTS = 100% QUIZ ON CHAPTERS AND 2 - SOLUTIONS REVIEW / LIMITS AND CONTINUITY; MATH 50 SPRING 207 KUNIYUKI 05 POINTS TOTAL, BUT 00 POINTS = 00% ) For a), b), and c) below, bo in the correct answer. (6 points total;

More information

Copyright PreCalculusCoach.com

Copyright PreCalculusCoach.com Continuit, End Behavior, and Limits Assignment Determine whether each function is continuous at the given -values. Justif using the continuit test. If discontinuous, identif the tpe of discontinuit as

More information

MATH CALCULUS I 1.5: Continuity

MATH CALCULUS I 1.5: Continuity MATH 12002 - CALCULUS I 1.5: Continuity Professor Donald L. White Department of Mathematical Sciences Kent State University D.L. White (Kent State University) 1 / 12 Definition of Continuity Intuitively,

More information

(a) Show that there is a root α of f (x) = 0 in the interval [1.2, 1.3]. (2)

(a) Show that there is a root α of f (x) = 0 in the interval [1.2, 1.3]. (2) . f() = 4 cosec 4 +, where is in radians. (a) Show that there is a root α of f () = 0 in the interval [.,.3]. Show that the equation f() = 0 can be written in the form = + sin 4 Use the iterative formula

More information

APPLICATIONS OF DIFFERENTIATION

APPLICATIONS OF DIFFERENTIATION 4 APPLICATIONS OF DIFFERENTIATION APPLICATIONS OF DIFFERENTIATION 4.4 Indeterminate Forms and L Hospital s Rule In this section, we will learn: How to evaluate functions whose values cannot be found at

More information

AP Exam Practice Questions for Chapter 3

AP Exam Practice Questions for Chapter 3 AP Eam Practice Questions for Chapter AP Eam Practice Questions for Chapter f + 6 7 9 f + 7 0 + 6 0 ( + )( ) 0,. The critical numbers of f are and. So, the answer is B.. Evaluate each statement. I: Because

More information

SEE and DISCUSS the pictures on pages in your text. Key picture:

SEE and DISCUSS the pictures on pages in your text. Key picture: Math 6 Notes 1.1 A PREVIEW OF CALCULUS There are main problems in calculus: 1. Finding a tangent line to a curve though a point on the curve.. Finding the area under a curve on some interval. SEE and DISCUSS

More information

AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals

AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals 8. Basic Integration Rules In this section we will review various integration strategies. Strategies: I. Separate

More information

Limits, Continuity, and Differentiability Solutions

Limits, Continuity, and Differentiability Solutions Limits, Continuity, and Differentiability Solutions We have intentionally included more material than can be covered in most Student Study Sessions to account for groups that are able to answer the questions

More information

APPLICATIONS OF DIFFERENTIATION

APPLICATIONS OF DIFFERENTIATION 4 APPLICATIONS OF DIFFERENTIATION APPLICATIONS OF DIFFERENTIATION 4.4 Indeterminate Forms and L Hospital s Rule In this section, we will learn: How to evaluate functions whose values cannot be found at

More information

Review: Limits of Functions - 10/7/16

Review: Limits of Functions - 10/7/16 Review: Limits of Functions - 10/7/16 1 Right and Left Hand Limits Definition 1.0.1 We write lim a f() = L to mean that the function f() approaches L as approaches a from the left. We call this the left

More information

Rolle s Theorem, the Mean Value Theorem, and L Hôpital s Rule

Rolle s Theorem, the Mean Value Theorem, and L Hôpital s Rule Rolle s Theorem, the Mean Value Theorem, and L Hôpital s Rule 5. Rolle s Theorem In the following problems (a) Verify that the three conditions of Rolle s theorem have been met. (b) Find all values z that

More information

Solution to Review Problems for Midterm #1

Solution to Review Problems for Midterm #1 Solution to Review Problems for Midterm # Midterm I: Wednesday, September in class Topics:.,.3 and.-.6 (ecept.3) Office hours before the eam: Monday - and 4-6 p.m., Tuesday - pm and 4-6 pm at UH 080B)

More information

The function graphed below is continuous everywhere. The function graphed below is NOT continuous everywhere, it is discontinuous at x 2 and

The function graphed below is continuous everywhere. The function graphed below is NOT continuous everywhere, it is discontinuous at x 2 and Section 1.4 Continuity A function is a continuous at a point if its graph has no gaps, holes, breaks or jumps at that point. If a function is not continuous at a point, then we say it is discontinuous

More information

October 27, 2018 MAT186 Week 3 Justin Ko. We use the following notation to describe the limiting behavior of functions.

