arxiv: v2 [hep-ph] 2 Apr 2019

Size: px
Start display at page:

Download "arxiv: v2 [hep-ph] 2 Apr 2019"

Transcription

1 MITP/ arxiv: v2 [hep-ph] 2 Apr 2019 Two-loop master integrals for the mixed QCD-electroweak corrections for H b b through a Ht t-coupling Ekta Chaubey and Stefan Weinzierl PRISMA Cluster of Excellence, Institut für Physik, Johannes Gutenberg-Universität Mainz, D Mainz, Germany Abstract We present the two-loop master integrals relevant to the O(αα s )-corrections to the decay H b b through a Ht t-coupling. We keep the full dependence on the heavy particle masses, but neglect the b-quark mass. The occurring square roots can be rationalised and the result is expressed in terms of multiple polylogarithms.

2 1 Introduction The precise determination of the properties of the Higgs boson is now a central pillar of the experimental programs at the LHC. As the Higgs boson decays predominately to b b, the partial width for this decay is of central importance [1]. This raises immediately the question, how precise can we predict this partial width within the Standard Model from theory? This requires the computation of quantum corrections. The state-of-the-art for the partial decay width for H b b is as follows: In massless QCD the corrections are known to O(α 4 s) [2]. Keeping the mass dependence, QCD corrections are known to O(α 3 s ) [3 5]. The QCD calculation of order O(α2 s ) for the decay H b b through a Ht t-coupling has become available quite recently [6]. Two-loop QED corrections and mixed QED-QCD corrections have been considered in [7]. For the mixed electroweak-qcd corrections to the decay H b b of order O(αα s ) the leading term in an expansion in m 2 H /m2 t has been obtained in [8, 9]. This has been improved by including systematically more terms in [10]. As far as the two-loop electroweak corrections of order O(α 2 ) are concerned only the leading term in an expansion in m 2 H /m2 t is known [11, 12]. In recent years, there has been a substantial progress in our abilities to compute Feynman integrals, and Feynman integrals which previously could only be calculated approximatively come into reach. In this article we present the two-loop master integrals relevant to the O(αα s )-corrections to the decay H b b through a Ht t-coupling. We keep the full dependence on the heavy particle masses (m t, m H and m W ), but neglect the b-quark mass. In Higgs and top physics there are two-loop Feynman integrals related to elliptic curves [13 17]. One might fear that we are in a similar situation here. To some relief this is not the case. All master integrals can be expressed entirely in terms of multiple polylogarithm. The difficulty of these integrals is entirely due to the required simultaneous rationalisation of two square roots. Large parts of the calculation are based on by now standard techniques: We first derive a system of differential equations for the master integrals [18 28], using integration-by-parts identities [29, 30] and the Laporta algorithm [31]. We then bring the system of differential equations into an ε-form [24]. This will introduce two square roots. It turns out that the square roots can be rationalised simultaneously with the methods of [32]. This is the essential new ingredient of our calculation. The resulting system of differential equations involves only dlog-forms and can be solved in terms of multiple polylogarithms. We are able to express all master integrals in terms of multiple polylogarithms with an alphabet consisting of 13 letters. This paper is organised as follows: In the next section we introduce our notation. In particular we define the kinematic variables which will rationalise the square roots. In section 3 we define the master integrals, for which the system of differential equations is in ε-form. The system of differential equations is presented in section 4. The analytic results for the master integrals are given in section 5. In addition, section 6 gives numerical results for the most interesting case p 2 = m 2 H. Finally, our conclusions are contained in section 7. The appendix shows for all master integrals the corresponding Feynman diagrams and describes the content of the supplementary electronic file attached to the arxiv version of this article. 2

3 G A G B G C G D G E Figure 1: Examples of Feynman diagrams contributing to the mixed O(αα s )-corrections to the decay H b b through a Ht t-coupling. The Higgs boson is denoted by a dashed line, a top quark by a green line, a bottom quark with a black line and a gluon by a curly line. Particles with mass m W are drawn with a wavy line. 2 Notation We are interested in the mixed O(αα s )-corrections to the decay H b b through a Ht t-coupling. Examples of Feynman diagrams are shown in fig. 1. Not shown are diagrams whose master integrals are related to the master integrals of the diagrams of fig. 1 by symmetry. We will neglect the b-quark mass. However, we will treat the dependence on the top quark mass m t, the W-boson mass m W and the momentum p of the Higgs boson exactly. For an on-shell Higgs-boson we have p 2 = m 2 H. For the two-loop contributions to the Higgs decay we have two independent external momenta p 1 and p 2, which label the momenta of b-quark and b-quark, respectively. With two independent loop momenta we thus have seven linearly independent scalar products. For each of the four Feynman diagrams G A -G D we introduce an auxiliary topology with seven propagators. These are shown in fig. 2. The master integrals related to diagram G E are a subset of the master integrals related to diagram G A (and likewise a subset of the master integrals related to diagram G D ). We consider the integrals I X ν 1 ν 2 ν 3 ν 4 ν 5 ν 6 ν 7 = e 2γ Eε ( µ 2) ν D d D k 1 iπ D 2 d D k 2 iπ D 2 7 j=1 ( P X j 1 ) ν j, X {A,B,C,D}, (1) where D=4 2ε denotes the number of space-time dimensions, γ E denotes the Euler-Mascheroni constant, µ is an arbitrary scale introduced to render the Feynman integral dimensionless, and the 3

4 p 1 p 1 p 1 p p 2 p 2 p 2 p 2 T A 2 6 T B p 1 3 p 12 p 12 7 p 1 p p 2 4 p 2 p 2 T C 2 6 T D 3 6 Figure 2: Auxiliary diagrams for the two planar vertex corrections, the non-planar vertex correction and topology D. The internal masses of the propagators are encoded by the colour of the propagators: massless (black), m t (green), m W (red). 4

5 quantity ν is defined by ν = 7 ν j. (2) j=1 The inverse propagators P X j are defined as follows: Topology A: P A 1 = k2 1 + m2 t, PA 2 = (k 1 p 1 p 2 ) 2 + m 2 t, PA 3 = (k 1+ k 2 ) 2, P A 4 = k2 2 + m2 t, PA 5 = (k 2+ p 1 ) 2 + m 2 W, PA 6 = (k 2+ p 1 + p 2 ) 2 + m 2 t, P A 7 = (k 1 p 1 ) 2 + m 2 t. (3) Topology B: Topology C: Topology D: P B 1 = k2 1 + m2 t, PB 2 = (k 1 p 1 p 2 ) 2 + m 2 t, PB 3 = (k 1+ k 2 ) 2 + m 2 W, P B 4 = k2 2, PB 5 = (k 2+ p 1 ) 2, P B 6 = (k 2+ p 1 + p 2 ) 2, P B 7 = (k 1 p 1 ) 2 + m 2 t. (4) P C 1 = k2 1 + m2 t, PC 2 = (k 1 p 1 p 2 ) 2 + m 2 t, PC 3 = (k 1+ k 2 ) 2, P C 4 = (k 1+ k 2 p 1 ) 2, P C 5 = k2 2 + m2 W, PC 6 = (k 2+ p 2 ) 2 + m 2 t, P C 7 = (k 1 p 1 ) 2 + m 2 t. (5) P D 1 = k2 1 + m2 t, PD 2 = (k 1 p 1 p 2 ) 2 + m 2 t, PD 3 = (k 1 p 1 ) 2 + m 2 W, P D 4 = (k 1+ k 2 ) 2 + m 2 t, PD 5 = k2 2, PD 6 = (k 2+ p 1 ) 2, P D 7 = (k 2 + p 1 + p 2 ) 2. (6) For all topologies our conventions are such that we are interested in the integrals with ν 7 0. The Feynman parameter representations for the four topologies are given by I X ν 1 ν 2 ν 3 ν 4 ν 5 ν 6 ν 7 = e 2γ Eε Γ(ν D) 7 j=1 Γ(ν j ) σ ( 7 x ν j 1 j j=1 ) ν U 2 3 D ω, (7) X F ν D X where the integration is over σ = { } [x 1 :... : x 7 ] RP 6 x i 0. (8) 5

