Tangent lines, cont d. Linear approxima5on and Newton s Method

Size: px
Start display at page:

Download "Tangent lines, cont d. Linear approxima5on and Newton s Method"

Transcription

1 Tangent lines, cont d Linear approxima5on and Newton s Method

2 Last 5me: A challenging tangent line problem, because we had to figure out the point of tangency.?? (A) I get it! (B) I think I see how we did it (C) I m not sure (D) I m confused (E) I m totally lost ground

3 Last 5me: A challenging tangent line problem, because we had to figure out the point of tangency.?? (A) I get it! (B) I think I see how we did it (C) I m not sure (D) I m confused (E) I m totally lost See Sec5on 5.6, Try problem 5.10 ground

4 Last 5me Use linear approxima5on to calculate 105 Solu5on: - figure out the func5on - Figure out a point nearby where we know the value of the func5on - Use linear approxima5on

5 Last 5me Use linear approxima5on to calculate 105 Solu5on: - figure out the func5on f(x) = x - Figure out a point nearby where we know the value of the func5on. We know 100 = 10 - Use linear approxima5on

6 Geometry: S5ck a tangent line on the func5on at x 0 =100, read the value on TL nearby (at x=105). x 0

7 Linear Approx: -Advantage: easy to calculate: - One step method = = 10+ (5/20)= Disadvantage: not very accurate further away

8 Another way (Newton s method) Convert the problem to the form f(x)=0 Use intui5on or desmos to get a rough es5mate for the zero of the func5on. Use Newton s method to get be_er and be_er approxima5on. Disadv: Need some intui5on Advantage: Outstanding level of accuracy!

9 1. Convert to right form Find decimal approx to x= 105. To use Newton s method I would convert this to solving the problem f(x) = 0 where A. f(x) = x B. f(x) = x C. f(x)= x D. f(x)= 105

10 Convert to right form Find decimal approx to x= Same as: find x such that x 2 =105 x 2-105=0 - Now the problem is in the form f(x) = 0 for f(x) = x 2-105

11 2. My ini5al guess for the zero of f(x) = x would be A. x 0 =100 B. x 0 = 10 C. x 0 = 105 D. x 0 = 105 E. I m lost.

12 Ini5al guess Find value of x somewhere around zero of f(x) = x That will be the star5ng value for Newton s method. x 0 = 10

13 Newton s Method A way to find decimal approxima5on for the zero of a func5on UBC Math 102

14 Plan What is Newton s Method The geometry behind it A prac5cal example where we need to use it How to use a spreadsheet to implement Newton s Method. UBC Math 102

15 What is Newton s Method? Newton s method Solve f(x)=0 UBC Math 102

16 (3) Which of these is problems is not suitable for Newton s method? (A) Solve f(x)=0 for x. (B) Find the zeros of a func5on f(x). (C) Find where the graph of f(x) crosses the x axis. (D) Approximate the value of a func5on close to a known point x 0. (E) Find roots of an equa5on g(x)=c. UBC Math 102

17 Newton s method can be used to (A) Solve f(x)=0 for x. (B) Find the zeros of a func5on f(x). (C) Find where the graph of f(x) crosses the x axis. (E) It can also find roots of F(x)=g(x)-C=0 UBC Math 102

18 Hammer and nail Newton s method Solve f(x)=0 UBC Math 102

19 UBC Math 102 The geometry behind it

20 Tangent line Equa5on of tangent line at x 0 : Find the point x 1 at which the tangent line intersects the x axis. UBC Math 102

21 (4) The tangent line intersects the x axis at: UBC Math 102

22 Deriving Newton s Formula Eqn of TL: TL intersects x axis when

23 Improving the rough es5mate.. Repeat the process: At the k th step:

24 Put it on a spreadsheet! Let the spreadsheet do those repe55ve calcula5ons for you! Goal: find decimal approx to square root of 105 accurate to 10 decimal places!

25 Spreadsheet set up The func5on is f(x) = x We need its deriva5ve f (x) = 2 x Ini5al guess x 0 = 10 Formula to repeat: x 1 = x 0 f(x 0 )/f (x 0 )

26 Spreadsheet The next few slides show how to solve this problem on a spreadsheet.

27 Setup

28 Transfer x1 to Column A Highlight the cells and drag down It should look like:

29 Drag down the en5re row to repeat

30 Part II: Looking at all this geometrically

31 Recap Let us look again at linear approxima5on and at Newton s method We will use desmos and the func5on To illustrate concepts.

32 PART 1 A demo of linear approxima5on UBC Math 102

33 Desmos Graph the func5on: Use desmos to graph its deriva5ve

34 It should look like: UBC Math 102

35 Desmos cont d Add the value x 0 =5 A slider should appear for x 0 so you can shif the loca5on of that tangent line. Add the point (x 0, f(x 0 )) to your graph. UBC Math 102

36 It should look like: UBC Math 102

37 Desmos cont d Add the equa5on of a generic tangent line at x=x 0 You should be able to animate x 0 and see that line sweep across your curve. UBC Math 102

38 It should look like: UBC Math 102

39 Using Desmos Consider the tangent line at x o =5. Use your graph to find the values below: f(5), f(6) and the linear approx to f(6) based at x o =5 UBC Math 102

40 (5) Using Desmos I got the values. f(5), f(6) and the linear approx to f(6) (A) 4.37, 4, 5 (B) 4.37, 5, 2 (C) 4.37, 2, 2.5 (D) huh?? UBC Math 102

41 PART 2 A demo of Newton s Method on Desmos UBC Math 102

42 On desmos Use Newton s Method to find the largest zero of the func5on Start with rough ini5al guess x 0 =5. UBC Math 102