October 27, 2018 MAT186 Week 3 Justin Ko. We use the following notation to describe the limiting behavior of functions. October 27, 208 MAT86 Week 3 Justin Ko Limits. Intuitive Definitions of Limits We use the following notation to describe the iting behavior of functions.. (Limit of a Function A it is written as f( = L

More information

Indeterminate Forms and L Hospital s Rule

Indeterminate Forms and L Hospital s Rule APPLICATIONS OF DIFFERENTIATION Indeterminate Forms and L Hospital s Rule In this section, we will learn: How to evaluate functions whose values cannot be found at certain points. INDETERMINATE FORM TYPE

More information

UC Merced: MATH 21 Final Exam 16 May 2006

UC Merced: MATH 21 Final Exam 16 May 2006 UC Merced: MATH 2 Final Eam 6 May 2006 On the front of your bluebook print () your name, (2) your student ID number, (3) your instructor s name (Bianchi) and () a grading table. Show all work in your bluebook

More information

Feedback D. Incorrect! Exponential functions are continuous everywhere. Look for features like square roots or denominators that could be made 0.

Feedback D. Incorrect! Exponential functions are continuous everywhere. Look for features like square roots or denominators that could be made 0. Calculus Problem Solving Drill 07: Trigonometric Limits and Continuity No. of 0 Instruction: () Read the problem statement and answer choices carefully. () Do your work on a separate sheet of paper. (3)

More information

3.5 Continuity of a Function One Sided Continuity Intermediate Value Theorem... 23

3.5 Continuity of a Function One Sided Continuity Intermediate Value Theorem... 23 Chapter 3 Limit and Continuity Contents 3. Definition of Limit 3 3.2 Basic Limit Theorems 8 3.3 One sided Limit 4 3.4 Infinite Limit, Limit at infinity and Asymptotes 5 3.4. Infinite Limit and Vertical

More information

Lecture 5: Finding limits analytically Simple indeterminate forms

Lecture 5: Finding limits analytically Simple indeterminate forms Lecture 5: Finding its analytically Simple indeterminate forms Objectives: (5.) Use algebraic techniques to resolve 0/0 indeterminate forms. (5.) Use the squeeze theorem to evaluate its. (5.3) Use trigonometric

More information

Section 2.6 Limits at infinity and infinite limits 2 Lectures. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I

Section 2.6 Limits at infinity and infinite limits 2 Lectures. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I Section 2.6 Limits at infinity and infinite its 2 Lectures College of Science MATHS 0: Calculus I (University of Bahrain) Infinite Limits / 29 Finite its as ±. 2 Horizontal Asympotes. 3 Infinite its. 4

More information

First Midterm Examination

First Midterm Examination Çankaya University Department of Mathematics 016-017 Fall Semester MATH 155 - Calculus for Engineering I First Midterm Eamination 1) Find the domain and range of the following functions. Eplain your solution.

More information

INSTRUCTIONS. UNIVERSITY OF MANITOBA Term Test 1A COURSE: MATH 1500 DATE & TIME: October 9, 2018, 5:40PM 6:40PM CRN: various

INSTRUCTIONS. UNIVERSITY OF MANITOBA Term Test 1A COURSE: MATH 1500 DATE & TIME: October 9, 2018, 5:40PM 6:40PM CRN: various INSTRUCTIONS I. No tets, notes, or other aids are permitted. There are no calculators, cellphones or electronic translators permitted. II. This eam has a title page, 6 pages of questions and two blank

More information

Continuity. The Continuity Equation The equation that defines continuity at a point is called the Continuity Equation.