6 The differential form ω is given by ω = 7 j=1 ( 1) j 1 x j dx 1... dx j... dx 7, (9) where the hat indicates that the corresponding term is omitted. The graph polynomials are given by U A = (x 1 + x 2 + x 7 )(x 4 + x 5 + x 6 )+x 3 (x 1 + x 2 + x 4 + x 5 + x 6 + x 7 ), ( p 2) F A = [x 1 x 2 (x 3 + x 4 + x 5 + x 6 )+x 4 x 6 (x 1 + x 2 + x 3 + x 7 )+x 3 (x 1 x 6 + x 2 x 4 )] µ 2 [ +U A (x 1 + x 2 + x 4 + x 6 + x 7 ) m2 t µ 2 + x m 2 ] W 5 µ 2, U B = (x 1 + x 2 + x 7 )(x 4 + x 5 + x 6 )+x 3 (x 1 + x 2 + x 4 + x 5 + x 6 + x 7 ), ( p 2) F B = [x 1 x 2 (x 3 + x 4 + x 5 + x 6 )+x 4 x 6 (x 1 + x 2 + x 3 + x 7 )+x 3 (x 1 x 6 + x 2 x 4 )] [ +U B (x 1 + x 2 + x 7 ) m2 t µ 2 + x 3 mw 2 µ 2 U C = (x 1 + x 2 + x 7 )(x 5 + x 6 )+(x 3 + x 4 )(x 1 + x 2 + x 5 + x 6 + x 7 ), ( p 2) F C = [x 1 x 2 (x 3 + x 4 + x 5 + x 6 )+x 1 x 4 x 6 + x 2 x 3 x 5 x 3 x 6 x 7 ] [ +U C (x 1 + x 2 + x 6 + x 7 ) m2 t µ 2 + x 5 ], mw 2 µ 2 U D = (x 1 + x 2 + x 3 )(x 5 + x 6 + x 7 )+x 4 (x 1 + x 2 + x 3 + x 5 + x 6 + x 7 ), ( p 2) F D = [x 1 x 2 (x 4 + x 5 + x 6 + x 7 )+x 5 x 7 (x 1 + x 2 + x 3 + x 4 )+x 4 (x 1 x 7 + x 2 x 5 )] ], [ +U D (x 1 + x 2 + x 4 ) m2 t µ 2 + x m 2 ] W 3 µ 2. (10) Let us introduce an operator i +, which raises the power of the propagator i by one, e.g. 1 + I X ν 1 ν 2 ν 3 ν 4 ν 5 ν 6 ν 7 = I X (ν 1 +1)ν 2 ν 3 ν 4 ν 5 ν 6 ν 7. (11) In addition we define two operators D ±, which shift the dimension of space-time by two through The dimensional shift relations read [33, 34] D ± I X ν 1 ν 2 ν 3 ν 4 ν 5 ν 6 ν 7 (D) = I X ν 1 ν 2 ν 3 ν 4 ν 5 ν 6 ν 7 (D±2). (12) D I X ν 1 ν 2 ν 3 ν 4 ν 5 ν 6 ν 7 (D) = U X ( ν1 1 +,ν 2 2 +,ν 3 3 +,ν 4 4 +,ν 5 5 +,ν 6 6 +,ν 7 7 +) I X ν 1 ν 2 ν 3 ν 4 ν 5 ν 6 ν 7 (D). 6 µ 2 µ 2 µ 2 (13)

7 In the following we will set µ 2 = m 2 t. (14) After setting µ 2 = m 2 t the master integrals depend kinematically on two dimensionless quantities. A naive choice is v = p2 mt 2, w = m2 W mt 2, (15) with p = p 1 + p 2. However, with this choice we will encounter square roots. In particular, the square roots v(4 v) and λ(v,w,1) (16) will occur. The Källen function is defined by λ(x,y,z) = x 2 + y 2 + z 2 2xy 2yz 2zx. (17) In order to rationalise the square roots we introduce dimensionless quantities x and y through p 2 m 2 t = v = (1 x)2, x m 2 W m 2 t = w = (1 y+2xy)(x 2y+xy) x(1 y 2. (18) ) The first transformation is standard and has occurred in many places before, the second one is easily obtained with the methods of ref. [32]. The Feynman integrals are then functions of x,y and the dimensional regularisation parameter ε. The inverse transformations are given by x = 1 2 ( 2 v ) v(4 v), y = λ(v,w,1) v(4 v), (19) 1 w+2v such that x=0 corresponds to v= and y=0 corresponds to w=1. Let us also note that the point (v,w) = (0,1) is blown up in (x,y)-space to the hypersurface x = 1. This motivates our final change of coordinates and we introduce x = 1 x. (20) 3 Master integrals For the reduction to master integrals we use the programs Reduze [35], Kira [36] or Fire [37] combined with LiteRed [38, 39]. Each topology involves a certain number of master integrals. This number is shown in table 1 and corresponds to the number of master integrals if we just consider one topology in isolation. Of course, the various topologies share some master integrals and the final number of master integral which we have to compute is lower. We have the following relations I A µ00ν000 = I C µ0000ν0 = I D µ00ν000, 7

8 Topology Number of master integrals A 18 B 15 C 31 D 14 Table 1: The number of master integrals for a given topology. I A µ000ν00 = I B µ0ν0000 = I C µ000ν00 = I D 00νµ000, I A µν0ρ000 = I C µν000ρ0 = I D µν0ρ000, I A µν00ρ00 = I B µνρ0000 = I C µν00ρ00, I A 0µνρ000 = I C µ00ν0ρ0 = I D 0µ0ρν00, I B 0µνρ000 = I C 0µρ0ν00, I A µ0ν0ρ00 = I B µ0ρν000 = I C µ0ν0ρ00 = I D 00ρµν00, I A µ00νρσ0 = I D νσρµ000, I B µνρσ000 = I C µνσ0ρ00, I C µνρ00σ0 = I D µν0σ0ρ0, I A µνρ0σ00 = I B µνσ0ρ00 = I C µν0ρσ00, I A 0µνρσ00 = I C µ00νσρ00 = ID 0ρσµν00, I A µνρσκ00 = IC µν0ρκσ0, I B µνρσκ00 = IC µνσκρ00, I C µ0νρσκ0 = ID 0κσµνρ0. (21) In total we have to consider 39 master integrals, which are grouped into 25 blocks such that one block corresponds to one sub-topology. Some of the master integrals are taken as integrals in D 2 = 2 2ε space-time dimensions. Of course, with the help of the dimensional shift relations in eq. (13) they are easily expressed as (longer) linear combinations of master integrals in D=4 2ε space-time dimensions. A system of master integrals is given by J 1 = ε 2 D I A , J 2 = ε 2 D I A (, 1 x J 3 = ε 2 2 ) D I A 2x, ( 1 x J 4 = ε 2 2 ) D I A 2x, J 5 = 1 2 ε2 v D I B , 8

9 J 6 = 1 2 ε2 v D I B, ( 1 x J 7 = ε 2 2 ) D I A 2x , J 8 = ε 2 D I( 1) A, J 9 = ε 2(1 x)( 1+x 2y+y 2 + 2xy+xy 2) x(1 y 2 D I B ), J 10 = ε 2[ ] D I( 1) B (1 w)d I B, J 11 = 2ε 2 D I B 0111( 1)00 2ε2 D I B , J 12 = ε 2 (1 w) D I A , J 13 = ε 2 ( 1 x 2 ) 2 4x 2 D I A , J 14 = ε 2(1 x)3 (1+x) 4x 2 D I B, J 15 = ε 3 (1 ε)v I A (, 1 x J 16 = ε 2 2 ) [ (1 w) D I B x D I B ], J 17 = ε 3 v I C, J 18 = ε 3 v I C (, 1 x J 19 = ε 2 2 ) x J 20 = ε 3 v I A, [ (1 2ε) I C ε IC J 21 = ε 3 v I A, J 22 = 2ε 2 (1 x) [ (1 2ε)(1+x) I A x(1+w) ε(x w) IA ε(1 x+2w) IA ] 2 (1+x) D I A, J 23 = 2ε 3 v I A , J 24 = 2ε 3 v I A , J 25 = 2ε 3 v I C , J 26 = 2ε 3 v I C , J 27 = ε 3(1 x)2 x(1+x) J 28 = 2ε 3 (1 2ε)v I B , J 29 = 2ε 3 v(1 w) I A , ], [ (1 2ε)(1 x) I A (1 ε) IA ], 9

10 J 30 ( ) = 2ε 3 v I A I A, J 31 = 4ε 3 (1 x)2 [ (1 x 2 ) x(1+x 2 I A ) (1+w)IA IA IA IA ] I A 2IA , J 32 = 4ε 4 v I B , J 33 = 2ε 3 v(1 w) I C (, ) J 34 = 2ε 3 vw I C + IC , J 35 = 2ε 3 v(1 w) I C, J 36 = 4ε 3 (1 x)2 [ (1 x 2 ) x(1+x 2 I C ) (1+w)IC w IC (1 w)ic ] +2I C + IC IC IC , J 37 = 2ε 4 v I C , J 38 = ε 3 vw I D , J 39 = 4ε 4(1 x)2( 1 x+x 2 xw ) x 2 I C (22) 4 The system of differential equations Let us set J =(J 1,...,J 39 ) T for the vector of master integrals. In this basis the system of differential equations is in ε-form [24]. We have d J = εa J, (23) where the matrix A is independent of ε. Let us first describe the singularities of the system of differential equations. The singularities are on hypersurfaces and each hypersurface is defined by a polynomial in x and y. There are sixteen polynomials, which are given by p 1 = x, p 2 p 3 = x 1, = x+1, p 4 = y, p 5 p 6 p 7 p 8 p 9 = y 1, = y+1, = xy+x y+1, = xy+x 2y, = 2xy y+1, 10