43 Tangent line at x 0 =5 TL and f(x) UBC Math 102

44 Newton s formula Add the formula Plot the point

45 Look like this: (here is x 1 ) Actual zero of the func5on we want to find an accurate decimal expansion for it

46 Desmos does the work We got Desmos to compute x1 using the Newton s Method formula: (We got this by finding where a generic tangent line crosses the x axis, see previous lectures)

47 Repeat the process To get closer to the zero of f: Construct a tangent line at the point x 1 Find the point where the new tangent line intersects x axis (Find x 2 ). h_ps:// UBC Math 102

48 We use the same idea to find x2: UBC Math 102

49 To No5ce: We are gejng closer to the actual zero of the func5on. UBC Math 102 X0 x2 x1

50 Effect of ini5al guess Go to the slider for x0 and shif it to the value 3. What happens to the tangent lines? What happens to the approxima5on for the zero of the func5on? UBC Math 102

51 Bad ini5al guess! An ini5al guess x0=2.3 leads astray! Does not converge to the zero of f! See below: UBC Math 102

52 Important comments: 1. The Desmos demonstra5on is only to show the GEOMETRY that explains how Newton s Method works. You do not need this (elaborate) construc5on in a prac5cal problem. 2. How do I find an ini5al guess? ß Use Desmos, or sketch the func5on. Ensure there is no max/ min between x0 and the true zero.. We will see how to sketch func5ons in future lectures. UBC Math 102

53 Answers 1. A 2. B 3. D 4. A 5. C

54 Solu5ons to previous problems First try out the problems at the end of the last lecture slides. Only then should you peek at the answers.

55 Differen5ate, using power or quo5ent rule solu5on

56

57 Calcula5on we did in class Find the equa5on of the tangent line to the graph of at x=0. Where does the tangent line intersect the x axis? solu5on

58 Solu5on: (a) Eqn of tangent line

59 Related test ques5on (MT1, 2014) Consider the func5on (Tangent lines) solu5on (a) At which points (a,f(a)) does the graph of this func5on have tangent lines parallel to the line y = x. (b) What is the equa5on of the tangent lines at each of these points.

60 Solu5on: (a) UBC Math 102

61 Solu5on (b) UBC Math 102

62 Solu5on to Related test-type problem from last 5me: Find a linear approxima5on that provides a rough es5mate for the value of (1.1) 8. Explain why the approxima5on is an (over/under)-es5mate. solu5on (Note: a calculator value is ) UBC Math 102

63 Test ques5on (Quo5ent rule, ra5onal func5ons) MT At an all-you-can-eat buffet, the total calories you gain can be represented by the func5on where t 0 is the 5me in minutes you spend at the restaurant and A and b are posi5ve constants. (a) If you stayed for a long 5me, what asymptote would your total caloric gain approach? (b) Afer how much 5me do you gain exactly half of that asympto5c caloric amount? (c) At 5me t, what is the instantaneous rate at which your caloric gain changes? solu5on

64 Solu5on: (a) (b) (c) UBC Math 102

65 Test your skill on these problems

66 Linear Approxima5on Find a linear approxima5on that provides a rough es5mate for the value of (1.1) 8. Explain why the approxima5on is an (over/under)- es5mate. UBC Math 102

67 Find the prey density such that P(x)=G(x) Note: this problem is similar to the aphid ladybug problem from week 1 but the func5on P(x) is not the same. UBC Math 102

68 Newton s Method

The deriva*ve. Analy*c, geometric, computa*onal. UBC Math 102

The deriva*ve. Analy*c, geometric, computa*onal. UBC Math 102 The deriva*ve Analy*c, geometric, computa*onal UBC Math 102 Deriva*ve: Analy*c Use the defini*on of the deriva*ve to compute the deriva*ve of the func*on y = x 3 MT testtype ques*on Done fast? Try to extend

More information

From average to instantaneous rates of change. (and a diversion on con4nuity and limits)

From average to instantaneous rates of change. (and a diversion on con4nuity and limits) From average to instantaneous rates of change (and a diversion on con4nuity and limits) Extra prac4ce problems? Problems in the Book Problems at the end of my slides Math Exam Resource (MER): hcp://wiki.ubc.ca/science:math_exam_resources

More information

The deriva*ve. Geometric view. UBC Math 102

The deriva*ve. Geometric view. UBC Math 102 The deriva*ve Geometric view Math Learning Center The MLC is a space for undergraduate students to study math together, with friendly support from tutors (grad students in math). Located at LSK310 and

More information

Exponen'al growth and differen'al equa'ons

Exponen'al growth and differen'al equa'ons Exponen'al growth and differen'al equa'ons But first.. Thanks for the feedback! Feedback about M102 Which of the following do you find useful? 70 60 50 40 30 20 10 0 How many resources students typically

More information

The Rules. The Math Game. More Rules. Teams. 1. Slope of tangent line. Are you ready??? 10/24/17

The Rules. The Math Game. More Rules. Teams. 1. Slope of tangent line. Are you ready??? 10/24/17 The Rules The Math Game Four Teams 1-2 players per team at the buzzers each =me. First to buzz in gets to answer Q. Correct answer: 1 point for your team, and con=nue playing Incorrect answer/ no answer/

More information

Chain Rule. Con,nued: Related Rates. UBC Math 102

Chain Rule. Con,nued: Related Rates. UBC Math 102 Chain Rule Con,nued: Related Rates Midterm Test All sec,ons 60 50 Average = 69% 40 30 20 10 0 0 6 12 18 24 30 36 42 48 I think the test was A Too hard B On the hard side C Fair D On the easy side E too