Continuity. The Continuity Equation The equation that defines continuity at a point is called the Continuity Equation. Continuity A function is continuous at a particular x location when you can draw it through that location without picking up your pencil. To describe this mathematically, we have to use limits. Recall

More information

Student s Printed Name:

Student s Printed Name: MATH 1060 Test 1 Fall 018 Calculus of One Variable I Version B KEY Sections 1.3 3. Student s Printed Name: Instructor: XID: C Section: No questions will be answered during this eam. If you consider a question

More information

In this note we will evaluate the limits of some indeterminate forms using L Hôpital s Rule. Indeterminate Forms and 0 0. f(x)

In this note we will evaluate the limits of some indeterminate forms using L Hôpital s Rule. Indeterminate Forms and 0 0. f(x) L Hôpital s Rule In this note we will evaluate the its of some indeterminate forms using L Hôpital s Rule. Indeterminate Forms and 0 0 f() Suppose a f() = 0 and a g() = 0. Then a g() the indeterminate

More information

Part Two. Diagnostic Test

Part Two. Diagnostic Test Part Two Diagnostic Test AP Calculus AB and BC Diagnostic Tests Take a moment to gauge your readiness for the AP Calculus eam by taking either the AB diagnostic test or the BC diagnostic test, depending

More information

Rational Functions. A rational function is a function that is a ratio of 2 polynomials (in reduced form), e.g.

Rational Functions. A rational function is a function that is a ratio of 2 polynomials (in reduced form), e.g. Rational Functions A rational function is a function that is a ratio of polynomials (in reduced form), e.g. f() = p( ) q( ) where p() and q() are polynomials The function is defined when the denominator

More information

Daily Lessons and Assessments for AP* Calculus AB, A Complete Course Page 119 Mark Sparks 2012

Daily Lessons and Assessments for AP* Calculus AB, A Complete Course Page 119 Mark Sparks 2012 Unit # Understanding the Derivative Homework Packet f ( h) f ( Find lim for each of the functions below. Then, find the equation of the tangent line to h 0 h the graph of f( at the given value of. 1. f

More information

Continuity, End Behavior, and Limits. Unit 1 Lesson 3

Continuity, End Behavior, and Limits. Unit 1 Lesson 3 Unit Lesson 3 Students will be able to: Interpret ke features of graphs and tables in terms of the quantities, and sketch graphs showing ke features given a verbal description of the relationship. Ke Vocabular:

More information

All work must be shown in this course for full credit. Unsupported answers may receive NO credit.

All work must be shown in this course for full credit. Unsupported answers may receive NO credit. AP Calculus. Worksheet Day All work must be shown in this course for full credit. Unsupported answers may receive NO credit.. The only way to guarantee the eistence of a it is to algebraically prove it.

More information

Chapter. Part 1: Consider the function

Chapter. Part 1: Consider the function Chapter 9 9.2 Analysing rational Functions Pages 446 456 Part 1: Consider the function a) What value of x is important to consider when analysing this function? b) Now look at the graph of this function

More information

Directions: Please read questions carefully. It is recommended that you do the Short Answer Section prior to doing the Multiple Choice.

Directions: Please read questions carefully. It is recommended that you do the Short Answer Section prior to doing the Multiple Choice. AP Calculus AB SUMMER ASSIGNMENT Multiple Choice Section Directions: Please read questions carefully It is recommended that you do the Short Answer Section prior to doing the Multiple Choice Show all work

More information

Problems for Chapter 3.

Problems for Chapter 3. Problems for Chapter 3. Let A denote a nonempty set of reals. The complement of A, denoted by A, or A C is the set of all points not in A. We say that belongs to the interior of A, Int A, if there eists

More information

1.5 Inverse Trigonometric Functions

1.5 Inverse Trigonometric Functions 1.5 Inverse Trigonometric Functions Remember that only one-to-one functions have inverses. So, in order to find the inverse functions for sine, cosine, and tangent, we must restrict their domains to intervals

More information

(a) During what time intervals on [0, 4] is the particle traveling to the left?