11 p 10 p 11 p 12 p 13 p 14 p 15 = xy 2 + 2xy 2y 2 + x+2y, = xy 2 + 2xy+y 2 + x 2y+1, = xy 2 + 2xy y 2 + x+2y 1, = 2xy 2 + 2xy y 2 + 2y 1, = 2xy 2 + 2xy 3y 2 + 2y+1, = 3xy 2 + 2xy 2y 2 x+2y, p 16 = 3xy 2 + 2xy 3y 2 x+2y+1. (24) We note that the polynomials p k are maximally of degree 3. The highest degree in the variable y is two, the highest degree in the variable x is one. The entries of the matrix A are Q-linear combinations of dlog-forms of these polynomials: A i j = 16 c i jk d ln(p k (x,y)), c i jk Q. (25) k=1 We find that the matrix A contains only fifteen Q-independent linear combinations of dlog-forms. A basis for these is given by ω 1 = ds = 2d ln p 2 d ln p 1, s ds ω 2 = s 4mt 2 = 2d ln p 3 d ln p 1, ds ω 3 = s ( 4mt 2 s ) = d ln p 1, ω 4 = dm2 W m 2 W = d ln p 8 + d ln p 9 d ln p 5 d ln p 6 d ln p 1, dm 2 W ω 5 = mw 2 = d ln p 7 d ln p 5 d ln p 6 + d ln p 4 + d ln p 2 d ln p 1, m2 t ω 6 = d ln ( s+mw 2 mt) 2 = d ln p16 d ln p 5 d ln p 6 + d ln p 2 d ln p 1, ω 7 = d ln ( s mw 2 + t) m2 = d ln p12 d ln p 5 d ln p 6 + d ln p 2 d ln p 1, ω 8 = 1 (sm 2 d ln W 2 +( mt 2 ) 2 ) m2 W = 1 2 d ln p d ln p 14 d ln p 5 d ln p 6 + d ln p 2 d ln p 1, ω 9 = 1 ( (2m 2 d ln 2 t mw) 2 ( s+ m 2 t mw 2 ) 2 ) ω 10 = 1 2 d ln p d ln p 10 d ln p 5 d ln p 6 + d ln p 2 d ln p 1, = 1 2 d ln( λ ( s,mw,m 2 t 2 )) = d ln p 11 d ln p 5 d ln p 6 + d ln p 2 d ln p 1, 11

12 ω 11 = 1 2 d ln p d ln p 14, ω 12 = 1 2 d ln p d ln p 10, ω 13 = 1 2 d ln p d ln p 8, ω 14 = 1 2 d ln p d ln p 5, ω 15 = d ln p d ln p d ln p 5. (26) The entries of A are therefore of the form A i j = 15 c i jk ω k, c i jk Q. (27) k=1 By a rescaling of the master integrals with constant factors we may actually achieve c i jk Z. (28) For our choice of basis of master integrals J we have c i jk Z. Equivalently, we may express the matrix A as A = 15 k=1 C k ω k, (29) where the entries of the matrices C k are integer numbers. The matrix A is given in the supplementary electronic file attached to the arxiv version of this article. On specific hypersurfaces the differential forms simplify considerably. On the hypersurface y=0 (i.e. for the case m W = m t ) the differential forms reduce to a linear combination of dx x, dx x 1, dx x+1. (30) On the hypersurface x = 0 (i.e. for the case p 2 ) the differential forms reduce to a linear combination of dy y, dy y 1, dy y+1, dy y (31) On the hypersurface x=1 (i.e. for the case p 2 = 0 and m 2 W = m2 t ) the differential forms reduce to a linear combination of dy y, dy y 1, dy y+1, 2ydy y 2 + 1, 2(y 2)dy y 2 4y 1, 2(y+2)dy y 2 + 4y 1. (32) The derivative of the master integrals is given by the product of the matrix A with the vector J: d J = εa J. (33) 12

13 The right-hand side vanishes if J is in the kernel of A. This is what happens on the hypersurface x=1: Although A 0 we have J = 0. (34) y x=1 It follows that the master integrals are constant on the hypersurface x=1. This is a significant simplification for solving the differential equations. 5 Analytical results The analytic result for the master integrals at a point (x,y) is obtained from the value of the master integrals at a boundary point (x i,y i ) by integrating the system of differential equations along a path from (x i,y i ) to (x,y). The result does not depend on the chosen path, but only on the homotopy class of the path. For the case at hand we have several significant simplification: 1. All master integrals are constant on the hypersurface x=1 (corresponding to p 2 = 0 and mw 2 = m2 t ) and we may take the values of the master integrals on this hypersurface as boundary values. We therefore have a boundary line. 2. It is then sufficient to integrate the differential equation along a straight line from (1,y) to (x,y) with y = const. The polynomials p 1 -p 3 and p 7 -p 16 are all linear in x (the polynomials p 4 -p 6 don t contribute along y=const), avoiding the need to factorise higher-order polynomials in x. 3. The boundary values on the hypersurface x = 1 are particularly simple: 35 out of the 39 master integrals vanish on this hypersurface, the four non-vanishing master integrals are products of one-loop integrals. Since all integration kernels are dlog-forms, the result can be expressed in terms of multiple polylogarithms. Multiple polylogarithms are defined for l k 0 by [40 43] We have G(l 1,...,l k ;z) = z G(l 1,l 2,...,l k ;z) = 0 dz 1 z 1 l 1 z 0 z 1 0 dz 2 z 2 l 2... z k 1 0 dz k z k l k. (35) dz 1 z 1 l 1 G(l 2,...,l k ;z 1 ). (36) We define G(0,...,0;z) with k zeros for l 1 to l k to be G(0,...,0;z) = 1 k! (lnz)k. (37) 13

14 This permits us to allow trailing zeros in the sequence(l 1,...,l k ) by defining the function G with trailing zeros via eq. (36) and eq. (37). For l k 0 we have the scaling relation Let us introduce the short-hand notation G(l 1,...,l k ;z) = G(λl 1,...,λl k ;λz). (38) G m1,...,m k (l 1,...,l k ;z) = G(0,...,0,l }{{} 1,...,l k 1,0...,0,l }{{} k ;z), (39) m 1 1 m k 1 where all l j for j = 1,...,k are assumed to be non-zero. The sum representation of multiple polylogarithms is defined by Li m1,...,m k (x 1,...,x k ) = n 1 >n 2 >...>n k >0 x n xnk k, (40) n m 1 1 n m k k and related to the integral representation by ( ) 1 Li m1,...,m k (x 1,...,x k ) = ( 1) k 1 1 G m1,...,m k,,..., ;1, x 1 x 1 x 2 x 1...x k G m1,...,m k (l 1,...,l k ;z) = ( 1) k Li m1,...,m k ( z l 1, l 1 l 2,..., l k 1 l k ). (41) The master integrals J 1, J 2, J 5 and J 6 are products of one-loop integrals and rather simple. They are given by J 1 = e 2γ E ε (Γ(1+ε)) 2, J 2 = e 2γ E ε (Γ(1+ε)) 2 w ε, J 5 = e 2γ E ε (Γ(1+ε))2 (Γ(1 ε)) 2 Γ(1 2ε) J 6 = e 2γ E ε (Γ(1+ε))2 (Γ(1 ε)) 2 Γ(1 2ε) ( v) ε, ( v) ε w ε. (42) These are the only master integrals, which do not vanish on the hypersurface x = 1. All other master integrals vanish on the hypersurface x = 1. This fully specifies the boundary conditions on the line(x,y)=(1,y). Note that the integrals J 5 and J 6 have logarithmic singularities at x=1. For the integration in (x,y)-space from (1,y) to (x,y) it is better to change variables from x to x = 1 x. We therefore integrate in (x,y)-space from (0,y) to (x,y), where y is treated as a parameter. This integration gives multiple polylogarithms of the form where the letters l 1,..., l k are from the alphabet G ( l 1,...,l k ;x ), (43) A = { 0,1,2,x 7,x 8,x 9,x 10,x 11,x 12,x 13,x 14,x 15,x 16}. (44) 14

15 The non-trivial letters x 7 -x 16 are given by x 7 = 2 1+y, x 8 = 1 y 1+y, x 9 = 1+y 2y, ( 1+y 2 ) x 10 = 1+4y y2 (1+y) 2, x 11 = 2 (1+y) 2, x 13 = 1 4y y2 2y(1+y), x 14 = 1+4y y2 2y(1+y), x 12 = 4y (1+y) 2, x 15 = 1 4y y2 (1+y)(1 3y), x 16 = 4y (1+y)(1 3y). (45) For all basis integrals we write J k = ε j J ( j) k. (46) j=0 The quantities J ( j) k are given for 1 k 39 and 0 j 4 in the supplementary electronic file attached to the arxiv version of this article. To give an example, let us show the first non-vanishing term of the most complicated integral, the non-planar vertex correction J 39. We find J (3) 39 = 8G( 0,1,1;x ) 4G ( 0,1,x 8;x ) 4G ( 0,x 8,1;x ) + 4G ( 0,x 8,x 9;x ) + 4G ( 0,x 9,x 8;x ) 8G ( 1,2,1;x ) + 8G ( 1,x 15,1;x ) 4G ( 1,x 15,x 8 ;x ) 4G ( 1,x 15,x 9 ;x ) 16G ( 1,x 7,1;x ) + 8G ( 1,x 7,x 8 ;x ) + 12G ( 1,x 7,x 9 ;x ) + 4G ( 1,x 8,1;x ) 4G ( 1,x 8,x 9 ;x ) 4G ( 1,x 9,x 8 ;x ) + 8G ( x 14,2,1;x ) 8G ( x 14,x 15,1;x ) +4G ( x 14,x 15,x 8;x ) + 4G ( x 14,x 15,x 9;x ) + 16G ( x 14,x 7,1;x ) 8G ( x 14,x 7,x 8;x ) 12G ( x 14,x 7,x 9 ;x ) 4G ( x 14,x 8,1;x ) + 4G ( x 14,x 8,x 9 ;x ) + 4G ( x 14,x 9,x 8 ;x ) +8G ( x 15,1,1;x ) + 4G ( x 15,1,x 8 ;x ) 8G ( x 15,2,1;x ) + 4G ( x 15,x 14,x 8 ;x ) +4G ( x 15,x 14,x 9;x ) + 4G ( x 15,x 7,1;x ) 12G ( x 15,x 7,x 8;x ) 8G ( x 15,x 7,x 9;x ) 4G ( x 15,x 8,1;x ) + 4G ( x 15,x 8,x 9 ;x ) + 4G ( x 15,x 9,x 8 ;x ) 8G ( x 7,1,1;x ) +4G ( x 7,1,x 8 ;x ) + 4G ( x 7,x 8,1;x ) 4G ( x 7,x 8,x 9 ;x ) 4G ( x 7,x 9,x 8 ;x ). (47) 6 Numerical results Of particular interest are numerical results for p 2 = m 2 H. (48) Since p 2 > 0, we are not in the Euclidean region. Feynman s i0-prescription instructs us to take a small imaginary part into account: p 2 p 2 + i0. This selects the correct branches for the two square roots v(4 v) and λ(v,w,1). With m W = GeV, m H = GeV, m t = GeV (49) 15