More information

3.3 Increasing & Decreasing Functions and The First Derivative Test

3.3 Increasing & Decreasing Functions and The First Derivative Test 3.3 Increasing & Decreasing Functions and The First Derivative Test Definitions of Increasing and Decreasing Functions: A funcon f is increasing on an interval if for any two numbers x 1 and x 2 in the

More information

Exponen'al func'ons and exponen'al growth. UBC Math 102

Exponen'al func'ons and exponen'al growth. UBC Math 102 Exponen'al func'ons and exponen'al growth Course Calendar: OSH 4 due by 12:30pm in MX 1111 You are here Coming up (next week) Group version of Quiz 3 distributed by email Group version of Quiz 3 due in

More information

Least Squares Parameter Es.ma.on

Least Squares Parameter Es.ma.on Least Squares Parameter Es.ma.on Alun L. Lloyd Department of Mathema.cs Biomathema.cs Graduate Program North Carolina State University Aims of this Lecture 1. Model fifng using least squares 2. Quan.fica.on

More information

Bellman s Curse of Dimensionality

Bellman s Curse of Dimensionality Bellman s Curse of Dimensionality n- dimensional state space Number of states grows exponen

More information

1,3. f x x f x x. Lim. Lim. Lim. Lim Lim. y 13x b b 10 b So the equation of the tangent line is y 13x

1,3. f x x f x x. Lim. Lim. Lim. Lim Lim. y 13x b b 10 b So the equation of the tangent line is y 13x 1.5 Topics: The Derivative lutions 1. Use the limit definition of derivative (the one with x in it) to find f x given f x 4x 5x 6 4 x x 5 x x 6 4x 5x 6 f x x f x f x x0 x x0 x xx x x x x x 4 5 6 4 5 6

More information

MATH 151 Engineering Mathematics I

MATH 151 Engineering Mathematics I MATH 151 Engineering Mathematics I Fall, 2016, WEEK 4 JoungDong Kim Week4 Section 2.6, 2.7, 3.1 Limits at infinity, Velocity, Differentiation Section 2.6 Limits at Infinity; Horizontal Asymptotes Definition.

More information

From differen+al equa+ons to trigonometric func+ons. Introducing sine and cosine

From differen+al equa+ons to trigonometric func+ons. Introducing sine and cosine From differen+al equa+ons to trigonometric func+ons Introducing sine and cosine Calendar OSH due this Friday by 12:30 in MX 1111 Last quiz next Wedn Office hrs: Today: 11:30-12:30 OSH due by 12:30 Math

More information

Least Mean Squares Regression. Machine Learning Fall 2017

Least Mean Squares Regression. Machine Learning Fall 2017 Least Mean Squares Regression Machine Learning Fall 2017 1 Lecture Overview Linear classifiers What func?ons do linear classifiers express? Least Squares Method for Regression 2 Where are we? Linear classifiers

More information

Last Lecture Recap UVA CS / Introduc8on to Machine Learning and Data Mining. Lecture 3: Linear Regression

Last Lecture Recap UVA CS / Introduc8on to Machine Learning and Data Mining. Lecture 3: Linear Regression UVA CS 4501-001 / 6501 007 Introduc8on to Machine Learning and Data Mining Lecture 3: Linear Regression Yanjun Qi / Jane University of Virginia Department of Computer Science 1 Last Lecture Recap q Data

More information

Optimization and Newton s method

Optimization and Newton s method Chapter 5 Optimization and Newton s method 5.1 Optimal Flying Speed According to R McNeil Alexander (1996, Optima for Animals, Princeton U Press), the power, P, required to propel a flying plane at constant

More information

Lesson 31 - Average and Instantaneous Rates of Change

Lesson 31 - Average and Instantaneous Rates of Change Lesson 31 - Average and Instantaneous Rates of Change IBHL Math & Calculus - Santowski 1 Lesson Objectives! 1. Calculate an average rate of change! 2. Estimate instantaneous rates of change using a variety

More information

SECTION A. f(x) = ln(x). Sketch the graph of y = f(x), indicating the coordinates of any points where the graph crosses the axes.

SECTION A. f(x) = ln(x). Sketch the graph of y = f(x), indicating the coordinates of any points where the graph crosses the axes. SECTION A 1. State the maximal domain and range of the function f(x) = ln(x). Sketch the graph of y = f(x), indicating the coordinates of any points where the graph crosses the axes. 2. By evaluating f(0),

More information

Decision Making in Robots and Autonomous Agents

Decision Making in Robots and Autonomous Agents Decision Making in Robots and Autonomous Agents Control: How should a robot stay in place? Subramanian Ramamoorthy School of InformaBcs 19 January, 2018 Objec&ves of this Lecture Give a selec&ve recap

More information

CSE446: Linear Regression Regulariza5on Bias / Variance Tradeoff Winter 2015

CSE446: Linear Regression Regulariza5on Bias / Variance Tradeoff Winter 2015 CSE446: Linear Regression Regulariza5on Bias / Variance Tradeoff Winter 2015 Luke ZeElemoyer Slides adapted from Carlos Guestrin Predic5on of con5nuous variables Billionaire says: Wait, that s not what

More information

6.2 Their Derivatives

6.2 Their Derivatives Exponential Functions and 6.2 Their Derivatives Copyright Cengage Learning. All rights reserved. Exponential Functions and Their Derivatives The function f(x) = 2 x is called an exponential function because

More information

Classical Mechanics Lecture 9

Classical Mechanics Lecture 9 Classical Mechanics Lecture 9 Today's Concepts: a) Energy and Fric6on b) Poten6al energy & force Mechanics Lecture 9, Slide 1 Some comments about the course Spring examples with numbers Bring out a spring!

