The Three-Loop Splitting Functions in QCD: The Non-Singlet Case

Size: px
Start display at page:

Download "The Three-Loop Splitting Functions in QCD: The Non-Singlet Case"

Transcription

1 The Three-Loop Splitting Functions in QCD: The Non-Singlet Case Sven-Olaf Moch DESY Zeuthen 1. The Calculation. The Result 3. The Summary in collaboration with J.A.M. Vermaseren and A. Vogt, hep-ph/ Workshop HERA and the LHC, CERN, March 7, 004

2 The Calculation The calculation of splitting functions up to three loops is terribly long and awfully difficult to understand, even in its simpler moments which are, roughly speaking, the beginning and the end.

3 The beginning General structure of the anti-)quark anti-)quark splitting functions constraints from charge conjugation invariance and flavour symmetry P qi q k = P qi q k = δ ik P v qq + P s qq P qi q k = P qi q k = δ ik P v q q + P s q q Non-singlet distributions q ± ns,ik = q i ± q i q k ± q k ) flavour asymmetries q v ns = n f q r q r ) sum of valence distribution of all flavours r=1 Three independently evolving types of distributions q ± ns P ± ns = P v qq ± P v q q q v ns P v ns = P v qq P v q q + n f P s qq P s q q) P ns + P s ns

4 Intermezzo Calculate Mellin moments of splitting functions Z 1 γ ns n)i N) = dx x N 1 P ns n)i x) 0 One-loop Feynman diagrams in total 6 for γ ns 0) / P ns 0) pencil + paper) Two-loop Feynman diagrams in total 57 for γ ns 1),i / P ns 1),i simple computer algebra) Three-loop Feynman diagrams in total 948 for γ ns ),i / P ns ),i leading edge technology computer algebra system FORM Vermaseren 89-04)

5 The end Mellin N-space : harmonic sums S m1,...,m k N) Gonzalez-Arroyo, Lopez, Ynduráin 79 ; Vermaseren 98 ; Blümlein, Kurth 98 N 1 recursive definition S m1,...,m k N) = i=1 i S m m 1,...,m k i) algebra of multiplication S j N)S k N) S { j,k} N) Bjorken x-space : harmonic polylogarithms H m1,...,m k x) Goncharov 98 ; Borwein, Bradley, Broadhurst, Lisonek 99 ; Remiddi, Vermaseren 99 Basic functions of lowest weight H 0 x) = lnx, H 1 x) = ln1 x), H 1 x) = ln1 + x) Higher functions defined by recursion H m1,...,m w x) = Z x 0 dz f m1 z) H m,...,m w z) f 0 x) = 1 x, f 1x) = 1 1 x, f 1x) = x Inverse Mellin transformation of harmonic sums harmonic polylogarithms in x space Unique mapping : H m1,...,m w x)/1 ± x) S n1,...,n w+1 N)

6 The Results Anomalous dimensions in Mellin space One-loop : Gross, Wilczek 73 γ 0) ns N) = C F N + N + )S 1 3 ) Two-loop : Floratos, Ross, Sachrajda 79 ; Gonzalez-Arroyo, Lopez, Ynduráin 79 γ 1)+ ns N) = 4C A C F N + S S S 1 + N + N + ) 18 S 1 + S 1, 11 ) 6 S 1 + 4C F n f S 1 N + N + ) 9 S 1 1 ) 3 S + 4C F 4S 3 + S 1 + S 3 8 ) + N S + S 3 N + N + ) S 1 + 4S 1, + S 1, + S,1 + S 3 γ 1) ns N) = γ 1)+ ns N) + 16C F C F C ) ) A N N + ) S S 3 N + N + )S 1 Compact notation : N ± f N) = f N ± 1), N ±i f N) = f N ± i)

7 Three-loop : S.M., Vermaseren, Vogt 04 γ )+ ns N) = 16C A C F n f 3 ζ N + 1) 18 S 3 S N + N + ) 1 3 S, + S 1 ζ S 3,1 ) 9 S S S 1, 3 S 4 + S 1,1 5 9 S S 1 3 S 3,1 N + S,1 3 S 3,1 3 S 4 S 1, S S S S 1, 3 S 1,,1 1 3 S 1, 3 1 S 1,3 1 S,1 + 16C F C A ζ 3 + S S 4 4S 4, S 3 + S 3, S 3,1 + 3 S 6S ζ 3 S, 3 + 3S, 4S,,1 + 8S,1, S 1 10S 1, S 1, + 1S 1,,1 + 4S 1,3 4S, 5 S S S S 3 + N + N + ) 3S 1 ζ S 1,1 4S 1,1, + N + N + ) 43 S 1 3S 1, S 1, 3 + 8S 1, 3, S 1, 6S 1,, 9 3 S 1,,1 + 8S 1,1, 3 16S 1,1,,1 4S 1,1, S 1,3 + 4S 1,3,1 + 3S 1,4 + 8S,,1 + S,3 S 3, S 3,1 S 4,1 4S, S, S S 3 N N + ) 3S ζ 3 + 7S,1 3S,1, + S,,1 1 4 S,3 3 S 3, 9 6 S 3, S 4,1 + 1 S, 3 S, 8 + N + 9 S S 8 3 S 4 5 ) 17 S C F nf S S + N + N + ) 9 S S + 1 ) S C F C A 4 ζ S S 4 + 0S 4, S 3 S 3, 31 3 S 3,1 + S 3, 9 S + 18S ζ S, 3 6S, + 8S,,1 8S,1, + 46S 1, S 1, 48S 1,, S 1, S 3 8S 1,3 + S 3, 4S 5 N + N + ) S 1,1 14S 1,1, 4 18 S + 9S, S 4 3S 3, S,1 + N + N + ) 17S 1, S 1, 3 3S 1, 3, S 1, 9S 1 ζ S 1