(a) During what time intervals on [0, 4] is the particle traveling to the left? Chapter 5. (AB/BC, calculator) A particle travels along the -ais for times 0 t 4. The velocity of the particle is given by 5 () sin. At time t = 0, the particle is units to the right of the origin. t /

More information

term from the numerator yields 2

term from the numerator yields 2 APPM 1350 Eam 2 Fall 2013 1. The following parts are not related: (a) (12 pts) Find y given: (i) y = (ii) y = sec( 2 1) tan() (iii) ( 2 + y 2 ) 2 = 2 2 2y 2 1 (b) (8 pts) Let f() be a function such that

More information

1. Find A and B so that f x Axe Bx. has a local minimum of 6 when. x 2.

1. Find A and B so that f x Axe Bx. has a local minimum of 6 when. x 2. . Find A and B so that f Ae B has a local minimum of 6 when.. The graph below is the graph of f, the derivative of f; The domain of the derivative is 5 6. Note there is a cusp when =, a horizontal tangent

More information

Limits and Continuity

Limits and Continuity Limits and Continuity Philippe B. Laval Kennesaw State University January 2, 2005 Contents Abstract Notes and practice problems on its and continuity. Limits 2. Introduction... 2.2 Theory:... 2.2. GraphicalMethod...

More information

Solutions to Math 41 First Exam October 12, 2010

Solutions to Math 41 First Exam October 12, 2010 Solutions to Math 41 First Eam October 12, 2010 1. 13 points) Find each of the following its, with justification. If the it does not eist, eplain why. If there is an infinite it, then eplain whether it

More information

Calculus I Exam 1 Review Fall 2016

Calculus I Exam 1 Review Fall 2016 Problem 1: Decide whether the following statements are true or false: (a) If f, g are differentiable, then d d x (f g) = f g. (b) If a function is continuous, then it is differentiable. (c) If a function

More information

MAT12X Intermediate Algebra

MAT12X Intermediate Algebra MAT12X Intermediate Algebra Workshop 3 Rational Functions LEARNING CENTER Overview Workshop III Rational Functions General Form Domain and Vertical Asymptotes Range and Horizontal Asymptotes Inverse Variation

More information

Calculus 1 (AP, Honors, Academic) Summer Assignment 2018

Calculus 1 (AP, Honors, Academic) Summer Assignment 2018 Calculus (AP, Honors, Academic) Summer Assignment 08 The summer assignments for Calculus will reinforce some necessary Algebra and Precalculus skills. In order to be successful in Calculus, you must have

More information

Math 171 Calculus I Spring, 2019 Practice Questions for Exam II 1

Math 171 Calculus I Spring, 2019 Practice Questions for Exam II 1 Math 171 Calculus I Spring, 2019 Practice Questions for Eam II 1 You can check your answers in WebWork. Full solutions in WW available Sunday evening. Problem 1. Find the average rate of change of the

More information

Summer AP Assignment Coversheet Falls Church High School

Summer AP Assignment Coversheet Falls Church High School Summer AP Assignment Coversheet Falls Church High School Course: AP Calculus AB Teacher Name/s: Veronica Moldoveanu, Ethan Batterman Assignment Title: AP Calculus AB Summer Packet Assignment Summary/Purpose:

More information

Math Exam 1a. c) lim tan( 3x. 2) Calculate the derivatives of the following. DON'T SIMPLIFY! d) s = t t 3t

Math Exam 1a. c) lim tan( 3x. 2) Calculate the derivatives of the following. DON'T SIMPLIFY! d) s = t t 3t Math 111 - Eam 1a 1) Evaluate the following limits: 7 3 1 4 36 a) lim b) lim 5 1 3 6 + 4 c) lim tan( 3 ) + d) lim ( ) 100 1+ h 1 h 0 h ) Calculate the derivatives of the following. DON'T SIMPLIFY! a) y

More information

(ii) y = ln 1 ] t 3 t x x2 9

(ii) y = ln 1 ] t 3 t x x2 9 Study Guide for Eam 1 1. You are supposed to be able to determine the domain of a function, looking at the conditions for its epression to be well-defined. Some eamples of the conditions are: What is inside

More information

AP Calculus BC Multiple-Choice Answer Key!