More information

Math 131. The Derivative and the Tangent Line Problem Larson Section 2.1

Math 131. The Derivative and the Tangent Line Problem Larson Section 2.1 Math 131. The Derivative and the Tangent Line Problem Larson Section.1 From precalculus, the secant line through the two points (c, f(c)) and (c +, f(c + )) is given by m sec = rise f(c + ) f(c) f(c +

More information

Sections 4.1 & 4.2: Using the Derivative to Analyze Functions

Sections 4.1 & 4.2: Using the Derivative to Analyze Functions Sections 4.1 & 4.2: Using the Derivative to Analyze Functions f (x) indicates if the function is: Increasing or Decreasing on certain intervals. Critical Point c is where f (c) = 0 (tangent line is horizontal),

More information

Announcements. Topics: Homework:

Announcements. Topics: Homework: Topics: Announcements - section 2.6 (limits at infinity [skip Precise Definitions (middle of pg. 134 end of section)]) - sections 2.1 and 2.7 (rates of change, the derivative) - section 2.8 (the derivative

More information

Chapter 3: The Derivative in Graphing and Applications

Chapter 3: The Derivative in Graphing and Applications Chapter 3: The Derivative in Graphing and Applications Summary: The main purpose of this chapter is to use the derivative as a tool to assist in the graphing of functions and for solving optimization problems.

More information

Lecture 7: Sections 2.3 and 2.4 Rational and Exponential Functions. Recall that a power function has the form f(x) = x r where r is a real number.

Lecture 7: Sections 2.3 and 2.4 Rational and Exponential Functions. Recall that a power function has the form f(x) = x r where r is a real number. L7-1 Lecture 7: Sections 2.3 and 2.4 Rational and Exponential Functions Recall that a power function has the form f(x) = x r where r is a real number. f(x) = x 1/2 f(x) = x 1/3 ex. Sketch the graph of

More information

Physics 1A, Lecture 3: One Dimensional Kinema:cs Summer Session 1, 2011

Physics 1A, Lecture 3: One Dimensional Kinema:cs Summer Session 1, 2011 Your textbook should be closed, though you may use any handwrieen notes that you have taken. You will use your clicker to answer these ques:ons. If you do not yet have a clicker, please turn in your answers

More information

RATIONAL FUNCTIONS AND

RATIONAL FUNCTIONS AND RATIONAL FUNCTIONS AND GRAPHS ALGEBRA 5 INU0114/514 (MATHS 1) Dr Adrian Jannetta MIMA CMath FRAS Rational functions and graphs 1/ 20 Adrian Jannetta Objectives In this lecture (and next seminar) we will

More information

Math 111, Introduction to the Calculus, Fall 2011 Midterm I Practice Exam 1 Solutions

Math 111, Introduction to the Calculus, Fall 2011 Midterm I Practice Exam 1 Solutions Math 111, Introduction to the Calculus, Fall 2011 Midterm I Practice Exam 1 Solutions For each question, there is a model solution (showing you the level of detail I expect on the exam) and then below

More information

Electricity & Magnetism Lecture 10: Kirchhoff s Rules

Electricity & Magnetism Lecture 10: Kirchhoff s Rules Electricity & Magnetism Lecture 10: Kirchhoff s Rules Today s Concept: Kirchhoff s Rules Electricity & Magne

More information

Unit 3: Ra.onal and Radical Expressions. 3.1 Product Rule M1 5.8, M , M , 6.5,8. Objec.ve. Vocabulary o Base. o Scien.fic Nota.

Unit 3: Ra.onal and Radical Expressions. 3.1 Product Rule M1 5.8, M , M , 6.5,8. Objec.ve. Vocabulary o Base. o Scien.fic Nota. Unit 3: Ra.onal and Radical Expressions M1 5.8, M2 10.1-4, M3 5.4-5, 6.5,8 Objec.ve 3.1 Product Rule I will be able to mul.ply powers when they have the same base, including simplifying algebraic expressions

More information

1. Introduc9on 2. Bivariate Data 3. Linear Analysis of Data

1. Introduc9on 2. Bivariate Data 3. Linear Analysis of Data Lecture 3: Bivariate Data & Linear Regression 1. Introduc9on 2. Bivariate Data 3. Linear Analysis of Data a) Freehand Linear Fit b) Least Squares Fit c) Interpola9on/Extrapola9on 4. Correla9on 1. Introduc9on

More information

Solutions. .5 = e k k = ln(.5) Now that we know k we find t for which the exponential function is = e kt

Solutions. .5 = e k k = ln(.5) Now that we know k we find t for which the exponential function is = e kt MATH 1220-03 Exponential Growth and Decay Spring 08 Solutions 1. (#15 from 6.5.) Cesium 137 and strontium 90 were two radioactive chemicals released at the Chernobyl nuclear reactor in April 1986. The

More information

converges to a root, it may not always be the root you have in mind.

converges to a root, it may not always be the root you have in mind. Math 1206 Calculus Sec. 4.9: Newton s Method I. Introduction For linear and quadratic equations there are simple formulas for solving for the roots. For third- and fourth-degree equations there are also

More information

Classical Mechanics Lecture 16

Classical Mechanics Lecture 16 Classical Mechanics Lecture 16 Today s Concepts: a) Rolling Kine6c Energy b) Angular Accelera6on Physics 211 Lecture 16, Slide 1 Thoughts from the Present & Past Can we do that cookie 6n demo again, but

