Feynman integrals and multiple polylogarithms. Stefan Weinzierl

Size: px
Start display at page:

Download "Feynman integrals and multiple polylogarithms. Stefan Weinzierl"

Transcription

1 Feynman integrals and multiple polylogarithms Stefan Weinzierl Universität Mainz I. Basic techniques II. Nested sums and iterated integrals III. Multiple Polylogarithms IV. Applications

2 The need for precision Hunting for the Higgs and other yet-to-be-discovered particles requires a better knowledge of the theoretical cross section. Theoretical predictions are calculated as a power expansion in the coupling. Higher precision is reached by including the next higher term in the perturbative expansion. State of the art: Third or fourth order calculations for a few selected quantities (R-ratio, QCD β- function, anomalous magnetic moment of the muon). Fully differential NNLO calculations for a few selected 2 2 and 2 3 processes. Automated NLO calculations for 2 n (n = 4..6,7) processes.

3 Quantum loop corrections Loop diagrams are divergent! Z d 4 k 1 (2π) 4 (k 2 ) = 1 Z dk (4π) 2 k = 1 Z dx 2 (4π) 2 x 0 0 This integral diverges at k 2 (UV-divergence) and at k 2 0 (IR-divergence). Use dimensional regularization to regulate UV- and IR-divergences.

4 Feynman rules A one-loop Feynman diagram contributing to the process e + e qg q: p 5 p 4 p 1 p 2 p 3 = v(p 4 )γ µ u(p 5 ) 1 Z d D k 1 1 p (2π) D k2 2 ū(p 1 )ε/(p 2 ) p/ 12 p 2 12 γ ν k/ 1 k 2 1 k/ 3 γ µ k3 2 γ ν v(p 3 ) with p 12 = p 1 + p 2, p 123 = p 1 + p 2 + p 3, k 2 = k 1 p 12, k 3 = k 2 p 3. Further ε/(p 2 ) = γ τ ε τ (p 2 ), where ε τ (p 2 ) is the polarization vector of the outgoing gluon. All external momenta are assumed to be massless: p 2 i = 0 for i = The loop integral to be calculated reads: Z d D k 1 (2π) D k ρ 1 kσ 3 k 2 1 k2 2 k2 3

5 Standard techniques: Feynman and Schwinger parametrization Feynman: n i=1 1 ( A i ) ν i = Γ(ν ν n ) Γ(ν 1 )...Γ(ν n ) Z d n xδ ( 1 ) n x i x ν x ν n 1 n ( x 1 A 1... x n A n ) ν 1... ν n i=1 Schwinger: 1 ( A) ν = Z 1 dxx ν 1 exp(xa) Γ(ν) 0

6 Standard techniques: The cooking recipe Feynman parameterization. Shift the loop momentum, such that the denominator becomes purely quadratic in k. Wick rotation to Euclidean space. Use spherical coordinates in D dimensions. The angular integration is trivial, the radial integration can be done with Euler s beta function. Master formula: Z d D k ( k 2 ) a π D/2 i( k 2 L) n = Γ(D/2 + a) Γ(D/2) Γ(n D/2 a) ( L) n+d/2+a Γ(n) This leaves the integrals over the Feynman parameters to be done.

7 Standard techniques: Tensor integrals Lorentz symmetry: Z d D Z k π D/2 i kµ k ν f (k 2 ) = gµν D d D k π D/2 i k2 f (k 2 ) From master formula: a factor k 2 in the numerator shifts the dimension D D + 2. Shifting the loop momentum like in k = k x 1 p 1 x 2 p 2 introduces the parameters x 1 or x 2 in the numerator. A Schwinger parameter x in the numerator is equivalent to raising the power of the original propagator by one unit: ν ν + 1. Summary: Tensor integrals in D dimensions with unit powers of the propagators are equivalent to scalar integrals in D + 2, D + 4,... dimensions and higher powers of the propagators (Tarasov 96).

8 Standard techniques: Graph polynomials The general l-loop integral with n propagators: I G = Z l d D k r r=1 iπ D 2 n j=1 1 ( q 2 j + m2 j )ν j The q j are linear combinations of the loop momenta k r and the external momenta. I G = Γ(ν ld/2) n Γ(ν j ) j=1 Z 0 ( n j=1 dx j x ν j 1 j ) δ(1 n x i ) Uν (l+1)d/2, ν = i=1 F ν ld/2 n ν j. j=1 The functions U and F are graph polynomials, homogeneous of degree l and l + 1, respectively.

9 Standard techniques: Graph polynomials Cutting l lines of a given connected l-loop graph such that it becomes a connected tree graph defines a monomial of degree l. U is given as the sum over all such monomials. Cutting one more line leads to two disconnected trees. The corresponding monomials are of degree l + 1. The function F 0 is the sum over all such monomials times minus the square of the sum of the momenta flowing through the cut lines and F (x) = F 0 (x) + U(x) Example: The massless two-loop non-planar vertex. n x j m 2 j. j=1 p 1 ν 1 ν 2 ν 5 ν 6 p 3 p 2 ν ν 3 4 U = x 15 x 23 + x 15 x 46 + x 23 x 46, F = (x 1 x 3 x 4 + x 5 x 2 x 6 + x 1 x 5 x 2346 ) ( ) p 2 1 +(x 6 x 3 x 5 + x 4 x 1 x 2 + x 4 x 6 x 1235 ) ( ) 2 2 +(x 2 x 4 x 5 + x 3 x 1 x 6 + x 2 x 3 x 1456 ) ( p3) 2.

10 Standard techniques: Mellin-Barnes Mellin-Barnes transformation: (A 1 + A A n ) c = 1 1 Γ(c) (2πi) n 1 Z i i dσ 1... Z i i dσ n 1 Γ( σ 1 )...Γ( σ n 1 )Γ(σ σ n 1 + c) A σ Aσ n 1 n 1 A σ 1... σ n 1 c n The contour is such that the poles of Γ( σ) are to the right and the poles of Γ(σ + c) are to the left. Converts a sum into products and is therefore the inverse of Feynman parametrization.

11 The two-loop C-topology The result for the C-topology in arbitrary dimensions and with arbitrary powers of the propagators: p 1 p 2 = Γ(2m 2ε ν 1235 )Γ(1 + ν m + 2ε)Γ(2m 2ε ν 2345 )Γ(1 + ν m + 2ε) Γ(m ε ν 5 )Γ(m ε ν 23 ) Γ(ν 1 )Γ(ν 2 )Γ(ν 3 )Γ(ν 4 )Γ(ν 5 )Γ(3m 3ε ν ) Γ(2m 2ε ν 235 ) p 3 ( s 123 ) 2m 2ε ν i 1 =0 i 2 =0 x i 1 1 x i 2 2 i 1! i 2! [ Γ(i1 + ν 3 )Γ(i 2 + ν 2 )Γ(i 1 + i 2 2m + 2ε + ν )Γ(i 1 + i 2 m + ε + ν 235 ) Γ(i m + 2ε + ν 1235 )Γ(i m + 2ε + ν 2345 )Γ(i 1 + i 2 + ν 23 ) x 2m 2ε ν x 2m 2ε ν x 2m 2ε ν x 2m 2ε ν Γ(i 1 + 2m 2ε ν 125 )Γ(i 2 + ν 2 )Γ(i 1 + i 2 + ν 4 )Γ(i 1 + i 2 + m ε ν 1 ) Γ(i m 2ε ν 1235 )Γ(i m + 2ε + ν 2345 )Γ(i 1 + i 2 + 2m 2ε ν 15 ) Γ(i 1 + ν 3 )Γ(i 2 + 2m 2ε ν 345 )Γ(i 1 + i 2 + ν 1 )Γ(i 1 + i 2 + m ε ν 4 ) Γ(i m + 2ε + ν 1235 )Γ(i m 2ε ν 2345 )Γ(i 1 + i 2 + 2m 2ε ν 45 ) Γ(i 1 + 2m 2ε ν 125 )Γ(i 2 + 2m 2ε ν 345 ) Γ(i m 2ε ν 1235 )Γ(i m 2ε ν 2345 ) ] Γ(i 1 + i 2 + 2m 2ε ν 235 )Γ(i 1 + i 2 + 3m 3ε ν ), Γ(i 1 + i 2 + 4m 4ε ν ν 5 ) with D = 2m 2ε, x 1 = ( s 12 )/( s 123 ) and x 2 = ( s 23 )/( s 123 ). This sum can be expanded systematically in ε.