8 +16S 1,, S 1,,1 S 1,, 36S 1,1, S 1,1,,1 + 8S 1,1, S 1, 4S 1,, S 1,3 8S 1,3,1 11S 1, S, +1S, 3 30S,,1 4S,1, 5S,3 S 4, S, 67 9 S,1 + N N + ) 9S ζ 3 + S, 3 + 4S,,1 1S,1, S,3 +13S 4,1 + 1 S, + 11 S 4 33 S 3, S S, S + N + 8S 3, S 3,1 S 3, + 14S S S ) 4 S C F n f 16 3 ζ S 3, S S S S S 1, 8 3 S 1, S 1, + N + 9 S S 3,1 1 3 S 4 67 N + 1) 36 S 4 3 S, S 3 + N + N + ) S 1 ζ S 1 3 S 1, S 1, 4 3 S 1,, S 1, S 1, 4 3 S 1, S 3 S, S,1 + 1 S 4 3 S, 8 9 S 3 ) + 16C F 3 1S ζ 3 + 9S 4 4S 4,1 4S 3, + 6S 3,1 4S 3, + 3S + 5S 3 1S ζ 3 1S, 3 + 4S,1, 5S 1, 3 + 4S 1, + 48S 1,,1 4S 3, + 67 S 17S 4 + N + N + ) 6S 1 ζ S S 1,1 1S 1,1, + S 1, + 10S, + S,1 + S, S 3,1 3S 5 + N + N + ) 3S 1, 3 S 1, 4 + 3S 1, 3,1 S 1, 8S 1,, 30S 1,,1 6S 1,3 + 4S 1,, + 40S 1,1, 3 48S 1,1,,1 + 8S 1,, + 4S 1,, + 8S 1,3,1 + 4S 1,4 + 8S,,1 + 4S,1, + 4S,,1 + 4S 3,1,1 4S 3, + 8S,1, 6S, 3 S,3 4S 3, 3S, 3S, + 3 S 4 + N N + ) 1S,1, 6S ζ 3 S, 3 + 3S,3 + S 3, 81 4 S,1 + 14S 3,1 5S, 1 S, S + 1 S 3 13S 4,1 + 4S 5 + N + 14S S 87 4 S 3 4S 4,1 4S 5 )

9 γ NS+ N) 0.1 γ NS+ N) / ln N arrows : N in highest term) LO NLO NNLO α S = 0., N f = N N Left : perturbative expansion of anomalous dimension γ + nsn) for four flavours at α s = 0. Right : leading N-dependence for large N with lnn divided out

10 γ ) ns N) = γ )+ ns N) + 16C A C F C F C ) A 367 N + N + ) 18 S 1 + 1S 1 ζ 3 + S 1, + 4S 1, 3 + 8S 1,, S 1,1 16S 1,1, S 5 8S 3,1 S 4 + N N + ) 4S 5 1S ζ 3 4S, 3 8S,, S,1 + 16S,1, + 4S 3, 8S 4, S 3, S S + S, 15 ) 9 S 3 + 4N + 1) 4S, 8S S C F n f C F C ) A 61 N + N + ) 9 S S 1,1 + N N + ) 3 S, S S S 3,1 4 ) 3 S C F C F C ) A N + N + ) 8S 1, 15S 1 1S 1 ζ 3 1S 1, 3 60S 1,1 + 4S 1,1, + 8S 1, + 40S 1S, + 8S,1 + 7S 3 + 1S 3,1 + 6S 5 + N N + ) 1S ζ 3 4S + 1S, 3 + 8S, + 30S,1 4S,1, 4S, 15S 3 38S 3,1 + 4S 3, + 4S 4,1 ) 1S 5 N + 1) 8S 3, + 6S 4