16 we obtain for the variables x and y x = i, y = i. (50) The values of the master integrals at this point are given to 8 digits in table 2. They are easily ε 0 ε 1 ε 2 ε 3 ε 4 J J J i i i i J i i i i J i i i i J i i i i J i i i i J J i i i i J J J J J i i i i J J i i i i J J J i i i i J J J i i i J J J J J i i J i i J J J i i J J J J J i i J J J Table 2: Numerical results for the first five terms of the ε-expansion of the master integrals J 1 -J 39 at the kinematic point s=m 2 H. computed to arbitrary precision by evaluating the multiple polylogarithms with the help of GiNaC [44, 45]. In addition we verified the first few digits at various kinematic points with the help of the programssector_decomposition [46] andpysecdec [47, 48]. 16

17 7 Conclusions In this paper we presented the two-loop master integrals relevant to the O(αα s )-corrections to the decay H b b through a Ht t-coupling. We kept the exact dependence of the masses of the heavy particles (m W and m t ) and the momentum p 2 of the Higgs boson, but neglected the b-quark mass. All master integrals are expressed in terms of multiple polylogarithms with an alphabet of 13 letters. They can be evaluated to arbitrary precision with the help of the GiNaC-library. For the special case p 2 = m 2 H we presented the numerical values. Acknowledgements This work has been supported by the Cluster of Excellence Precision Physics, Fundamental Interactions, and Structure of Matter (PRISMA+ EXC 2118/1) funded by the German Research Foundation (DFG) within the German Excellence Strategy (Project ID ). S.W. would like to thank the Institute for Theoretical Studies in Zurich for hospitality, where part of this work was carried out. The Feynman diagrams in this article have been made with the programaxodraw [49]. A Master topologies In this appendix we show in tables 3-6 the diagrams of all master topologies. J 1 J 2 Figure 3: Master topologies (part 1). 17

18 J 3 J 4 J 5 J 6 J 7 J 8 J 9 J 11 J 12 J 13 Figure 4: Master topologies (part 2). 18

19 J 14 J 15 J 16 J 17 J 19 J 20 J 22 J 23 J 24 J 25 J 26 J 27 Figure 5: Master topologies (part 3). 19

20 J 28 J 29 J 31 J 32 J 33 J 36 J 37 J 38 J 39 Figure 6: Master topologies (part 4). 20

21 B Supplementary material Attached to the arxiv version of this article is an electronic file in ASCII format with Maple syntax, defining the quantities A, J. The matrixaappears in the differential equation d J = εa J. (51) The entries of the matrix A are Z-linear combinations of ω 1,..., ω 15, defined in eq. (26). These differential forms are denoted by omega_1,...,omega_15. The vector J contains the results for the master integrals up to order ε 4 in terms of multiple polylogarithms. The variable ε is denoted byeps, ζ 2, ζ 3, ζ 4 by zeta_2,zeta_3,zeta_4, respectively. For the notation of multiple polylogarithms we given an example: G(x 7,x 8,1;x ) is denoted by References Glog([xp7,xp8,1],xp). [1] G. P. Lepage, P. B. Mackenzie, and M. E. Peskin, (2014), arxiv: [2] P. A. Baikov, K. G. Chetyrkin, and J. H. Kühn, Phys. Rev. Lett. 96, (2006), arxiv:hep-ph/ [3] K. G. Chetyrkin and A. Kwiatkowski, Nucl. Phys. B461, 3 (1996), arxiv:hep-ph/ [4] K. G. Chetyrkin, J. H. Kühn, and M. Steinhauser, Nucl. Phys. B505, 40 (1997), arxiv:hep-ph/ [5] K. G. Chetyrkin and M. Steinhauser, Phys. Lett. B408, 320 (1997), arxiv:hep-ph/ [6] A. Primo, G. Sasso, G. Somogyi, and F. Tramontano, Phys. Rev. D99, (2019), arxiv: [7] A. L. Kataev, JETP Lett. 66, 327 (1997), arxiv:hep-ph/ [8] A. Kwiatkowski and M. Steinhauser, Phys. Lett. B338, 66 (1994), arxiv:hep-ph/ , [Erratum: Phys. Lett.B342,455(1995)]. [9] B. A. Kniehl and M. Spira, Nucl. Phys. B432, 39 (1994), arxiv:hep-ph/ [10] L. Mihaila, B. Schmidt, and M. Steinhauser, Phys. Lett. B751, 442 (2015), arxiv: [11] M. Butenschön, F. Fugel, and B. A. Kniehl, Phys. Rev. Lett. 98, (2007), arxiv:hep-ph/ [12] M. Butenschön, F. Fugel, and B. A. Kniehl, Nucl. Phys. B772, 25 (2007), arxiv:hep-ph/ [13] R. Bonciani et al., JHEP 12, 096 (2016), arxiv: [14] A. von Manteuffel and L. Tancredi, JHEP 06, 127 (2017), arxiv:

22 [15] B. Mistlberger, JHEP 05, 028 (2018), arxiv: [16] L. Adams, E. Chaubey, and S. Weinzierl, Phys. Rev. Lett. 121, (2018), arxiv: [17] L. Adams, E. Chaubey, and S. Weinzierl, JHEP 10, 206 (2018), arxiv: [18] A. V. Kotikov, Phys. Lett. B254, 158 (1991). [19] A. V. Kotikov, Phys. Lett. B267, 123 (1991). [20] E. Remiddi, Nuovo Cim. A110, 1435 (1997), hep-th/ [21] T. Gehrmann and E. Remiddi, Nucl. Phys. B580, 485 (2000), hep-ph/ [22] M. Argeri and P. Mastrolia, Int. J. Mod. Phys. A22, 4375 (2007), arxiv: [23] S. Müller-Stach, S. Weinzierl, and R. Zayadeh, Commun.Math.Phys. 326, 237 (2014), arxiv: [24] J. M. Henn, Phys. Rev. Lett. 110, (2013), arxiv: [25] J. M. Henn, J. Phys. A48, (2015), arxiv: [26] J. Ablinger et al., Comput. Phys. Commun. 202, 33 (2016), arxiv: [27] L. Adams, E. Chaubey, and S. Weinzierl, Phys. Rev. Lett. 118, (2017), arxiv: [28] J. Bosma, K. J. Larsen, and Y. Zhang, Phys. Rev. D97, (2018), arxiv: [29] F. V. Tkachov, Phys. Lett. B100, 65 (1981). [30] K. G. Chetyrkin and F. V. Tkachov, Nucl. Phys. B192, 159 (1981). [31] S. Laporta, Int. J. Mod. Phys. A15, 5087 (2000), hep-ph/ [32] M. Besier, D. Van Straten, and S. Weinzierl, (2018), arxiv: [33] O. V. Tarasov, Phys. Rev. D54, 6479 (1996), hep-th/ [34] O. V. Tarasov, Nucl. Phys. B502, 455 (1997), hep-ph/ [35] A. von Manteuffel and C. Studerus, (2012), arxiv: [36] P. Maierhöfer, J. Usovitsch, and P. Uwer, Comput. Phys. Commun. 230, 99 (2018), arxiv: [37] A. V. Smirnov, Comput. Phys. Commun. 189, 182 (2015), arxiv: [38] R. N. Lee, (2012), arxiv: [39] R. N. Lee, J. Phys. Conf. Ser. 523, (2014), arxiv: [40] A. B. Goncharov, Math. Res. Lett. 5, 497 (1998). [41] A. B. Goncharov, (2001), math.ag/ [42] J. M. Borwein, D. M. Bradley, D. J. Broadhurst, and P. Lisonek, Trans. Amer. Math. Soc. 353:3, 907 (2001), math.ca/ [43] S. Moch, P. Uwer, and S. Weinzierl, J. Math. Phys. 43, 3363 (2002), hep-ph/ [44] C. Bauer, A. Frink, and R. Kreckel, J. Symbolic Computation 33, 1 (2002), cs.sc/ [45] J. Vollinga and S. Weinzierl, Comput. Phys. Commun. 167, 177 (2005), hep-ph/ [46] C. Bogner and S. Weinzierl, Comput. Phys. Commun. 178, 596 (2008), arxiv: [47] S. Borowka et al., Comput. Phys. Commun. 222, 313 (2018), arxiv: [48] S. Borowka et al., (2018), arxiv: [49] J. A. M. Vermaseren, Comput. Phys. Commun. 83, 45 (1994). 22

One-Mass Two-Loop Master Integrals for Mixed

One-Mass Two-Loop Master Integrals for Mixed One-Mass Two-Loop Master Integrals for Mixed α s -Electroweak Drell-Yan Production work ongoing with Andreas von Manteuffel The PRISMA Cluster of Excellence and Institute of Physics Johannes Gutenberg

More information

Functions associated to scattering amplitudes. Stefan Weinzierl

Functions associated to scattering amplitudes. Stefan Weinzierl Functions associated to scattering amplitudes Stefan Weinzierl Institut für Physik, Universität Mainz I: Periodic functions and periods II: III: Differential equations The two-loop sun-rise diagramm in

More information

Schematic Project of PhD Thesis: Two-Loop QCD Corrections with the Differential Equations Method

Schematic Project of PhD Thesis: Two-Loop QCD Corrections with the Differential Equations Method Schematic Project of PhD Thesis: Two-Loop QCD Corrections with the Differential Equations Method Matteo Becchetti Supervisor Roberto Bonciani University of Rome La Sapienza 24/01/2017 1 The subject of

More information

Multiloop integrals in dimensional regularization made simple

Multiloop integrals in dimensional regularization made simple Multiloop integrals in dimensional regularization made simple Johannes M. Henn Institute for Advanced Study based on PRL 110 (2013) [arxiv:1304.1806], JHEP 1307 (2013) 128 [arxiv:1306.2799] with A. V.