12 Higher transcendental functions More generally, we get the following types of infinite sums: Type A: i=0 Γ(i + a 1 )...Γ(i + a k ) Γ(i + a 1 )...Γ(i + a k ) xi Example: Hypergeometric functions J+1 F J (up to prefactors). Type B: i=0 j=0 Example: First Appell function F 1. Type C: i=0 j=0 Γ(i + a 1 )...Γ(i + a k ) Γ( j + b 1 )...Γ( j + b l ) Γ(i + j + c 1 )...Γ(i + j + c m ) Γ(i + a 1 )...Γ(i + a k ) Γ( j + b 1 )...Γ( j + b l ) Γ(i + j + c 1 )...Γ(i + j + c m) xi y j ( i + j j Example: Kampé de Fériet function S 1. Type D: i=0 j=0 ( i + j j Example: Second Appell function F 2. ) Γ(i + a1 )...Γ(i + a k ) Γ(i + a 1 )...Γ(i + a k ) Γ(i + j + c 1 )...Γ(i + j + c m ) Γ(i + j + c 1 )...Γ(i + j + c m) xi y j ) Γ(i + a1 )...Γ(i + a k ) Γ(i + a 1 )...Γ(i + a k ) Γ( j + b 1 )...Γ( j + b l ) Γ( j + b 1 )...Γ( j + b l ) Γ(i + j + c 1 )...Γ(i + j + c m ) Γ(i + j + c 1 )...Γ(i + j + c m) xi y j All a, b, c s are of the form integer + const ε.

13 Introducing nested sums Definition of Z-sums: Z(n;m 1,...,m k ;x 1,...,x k ) = n i 1 >i 2 >...>i k >0 x i 1 1 i m 1 1 x i 2 2 i m xi k k i m k k. Multiple polylogarithms (n = ) are a special subset Euler-Zagier sums (x 1 =... = x k = 1) are a special subset The nested sums form a Hopf algebra Z-sums interpolate between multiple polylogarithms and Euler-Zagier sums.

14 Special cases For n = the Z-sums are the multiple polylogarithms of Goncharov: Z( ;m 1,...,m k ;x 1,...,x k ) = Li m1,...,m k (x 1,...,x k ) For x 1 =... = x k = 1 the definition reduces to the Euler-Zagier sums: Z(n;m 1,...,m k ;1,...,1) = Z m1,...,m k (n) For n = and x 1 =... = x k = 1 the sum is a multiple ζ-value: Z( ;m 1,...,m k ;1,...,1) = ζ(m 1,...,m k )

15 Expansion of Gamma functions Euler-Zagier sums (or harmonic sums) occur in the expansion for Γ functions: For positive integers n we have Γ(n + ε) = Γ(1 + ε)γ(n) (1 + εz 1 (n 1) + ε 2 Z 11 (n 1) + ε 3 Z 111 (n 1) ε n 1 Z (n 1) ). Z-sums interpolate between Goncharov s multiple polylogarithms and Euler-Zagier sums.

16 Multiplication Z-sums obey an algebra: Z(n;m 1,m 2 ;x 1,x 2 ) Z(n;m 3 ;x 3 ) = = Z(n;m 1,m 2,m 3 ;x 1,x 2,x 3 ) + Z(n;m 1,m 3,m 2 ;x 1,x 3,x 2 ) + Z(n;m 3,m 1,m 2 ;x 3,x 1,x 2 ) +Z(n;m 1,m 2 + m 3 ;x 1,x 2 x 3 ) + Z(n;m 1 + m 3,m 2 ;x 1 x 3,x 2 ) Pictorial representation: x 1 x 2 x 3 = x 1 x 2 x 3 + x1 x 3 x 2 + x3 x 1 + x1 x 2 x 3 + x 1x 3 x 2 x 2 The multiplication law corresponds to a quasi-shuffle algebra (Hoffman 99), also called stuffle algebra (Broadhurst)) or mixed shuffle algebra (Guo).

17 Hopf algebras The Z-sums form actually a Hopf algebra. An algebra has a multiplication and a unit e. A coalgebra has a comultiplication and a counit ē. A Hopf algebra is an algebra and a coalgebra at the same time, such that the two structures are compatible with each other. In addition, there is an antipode S.

18 Hopf algebras and renormalization of quantum field theories Short-distance singularities of the perturbative expansion of quantum field theories require renormalization (Bogoliubov, Parasuik, Hepp, Zimmermann). The combinatorics involved in the renormalization is governed by a Hopf algebra (Kreimer, Connes). The model for this Hopf algebra is the Hopf algebra of rooted trees. Also the Z-sums are described by the Hopf algebra of rooted trees.

19 Algorithms Multiplication: Convolution: Sums involving i and n i n 1 i=1 Z(n;m 1,...;x 1,...) Z(n;m 1,...;x 1,...) x i 1 x n i 1 i m Z(i 1;m 2...;x 1 2,...) Z(n i 1;m (n i) m 2,...;x 2,...) 1 Conjugations: n i=1 ( n i ) ( 1) i xi 0 i m 0 Z(i;m 1,...,m k ;x 1,...,x k ) Conjugation and convolution: Sums involving binomials and n i n 1 i=1 ( n i ) ( 1) i x i 1 i m Z(i;m 2...;x 2,...) 1 x n i 1 Z(n i;m (n i) m 2,...;x 2,...) 1 (Moch, Uwer, S.W., 01)

20 Hypergeometric Functions Expansion of hypergeometric functions: 2F 1 (a + ε,b + ε;c + ε,x 0 ) = (a + ε) n (b + ε) n x0 n n=0 (c + ε) n n! Synchronize the Pochhammer symbols using Γ(x + 1) = xγ(x). Expand the Γ-functions in ε. This will introduce Euler-Zagier sums. Combine products of Euler-Zagier sums into single sums. Read out the harmonic polylogarithms.

21 Expansion around rational numbers Up to now we expanded Gamma funktions around integer values. The generalization towards rational numbers p/q introduces the q-th roots of unity: Expansion of the Gamma function: ) Γ (n + 1 pq + ) ε = Γ (1 pq + ε ( ) 2πip rq p = exp q ( ) Γ n + 1 p ( q ( ) exp 1 Γ 1 p q q q 1 l=0 ( r l q ) p k=1 ε k( q)k Z(q n;k;r l k q) ). (S.W. 04)

22 Example Refinement of sums: x x x x = 1 3 x n n=1 n + 1 e4πi n=1 = 1 3 Li 2 (x) + 1 ( 3 e4πi 3 Li 2 ( xe 2πi 3 n 2 xe 2πi 3 ) ) n + 1 e2πi 3 3 n=1 + 1 ( 3 e2πi 3 Li 2 ( xe 4πi 3 xe 4πi 3 n 2 ) ) n

23 Multiple polylogarithms Li m1,...,m k (x 1,...,x k ) = i 1 >i 2 >...>i k >0 x i 1 1 i m 1 1 x i 2 2 i m xi k k i m k k. Special subsets: Harmonic polylogs, Nielsen polylogs, classical polylogs (Remiddi and Vermaseren, Gehrmann and Remiddi). Have also an integral representation. Fulfill two Hopf algebras (Moch, Uwer, S.W.). Can be evaluated numerically for all complex values of the arguments (Gehrmann and Remiddi, Vollinga and S.W.).