More information

The First Derivative and Second Derivative Test

The First Derivative and Second Derivative Test The First Derivative and Second Derivative Test James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University April 9, 2018 Outline 1 Extremal Values 2

More information

Electronic Structure Calcula/ons: Density Func/onal Theory. and. Predic/ng Cataly/c Ac/vity

Electronic Structure Calcula/ons: Density Func/onal Theory. and. Predic/ng Cataly/c Ac/vity Electronic Structure Calcula/ons: Density Func/onal Theory and Predic/ng Cataly/c Ac/vity Review Examples of experiments that do not agree with classical physics: Photoelectric effect Photons and the quan/za/on

More information

Part A: Short Answer Questions

Part A: Short Answer Questions Math 111 Practice Exam Your Grade: Fall 2015 Total Marks: 160 Instructor: Telyn Kusalik Time: 180 minutes Name: Part A: Short Answer Questions Answer each question in the blank provided. 1. If a city grows

More information

Suppose that f is continuous on [a, b] and differentiable on (a, b). Then

Suppose that f is continuous on [a, b] and differentiable on (a, b). Then Lectures 1/18 Derivatives and Graphs When we have a picture of the graph of a function f(x), we can make a picture of the derivative f (x) using the slopes of the tangents to the graph of f. In this section

More information

Modelling of Equipment, Processes, and Systems

Modelling of Equipment, Processes, and Systems 1 Modelling of Equipment, Processes, and Systems 2 Modelling Tools Simple Programs Spreadsheet tools like Excel Mathema7cal Tools MatLab, Mathcad, Maple, and Mathema7ca Special Purpose Codes Macroflow,

More information

The First Derivative and Second Derivative Test

The First Derivative and Second Derivative Test The First Derivative and Second Derivative Test James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 8, 2017 Outline Extremal Values The

More information

MA/CS 109 Lecture 7. Back To Exponen:al Growth Popula:on Models

MA/CS 109 Lecture 7. Back To Exponen:al Growth Popula:on Models MA/CS 109 Lecture 7 Back To Exponen:al Growth Popula:on Models Homework this week 1. Due next Thursday (not Tuesday) 2. Do most of computa:ons in discussion next week 3. If possible, bring your laptop

More information

Parabolas and lines

Parabolas and lines Parabolas and lines Study the diagram at the right. I have drawn the graph y = x. The vertical line x = 1 is drawn and a number of secants to the parabola are drawn, all centred at x=1. By this I mean

More information

Finding Limits Graphically and Numerically

Finding Limits Graphically and Numerically Finding Limits Graphically and Numerically 1. Welcome to finding limits graphically and numerically. My name is Tuesday Johnson and I m a lecturer at the University of Texas El Paso. 2. With each lecture

More information

Numerical Methods in Physics

Numerical Methods in Physics Numerical Methods in Physics Numerische Methoden in der Physik, 515.421. Instructor: Ass. Prof. Dr. Lilia Boeri Room: PH 03 090 Tel: +43-316- 873 8191 Email Address: l.boeri@tugraz.at Room: TDK Seminarraum

More information

Math Essentials of Calculus by James Stewart Prepared by Jason Gaddis

Math Essentials of Calculus by James Stewart Prepared by Jason Gaddis Math 231 - Essentials of Calculus by James Stewart Prepared by Jason Gaddis Chapter 3 - Applications of Differentiation 3.1 - Maximum and Minimum Values Note We continue our study of functions using derivatives.

More information

Math S1201 Calculus 3 Chapters

Math S1201 Calculus 3 Chapters Math S1201 Calculus 3 Chapters 14.2 14.4 Summer 2015 Instructor: Ilia Vovsha h?p://www.cs.columbia.edu/~vovsha/calc3 1 Outline CH 14.2 MulGvariate FuncGons: Limits and ConGnuity Limits along paths Determining

More information

Learning Target: I can sketch the graphs of rational functions without a calculator. a. Determine the equation(s) of the asymptotes.

Learning Target: I can sketch the graphs of rational functions without a calculator. a. Determine the equation(s) of the asymptotes. Learning Target: I can sketch the graphs of rational functions without a calculator Consider the graph of y= f(x), where f(x) = 3x 3 (x+2) 2 a. Determine the equation(s) of the asymptotes. b. Find the

More information

UVA CS 4501: Machine Learning. Lecture 6: Linear Regression Model with Dr. Yanjun Qi. University of Virginia

UVA CS 4501: Machine Learning. Lecture 6: Linear Regression Model with Dr. Yanjun Qi. University of Virginia UVA CS 4501: Machine Learning Lecture 6: Linear Regression Model with Regulariza@ons Dr. Yanjun Qi University of Virginia Department of Computer Science Where are we? è Five major sec@ons of this course

More information

Analysis of Functions

Analysis of Functions Lecture for Week 11 (Secs. 5.1 3) Analysis of Functions (We used to call this topic curve sketching, before students could sketch curves by typing formulas into their calculators. It is still important

More information

MATH 1910 Limits Numerically and Graphically Introduction to Limits does not exist DNE DOES does not Finding Limits Numerically

MATH 1910 Limits Numerically and Graphically Introduction to Limits does not exist DNE DOES does not Finding Limits Numerically MATH 90 - Limits Numerically and Graphically Introduction to Limits The concept of a limit is our doorway to calculus. This lecture will explain what the limit of a function is and how we can find such

More information

Replacing the a in the definition of the derivative of the function f at a with a variable x, gives the derivative function f (x).