AP Calculus BC Multiple-Choice Answer Key! Multiple-Choice Answer Key!!!!! "#$$%&'! "#$$%&'!!,#-! ()*+%$,#-! ()*+%$!!!!!! "!!!!! "!! 5!! 6! 7!! 8! 7! 9!!! 5:!!!!! 5! (!!!! 5! "! 5!!! 5!! 8! (!! 56! "! :!!! 59!!!!! 5! 7!!!! 5!!!!! 55! "! 6! "!!

More information

AP Calculus BC Summer Packet 2017

AP Calculus BC Summer Packet 2017 AP Calculus BC Summer Packet 7 o The attached packet is required for all FHS students who took AP Calculus AB in 6-7 and will be continuing on to AP Calculus BC in 7-8. o It is to be turned in to your

More information

1 lim. More Tutorial at. = have horizontal tangents? 1. (3 pts) For which values of x does the graph of A) 0.

1 lim.   More Tutorial at. = have horizontal tangents? 1. (3 pts) For which values of x does the graph of A) 0. 1. ( pts) For which values of does the graph of f ( ) = have horizontal tangents? A) = 0 B) C) = = 1 1,,0 1 1, D) =,. ( pts) Evaluate 1 lim cos. 1 π 6 A) 0 B) C) Does not eist D) 1 1 Version A KEY Page

More information

All work must be shown in this course for full credit. Unsupported answers may receive NO credit.

All work must be shown in this course for full credit. Unsupported answers may receive NO credit. AP Calculus.1 Worksheet Day 1 All work must be shown in this course for full credit. Unsupported answers may receive NO credit. 1. The only way to guarantee the eistence of a it is to algebraically prove

More information

Continuity at a Point

Continuity at a Point Continuity at a Point When we eplored the limit of f() as approaches c, the emphasis was on the function values close to = c rather than what happens to the function at = c. We will now consider the following

More information

BE SURE TO READ THE DIRECTIONS PAGE & MAKE YOUR NOTECARDS FIRST!! Part I: Unlimited and Continuous! (21 points)

BE SURE TO READ THE DIRECTIONS PAGE & MAKE YOUR NOTECARDS FIRST!! Part I: Unlimited and Continuous! (21 points) BE SURE TO READ THE DIRECTIONS PAGE & MAKE YOUR NOTECARDS FIRST!! Part I: United and Continuous! ( points) For #- below, find the its, if they eist.(#- are pt each) ) 7 ) 9 9 ) 5 ) 8 For #5-7, eplain why

More information

TRIG REVIEW NOTES. Co-terminal Angles: Angles that end at the same spot. (sines, cosines, and tangents will equal)

TRIG REVIEW NOTES. Co-terminal Angles: Angles that end at the same spot. (sines, cosines, and tangents will equal) TRIG REVIEW NOTES Convert from radians to degrees: multiply by 0 180 Convert from degrees to radians: multiply by 0. 180 Co-terminal Angles: Angles that end at the same spot. (sines, cosines, and tangents

More information

Set 3: Limits of functions:

Set 3: Limits of functions: Set 3: Limits of functions: A. The intuitive approach (.): 1. Watch the video at: https://www.khanacademy.org/math/differential-calculus/it-basics-dc/formal-definition-of-its-dc/v/itintuition-review. 3.

More information

SECTION 2.5: THE INDETERMINATE FORMS 0 0 AND

SECTION 2.5: THE INDETERMINATE FORMS 0 0 AND (Section 2.5: The Indeterminate Forms 0/0 and / ) 2.5. SECTION 2.5: THE INDETERMINATE FORMS 0 0 AND LEARNING OBJECTIVES Understand what it means for a Limit Form to be indeterminate. Recognize indeterminate

More information

SANDY CREEK HIGH SCHOOL

SANDY CREEK HIGH SCHOOL SANDY CREEK HIGH SCHOOL SUMMER REVIEW PACKET For students entering A.P. CALCULUS BC I epect everyone to check the Google classroom site and your school emails at least once every two weeks. You will also

More information

THS Step By Step Calculus Chapter 1

THS Step By Step Calculus Chapter 1 Name: Class Period: Throughout this packet there will be blanks you are epected to fill in prior to coming to class. This packet follows your Larson Tetbook. Do NOT throw away! Keep in 3 ring binder until