24 Multiple polylogarithms The multiple polylogarithms have extensively been studied by Borwein, Bradley, Broadhurst and Lisonek. The multiple polylogarihms contain as subsets the classical polylogarithms Nielsen s generalized polylogarithms Li n (x), S n,p (x) = Li n+1,1,...,1 (x,1,...,1 }{{} ), p 1 the harmonic polylogarithms of Remiddi and Vermaseren H m1,...,m k (x) = Li m1,...,m k (x,1,...,1 }{{} ) k 1 and the two-dimensional harmonic polylogarithms introduced by Gehrmann and Remiddi.

25 Inheritance Z-sums multiple polylogs Euler-Zagier sums harmonic polylogs multiple zeta values Nielsen polylogs classical polylogs

26 Iterated integrals Define the functions G by Scaling relation: G(z 1,...,z k ;y) = Z y 0 dt 1 t 1 z 1 Z t 1 0 dt 2 t 2 z 2... Zt k 1 0 dt k t k z k. G(z 1,...,z k ;y) = G(xz 1,...,xz k ;xy) Short hand notation: G m1,...,m k (z 1,...,z k ;y) = G(0,...,0 }{{},z 1,...,z k 1,0...,0 }{{},z k ;y) m 1 1 m k 1 Conversion to multiple polylogarithms: Li m1,...,m k (x 1,...,x k ) = ( 1) k G m1,...,m k ( 1 x 1, ) 1 1,..., ;1. x 1 x 2 x 1...x k

27 Shuffle algebra The functions G(z 1,...,z k ;y) fulfill a shuffle algebra. Example: G(z 1,z 2 ;y)g(z 3 ;y) = G(z 1,z 2,z 3 ;y) + G(z 1,z 3 z 2 ;y) + G(z 3,z 1,z 2 ;y) This algebra is different from the quasi-algebra already encountered and provides the second Hopf algebra for multiple polylogarithms.

28 Shuffle algebra versus quasi-shuffle algebra Quasi-shuffle algebra for Z-sums: Z(n;m 1 ;x 1 )Z(n;m 2 ;x 2 ) = Z(n;m 1,m 2 ;x 1,x 2 ) + Z(n;m 2,m 1 ;x 2,x 1 ) + Z(n;m 1 + m 2 ;x 1 x 2 ). i 2 = i 2 + i 2 + i 2 i 1 i 1 i 1 i 1 Shuffle algebra for G-functions: G(z 1 ;y)g(z 2 ;y) = G(z 1,z 2 ;y) + G(z 2,z 1 ;y) t 2 = t 2 + t 2 t 1 t 1 t 1

29 Partial integration and the antipode Integration-by-parts identity: G(z 1,...,z k ;y) + ( 1) k G(z k,...,z 1 ;y) = G(z 1 ;y)g(z 2,...,z k ;y) G(z 2,z 1 ;y)g(z 3,...,z k ;y) +... ( 1) k 1 G(z k 1,...,z 1 ;y)g(z k ;y) From the Hopf algebra we have the antipode Working out the identity for the antipode SG(z 1,...,z k ;y) = ( 1) k G(z k,...,z 1 ;y) ) S (G (1) G (2) = 0 (G) one recovers the integration-by-parts identity.

30 The antipode From the shuffle algebra of the iterated integrals we had: G(z 1,...,z k ;y) + ( 1) k G(z k,...,z 1 ;y) = simpler terms Using the equation for the antipode for Z-sums in the quasi-shuffle algebra: Z(n;m 1,...,m k ;x 1,...,x k ) + ( 1) k Z(n;m k,..,m 1 ;x k,...,x 1 ) = simpler terms The equation for the antipode generalizes integration-by-parts identities to cases where no integral representation exists!

31 Numerical evaluations of multiple polylogarithms Example: Numerical evaluation of the dilogarithm ( t Hooft, Veltman, Nucl. Phys. B153, (1979), 365) Z x Li 2 (x) = Map into region 1 Re(x) 1/2, using Li 2 (x) = Li 2 ( 1 x Accelaration using Bernoulli numbers: 0 ln(1 t) dt t = x n n=1 n 2 ) π (ln( x))2, Li 2 (x) = Li 2 (1 x) + π2 ln(x)ln(1 x). 6 Li 2 (x) = i=0 B i (i + 1)! ( ln(1 x))i+1, Generalization to multiple polylogarithms, using arbitrary precision arithmetic in C++. J. Vollinga, S.W., (2004)

32 Numerical evaluations of multiple polylogarithms Use the integral representation G m1,...,m k (z 1,z 2,...,z k ;y) = Z y 0 ( ) m1 1 dt t ( ) m2 1 ( ) mk 1 dt dt t z 1 t dt dt... t z 2 t dt t z k to transform all arguments into a region, where we have a converging power series expansion: G m1,...,m k (z 1,...,z k ;y) =... j 1 =1 j k =1 ( ) j1 ( ) j2 1 y 1 y 1 ( j j k ) m 1 ( j j k ) m... 2 ( j k ) m k z 1 z 2 ( ) jk y. z k Use the Hölder convolution to accelerate the convergent series. (Borwein, Bradley, Broadhurst and Lisonek)

33 The amplitudes for e + e 3 jets at NNLO A NNLO calculation of e + e 3 jets requires the following amplitudes: Born amplitudes for e + e 5 jets: F. Berends, W. Giele and H. Kuijf. One-loop amplitudes for e + e 4 jets: Z. Bern, L. Dixon, D.A. Kosower and S.W.; J. Campbell, N. Glover and D. Miller. Two-loop amplitudes for e + e 3 jets: L. Garland, T. Gehrmann, N. Glover, A. Koukoutsakis and E. Remiddi; S. Moch, P. Uwer and S.W.

34 Results for the two-loop amplitude The finite part of the coefficient of a spinor structure: c (2),fin ( 12 (x 1,x 2 ) = N f N 3 ln(x 1) (x 1 +x 2 ) ln(x 2 ) 2 2Li 2 (1 x 2 ) + 1 ζ(2) 1 13x x 1 10x 1 x 2 18x 2 +31x x 1 (1 x 2 ) 12 (1 x 2 )x 1 18 (x 1 +x 2 ) 2 ln(x 2 ) x 1 (1 x 2 ) + x 1 2 x 2 2 2x 1 +4x 2 (x 1 +x 2 ) 4 R 1 (x 1,x 2 ) 1 R(x 1,x 2 ) [5x 12 x 1 (x 1 +x 2 ) x (1+x 1) x 2 1+3x 1 72 x 2 ] [ x 2 1 x 1 x 2 x 1 +x 2 12 x 1 (1 x 2 ) + 6 (x 1 +x 2 ) 3 1+2x ] ) 1 1 x 1 (x 1 +x 2 ) 2 (Li 2 (1 x 2 ) Li 2 (1 x 1 )) 1 (x 1 +x 2 )x 1 2 IπN f N ln(x 2) x 1 (1 x 2 ). where R(x 1,x 2 ) and R 1 (x 1,x 2 ) are defined by R(x 1,x 2 ) = R 1 (x 1,x 2 ) = ( 1 2 ln(x 1)ln(x 2 ) ln(x 1 )ln(1 x 1 ) + 1 ) 2 ζ(2) Li 2(x 1 ) + (x 1 x 2 ). ( ( ) x1 ln(x 1 )Li 1,1,x 1 +x 2 1 x 1 +x 2 2 ζ(2)ln(1 x 1 x 2 ) + Li 3 (x 1 +x 2 ) ln(x 1 )Li 2 (x 1 +x 2 ) 1 2 ln(x 1)ln(x 2 )ln(1 x 1 x 2 ) Li 1,2 ( x1 x 1 +x 2,x 1 +x 2 ) Li 2,1 ( x1 x 1 +x 2,x 1 +x 2 )) + (x 1 x 2 ).