Replacing the a in the definition of the derivative of the function f at a with a variable x, gives the derivative function f (x). Definition of The Derivative Function Definition (The Derivative Function) Replacing the a in the definition of the derivative of the function f at a with a variable x, gives the derivative function f

More information

2 Discrete Dynamical Systems (DDS)

2 Discrete Dynamical Systems (DDS) 2 Discrete Dynamical Systems (DDS) 2.1 Basics A Discrete Dynamical System (DDS) models the change (or dynamics) of single or multiple populations or quantities in which the change occurs deterministically

More information

Differential Equations Handout A

Differential Equations Handout A Differential Equations Handout A Math 1b November 11, 2005 These are problems for the differential equations unit of the course, some topics of which are not covered in the main textbook. Some of these

More information

This Week. Professor Christopher Hoffman Math 124

This Week. Professor Christopher Hoffman Math 124 This Week Sections 2.1-2.3,2.5,2.6 First homework due Tuesday night at 11:30 p.m. Average and instantaneous velocity worksheet Tuesday available at http://www.math.washington.edu/ m124/ (under week 2)

More information

Classical Mechanics Lecture 21

Classical Mechanics Lecture 21 Classical Mechanics Lecture 21 Today s Concept: Simple Harmonic Mo7on: Mass on a Spring Mechanics Lecture 21, Slide 1 The Mechanical Universe, Episode 20: Harmonic Motion http://www.learner.org/vod/login.html?pid=565

More information

Math 115 Spring 11 Written Homework 10 Solutions

Math 115 Spring 11 Written Homework 10 Solutions Math 5 Spring Written Homework 0 Solutions. For following its, state what indeterminate form the its are in and evaluate the its. (a) 3x 4x 4 x x 8 Solution: This is in indeterminate form 0. Algebraically,

More information

Math 10A MIDTERM #1 is in Peter 108 at 8-9pm this Wed, Oct 24

Math 10A MIDTERM #1 is in Peter 108 at 8-9pm this Wed, Oct 24 Math 10A MIDTERM #1 is in Peter 108 at 8-9pm this Wed, Oct 24 Log in TritonEd to view your assigned seat. Midterm covers Sec?ons 1.1-1.3, 1.5, 1.6, 2.1-2.4 which are homeworks 1, 2, and 3. You don t need

More information

Classical Mechanics Lecture 13

Classical Mechanics Lecture 13 Classical Mechanics Lecture 13 Today s Concepts: a) More on Elas5c Collisions b) Average Force during Collisions Mechanics Lecture 13, Slide 1 Your comments: good I'd like to go over the energy of a system

More information

Module 4: Linear Equa1ons Topic D: Systems of Linear Equa1ons and Their Solu1ons. Lesson 4-24: Introduc1on to Simultaneous Equa1ons

Module 4: Linear Equa1ons Topic D: Systems of Linear Equa1ons and Their Solu1ons. Lesson 4-24: Introduc1on to Simultaneous Equa1ons Module 4: Linear Equa1ons Topic D: Systems of Linear Equa1ons and Their Solu1ons Lesson 4-24: Introduc1on to Simultaneous Equa1ons Lesson 4-24: Introduc1on to Simultaneous Equa1ons Purpose for Learning:

More information

Integration. Tuesday, December 3, 13

Integration. Tuesday, December 3, 13 4 Integration 4.3 Riemann Sums and Definite Integrals Objectives n Understand the definition of a Riemann sum. n Evaluate a definite integral using properties of definite integrals. 3 Riemann Sums 4 Riemann

More information

( ) ( ) ( ) ( ) Given that and its derivative are continuous when, find th values of and. ( ) ( )

( ) ( ) ( ) ( ) Given that and its derivative are continuous when, find th values of and. ( ) ( ) 1. The piecewise function is defined by where and are constants. Given that and its derivative are continuous when, find th values of and. When When of of Substitute into ; 2. Using the substitution, evaluate

More information

Module 3 : Differentiation and Mean Value Theorems. Lecture 7 : Differentiation. Objectives. In this section you will learn the following :

Module 3 : Differentiation and Mean Value Theorems. Lecture 7 : Differentiation. Objectives. In this section you will learn the following : Module 3 : Differentiation and Mean Value Theorems Lecture 7 : Differentiation Objectives In this section you will learn the following : The concept of derivative Various interpretations of the derivatives

More information

Smith Chart The quarter-wave transformer

Smith Chart The quarter-wave transformer Smith Chart The quarter-wave transformer We will cover these topics The Smith Chart The Quarter-Wave Transformer Watcharapan Suwansan8suk #3 EIE/ENE 450 Applied Communica8ons and Transmission Lines King

More information

Section 6-1 Overview. Definition. Definition. Using Area to Find Probability. Area and Probability

Section 6-1 Overview. Definition. Definition. Using Area to Find Probability. Area and Probability Chapter focus is on: Continuous random variables Normal distributions Figure 6-1 Section 6-1 Overview ( -1 e 2 x-µ σ ) 2 f(x) = σ 2 π Formula 6-1 Slide 1 Section 6-2 The Standard Normal Distribution Key

More information

Gradient Descent for High Dimensional Systems

Gradient Descent for High Dimensional Systems Gradient Descent for High Dimensional Systems Lab versus Lab 2 D Geometry Op>miza>on Poten>al Energy Methods: Implemented Equa3ons for op3mizer 3 2 4 Bond length High Dimensional Op>miza>on Applica3ons:

More information

Where Is Newton Taking Us? And How Fast?