More information

arxiv: v2 [hep-ph] 4 Jun 2018

arxiv: v2 [hep-ph] 4 Jun 2018 Prepared for submission to JHEP Evaluating elliptic master integrals at special kinematic values: using differential equations and their solutions via expansions near singular points arxiv:1805.00227v2

More information

arxiv:hep-ph/ v1 18 Nov 1996

arxiv:hep-ph/ v1 18 Nov 1996 TTP96-55 1 MPI/PhT/96-122 hep-ph/9611354 November 1996 arxiv:hep-ph/9611354v1 18 Nov 1996 AUTOMATIC COMPUTATION OF THREE-LOOP TWO-POINT FUNCTIONS IN LARGE MOMENTUM EXPANSION K.G. Chetyrkin a,b, R. Harlander

More information

Systems of differential equations for Feynman Integrals; Schouten identities and canonical bases.

Systems of differential equations for Feynman Integrals; Schouten identities and canonical bases. Systems of differential equations for Feynman Integrals; Schouten identities and canonical bases. Lorenzo Tancredi TTP, KIT - Karlsruhe Bologna, 18 Novembre 2014 Based on collaboration with Thomas Gehrmann,

More information

Exploring the function space of Feynman integrals. Stefan Weinzierl

Exploring the function space of Feynman integrals. Stefan Weinzierl Exploring the function space of Feynman integrals Stefan Weinzierl Institut für Physik, Universität Mainz Mathematics intro: Physics intro: Part I: Part II: Periodic functions and periods Precision calculations

More information

From Tensor Integral to IBP

From Tensor Integral to IBP From Tensor Integral to IBP Mohammad Assadsolimani, in collaboration with P. Kant, B. Tausk and P. Uwer 11. Sep. 2012 Mohammad Assadsolimani From Tensor Integral to IBP 1 Contents Motivation NNLO Tensor

More information

Reduction to Master Integrals. V.A. Smirnov Atrani, September 30 October 05, 2013 p.1

Reduction to Master Integrals. V.A. Smirnov Atrani, September 30 October 05, 2013 p.1 Reduction to Master Integrals V.A. Smirnov Atrani, September 30 October 05, 2013 p.1 Reduction to Master Integrals IBP (integration by parts) V.A. Smirnov Atrani, September 30 October 05, 2013 p.1 Reduction

More information

PoS(DIS2017)295. Hadronic Higgs boson decay at order α 4 s and α 5 s

PoS(DIS2017)295. Hadronic Higgs boson decay at order α 4 s and α 5 s Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology (KIT) 7618 Karlsruhe, Germany E-mail: joshua.davies@kit.edu Matthias Steinhauser Institut für Theoretische Teilchenphysik, Karlsruhe

More information

Non-planar two-loop Feynman integrals contributing to Higgs plus jet production

Non-planar two-loop Feynman integrals contributing to Higgs plus jet production Non-planar two-loop Feynman integrals contributing to Higgs plus jet production Institute for Theoretical Particle Physics (TTP), Karlsruhe Institute of Technology Engesserstraße 7, D-76128 Karlsruhe,

More information

Multiloop scattering amplitudes in the LHC Era

Multiloop scattering amplitudes in the LHC Era Multiloop scattering amplitudes in the LHC Era Francesco Moriello Based on arxiv:1609.06685 In collaboration with: R. Bonciani, V. Del Duca, H. Frellesvig, J.M. Henn, V. Smirnov October 26, 2016 Outline

More information

arxiv: v2 [hep-th] 7 Jul 2016

arxiv: v2 [hep-th] 7 Jul 2016 Integration-by-parts reductions from unitarity cuts and algebraic geometry arxiv:1606.09447v [hep-th] 7 Jul 016 Institute for Theoretical Physics, ETH Zürich, 8093 Zürich, Switzerland E-mail: Kasper.Larsen@phys.ethz.ch

More information

Evaluating multiloop Feynman integrals by Mellin-Barnes representation

Evaluating multiloop Feynman integrals by Mellin-Barnes representation April 7, 004 Loops&Legs 04 Evaluating multiloop Feynman integrals by Mellin-Barnes representation V.A. Smirnov Nuclear Physics Institute of Moscow State University Mellin-Barnes representation as a tool

More information

arxiv:hep-lat/ v1 30 Sep 2005

arxiv:hep-lat/ v1 30 Sep 2005 September 2005 Applying Gröbner Bases to Solve Reduction Problems for Feynman Integrals arxiv:hep-lat/0509187v1 30 Sep 2005 A.V. Smirnov 1 Mechanical and Mathematical Department and Scientific Research

More information

Single mass scale diagrams: construction of a basis for the ε-expansion.

Single mass scale diagrams: construction of a basis for the ε-expansion. BI-TP 99/4 Single mass scale diagrams: construction of a basis for the ε-expansion. J. Fleischer a 1, M. Yu. Kalmykov a,b 2 a b Fakultät für Physik, Universität Bielefeld, D-615 Bielefeld, Germany BLTP,

More information

arxiv: v1 [hep-ph] 30 Dec 2015

arxiv: v1 [hep-ph] 30 Dec 2015 June 3, 8 Derivation of functional equations for Feynman integrals from algebraic relations arxiv:5.94v [hep-ph] 3 Dec 5 O.V. Tarasov II. Institut für Theoretische Physik, Universität Hamburg, Luruper

More information

Two loop O N f s 2 corrections to the decay width of the Higgs boson to two massive fermions

Two loop O N f s 2 corrections to the decay width of the Higgs boson to two massive fermions PHYSICAL REVIEW D VOLUME 53, NUMBER 9 1 MAY 1996 Two loop O N f s corrections to the decay width of the Higgs boson to two massive fermions K Melnikov Institut für Physik, THEP, Johannes Gutenberg Universität,

More information

Reduction of Feynman integrals to master integrals

Reduction of Feynman integrals to master integrals Reduction of Feynman integrals to master integrals A.V. Smirnov Scientific Research Computing Center of Moscow State University A.V. Smirnov ACAT 2007 p.1 Reduction problem for Feynman integrals A review

More information

arxiv: v2 [hep-ph] 12 Jul 2017

arxiv: v2 [hep-ph] 12 Jul 2017 MaPhy-AvH/7-5 MITP/7-38 arxiv:75.895v [hep-ph] Jul 7 Analytic continuation and numerical evaluation of the kite integral and the equal mass sunrise integral Christian Bogner a, Armin Schweitzer a and Stefan

More information

NNLO antenna subtraction with two hadronic initial states

NNLO antenna subtraction with two hadronic initial states NNLO antenna subtraction with two hadronic initial states Institut für Theoretische Physik, Universität Zürich, Winterthurerstr. 190, 8057 Zürich, Switzerland E-mail: radja@physik.uzh.ch Aude Gehrmann-De

More information

Feynman integrals and multiple polylogarithms. Stefan Weinzierl

Feynman integrals and multiple polylogarithms. Stefan Weinzierl Feynman integrals and multiple polylogarithms Stefan Weinzierl Universität Mainz I. Basic techniques II. Nested sums and iterated integrals III. Multiple Polylogarithms IV. Applications The need for precision

More information

The Pentabox Master Integrals with the Simplified Differential Equations approach

The Pentabox Master Integrals with the Simplified Differential Equations approach The Pentabox Master Integrals with the Simplified Differential Equations approach Costas G. Papadopoulos INPP, NCSR Demokritos Zurich, August 25, 2016 C.G.Papadopoulos (INPP) 5box QCD@LHC 2016 1 / 36 Introduction

More information

Evaluating double and triple (?) boxes

Evaluating double and triple (?) boxes Evaluating double and triple (?) boxes V.A. Smirnov a hep-ph/0209295 September 2002 a Nuclear Physics Institute of Moscow State University, Moscow 9992, Russia A brief review of recent results on analytical

More information

Toward a Precision Standard Model Theory of the Higgs Boson Couplings

Toward a Precision Standard Model Theory of the Higgs Boson Couplings Toward a Precision Standard Model Theory of the Higgs Boson Couplings M. E. Peskin Gunion-fest March 2014 describing work with P. Lepage, P. Mackenzie Ellis, Gunion, Haber, Roszkowski, Zwirner, PR D 39,