35 The two-loop two-point function ν 1 ν 2 ν 4 ν 5 ν 3 p (1 2ε)Î (2,5) (2 ε,1 + ε,1 + ε,1 + ε,1 + ε,1 + ε) = 6ζ 3 + 9ζ 4 ε + 372ζ 5 ε 2 + ( 915ζ 6 864ζ ) 2 3 ε 3 +(18450ζ ζ 4 ζ 3 )ε 4 + (50259ζ ζ 5 ζ ζ 6,2 )ε 5 + ( ζ ζ 6 ζ ζ 5 ζ ζ ) 3 3 ε 6 +O(ε 7 ). Theorem: Multiple zeta values are sufficient for the Laurent expansion of the two-loop integral Î (2,5) (m ε,ν 1,ν 2,ν 3,ν 4,ν 5 ), if all powers of the propagators are of the form ν j = n j + a j ε, where the n j are positive integers and the a j are non-negative real numbers. I. Bierenbaum, S.W., (2003)

36 Summary Systematic algorithms for the calculation of loop integrals based on: nested sums, iterated integrals These iterated objects exhibit a rich algebraic structure All loop integrals known so far evaluate to multiple polylogarithms

Hopf algebra structures in particle physics

Hopf algebra structures in particle physics EPJ manuscript No. will be inserted by the editor) Hopf algebra structures in particle physics Stefan Weinzierl a Max-Planck-Institut für Physik Werner-Heisenberg-Institut), Föhringer Ring 6, D-80805 München,

More information

Functions associated to scattering amplitudes. Stefan Weinzierl

Functions associated to scattering amplitudes. Stefan Weinzierl Functions associated to scattering amplitudes Stefan Weinzierl Institut für Physik, Universität Mainz I: Periodic functions and periods II: III: Differential equations The two-loop sun-rise diagramm in

More information

Evaluating multiloop Feynman integrals by Mellin-Barnes representation

Evaluating multiloop Feynman integrals by Mellin-Barnes representation April 7, 004 Loops&Legs 04 Evaluating multiloop Feynman integrals by Mellin-Barnes representation V.A. Smirnov Nuclear Physics Institute of Moscow State University Mellin-Barnes representation as a tool

More information

NNLO antenna subtraction with two hadronic initial states

NNLO antenna subtraction with two hadronic initial states NNLO antenna subtraction with two hadronic initial states Institut für Theoretische Physik, Universität Zürich, Winterthurerstr. 190, 8057 Zürich, Switzerland E-mail: radja@physik.uzh.ch Aude Gehrmann-De

More information

Evaluating double and triple (?) boxes

Evaluating double and triple (?) boxes Evaluating double and triple (?) boxes V.A. Smirnov a hep-ph/0209295 September 2002 a Nuclear Physics Institute of Moscow State University, Moscow 9992, Russia A brief review of recent results on analytical

More information

Schematic Project of PhD Thesis: Two-Loop QCD Corrections with the Differential Equations Method

Schematic Project of PhD Thesis: Two-Loop QCD Corrections with the Differential Equations Method Schematic Project of PhD Thesis: Two-Loop QCD Corrections with the Differential Equations Method Matteo Becchetti Supervisor Roberto Bonciani University of Rome La Sapienza 24/01/2017 1 The subject of

More information

The Two-Loop Five-Point Amplitude in N=4 Super-Yang-Mills Theory and N=8 Supergravity

The Two-Loop Five-Point Amplitude in N=4 Super-Yang-Mills Theory and N=8 Supergravity The Two-Loop Five-Point Amplitude in N=4 Super-Yang-Mills Theory and N=8 Supergravity Lance Dixon (SLAC) S. Abreu, LD, E. Herrmann, B. Page and M. Zeng 1812.08941, 1901.nnnnn DESY Zeuthen, 24 January 2019

More information

Multiloop integrals in dimensional regularization made simple

Multiloop integrals in dimensional regularization made simple Multiloop integrals in dimensional regularization made simple Johannes M. Henn Institute for Advanced Study based on PRL 110 (2013) [arxiv:1304.1806], JHEP 1307 (2013) 128 [arxiv:1306.2799] with A. V.

More information

Systems of differential equations for Feynman Integrals; Schouten identities and canonical bases.

Systems of differential equations for Feynman Integrals; Schouten identities and canonical bases. Systems of differential equations for Feynman Integrals; Schouten identities and canonical bases. Lorenzo Tancredi TTP, KIT - Karlsruhe Bologna, 18 Novembre 2014 Based on collaboration with Thomas Gehrmann,

More information

Triangle diagrams in the Standard Model

Triangle diagrams in the Standard Model Triangle diagrams in the Standard Model A. I. Davydychev and M. N. Dubinin Institute for Nuclear Physics, Moscow State University, 119899 Moscow, USSR Abstract Method of massive loop Feynman diagrams evaluation

More information

The Three-Loop Splitting Functions in QCD: The Non-Singlet Case

The Three-Loop Splitting Functions in QCD: The Non-Singlet Case The Three-Loop Splitting Functions in QCD: The Non-Singlet Case Sven-Olaf Moch DESY Zeuthen 1. The Calculation. The Result 3. The Summary in collaboration with J.A.M. Vermaseren and A. Vogt, hep-ph/040319

More information

arxiv: v1 [hep-ph] 30 Dec 2015

arxiv: v1 [hep-ph] 30 Dec 2015 June 3, 8 Derivation of functional equations for Feynman integrals from algebraic relations arxiv:5.94v [hep-ph] 3 Dec 5 O.V. Tarasov II. Institut für Theoretische Physik, Universität Hamburg, Luruper

More information

Linear reducibility of Feynman integrals

Linear reducibility of Feynman integrals Linear reducibility of Feynman integrals Erik Panzer Institute des Hautes Études Scientifiques RADCOR/LoopFest 2015 June 19th, 2015 UCLA, Los Angeles Feynman integrals: special functions and numbers Some

More information

e + e 3j at NNLO: Results for all QED-type Colour Factors p.1

e + e 3j at NNLO: Results for all QED-type Colour Factors p.1 e + e 3j at NNLO: Results for all QED-type Colour Factors Thomas Gehrmann Universität ürich UNIVERSITAS TURICENSIS MDCCC XXXIII in collaboration with A. Gehrmann De Ridder, E.W.N. Glover, G. Heinrich Loopfest

More information

Exploring the function space of Feynman integrals. Stefan Weinzierl

Exploring the function space of Feynman integrals. Stefan Weinzierl Exploring the function space of Feynman integrals Stefan Weinzierl Institut für Physik, Universität Mainz Mathematics intro: Physics intro: Part I: Part II: Periodic functions and periods Precision calculations

More information

arxiv:hep-lat/ v1 30 Sep 2005

arxiv:hep-lat/ v1 30 Sep 2005 September 2005 Applying Gröbner Bases to Solve Reduction Problems for Feynman Integrals arxiv:hep-lat/0509187v1 30 Sep 2005 A.V. Smirnov 1 Mechanical and Mathematical Department and Scientific Research

More information

Numerical Evaluation of Loop Integrals

Numerical Evaluation of Loop Integrals Numerical Evaluation of Loop Integrals Institut für Theoretische Physik Universität Zürich Tsukuba, April 22 nd 2006 In collaboration with Babis Anastasiou Rationale (Why do we need complicated loop amplitudes?)