Where Is Newton Taking Us? And How Fast? Name: Where Is Newton Taking Us? And How Fast? In this activity, you ll use a computer applet to investigate patterns in the way the approximations of Newton s Methods settle down to a solution of the

More information

Determining Average and Instantaneous Rates of Change

Determining Average and Instantaneous Rates of Change MHF 4UI Unit 9 Day 1 Determining Average and Instantaneous Rates of Change From Data: During the 1997 World Championships in Athens, Greece, Maurice Greene and Donovan Bailey ran a 100 m race. The graph

More information

Sections 2.1, 2.2 and 2.4: Limit of a function Motivation:

Sections 2.1, 2.2 and 2.4: Limit of a function Motivation: Sections 2.1, 2.2 and 2.4: Limit of a function Motivation: There are expressions which can be computed only using Algebra, meaning only using the operations +,, and. Examples which can be computed using

More information

Lesson 76 Introduction to Complex Numbers

Lesson 76 Introduction to Complex Numbers Lesson 76 Introduction to Complex Numbers HL2 MATH - SANTOWSKI Lesson Objectives (1) Introduce the idea of imaginary and complex numbers (2) Prac?ce opera?ons with complex numbers (3) Use complex numbers

More information

18.03SC Practice Problems 2

18.03SC Practice Problems 2 8.03SC Practice Problems 2 Direction fields, integral curves, isoclines, separatrices, funnels Solution Suggestions As an example, take the ODE dy = x 2y.. Draw a big axis system and plot some isoclines,

More information

Syllabus for BC Calculus

Syllabus for BC Calculus Syllabus for BC Calculus Course Overview My students enter BC Calculus form an Honors Precalculus course which is extremely rigorous and we have 90 minutes per day for 180 days, so our calculus course

More information

7.4 RECIPROCAL FUNCTIONS

7.4 RECIPROCAL FUNCTIONS 7.4 RECIPROCAL FUNCTIONS x VOCABULARY Word Know It Well Have Heard It or Seen It No Clue RECIPROCAL FUNCTION ASYMPTOTE VERTICAL ASYMPTOTE HORIZONTAL ASYMPTOTE RECIPROCAL a mathematical expression or function

More information

Streaming - 2. Bloom Filters, Distinct Item counting, Computing moments. credits:www.mmds.org.

Streaming - 2. Bloom Filters, Distinct Item counting, Computing moments. credits:www.mmds.org. Streaming - 2 Bloom Filters, Distinct Item counting, Computing moments credits:www.mmds.org http://www.mmds.org Outline More algorithms for streams: 2 Outline More algorithms for streams: (1) Filtering

More information

Calculus I Homework: Linear Approximation and Differentials Page 1

Calculus I Homework: Linear Approximation and Differentials Page 1 Calculus I Homework: Linear Approximation and Differentials Page Example (3..8) Find the linearization L(x) of the function f(x) = (x) /3 at a = 8. The linearization is given by which approximates the

More information

Par$al Fac$on Decomposi$on. Academic Resource Center

Par$al Fac$on Decomposi$on. Academic Resource Center Par$al Fac$on Decomposi$on Academic Resource Center Table of Contents. What is Par$al Frac$on Decomposi$on 2. Finding the Par$al Fac$on Decomposi$on 3. Examples 4. Exercises 5. Integra$on with Par$al Fac$ons

More information

The Derivative Function. Differentiation

The Derivative Function. Differentiation The Derivative Function If we replace a in the in the definition of the derivative the function f at the point x = a with a variable x, we get the derivative function f (x). Using Formula 2 gives f (x)

More information

Extended Introduction to Computer Science CS1001.py. Lecture 8 part A: Finding Zeroes of Real Functions: Newton Raphson Iteration

Extended Introduction to Computer Science CS1001.py. Lecture 8 part A: Finding Zeroes of Real Functions: Newton Raphson Iteration Extended Introduction to Computer Science CS1001.py Lecture 8 part A: Finding Zeroes of Real Functions: Newton Raphson Iteration Instructors: Benny Chor, Amir Rubinstein Teaching Assistants: Yael Baran,

More information

Math Common Core State Standards and Long-Term Learning Targets High School Algebra II

Math Common Core State Standards and Long-Term Learning Targets High School Algebra II Math Common Core State Standards and Long-Term Learning Targets High School Algebra II Traditional Pathway; see Appendix A of the CCS Standards for information on high school course design: http://www.corestandards.org/assets/ccssi_mathematics_appendix_a.pdf

More information

Electricity & Magnetism Lecture 10: Kirchhoff s Rules

Electricity & Magnetism Lecture 10: Kirchhoff s Rules Electricity & Magnetism Lecture 10: Kirchhoff s Rules Today s Concept: Kirchhoff s Rules Electricity & Magne/sm Lecture 10, Slide 1 Deadline for Unit 23 Ac>vity guide and WriBen Homework is pushed to Friday

More information

(5.5) Multistep Methods

(5.5) Multistep Methods (5.5) Mulstep Metods Consider te inial-value problem for te ordinary differenal equaon: y t f t, y, a t b, y a. Let y t be te unique soluon. In Secons 5., 5. and 5.4, one-step numerical metods: Euler Metod,

More information

So exactly what is this 'Calculus' thing?

So exactly what is this 'Calculus' thing? So exactly what is this 'Calculus' thing? Calculus is a set of techniques developed for two main reasons: 1) finding the gradient at any point on a curve, and 2) finding the area enclosed by curved boundaries.