More information

Forcer: a FORM program for 4-loop massless propagators

Forcer: a FORM program for 4-loop massless propagators Forcer: a FORM program for 4-loop massless propagators, a B. Ruijl ab and J.A.M. Vermaseren a a Nikhef Theory Group, Science Park 105, 1098 XG Amsterdam, The Netherlands b Leiden Centre of Data Science,

More information

Two-loop QCD Corrections to the Heavy Quark Form Factors p.1

Two-loop QCD Corrections to the Heavy Quark Form Factors p.1 Two-loop QCD Corrections to the Heavy Quark Form Factors Thomas Gehrmann Universität Zürich UNIVERSITAS TURICENSIS MDCCC XXXIII Snowmass Linear Collider Worksho005 Two-loop QCD Corrections to the Heavy

More information

arxiv: v2 [hep-ph] 20 Jul 2014

arxiv: v2 [hep-ph] 20 Jul 2014 arxiv:407.67v [hep-ph] 0 Jul 04 Mass-corrections to double-higgs production & TopoID Jonathan Grigo and Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology (KIT) E-mail: jonathan.grigo@kit.edu,

More information

A numerical test of differential equations for one- and two-loop sunrise diagrams using configuration space techniques

A numerical test of differential equations for one- and two-loop sunrise diagrams using configuration space techniques Eur. Phys. J. C 7:85 DOI.4/epjc/s5--85-z Special Article - Tools for Experiment and Theory A numerical test of differential equations for one- and two-loop sunrise diagrams using configuration space techniques

More information

Numerical Evaluation of Multi-loop Integrals

Numerical Evaluation of Multi-loop Integrals Numerical Evaluation of Multi-loop Integrals Sophia Borowka MPI for Physics, Munich In collaboration with G. Heinrich Based on arxiv:124.4152 [hep-ph] HP 8 :Workshop on High Precision for Hard Processes,

More information

Precision Calculations to Top- and Bottom-Yukawa Couplings within the SM and BSM

Precision Calculations to Top- and Bottom-Yukawa Couplings within the SM and BSM Precision Calculations to Top- and Bottom-Yukawa Couplings within the SM and BSM Institut for Theoretical Physics, University of Heidelberg, 69117 Heidelberg, Germany E-mail: mihaila@thphys.uni-heidelberg.de

More information

Numerical Evaluation of Multi-loop Integrals

Numerical Evaluation of Multi-loop Integrals Numerical Evaluation of Multi-loop Integrals Sophia Borowka MPI for Physics, Munich In collaboration with: J. Carter and G. Heinrich Based on arxiv:124.4152 [hep-ph] http://secdec.hepforge.org DESY-HU

More information

HIGH ENERGY BEHAVIOUR OF FORM FACTORS

HIGH ENERGY BEHAVIOUR OF FORM FACTORS HIGH ENERGY BEHAVIOUR OF FORM FACTORS Taushif Ahmed Johannes Gutenberg University Mainz Germany Skype Seminar IIT Hyderabad May 10, 018 With Johannes Henn & Matthias Steinhauser Ref: JHEP 1706 (017) 15

More information

Simplified differential equations approach for the calculation of multi-loop integrals

Simplified differential equations approach for the calculation of multi-loop integrals Simplified differential equations approach for the calculation of multi-loop integrals Chris Wever (N.C.S.R. Demokritos) 1 C. Papadopoulos [arxiv: 1401.6057 [hep-ph]] C. Papadopoulos, D. Tommasini, C.

More information

Hopf algebra structures in particle physics

Hopf algebra structures in particle physics EPJ manuscript No. will be inserted by the editor) Hopf algebra structures in particle physics Stefan Weinzierl a Max-Planck-Institut für Physik Werner-Heisenberg-Institut), Föhringer Ring 6, D-80805 München,

More information

NNLO antenna subtraction with one hadronic initial state

NNLO antenna subtraction with one hadronic initial state antenna subtraction with one hadronic initial state Alejandro Daleo, Aude Gehrmann-De Ridder Institute for Theoretical Physics, ETH Zürich E-mail: adaleo@phys.ethz.ch, gehra@phys.ethz.ch Thomas Gehrmann,

More information

Two-loop self-energy master integrals on shell

Two-loop self-energy master integrals on shell BI-TP 99/1 Two-loop self-energy master integrals on shell J. Fleischer 1, M. Yu. Kalmykov and A. V. Kotikov 3 Fakultät für Physik, Universität Bielefeld, D-33615 Bielefeld 1, Germany Abstract Analytic

More information

The rare decay H Zγ in perturbative QCD

The rare decay H Zγ in perturbative QCD The rare decay H Zγ in perturbative QCD [arxiv: hep-ph/1505.00561] Thomas Gehrmann, Sam Guns & Dominik Kara June 15, 2015 RADCOR 2015 AND LOOPFEST XIV - UNIVERSITY OF CALIFORNIA, LOS ANGELES Z Z H g q

More information

Two-loop Remainder Functions in N = 4 SYM

Two-loop Remainder Functions in N = 4 SYM Two-loop Remainder Functions in N = 4 SYM Claude Duhr Institut für theoretische Physik, ETH Zürich, Wolfgang-Paulistr. 27, CH-8093, Switzerland E-mail: duhrc@itp.phys.ethz.ch 1 Introduction Over the last

More information

K. Melnikov 1. Institut fur Physik, THEP, Johannes Gutenberg Universitat, Abstract

K. Melnikov 1. Institut fur Physik, THEP, Johannes Gutenberg Universitat, Abstract MZ-TH-95-0 November 995 Two loopo(n f s )corrections to the decay width of the Higgs boson to two massive fermions. K. Melnikov Institut fur Physik, THEP, Johannes Gutenberg Universitat, Staudinger Weg

More information

arxiv: v3 [hep-ph] 20 Apr 2017

arxiv: v3 [hep-ph] 20 Apr 2017 MITP/14-76 A quasi-finite basis for multi-loop Feynman integrals arxiv:1411.7392v3 [hep-ph] 2 Apr 217 Andreas von Manteuffel, a Erik Panzer, b, c and Robert M. Schabinger a a PRISMA Cluster of Excellence

More information

FIRE4, LiteRed and accompanying tools to solve integration by parts relations

FIRE4, LiteRed and accompanying tools to solve integration by parts relations Prepared for submission to JHEP HU-EP-13/04 HU-Mathematik:05-2013 FIRE4, LiteRed and accompanying tools to solve integration by parts relations Alexander V. Smirnov a Vladimir A. Smirnov b,c a Scientific

More information

Differential Equations for Feynman Integrals

Differential Equations for Feynman Integrals for Feynman Integrals Ulrich Schubert Max-Planck-Institut für Physik Föhringer Ring 6, München January 18, 2015 based on work with M. Argeri, S. Di Vita, P. Mastrolia, E. Mirabella, J. Schlenk, L. Tancredi,

More information

arxiv: v2 [hep-th] 1 Aug 2018

arxiv: v2 [hep-th] 1 Aug 2018 Differential equations for loop integrals in Baikov representation Jorrit Bosma 1 Kasper J Larsen and Yang Zhang 1 3 1 ETH Zürich Wolfang-Pauli-Strasse 7 893 Zürich Switzerland School of Physics and Astronomy

More information

arxiv: v1 [hep-ph] 28 Dec 2018

arxiv: v1 [hep-ph] 28 Dec 2018 MPP-208-06 All master integrals for three-jet production at NNLO D. Chicherin a, T. Gehrmann b, J. M. Henn a, P. Wasser c, Y. Zhang a, S. Zoia a a Max-Planck-Institut für Physik, Werner-Heisenberg-Institut,

More information

Numerical multi-loop calculations: tools and applications

Numerical multi-loop calculations: tools and applications Journal of Physics: Conference Series PAPER OPEN ACCESS Numerical multi-loop calculations: tools and applications To cite this article: S. Borowka et al 2016 J. Phys.: Conf. Ser. 762 012073 Related content

More information

Multiple polylogarithms and Feynman integrals

Multiple polylogarithms and Feynman integrals Multiple polylogarithms and Feynman integrals Erik Panzer Institute des Hautes E tudes Scientifiques Amplitudes 215 July 7th ETH/University of Zu rich Topics 1 hyperlogarithms & iterated integrals 2 multiple

More information

arxiv:hep-ph/ v1 28 Mar 2006

arxiv:hep-ph/ v1 28 Mar 2006 DESY-06-0 SFB/CPP-06- Hypergeometric representation of the two-loop equal mass sunrise diagram arxiv:hep-ph/0607v 8 Mar 006 O.V. Tarasov Deutsches Elektronen - Synchrotron DESY Platanenallee 6, D-578 Zeuthen,

More information

Master integrals without subdivergences

Master integrals without subdivergences Master integrals without subdivergences Joint work with Andreas von Manteuffel and Robert Schabinger Erik Panzer 1 (CNRS, ERC grant 257638) Institute des Hautes Études Scientifiques 35 Route de Chartres

More information

The Pentabox Master Integrals with the Simplified Differential Equations approach

The Pentabox Master Integrals with the Simplified Differential Equations approach Prepared for submission to JHEP TTP15-042 The Pentabox Master Integrals with the Simplified Differential Equations approach Costas G. Papadopoulos ab Damiano Tommasini a and Christopher Wever ac a Institute