More information

Scalar One-Loop Integrals using the Negative-Dimension Approach

Scalar One-Loop Integrals using the Negative-Dimension Approach DTP/99/80 hep-ph/9907494 Scalar One-Loop Integrals using the Negative-Dimension Approach arxiv:hep-ph/9907494v 6 Jul 999 C. Anastasiou, E. W. N. Glover and C. Oleari Department of Physics, University of

More information

Combinatorial Hopf algebras in particle physics I

Combinatorial Hopf algebras in particle physics I Combinatorial Hopf algebras in particle physics I Erik Panzer Scribed by Iain Crump May 25 1 Combinatorial Hopf Algebras Quantum field theory (QFT) describes the interactions of elementary particles. There

More information

arxiv:hep-ph/ v1 26 May 1994

arxiv:hep-ph/ v1 26 May 1994 ETH-TH/94-4 KLTE-DTP/94-3 May 5, 994 arxiv:hep-ph/9405386v 6 May 994 One-loop radiative corrections to the helicity amplitudes of QCD processes involving four quarks and one gluon Zoltan Kunszt a, Adrian

More information

HyperInt - exact integration with hyperlogarithms

HyperInt - exact integration with hyperlogarithms HyperInt - exact integration with hyperlogarithms Erik Panzer erikpanzer@ihes.fr (CNRS, ERC grant 257638, F. Brown) Institute des Hautes Études Scientifiques 35 Route de Chartres 9144 Bures-sur-Yvette

More information

Numerical Evaluation of Multi-loop Integrals

Numerical Evaluation of Multi-loop Integrals Numerical Evaluation of Multi-loop Integrals Sophia Borowka MPI for Physics, Munich In collaboration with: J. Carter and G. Heinrich Based on arxiv:124.4152 [hep-ph] http://secdec.hepforge.org DESY-HU

More information

Feynman Integrals, Polylogarithms and Symbols

Feynman Integrals, Polylogarithms and Symbols Feynman Integrals, Polylogarithms and Symbols Vittorio Del Duca INFN LNF based on work with Claude Duhr & Volodya Smirnov ACAT2011 7 September 2011 let us consider l-loop n-point Feynman integrals example:

More information

arxiv:hep-ph/ v2 13 Jul 2005

arxiv:hep-ph/ v2 13 Jul 2005 ZU TH 3/5 hep-ph/5794 July 5 arxiv:hep-ph/5794v 3 Jul 5 HypExp, a Mathematica package for expanding hypergeometric functions around integer-valued parameters T. Huber and D. Maître Institut für Theoretische

More information

Numerical Evaluation of Multi-loop Integrals

Numerical Evaluation of Multi-loop Integrals Numerical Evaluation of Multi-loop Integrals Sophia Borowka MPI for Physics, Munich In collaboration with G. Heinrich Based on arxiv:124.4152 [hep-ph] HP 8 :Workshop on High Precision for Hard Processes,

More information

Symbolic integration of multiple polylogarithms

Symbolic integration of multiple polylogarithms Symbolic integration of multiple polylogarithms Erik Panzer Institute des Hautes E tudes Scientifiques Applications of Computer Algebra July 22nd, 215 Kalamata, Greece Problem: Multiple integrals of rational

More information

Structural Aspects of Numerical Loop Calculus

Structural Aspects of Numerical Loop Calculus Structural Aspects of Numerical Loop Calculus Do we need it? What is it about? Can we handle it? Giampiero Passarino Dipartimento di Fisica Teorica, Università di Torino, Italy INFN, Sezione di Torino,

More information

Functional equations for Feynman integrals

Functional equations for Feynman integrals Functional equations for Feynman integrals O.V. Tarasov JINR, Dubna, Russia October 9, 016, Hayama, Japan O.V. Tarasov (JINR) Functional equations for Feynman integrals 1 / 34 Contents 1 Functional equations

More information

The forward-backward asymmetry in electron-positron annihilation. Stefan Weinzierl

The forward-backward asymmetry in electron-positron annihilation. Stefan Weinzierl The forward-backward asymmetry in electron-positron annihilation Stefan Weinzierl Universität Mainz Introduction: I.: II: III: IV.: Electroweak precision physics Higher order corrections Infrared-safe

More information

From Tensor Integral to IBP

From Tensor Integral to IBP From Tensor Integral to IBP Mohammad Assadsolimani, in collaboration with P. Kant, B. Tausk and P. Uwer 11. Sep. 2012 Mohammad Assadsolimani From Tensor Integral to IBP 1 Contents Motivation NNLO Tensor

More information

Single mass scale diagrams: construction of a basis for the ε-expansion.

Single mass scale diagrams: construction of a basis for the ε-expansion. BI-TP 99/4 Single mass scale diagrams: construction of a basis for the ε-expansion. J. Fleischer a 1, M. Yu. Kalmykov a,b 2 a b Fakultät für Physik, Universität Bielefeld, D-615 Bielefeld, Germany BLTP,

More information

Renormalizability in (noncommutative) field theories

Renormalizability in (noncommutative) field theories Renormalizability in (noncommutative) field theories LIPN in collaboration with: A. de Goursac, R. Gurău, T. Krajewski, D. Kreimer, J. Magnen, V. Rivasseau, F. Vignes-Tourneret, P. Vitale, J.-C. Wallet,

More information

NNLO antenna subtraction with one hadronic initial state

NNLO antenna subtraction with one hadronic initial state antenna subtraction with one hadronic initial state Alejandro Daleo, Aude Gehrmann-De Ridder Institute for Theoretical Physics, ETH Zürich E-mail: adaleo@phys.ethz.ch, gehra@phys.ethz.ch Thomas Gehrmann,

More information

Master integrals without subdivergences

Master integrals without subdivergences Master integrals without subdivergences Joint work with Andreas von Manteuffel and Robert Schabinger Erik Panzer 1 (CNRS, ERC grant 257638) Institute des Hautes Études Scientifiques 35 Route de Chartres

More information

Feyman integrals and difference equations

Feyman integrals and difference equations Deutsches Elektronen Synchrotron, DESY Platanenallee 6, D 15738 Zeuthen, Germany E-mail: sven-olaf.moch@desy.de C. Schneider Research Institute for Symbolic Computation, Johannes Kepler University Linz,

More information

arxiv:hep-ph/ v1 21 Jan 1998

arxiv:hep-ph/ v1 21 Jan 1998 TARCER - A Mathematica program for the reduction of two-loop propagator integrals R. Mertig arxiv:hep-ph/980383v Jan 998 Abstract Mertig Research & Consulting, Kruislaan 49, NL-098 VA Amsterdam, The Netherlands

More information

Hopf algebras in renormalisation for Encyclopædia of Mathematics

Hopf algebras in renormalisation for Encyclopædia of Mathematics Hopf algebras in renormalisation for Encyclopædia of Mathematics Dominique MANCHON 1 1 Renormalisation in physics Systems in interaction are most common in physics. When parameters (such as mass, electric

More information

Analytic continuation of functional renormalization group equations

Analytic continuation of functional renormalization group equations Analytic continuation of functional renormalization group equations Stefan Flörchinger (CERN) Aachen, 07.03.2012 Short outline Quantum effective action and its analytic continuation Functional renormalization