More information

Rational Functions 4.5

Rational Functions 4.5 Math 4 Pre-Calculus Name Date Rational Function Rational Functions 4.5 g ( ) A function is a rational function if f ( ), where g ( ) and ( ) h ( ) h are polynomials. Vertical asymptotes occur at -values

More information

Summer AP Assignment Coversheet Falls Church High School

Summer AP Assignment Coversheet Falls Church High School Summer AP Assignment Coversheet Falls Church High School Course: AP Calculus AB Teacher Name/s: Veronica Moldoveanu, Ethan Batterman Assignment Title: AP Calculus AB Summer Packet Assignment Summary/Purpose:

More information

AP Calculus (BC) Summer Assignment (104 points)

AP Calculus (BC) Summer Assignment (104 points) AP Calculus (BC) Summer Assignment (0 points) This packet is a review of some Precalculus topics and some Calculus topics. It is to be done NEATLY and on a SEPARATE sheet of paper. Use your discretion

More information

AP Calculus Summer Packet

AP Calculus Summer Packet AP Calculus Summer Packet Writing The Equation Of A Line Example: Find the equation of a line that passes through ( 1, 2) and (5, 7). ü Things to remember: Slope formula, point-slope form, slopeintercept

More information

2.2 The Limit of a Function

2.2 The Limit of a Function 2.2 The Limit of a Function Introductory Example: Consider the function f(x) = x is near 0. x f(x) x f(x) 1 3.7320508 1 4.236068 0.5 3.8708287 0.5 4.1213203 0.1 3.9748418 0.1 4.0248457 0.05 3.9874607 0.05

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. B) 94 C) ) A) 1 2

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. B) 94 C) ) A) 1 2 Chapter Calculus MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the average rate of change of the function over the given interval. ) = 73-5

More information

Limits and Their Properties

Limits and Their Properties Chapter 1 Limits and Their Properties Course Number Section 1.1 A Preview of Calculus Objective: In this lesson you learned how calculus compares with precalculus. I. What is Calculus? (Pages 42 44) Calculus

More information

Pre-Calculus Mathematics Limit Process Calculus

Pre-Calculus Mathematics Limit Process Calculus NOTES : LIMITS AND DERIVATIVES Name: Date: Period: Mrs. Nguyen s Initial: LESSON.1 THE TANGENT AND VELOCITY PROBLEMS Pre-Calculus Mathematics Limit Process Calculus The type of it that is used to find

More information

AP Calculus AB Summer Assignment

AP Calculus AB Summer Assignment AP Calculus AB Summer Assignment Name: When you come back to school, it is my epectation that you will have this packet completed. You will be way behind at the beginning of the year if you haven t attempted

More information

A: Super-Basic Algebra Skills. A1. True or false. If false, change what is underlined to make the statement true. a.

A: Super-Basic Algebra Skills. A1. True or false. If false, change what is underlined to make the statement true. a. A: Super-Basic Algebra Skills A1. True or false. If false, change what is underlined to make the statement true. 1 T F 1 b. T F c. ( + ) = + 9 T F 1 1 T F e. ( + 1) = 16( + ) T F f. 5 T F g. If ( + )(

More information

Limits Student Study Session

Limits Student Study Session Teacher Notes Limits Student Study Session Solving limits: The vast majority of limits questions can be solved by using one of four techniques: SUBSTITUTING, FACTORING, CONJUGATING, or by INSPECTING A

More information

All work must be shown in this course for full credit. Unsupported answers may receive NO credit.