More information

Feynman integrals as Periods

Feynman integrals as Periods Feynman integrals as Periods Pierre Vanhove Amplitudes 2017, Higgs Center, Edinburgh, UK based on [arxiv:1309.5865], [arxiv:1406.2664], [arxiv:1601.08181] Spencer Bloch, Matt Kerr Pierre Vanhove (IPhT)

More information

Multiple polylogarithms and Feynman integrals

Multiple polylogarithms and Feynman integrals Multiple polylogarithms and Feynman integrals Erik Panzer Institute des Hautes E tudes Scientifiques Amplitudes 215 July 7th ETH/University of Zu rich Topics 1 hyperlogarithms & iterated integrals 2 multiple

More information

Hypergeometric representation of the two-loop equal mass sunrise diagram

Hypergeometric representation of the two-loop equal mass sunrise diagram Physics Letters B 68 6 95 wwwelseviercom/locate/physletb Hypergeometric representation of the two-loop equal mass sunrise diagram OV Tarasov Deutsches Elektronen-Synchrotron DESY Platanenallee 6 D-578

More information

The Higgs pt distribution

The Higgs pt distribution The Higgs pt distribution Chris Wever (TUM) In collaboration with: F. Caola, K. Kudashkin, J. Lindert, K. Melnikov, P. Monni, L. Tancredi GGI: Amplitudes in the LHC era, Florence 16 Oktober, 2018 Outline

More information

Two-loop Heavy Fermion Corrections to Bhabha Scattering

Two-loop Heavy Fermion Corrections to Bhabha Scattering Two-loop Heavy Fermion Corrections to Bhabha Scattering S. Actis 1, M. Czakon 2, J. Gluza 3 and T. Riemann 1 1 Deutsches Elektronen-Synchrotron DESY Platanenallee 6, D 15738 Zeuthen, Germany 2 Institut

More information

Calculating four-loop massless propagators with Forcer

Calculating four-loop massless propagators with Forcer Calculating four-loop massless propagators with Forcer Takahiro Ueda Nikhef, The Netherlands Collaboration with: Ben Ruijl and Jos Vermaseren 18 Jan. 2016 ACAT2016, UTFSM, Valparaíso 1 / 30 Contents Introduction

More information

INP MSU 96-34/441 hep-ph/ October 1996 Some techniques for calculating two-loop diagrams 1 Andrei I. Davydychev Institute for Nuclear Physics,

INP MSU 96-34/441 hep-ph/ October 1996 Some techniques for calculating two-loop diagrams 1 Andrei I. Davydychev Institute for Nuclear Physics, INP MSU 96-34/441 hep-ph/9610510 October 1996 Some techniques for calculating two-loop diagrams 1 Andrei I. Davydychev Institute for Nuclear Physics, Moscow State University, 119899 Moscow, Russia Abstract

More information

Colour octet potential to three loops

Colour octet potential to three loops SFB/CPP-13-54 TTP13-8 Colour octet potential to three loops Chihaya Anzai a), Mario Prausa a), Alexander V. Smirnov b), Vladimir A. Smirnov c), Matthias Steinhauser a) a) Institut für Theoretische Teilchenphysik,

More information

arxiv:hep-ph/ v2 2 Feb 1998

arxiv:hep-ph/ v2 2 Feb 1998 BI-TP 97/53, hep-ph/9711487 to appear in 15 March 1998 issue of Phys. Rev. D (Rapid Comm.) Improvement of the method of diagonal Padé approximants for perturbative series in gauge theories arxiv:hep-ph/9711487v2

More information

Unitarity, Dispersion Relations, Cutkosky s Cutting Rules

Unitarity, Dispersion Relations, Cutkosky s Cutting Rules Unitarity, Dispersion Relations, Cutkosky s Cutting Rules 04.06.0 For more information about unitarity, dispersion relations, and Cutkosky s cutting rules, consult Peskin& Schröder, or rather Le Bellac.

More information

Two-loop massive fermionic operator matrix elements and intial state QED corrections to e + e γ /Z

Two-loop massive fermionic operator matrix elements and intial state QED corrections to e + e γ /Z Two-loop massive fermionic operator matrix elements and intial state QED corrections to e + e γ /Z J. Blümlein, a ab and W. van Neerven c a DESY, Zeuthen, Platanenalle 6, D-173 Zeuthen, Germany. b Departamento

More information

arxiv: v2 [hep-ph] 23 Jan 2013

arxiv: v2 [hep-ph] 23 Jan 2013 MITP/13-009 January 2013 The decays of on-shell and off-shell polarized gauge bosons into massive uark pairs at NLO QCD 1 S. Groote a, J.G. Körner b and P. Tuvike a arxiv:1301.5217v2 hep-ph] 23 Jan 2013

More information

Two-loop corrections to t t production in the gluon channel. Matteo Capozi Sapienza University of Rome

Two-loop corrections to t t production in the gluon channel. Matteo Capozi Sapienza University of Rome Two-loop corrections to t t production in the gluon channel Matteo Capozi Sapienza University of Rome November 7, 2016 Top quark With a mass of m t = 172.44 ± 0.13(stat) ± 0.47(syst)GeV, the top quark

More information

Numerical multi-loop calculations with SecDec

Numerical multi-loop calculations with SecDec Journal of Physics: Conference Series OPEN ACCESS Numerical multi-loop calculations with SecDec To cite this article: Sophia Borowka and Gudrun Heinrich 214 J. Phys.: Conf. Ser. 523 1248 View the article

More information

Higgs boson production at the LHC: NNLO partonic cross sections through order ǫ and convolutions with splitting functions to N 3 LO

Higgs boson production at the LHC: NNLO partonic cross sections through order ǫ and convolutions with splitting functions to N 3 LO SFB/CPP-12-93 TTP12-45 LPN12-127 Higgs boson production at the LHC: NNLO partonic cross sections through order ǫ and convolutions with splitting functions to N 3 LO Maik Höschele, Jens Hoff, Aleey Pak,

More information

Simplified differential equations approach for NNLO calculations

Simplified differential equations approach for NNLO calculations Simplified differential equations approach for NNLO calculations Costas. G. Papadopoulos INPP, NCSR Demokritos, Athens UCLA, June 19, 2015 Costas. G. Papadopoulos NNLO Radcor-Loopfest, LA, 2015 1 / 39

More information

arxiv: v2 [hep-ph] 25 Sep 2018

arxiv: v2 [hep-ph] 25 Sep 2018 Applications of integrand reduction to two-loop five-point scattering amplitudes in QCD arxiv:1807.09709v2 [hep-ph] 25 Sep 2018 Institute for Particle Physics Phenomenology, Department of Physics, Durham

More information

Bare Higgs mass and potential at ultraviolet cutoff

Bare Higgs mass and potential at ultraviolet cutoff Bare Higgs mass and potential at ultraviolet cutoff Yuta Hamada and Hikaru Kawai Department of Physics, Kyoto University, Kyoto 606-850, Japan Kin-ya Oda Department of Physics, Osaka University, Osaka

More information

Generalizations of polylogarithms for Feynman integrals

Generalizations of polylogarithms for Feynman integrals Journal of Physics: Conference Series PAPER OPEN ACCESS Generalizations of polylogarithms for Feynman integrals To cite this article: Christian Bogner 6 J. Phys.: Conf. Ser. 76 67 View the article online

More information

arxiv: v2 [hep-ph] 18 Nov 2009

arxiv: v2 [hep-ph] 18 Nov 2009 Space-time dimensionality D as complex variable: calculating loop integrals using dimensional recurrence relation and analytical properties with respect to D. arxiv:0911.05v [hep-ph] 18 Nov 009 R.N. Lee

More information

PSEUDO SCALAR FORM FACTORS AT 3-LOOP QCD. Taushif Ahmed Institute of Mathematical Sciences, India March 22, 2016

PSEUDO SCALAR FORM FACTORS AT 3-LOOP QCD. Taushif Ahmed Institute of Mathematical Sciences, India March 22, 2016 PSEUDO SCALAR FORM FACTORS AT 3-LOOP QCD Taushif Ahmed Institute of Mathematical Sciences, India March, 016 PROLOGUE: SM & MSSM SM Complex scalar doublet (4 DOF) 3 DOF transform into longitudinal modes

More information

arxiv: v1 [hep-lat] 22 Oct 2013

arxiv: v1 [hep-lat] 22 Oct 2013 Renormalization of the momentum density on the lattice using shifted boundary conditions arxiv:1310.6075v1 [hep-lat] 22 Oct 2013 Daniel Robaina PRISMA Cluster of Excellence, Institut für Kernphysik, Johannes

More information

TVID: Three-loop Vacuum Integrals from Dispersion relations

TVID: Three-loop Vacuum Integrals from Dispersion relations TVID: Three-loop Vacuum Integrals from Dispersion relations Stefan Bauberger, Ayres Freitas Hochschule für Philosophie, Philosophische Fakultät S.J., Kaulbachstr. 3, 80539 München, Germany Pittsburgh Particle-physics

More information

A magic connection between massive and massless diagrams. Department of Physics, University of Bergen, Allegaten 55, N-5007 Bergen, Norway

A magic connection between massive and massless diagrams. Department of Physics, University of Bergen, Allegaten 55, N-5007 Bergen, Norway University of Bergen, Department of Physics Scientific/Technical Report No.995-7 ISSN 8-696 MZ-TH{95-4 hep-ph/9544 April 995 A magic connection between massive and massless diagrams A.I. Davydychev a;

More information

arxiv: v1 [hep-ph] 20 Jan 2012

arxiv: v1 [hep-ph] 20 Jan 2012 ZU-TH 01/12 MZ-TH/12-03 BI-TP 2012/02 Reduze 2 Distributed Feynman Integral Reduction arxiv:1201.4330v1 [hep-ph] 20 Jan 2012 A. von Manteuffel, a,b C. Studerus c a Institut für Theoretische Physik, Universität

More information

Computing of Charged Current DIS at three loops

Computing of Charged Current DIS at three loops Computing of Charged Current DIS at three loops Mikhail Rogal Mikhail.Rogal@desy.de DESY, Zeuthen, Germany ACAT 2007, Amsterdam, Netherlands, April 23-28, 2007 Computing of Charged CurrentDIS at three

More information

Numerical Evaluation of Loop Integrals

Numerical Evaluation of Loop Integrals Numerical Evaluation of Loop Integrals Institut für Theoretische Physik Universität Zürich Tsukuba, April 22 nd 2006 In collaboration with Babis Anastasiou Rationale (Why do we need complicated loop amplitudes?)