More information

Analytic 2-loop Form factor in N=4 SYM

Analytic 2-loop Form factor in N=4 SYM Analytic 2-loop Form factor in N=4 SYM Gang Yang University of Hamburg Nordic String Theory Meeting Feb 20-21, 2012, NBI Based on the work Brandhuber, Travaglini, GY 1201.4170 [hep-th] Brandhuber, Gurdogan,

More information

Simplified differential equations approach for NNLO calculations

Simplified differential equations approach for NNLO calculations Simplified differential equations approach for NNLO calculations Costas. G. Papadopoulos INPP, NCSR Demokritos, Athens UCLA, June 19, 2015 Costas. G. Papadopoulos NNLO Radcor-Loopfest, LA, 2015 1 / 39

More information

Reduction of Feynman integrals to master integrals

Reduction of Feynman integrals to master integrals Reduction of Feynman integrals to master integrals A.V. Smirnov Scientific Research Computing Center of Moscow State University A.V. Smirnov ACAT 2007 p.1 Reduction problem for Feynman integrals A review

More information

arxiv: v2 [hep-ph] 2 Apr 2019

arxiv: v2 [hep-ph] 2 Apr 2019 MITP/19-023 arxiv:1904.00382v2 [hep-ph] 2 Apr 2019 Two-loop master integrals for the mixed QCD-electroweak corrections for H b b through a Ht t-coupling Ekta Chaubey and Stefan Weinzierl PRISMA Cluster

More information

SPLITTING FUNCTIONS AND FEYNMAN INTEGRALS

SPLITTING FUNCTIONS AND FEYNMAN INTEGRALS SPLITTING FUNCTIONS AND FEYNMAN INTEGRALS Germán F. R. Sborlini Departamento de Física, FCEyN, UBA (Argentina) 10/12/2012 - IFIC CONTENT Introduction Collinear limits Splitting functions Computing splitting

More information

arxiv: v1 [hep-ph] 11 May 2010

arxiv: v1 [hep-ph] 11 May 2010 MZ-TH/1-12 arxiv:15.1855v1 [hep-ph] 11 May 21 Introduction to Feynman Integrals Stefan Weinzierl Institut für Physik, Universität Mainz, D - 5599 Mainz, Germany Abstract In these lectures I will give an

More information

Maximal Unitarity at Two Loops

Maximal Unitarity at Two Loops Maximal Unitarity at Two Loops David A. Kosower Institut de Physique Théorique, CEA Saclay work with Kasper Larsen & Henrik Johansson; & work of Simon Caron- Huot & Kasper Larsen 1108.1180, 1205.0801,

More information

Analytical expressions of 3 and 4-loop sunrise Feynman integrals and 4-dimensional lattice integrals

Analytical expressions of 3 and 4-loop sunrise Feynman integrals and 4-dimensional lattice integrals 3 September 8 Analytical expressions of 3 and 4-loop sunrise Feynman integrals and 4-dimensional lattice integrals arxiv:83.7v3 [hep-ph] Mar 8 S. Laporta Museo Storico della Fisica e Centro Studi e Ricerche

More information

Multiloop scattering amplitudes in the LHC Era

Multiloop scattering amplitudes in the LHC Era Multiloop scattering amplitudes in the LHC Era Francesco Moriello Based on arxiv:1609.06685 In collaboration with: R. Bonciani, V. Del Duca, H. Frellesvig, J.M. Henn, V. Smirnov October 26, 2016 Outline

More information

Epstein-Glaser Renormalization and Dimensional Regularization

Epstein-Glaser Renormalization and Dimensional Regularization Epstein-Glaser Renormalization and Dimensional Regularization II. Institut für Theoretische Physik, Hamburg (based on joint work with Romeo Brunetti, Michael Dütsch and Kai Keller) Introduction Quantum

More information

Multiple polylogarithms and Feynman integrals

Multiple polylogarithms and Feynman integrals Multiple polylogarithms and Feynman integrals Erik Panzer Institute des Hautes E tudes Scientifiques Amplitudes 215 July 7th ETH/University of Zu rich Topics 1 hyperlogarithms & iterated integrals 2 multiple

More information

Automatic calculations of Feynman integrals in the Euclidean region

Automatic calculations of Feynman integrals in the Euclidean region Automatic calculations of Feynman integrals in the Euclidean region Krzysztof Kajda University of Silesia 9 dec 2008 Krzysztof Kajda (University of Silesia) Automatic calculations of Feynman integrals

More information

Multiple polylogarithms and Feynman integrals

Multiple polylogarithms and Feynman integrals Multiple polylogarithms and Feynman integrals Erik Panzer Institute des Hautes E tudes Scientifiques Amplitudes 215 July 7th ETH/University of Zu rich Topics 1 hyperlogarithms & iterated integrals 2 multiple

More information

Five-loop massive tadpoles

Five-loop massive tadpoles Five-loop massive tadpoles York Schröder (Univ del Bío-Bío, Chillán, Chile) recent work with Thomas Luthe and earlier work with: J. Möller, C. Studerus Radcor, UCLA, Jun 0 Motivation pressure of hot QCD

More information

On the renormalization problem of multiple zeta values

On the renormalization problem of multiple zeta values On the renormalization problem of multiple zeta values joint work with K. Ebrahimi-Fard, D. Manchon and J. Zhao Johannes Singer Universität Erlangen Paths to, from and in renormalization Universität Potsdam

More information

arxiv: v2 [hep-ph] 18 Nov 2009

arxiv: v2 [hep-ph] 18 Nov 2009 Space-time dimensionality D as complex variable: calculating loop integrals using dimensional recurrence relation and analytical properties with respect to D. arxiv:0911.05v [hep-ph] 18 Nov 009 R.N. Lee

More information

REVIEW REVIEW. Quantum Field Theory II

REVIEW REVIEW. Quantum Field Theory II Quantum Field Theory II PHYS-P 622 Radovan Dermisek, Indiana University Notes based on: M. Srednicki, Quantum Field Theory Chapters: 13, 14, 16-21, 26-28, 51, 52, 61-68, 44, 53, 69-74, 30-32, 84-86, 75,

More information

Quantum Field Theory II

Quantum Field Theory II Quantum Field Theory II PHYS-P 622 Radovan Dermisek, Indiana University Notes based on: M. Srednicki, Quantum Field Theory Chapters: 13, 14, 16-21, 26-28, 51, 52, 61-68, 44, 53, 69-74, 30-32, 84-86, 75,

More information

Differential Equations and Associators for Periods

Differential Equations and Associators for Periods Differential Equations and Associators for Periods Stephan Stieberger, MPP München Workshop on Geometry and Physics in memoriam of Ioannis Bakas November 2-25, 26 Schloß Ringberg, Tegernsee based on: St.St.,

More information

arxiv: v1 [hep-th] 22 Dec 2017

arxiv: v1 [hep-th] 22 Dec 2017 arxiv:1712.08541v1 [hep-th] 22 Dec 2017 DESY 17-225, DO-TH 17/37 Special functions, transcendentals and their numerics arxiv:yymmdd.xxxxx Jakob Ablinger a, Johannes Blümlein b, Mark Round a,b, and Carsten

More information

Simplified differential equations approach for the calculation of multi-loop integrals

Simplified differential equations approach for the calculation of multi-loop integrals Simplified differential equations approach for the calculation of multi-loop integrals Chris Wever (N.C.S.R. Demokritos) 1 C. Papadopoulos [arxiv: 1401.6057 [hep-ph]] C. Papadopoulos, D. Tommasini, C.