More information

Calculus I Homework: Linear Approximation and Differentials Page 1

Calculus I Homework: Linear Approximation and Differentials Page 1 Calculus I Homework: Linear Approximation and Differentials Page Questions Example Find the linearization L(x) of the function f(x) = (x) /3 at a = 8. Example Find the linear approximation of the function

More information

Logis&c Regression. Robot Image Credit: Viktoriya Sukhanova 123RF.com

Logis&c Regression. Robot Image Credit: Viktoriya Sukhanova 123RF.com Logis&c Regression These slides were assembled by Eric Eaton, with grateful acknowledgement of the many others who made their course materials freely available online. Feel free to reuse or adapt these

More information

Math Lab 10: Differential Equations and Direction Fields Complete before class Wed. Feb. 28; Due noon Thu. Mar. 1 in class

Math Lab 10: Differential Equations and Direction Fields Complete before class Wed. Feb. 28; Due noon Thu. Mar. 1 in class Matter & Motion Winter 2017 18 Name: Math Lab 10: Differential Equations and Direction Fields Complete before class Wed. Feb. 28; Due noon Thu. Mar. 1 in class Goals: 1. Gain exposure to terminology and

More information

Section 1.4 Tangents and Velocity

Section 1.4 Tangents and Velocity Math 132 Tangents and Velocity Section 1.4 Section 1.4 Tangents and Velocity Tangent Lines A tangent line to a curve is a line that just touches the curve. In terms of a circle, the definition is very

More information

APPLICATIONS OF DIFFERENTIATION

APPLICATIONS OF DIFFERENTIATION 4 APPLICATIONS OF DIFFERENTIATION APPLICATIONS OF DIFFERENTIATION 4.8 Newton s Method In this section, we will learn: How to solve high degree equations using Newton s method. INTRODUCTION Suppose that

More information

A.P. Calculus BC Test Four Section Two Free-Response Calculators Allowed Time 45 minutes Number of Questions 3

A.P. Calculus BC Test Four Section Two Free-Response Calculators Allowed Time 45 minutes Number of Questions 3 A.P. Calculus BC Test Four Section Two Free-Response Calculators Allowed Time 45 minutes Number of Questions Each of the three questions is worth 9 points. The maximum possible points earned on this section

More information

Lecture 7 - Momentum. A Puzzle... Momentum. Basics (1)

Lecture 7 - Momentum. A Puzzle... Momentum. Basics (1) Lecture 7 - omentum A Puzzle... An Experiment on Energy The shortest configuration of string joining three given points is the one where all three angles at the point of intersection equal 120. How could

More information

WEEK 7 NOTES AND EXERCISES

WEEK 7 NOTES AND EXERCISES WEEK 7 NOTES AND EXERCISES RATES OF CHANGE (STRAIGHT LINES) Rates of change are very important in mathematics. Take for example the speed of a car. It is a measure of how far the car travels over a certain

More information

Algebra & Trig Review

Algebra & Trig Review Algebra & Trig Review 1 Algebra & Trig Review This review was originally written for my Calculus I class, but it should be accessible to anyone needing a review in some basic algebra and trig topics. The

More information

Core Mathematics C12

Core Mathematics C12 Write your name here Surname Other names Pearson Edexcel International Advanced Level Centre Number Candidate Number Core Mathematics C12 Advanced Subsidiary Tuesday 13 January 2015 Morning Time: 2 hours

More information

Sampling Distributions of the Sample Mean Pocket Pennies

Sampling Distributions of the Sample Mean Pocket Pennies You will need 25 pennies collected from recent day-today change Some of the distributions of data that you have studied have had a roughly normal shape, but many others were not normal at all. What kind

More information

Announcements. Topics: Work On: - sec0ons 1.2 and 1.3 * Read these sec0ons and study solved examples in your textbook!

Announcements. Topics: Work On: - sec0ons 1.2 and 1.3 * Read these sec0ons and study solved examples in your textbook! Announcements Topics: - sec0ons 1.2 and 1.3 * Read these sec0ons and study solved examples in your textbook! Work On: - Prac0ce problems from the textbook and assignments from the coursepack as assigned

More information

MATH3283W LECTURE NOTES: WEEK 6 = 5 13, = 2 5, 1 13

MATH3283W LECTURE NOTES: WEEK 6 = 5 13, = 2 5, 1 13 MATH383W LECTURE NOTES: WEEK 6 //00 Recursive sequences (cont.) Examples: () a =, a n+ = 3 a n. The first few terms are,,, 5 = 5, 3 5 = 5 3, Since 5

More information

Curriculum Correlation

Curriculum Correlation Curriculum Correlation Ontario Grade 12(MCV4U) Curriculum Correlation Rate of Change Chapter/Lesson/Feature Overall Expectations demonstrate an understanding of rate of change by making connections between

More information

(c) Find the equation of the degree 3 polynomial that has the same y-value, slope, curvature, and third derivative as ln(x + 1) at x = 0.

(c) Find the equation of the degree 3 polynomial that has the same y-value, slope, curvature, and third derivative as ln(x + 1) at x = 0. Chapter 7 Challenge problems Example. (a) Find the equation of the tangent line for ln(x + ) at x = 0. (b) Find the equation of the parabola that is tangent to ln(x + ) at x = 0 (i.e. the parabola has

More information

The Intermediate Value Theorem If a function f (x) is continuous in the closed interval [ a,b] then [ ]

The Intermediate Value Theorem If a function f (x) is continuous in the closed interval [ a,b] then [ ] Lecture 2 5B Evaluating Limits Limits x ---> a The Intermediate Value Theorem If a function f (x) is continuous in the closed interval [ a,b] then [ ] the y values f (x) must take on every value on the

More information

Unit 1 Science Models & Graphing

Unit 1 Science Models & Graphing Name: Date: 9/18 Period: Unit 1 Science Models & Graphing Essential Questions: What do scientists mean when they talk about models? How can we get equations from graphs? Objectives Explain why models are

More information