All work must be shown in this course for full credit. Unsupported answers may receive NO credit. AP Calculus.1 Worksheet Day 1 All work must be shown in this course for full credit. Unsupported answers may receive NO credit. 1. The only way to guarantee the eistence of a it is to algebraically prove

More information

Midterm 1 Solutions. Monday, 10/24/2011

Midterm 1 Solutions. Monday, 10/24/2011 Midterm Solutions Monday, 0/24/20. (0 points) Consider the function y = f() = e + 2e. (a) (2 points) What is the domain of f? Epress your answer using interval notation. Solution: We must eclude the possibility

More information

4.3 - How Derivatives Affect the Shape of a Graph

4.3 - How Derivatives Affect the Shape of a Graph 4.3 - How Derivatives Affect the Shape of a Graph 1. Increasing and Decreasing Functions Definition: A function f is (strictly) increasing on an interval I if for every 1, in I with 1, f 1 f. A function

More information

(i) find the points where f(x) is discontinuous, and classify each point of discontinuity.

(i) find the points where f(x) is discontinuous, and classify each point of discontinuity. Math Final Eam - Practice Problems. A function f is graphed below. f() 5 4 8 7 5 4 4 5 7 8 4 5 (a) Find f(0), f( ), f(), and f(4) Find the domain and range of f (c) Find the intervals where f () is positive

More information

MAT 210 Test #1 Solutions, Form A

MAT 210 Test #1 Solutions, Form A 1. Where are the following functions continuous? a. ln(x 2 1) MAT 210 Test #1 Solutions, Form A Solution: The ln function is continuous when what you are taking the log of is positive. Hence, we need x

More information

Taylor and Maclaurin Series. Approximating functions using Polynomials.

Taylor and Maclaurin Series. Approximating functions using Polynomials. Taylor and Maclaurin Series Approximating functions using Polynomials. Approximating f x = e x near x = 0 In order to approximate the function f x = e x near x = 0, we can use the tangent line (The Linear

More information

AP Calculus AB Chapter 2 Test September 20, 2014 Show all your work.

AP Calculus AB Chapter 2 Test September 20, 2014 Show all your work. Name AP Calculus AB Chapter Test September 0, 014 Show all your work. 1. Find 5 7 6 10 lim 5 7 A. 5/ B. -5/ C. 0 D. The limit does not eist because the function increases without bound. E. The limit does

More information

of multiplicity two. The sign of the polynomial is shown in the table below

of multiplicity two. The sign of the polynomial is shown in the table below 161 Precalculus 1 Review 5 Problem 1 Graph the polynomial function P( ) ( ) ( 1). Solution The polynomial is of degree 4 and therefore it is positive to the left of its smallest real root and to the right

More information

The main way we switch from pre-calc. to calc. is the use of a limit process. Calculus is a "limit machine".

The main way we switch from pre-calc. to calc. is the use of a limit process. Calculus is a limit machine. A Preview of Calculus Limits and Their Properties Objectives: Understand what calculus is and how it compares with precalculus. Understand that the tangent line problem is basic to calculus. Understand

More information

AP Calculus (BC) Chapter 9 Test No Calculator Section Name: Date: Period:

AP Calculus (BC) Chapter 9 Test No Calculator Section Name: Date: Period: WORKSHEET: Series, Taylor Series AP Calculus (BC) Chapter 9 Test No Calculator Section Name: Date: Period: 1 Part I. Multiple-Choice Questions (5 points each; please circle the correct answer.) 1. The

More information

AP Calculus Review Assignment Answer Sheet 1. Name: Date: Per. Harton Spring Break Packet 2015

AP Calculus Review Assignment Answer Sheet 1. Name: Date: Per. Harton Spring Break Packet 2015 AP Calculus Review Assignment Answer Sheet 1 Name: Date: Per. Harton Spring Break Packet 015 This is an AP Calc Review packet. As we get closer to the eam, it is time to start reviewing old concepts. Use

More information

AP CALCULUS AB UNIT 3 BASIC DIFFERENTIATION RULES TOTAL NAME DATE PERIOD DATE TOPIC ASSIGNMENT /18 9/19 9/24 9/25 9/26 9/27 9/28 10/1 10/2 10/3

AP CALCULUS AB UNIT 3 BASIC DIFFERENTIATION RULES TOTAL NAME DATE PERIOD DATE TOPIC ASSIGNMENT /18 9/19 9/24 9/25 9/26 9/27 9/28 10/1 10/2 10/3 NAME DATE PERIOD AP CALCULUS AB UNIT BASIC DIFFERENTIATION RULES DATE TOPIC ASSIGNMENT 0 0 9/8 9/9 9/ 9/5 9/6 9/7 9/8 0/ 0/ 0/ 0/ 0/5 TOTAL AP Calculus AB Worksheet 9 Average Rates of Change Find the