More information

1 Running and matching of the QED coupling constant

1 Running and matching of the QED coupling constant Quantum Field Theory-II UZH and ETH, FS-6 Assistants: A. Greljo, D. Marzocca, J. Shapiro http://www.physik.uzh.ch/lectures/qft/ Problem Set n. 8 Prof. G. Isidori Due: -5-6 Running and matching of the QED

More information

Large-n f Contributions to the Four-Loop Splitting Functions in QCD

Large-n f Contributions to the Four-Loop Splitting Functions in QCD Large-n Contributions to the Four-Loop Splitting Functions in QCD Nucl. Phys. B915 (2017) 335-362, arxiv:1610.07477 Joshua Davies Department o Mathematical Sciences University o Liverpool Collaborators:

More information

5 Infrared Divergences

5 Infrared Divergences 5 Infrared Divergences We have already seen that some QED graphs have a divergence associated with the masslessness of the photon. The divergence occurs at small values of the photon momentum k. In a general

More information

Two-loop Remainder Functions in N = 4 SYM

Two-loop Remainder Functions in N = 4 SYM Two-loop Remainder Functions in N = 4 SYM Claude Duhr Institut für theoretische Physik, ETH Zürich, Wolfgang-Paulistr. 27, CH-8093, Switzerland E-mail: duhrc@itp.phys.ethz.ch 1 Introduction Over the last

More information

Transcendental Numbers and Hopf Algebras

Transcendental Numbers and Hopf Algebras Transcendental Numbers and Hopf Algebras Michel Waldschmidt Deutsch-Französischer Diskurs, Saarland University, July 4, 2003 1 Algebraic groups (commutative, linear, over Q) Exponential polynomials Transcendence

More information

Vacuum Energy and Effective Potentials

Vacuum Energy and Effective Potentials Vacuum Energy and Effective Potentials Quantum field theories have badly divergent vacuum energies. In perturbation theory, the leading term is the net zero-point energy E zeropoint = particle species

More information

1 The Quantum Anharmonic Oscillator

1 The Quantum Anharmonic Oscillator 1 The Quantum Anharmonic Oscillator Perturbation theory based on Feynman diagrams can be used to calculate observables in Quantum Electrodynamics, like the anomalous magnetic moment of the electron, and

More information

Loop corrections in Yukawa theory based on S-51

Loop corrections in Yukawa theory based on S-51 Loop corrections in Yukawa theory based on S-51 Similarly, the exact Dirac propagator can be written as: Let s consider the theory of a pseudoscalar field and a Dirac field: the only couplings allowed

More information

Review of scalar field theory. Srednicki 5, 9, 10

Review of scalar field theory. Srednicki 5, 9, 10 Review of scalar field theory Srednicki 5, 9, 10 2 The LSZ reduction formula based on S-5 In order to describe scattering experiments we need to construct appropriate initial and final states and calculate

More information

arxiv:hep-ph/ v1 4 May 1999

arxiv:hep-ph/ v1 4 May 1999 NIKHEF-99-5 TTP99-8 Harmonic Polylogarithms arxiv:hep-ph/995237 v1 4 May 1999 E. Remiddi a,b and J. A. M. Vermaseren c a Institut für Theoretische TeilchenPhysik University of Karlsruhe - D76128 Karlsruhe,

More information

The unitary pion mass at O(p 4 ) in SU(2) ChPT

The unitary pion mass at O(p 4 ) in SU(2) ChPT The unitary pion mass at Op 4 ) in SU) ChPT Chris Kelly ebruary, This section contains the derivation of the behaviour of the pion mass, specifically the mass of the φ 3 = π, at NLO in SU) ChPT. The partially-quenched

More information

Quantum Field Theory. and the Standard Model. !H Cambridge UNIVERSITY PRESS MATTHEW D. SCHWARTZ. Harvard University

Quantum Field Theory. and the Standard Model. !H Cambridge UNIVERSITY PRESS MATTHEW D. SCHWARTZ. Harvard University Quantum Field Theory and the Standard Model MATTHEW D. Harvard University SCHWARTZ!H Cambridge UNIVERSITY PRESS t Contents v Preface page xv Part I Field theory 1 1 Microscopic theory of radiation 3 1.1

More information

Two-loop QCD Corrections to the Heavy Quark Form Factors p.1

Two-loop QCD Corrections to the Heavy Quark Form Factors p.1 Two-loop QCD Corrections to the Heavy Quark Form Factors Thomas Gehrmann Universität Zürich UNIVERSITAS TURICENSIS MDCCC XXXIII Snowmass Linear Collider Worksho005 Two-loop QCD Corrections to the Heavy

More information

Solution to sunset diagram problem

Solution to sunset diagram problem Solution to sunset diagram problem The sunset diagram provides the leading contribution to the p 2 )/ and hence Z, where I am simplifying notation by using Z Z φ.. First, use Feynman parameters to write

More information

A. Mitov 3-loop time-like splitting functions in Mellin space and NNLO fragmentation

A. Mitov 3-loop time-like splitting functions in Mellin space and NNLO fragmentation Three-loop time-like splitting functions in Mellin space and NNLO fragmentation Alexander Mitov DESY Work in progress with: M. Cacciari; Lance Dixon; S-O. Moch Also based on: hep-ph/0604160 (with Sven

More information

Quantum Field Theory. Kerson Huang. Second, Revised, and Enlarged Edition WILEY- VCH. From Operators to Path Integrals

Quantum Field Theory. Kerson Huang. Second, Revised, and Enlarged Edition WILEY- VCH. From Operators to Path Integrals Kerson Huang Quantum Field Theory From Operators to Path Integrals Second, Revised, and Enlarged Edition WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA I vh Contents Preface XIII 1 Introducing Quantum Fields

More information

arxiv: v3 [hep-ph] 20 Apr 2017

arxiv: v3 [hep-ph] 20 Apr 2017 MITP/14-76 A quasi-finite basis for multi-loop Feynman integrals arxiv:1411.7392v3 [hep-ph] 2 Apr 217 Andreas von Manteuffel, a Erik Panzer, b, c and Robert M. Schabinger a a PRISMA Cluster of Excellence

More information

Forcer: a FORM program for 4-loop massless propagators

Forcer: a FORM program for 4-loop massless propagators Forcer: a FORM program for 4-loop massless propagators, a B. Ruijl ab and J.A.M. Vermaseren a a Nikhef Theory Group, Science Park 105, 1098 XG Amsterdam, The Netherlands b Leiden Centre of Data Science,

More information

pqcd at High Temperature

pqcd at High Temperature pqcd at High Temperature Diplomarbeit an der Fakultät für Physik Universität Bielefeld vorgelegt von Ervin Bejdakic 3. März 006 Contents Introduction 5 QCD at high temperature 9. Finite Temperature (scalar)

More information

TF 2 -Contributions to 3-Loop Deep-Inelastic Wilson Coefficients and the Asymptotic Representation of Charged Current DIS

TF 2 -Contributions to 3-Loop Deep-Inelastic Wilson Coefficients and the Asymptotic Representation of Charged Current DIS 1/30 TF 2 -Contributions to 3-Loop Deep-Inelastic Wilson Coefficients and the Asymptotic Representation of Charged Current DIS Alexander Hasselhuhn RISC (LHCPhenonet) 26.9.2013 in collaboration with: J.