More information

arxiv: v1 [hep-ph] 22 Sep 2016

arxiv: v1 [hep-ph] 22 Sep 2016 TTP16-037 arxiv:1609.06786v1 [hep-ph] 22 Sep 2016 Five-loop massive tadpoles Thomas Luthe Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology, Karlsruhe, Germany E-mail: thomas.luthe@kit.edu

More information

Electroweak accuracy in V-pair production at the LHC

Electroweak accuracy in V-pair production at the LHC Electroweak accuracy in V-pair production at the LHC Anastasiya Bierweiler Karlsruhe Institute of Technology (KIT), Institut für Theoretische Teilchenphysik, D-7628 Karlsruhe, Germany E-mail: nastya@particle.uni-karlsruhe.de

More information

Asymptotic Expansions of Feynman Integrals on the Mass Shell in Momenta and Masses

Asymptotic Expansions of Feynman Integrals on the Mass Shell in Momenta and Masses Asymptotic Expansions of Feynman Integrals on the Mass Shell in Momenta and Masses arxiv:hep-ph/9708423v 2 Aug 997 V.A. Smirnov Nuclear Physics Institute of Moscow State University Moscow 9899, Russia

More information

arxiv:hep-ph/ v1 21 Jan 1998

arxiv:hep-ph/ v1 21 Jan 1998 TARCER - A Mathematica program for the reduction of two-loop propagator integrals R. Mertig arxiv:hep-ph/980383v Jan 998 Abstract Mertig Research & Consulting, Kruislaan 49, NL-098 VA Amsterdam, The Netherlands

More information

Anomalous dimensions and splitting functions beyond the next-to-next-to-leading order

Anomalous dimensions and splitting functions beyond the next-to-next-to-leading order Anomalous dimensions and splitting functions beyond the next-to-next-to-leading order Department of Mathematical Sciences, University of Liverpool, Liverpool L69 3BX, UK E-mail: Andreas.Vogt@liverpool.ac.uk

More information

Schouten identities for Feynman graph amplitudes; The Master Integrals for the two-loop massive sunrise graph

Schouten identities for Feynman graph amplitudes; The Master Integrals for the two-loop massive sunrise graph Available online at www.sciencedirect.com ScienceDirect Nuclear Physics B 880 0 33 377 www.elsevier.com/locate/nuclphysb Schouten identities for Feynman graph amplitudes; The Master Integrals for the two-loop

More information

Dipole subtraction with random polarisations

Dipole subtraction with random polarisations , Christopher Schwan, Stefan Weinzierl PRISMA Cluster of Excellence, Johannes Gutenberg University, Mainz goetz@uni-mainz.de schwan@uni-mainz.de stefanw@thep.physik.uni-mainz.de In this talk, we discuss

More information

Feynman Integrals, Regulators and Elliptic Polylogarithms

Feynman Integrals, Regulators and Elliptic Polylogarithms Feynman Integrals, Regulators and Elliptic Polylogarithms Pierre Vanhove Automorphic Forms, Lie Algebras and String Theory March 5, 2014 based on [arxiv:1309.5865] and work in progress Spencer Bloch, Matt

More information

arxiv: v1 [hep-ph] 28 Jul 2017

arxiv: v1 [hep-ph] 28 Jul 2017 with Calibrated Uncertainty arxiv:1707.09404v1 [hep-ph] 28 Jul 2017 Departamento de Física Teórica Instituto de Física Universidad Nacional Autónoma de México Apartado Postal 20 364, México CDMX 01000,

More information

Towards improved predictions for electroweak vector boson pair production at the LHC

Towards improved predictions for electroweak vector boson pair production at the LHC Towards improved predictions for electroweak vector boson pair production at the LHC Kirill Melnikov TTP KIT Based on collaboration with M. Dowling, F. Caola, J. Henn, A. Smirnov, V. Smirnov Outline 1)

More information

Analytical expressions of 3 and 4-loop sunrise Feynman integrals and 4-dimensional lattice integrals

Analytical expressions of 3 and 4-loop sunrise Feynman integrals and 4-dimensional lattice integrals 3 September 8 Analytical expressions of 3 and 4-loop sunrise Feynman integrals and 4-dimensional lattice integrals arxiv:83.7v3 [hep-ph] Mar 8 S. Laporta Museo Storico della Fisica e Centro Studi e Ricerche

More information

Numerical evaluation of multi-loop integrals

Numerical evaluation of multi-loop integrals Max-Planck-Institut für Physik, München, Germany E-mail: sjahn@mpp.mpg.de We present updates on the development of pyse CDE C, a toolbox to numerically evaluate parameter integrals in the context of dimensional

More information

arxiv: v1 [hep-th] 22 Dec 2017

arxiv: v1 [hep-th] 22 Dec 2017 arxiv:1712.08541v1 [hep-th] 22 Dec 2017 DESY 17-225, DO-TH 17/37 Special functions, transcendentals and their numerics arxiv:yymmdd.xxxxx Jakob Ablinger a, Johannes Blümlein b, Mark Round a,b, and Carsten

More information

Outline Motivations for ILC: e + e γ/z q qg LHC: pp l + l + jet (q q l + l g + qg l + l q + qg l + l q) Existing literature The complete EW one-loop c

Outline Motivations for ILC: e + e γ/z q qg LHC: pp l + l + jet (q q l + l g + qg l + l q + qg l + l q) Existing literature The complete EW one-loop c Complete electroweak corrections to e + e 3 jets C.M. Carloni Calame INFN & University of Southampton Workshop LC08: e + e Physics at TeV scale September 22-25, 2008 in collaboration with S. Moretti, F.

More information

gg! hh in the high energy limit

gg! hh in the high energy limit gg! hh in the high energy limit Go Mishima Karlsruhe Institute of Technology (KIT), TTP in collaboration with Matthias Steinhauser, Joshua Davies, David Wellmann work in progress gg! hh : previous works

More information

Single Higgs production at LHC as a probe for an anomalous Higgs self coupling

Single Higgs production at LHC as a probe for an anomalous Higgs self coupling Single Higgs production at LHC as a probe for an anomalous Higgs self coupling Brookhaven National Laboratory E-mail: pgiardino@bnl.gov We explore the possibility of probing the trilinear Higgs self coupling

More information

arxiv: v1 [hep-th] 10 Apr 2014

arxiv: v1 [hep-th] 10 Apr 2014 Prepared for submission to JHEP Iterative structure of finite loop integrals arxiv:404.2922v [hep-th] 0 Apr 204 Simon Caron-Huot a,b Johannes M. Henn a a Institute for Advanced Study, Princeton, NJ 08540,

More information

General amplitude of the n vertex one-loop process in a strong magnetic field

General amplitude of the n vertex one-loop process in a strong magnetic field Yaroslavl State University Preprint YARU-HE-0/09 hep-ph/01009 arxiv:hep-ph/01009v 1 Mar 003 General amplitude of the n vertex one-loop process in a strong magnetic field A. V. Kuznetsov, N. V. Mikheev,

More information

HyperInt - exact integration with hyperlogarithms

HyperInt - exact integration with hyperlogarithms HyperInt - exact integration with hyperlogarithms Erik Panzer erikpanzer@ihes.fr (CNRS, ERC grant 257638, F. Brown) Institute des Hautes Études Scientifiques 35 Route de Chartres 9144 Bures-sur-Yvette

More information

arxiv: v1 [hep-ph] 27 Aug 2009

arxiv: v1 [hep-ph] 27 Aug 2009 arxiv:0908.3969v1 [hep-ph] 27 Au 2009 QCD-electroweak effects and a new prediction for His production in luon fusion process Institut für Theoretische Physik, Universität Zürich, Winterthurerstr. 190,

More information

arxiv:hep-ph/ v1 29 Aug 2006

arxiv:hep-ph/ v1 29 Aug 2006 IPPP/6/59 August 26 arxiv:hep-ph/6837v1 29 Aug 26 Third-order QCD results on form factors and coefficient functions A. Vogt a, S. Moch b and J.A.M. Vermaseren c a IPPP, Physics Department, Durham University,

More information

arxiv:hep-ph/ v3 2 Mar 1999

arxiv:hep-ph/ v3 2 Mar 1999 MZ-TH/98-47 hep-ph/9811482 November 1998 arxiv:hep-ph/9811482v3 2 Mar 1999 Polarized top decay into polarized W t( ) W( )+b at O(α s ) M. Fischer, S. Groote, J.G. Körner and M.C. Mauser Institut für Physik,

More information