More information

Math 19, Homework-1 Solutions

Math 19, Homework-1 Solutions SSEA Summer 207 Math 9, Homework- Solutions. Consider the graph of function f shown below. Find the following its or eplain why they do not eist: (a) t 2 f(t). = 0. (b) t f(t). =. (c) t 0 f(t). (d) Does

More information

1) If f x symmetric about what? (Box in one:) (2 points) the x-axis the y-axis the origin none of these

1) If f x symmetric about what? (Box in one:) (2 points) the x-axis the y-axis the origin none of these QUIZ ON CHAPTERS AND - SOLUTIONS REVIEW / LIMITS AND CONTINUITY; MATH 50 FALL 06 KUNIYUKI 05 POINTS TOTAL, BUT 00 POINTS = 00% = x /, then the graph of y = f ( x) in the usual (Cartesian) xy-plane is )

More information

Limits 4: Continuity

Limits 4: Continuity Limits 4: Continuit 55 Limits 4: Continuit Model : Continuit I. II. III. IV. z V. VI. z a VII. VIII. IX. Construct Your Understanding Questions (to do in class). Which is the correct value of f (a) in

More information

Math 320-1: Midterm 2 Practice Solutions Northwestern University, Fall 2014

Math 320-1: Midterm 2 Practice Solutions Northwestern University, Fall 2014 Math 30-: Midterm Practice Solutions Northwestern University, Fall 04. Give an eample of each of the following. Justify your answer. (a) A function on (, ) which is continuous but not uniformly continuous.

More information

Solutions Exam 4 (Applications of Differentiation) 1. a. Applying the Quotient Rule we compute the derivative function of f as follows:

Solutions Exam 4 (Applications of Differentiation) 1. a. Applying the Quotient Rule we compute the derivative function of f as follows: MAT 4 Solutions Eam 4 (Applications of Differentiation) a Applying the Quotient Rule we compute the derivative function of f as follows: f () = 43 e 4 e (e ) = 43 4 e = 3 (4 ) e Hence f '( ) 0 for = 0

More information

Definition (The carefully thought-out calculus version based on limits).

Definition (The carefully thought-out calculus version based on limits). 4.1. Continuity and Graphs Definition 4.1.1 (Intuitive idea used in algebra based on graphing). A function, f, is continuous on the interval (a, b) if the graph of y = f(x) can be drawn over the interval

More information

AP * Calculus Review. Limits, Continuity, and the Definition of the Derivative

AP * Calculus Review. Limits, Continuity, and the Definition of the Derivative AP * Calculus Review Limits, Continuity, and the Definition of the Derivative Teacher Packet Advanced Placement and AP are registered trademark of the College Entrance Examination Board. The College Board

More information

4.3 Division of Polynomials

4.3 Division of Polynomials 4.3 Division of Polynomials Learning Objectives Divide a polynomials by a monomial. Divide a polynomial by a binomial. Rewrite and graph rational functions. Introduction A rational epression is formed

More information

Taylor and Maclaurin Series. Approximating functions using Polynomials.

Taylor and Maclaurin Series. Approximating functions using Polynomials. Taylor and Maclaurin Series Approximating functions using Polynomials. Approximating f x = e x near x = 0 In order to approximate the function f x = e x near x = 0, we can use the tangent line (The Linear

More information

AP Calculus AB Summer Assignment

AP Calculus AB Summer Assignment AP Calculus AB 017-018 Summer Assignment Congratulations! You have been accepted into Advanced Placement Calculus AB for the next school year. This course will count as a math credit at Freedom High School

More information

sin x (B) sin x 1 (C) sin x + 1

sin x (B) sin x 1 (C) sin x + 1 ANSWER KEY Packet # AP Calculus AB Eam Multiple Choice Questions Answers are on the last page. NO CALCULATOR MAY BE USED IN THIS PART OF THE EXAMINATION. On the AP Eam, you will have minutes to answer

More information