More information

arxiv:hep-ph/ v1 28 Mar 2006

arxiv:hep-ph/ v1 28 Mar 2006 DESY-06-0 SFB/CPP-06- Hypergeometric representation of the two-loop equal mass sunrise diagram arxiv:hep-ph/0607v 8 Mar 006 O.V. Tarasov Deutsches Elektronen - Synchrotron DESY Platanenallee 6, D-578 Zeuthen,

More information

Feynman integrals as Periods

Feynman integrals as Periods Feynman integrals as Periods Pierre Vanhove Amplitudes 2017, Higgs Center, Edinburgh, UK based on [arxiv:1309.5865], [arxiv:1406.2664], [arxiv:1601.08181] Spencer Bloch, Matt Kerr Pierre Vanhove (IPhT)

More information

arxiv:hep-th/ v1 2 Jul 1998

arxiv:hep-th/ v1 2 Jul 1998 α-representation for QCD Richard Hong Tuan arxiv:hep-th/9807021v1 2 Jul 1998 Laboratoire de Physique Théorique et Hautes Energies 1 Université de Paris XI, Bâtiment 210, F-91405 Orsay Cedex, France Abstract

More information

Introduction to Loop Calculations

Introduction to Loop Calculations Introduction to Loop Calculations May Contents One-loop integrals. Dimensional regularisation............................... Feynman parameters................................. 3.3 Momentum integration................................

More information

LSZ reduction for spin-1/2 particles

LSZ reduction for spin-1/2 particles LSZ reduction for spin-1/2 particles based on S-41 In order to describe scattering experiments we need to construct appropriate initial and final states and calculate scattering amplitude. Summary of free

More information

REVIEW REVIEW. A guess for a suitable initial state: Similarly, let s consider a final state: Summary of free theory:

REVIEW REVIEW. A guess for a suitable initial state: Similarly, let s consider a final state: Summary of free theory: LSZ reduction for spin-1/2 particles based on S-41 In order to describe scattering experiments we need to construct appropriate initial and final states and calculate scattering amplitude. Summary of free

More information

Dipole subtraction with random polarisations

Dipole subtraction with random polarisations , Christopher Schwan, Stefan Weinzierl PRISMA Cluster of Excellence, Johannes Gutenberg University, Mainz goetz@uni-mainz.de schwan@uni-mainz.de stefanw@thep.physik.uni-mainz.de In this talk, we discuss

More information

Computer Algebra Algorithms for Special Functions in Particle Physics.

Computer Algebra Algorithms for Special Functions in Particle Physics. Computer Algebra Algorithms for Special Functions in Particle Physics. Jakob Ablinger RISC, J. Kepler Universität Linz, Austria joint work with J. Blümlein (DESY) and C. Schneider (RISC) 7. Mai 2012 Definition

More information

MHV Diagrams and Tree Amplitudes of Gluons

MHV Diagrams and Tree Amplitudes of Gluons Institute for Advanced Study, Princeton, NJ 08540 U.S.A. E-mail: cachazo@ias.edu Institute for Advanced Study, Princeton, NJ 08540 U.S.A. E-mail: cachazo@ias.edu Recently, a new perturbation expansion

More information

Loop Corrections: Radiative Corrections, Renormalization and All

Loop Corrections: Radiative Corrections, Renormalization and All Loop Corrections: Radiative Corrections, Renormalization and All That Michael Dine Department of Physics University of California, Santa Cruz Nov 2012 Loop Corrections in φ 4 Theory At tree level, we had

More information

Quantum Field Theory 2 nd Edition

Quantum Field Theory 2 nd Edition Quantum Field Theory 2 nd Edition FRANZ MANDL and GRAHAM SHAW School of Physics & Astromony, The University of Manchester, Manchester, UK WILEY A John Wiley and Sons, Ltd., Publication Contents Preface

More information

Elliptic dilogarithms and two-loop Feynman integrals

Elliptic dilogarithms and two-loop Feynman integrals Elliptic dilogarithms and two-loop Feynman integrals Pierre Vanhove 12th Workshop on Non-Perturbative Quantum Chromodynamics IAP, Paris June, 10 2013 based on work to appear with Spencer Bloch Pierre Vanhove

More information

Two-loop massive fermionic operator matrix elements and intial state QED corrections to e + e γ /Z

Two-loop massive fermionic operator matrix elements and intial state QED corrections to e + e γ /Z Two-loop massive fermionic operator matrix elements and intial state QED corrections to e + e γ /Z J. Blümlein, a ab and W. van Neerven c a DESY, Zeuthen, Platanenalle 6, D-173 Zeuthen, Germany. b Departamento

More information

PHY 396 L. Solutions for homework set #20.

PHY 396 L. Solutions for homework set #20. PHY 396 L. Solutions for homework set #. Problem 1 problem 1d) from the previous set): At the end of solution for part b) we saw that un-renormalized gauge invariance of the bare Lagrangian requires Z

More information

Reduction of one-loop amplitudes at the integrand level-nlo QCD calculations

Reduction of one-loop amplitudes at the integrand level-nlo QCD calculations Reduction of one-loop amplitudes at the integrand level-nlo QCD calculations Costas G. Papadopoulos NCSR Demokritos, Athens Epiphany 2008, Krakow, 3-6 January 2008 Costas G. Papadopoulos (Athens) OPP Reduction

More information

Asymptotic Expansions of Feynman Integrals on the Mass Shell in Momenta and Masses

Asymptotic Expansions of Feynman Integrals on the Mass Shell in Momenta and Masses Asymptotic Expansions of Feynman Integrals on the Mass Shell in Momenta and Masses arxiv:hep-ph/9708423v 2 Aug 997 V.A. Smirnov Nuclear Physics Institute of Moscow State University Moscow 9899, Russia

More information

Evolution of 3D-PDFs at Large-x B and Generalized Loop Space

Evolution of 3D-PDFs at Large-x B and Generalized Loop Space Evolution of 3D-PDFs at Large-x B and Generalized Loop Space Igor O. Cherednikov Universiteit Antwerpen QCD Evolution Workshop Santa Fe (NM), 12-16 May 2014 What we can learn from the study of Wilson loops?

More information

2P + E = 3V 3 + 4V 4 (S.2) D = 4 E

2P + E = 3V 3 + 4V 4 (S.2) D = 4 E PHY 396 L. Solutions for homework set #19. Problem 1a): Let us start with the superficial degree of divergence. Scalar QED is a purely bosonic theory where all propagators behave as 1/q at large momenta.

More information

FOLLOWING PINO - THROUGH THE CUSPS AND BEYOND THE PLANAR LANDS. Lorenzo Magnea. University of Torino - INFN Torino. Pino Day, Cortona, 29/05/12

FOLLOWING PINO - THROUGH THE CUSPS AND BEYOND THE PLANAR LANDS. Lorenzo Magnea. University of Torino - INFN Torino. Pino Day, Cortona, 29/05/12 FOLLOWING PINO - THROUGH THE CUSPS AND BEYOND THE PLANAR LANDS Lorenzo Magnea University of Torino - INFN Torino Pino Day, Cortona, 29/05/12 Outline Crossing paths with Pino Cusps, Wilson lines and Factorization

More information

Hypergeometric representation of the two-loop equal mass sunrise diagram

Hypergeometric representation of the two-loop equal mass sunrise diagram Physics Letters B 68 6 95 wwwelseviercom/locate/physletb Hypergeometric representation of the two-loop equal mass sunrise diagram OV Tarasov Deutsches Elektronen-Synchrotron DESY Platanenallee 6 D-578

More information

Computing of Charged Current DIS at three loops

Computing of Charged Current DIS at three loops Computing of Charged Current DIS at three loops Mikhail Rogal Mikhail.Rogal@desy.de DESY, Zeuthen, Germany ACAT 2007, Amsterdam, Netherlands, April 23-28, 2007 Computing of Charged CurrentDIS at three

More information