11 Colour structure dabc d abc n c new at three loops γ )s d abc d abc ns N) = 16n f n c 13 + N + N + ) 1 S 1, N + N + ) S 4 + S, S 3,1 5 N + N + ) 3 S S 1, S 1,,1 1 6 S 1,1, 4 S 1,1 3 8 S 1,3 1 4 S, S S S 3,1 3 N + N + ) S 1, 3 S 1,,1 S 1,1, 1 + N 1) 4 S S 5 + N N + ) S, S, S 41 4 S, S 3 1 S 3,1 S,1, S,3 + 1 S 3, 3 4 S 4,1 503 S 1 1 ) S 1, 3 + S 1,,1 S 1,1,

12 Splitting functions in x-space with f0x) = 1 x, f±1x) = 1 1 x. 4.3) A useful short-hand notation is H 0,...,0,±1,0,...,0,±1,...x) = H ±m+1),±n+1),...x). 4.4) }{{}}{{} m n For w 3 the harmonic polylogarithms can be expressed in terms of standard polylogarithms; a complete list can be found in appendix A of Ref. 45. All harmonic polylogarithms of weight w = 4 in this article can be expressed in terms of standard polylogarithms, Nielsen functions 74 or, by means of the defining relation 4.), as one-dimensional integrals over these functions. A FORTRAN program for the functions up to weight w = 4 has been provided in Ref. 75. and For completeness we recall the one- and two-loop non-singlet splitting functions 3, 8 P 0) ns x) = C F pqqx) + 3δ1 x)) 4.5) P ns 1)+ 67 x) = 4C A C F pqqx) 18 ζ H0 + H0,0 + pqq x) ζ + H 1,0 H0, x) + δ1 x) ) 5 3 ζ 3ζ3 4C F n f pqqx) H0 + 1 x) δ1 x) 1 + ) 3 ζ + 4C F pqqx) H1,0 3 4 H0 + H pqq x) ζ + H 1,0 H0,0 1 x) ) H0 H0 1 + x)h0,0 + δ1 x) 8 3ζ + 6ζ3, 4.6) P ns 1) x) = P ns 1)+ x) + 16C F C F C ) A pqq x) ζ + H 1,0 H0,0 1 x) ) 1 + x)h0. 4.7) Here and in Eqs. 4.9) 4.11) we suppress the argument x of the polylogarithms and use pqqx) = 1 x) 1 1 x. 4.8) All divergences for x 1 are understood in the sense of +-distributions. The three-loopsplittingfunctionfor the evolutionof the plus combinationsofquark densities in Eq..), corresponding to the anomalous dimension 3.8) reads P ns ) x) = 16C A C F n f 6 pqqx) ζ 9ζ3 H0 + H0ζ 7H0,0 H0,0, H1,0,0 H pqq x) ζ3 5 3 ζ H,0 H 1ζ 10 H 1,0 H 1,0,0 3 + H 1, + 1 H0ζ H0,0 + H0,0,0 57 H3 + 1 x) ζ H0 1 6 H0,0 H ζ3 5 H,0 11 H0ζ 1 Hζ 5 4 H0,0ζ + 7H 1 4 H,0,0 + 3H H4 + 1 H0,0ζ ζ 8 3 ζ + 17 ζ3 + H,0 19 H H0ζ H0ζ δ1 x) ζ ζ ζ3 5 ) ζ5 + 16C F nf 3 H0,0 + 5 H0,0,0 + 1 H0,0,0, pqqx) H0, H x) H0 δ1 x) ζ + 1 ) 1 9 ζ3 + 16C F n f 5ζ3 3 pqqx) 4H1,0, H0 + H0ζ + 3 H0,0 H0,0, H1, H H,0 H pqq x) 3 ζ 3 ζ3 + H,0 + H 1ζ H 1,0 + H 1,0,0 H 1, 1 H0ζ 5 3 H0,0 H0,0,0 + H x) H0,0 4 3 H1 + 3 H1, H x) H 1,0 3 4 H0 + 1 H0,0,0 + 9 H H0, H δ1 x) ζ 1 30 ζ + 17 ) 6 ζ C F pqqx) 10 ζ H 3,0 + 6H ζ + 1H, 1,0 6H,0, H0 3 H0ζ + H0ζ H0,0 H0,0,0,0 + 8H1, H1ζ3 + 8H1,,0 6H1,0,0 4H1,0,0,0 + 4H1,,0 3H,0 + H,0,0 + 4H,1,0 + 4H, 7 + 4H3,0 + 4H3,1 + H4 + pqq x) ζ 9 ζ3 6H 3,0 + 3H ζ + 8H, 1,0 + 3H,0 6H,0,0 8H, + 6H 1ζ + 36H 1ζ3 + 8H 1,,0 48H 1, 1ζ + 40H 1, 1,0,0 + 48H 1, 1, + 40H 1,0ζ + 3H 1,0,0 H 1,0,0,0 6H 1, 4H 1,,0 3H 1,3 3 H0 3 H0ζ 13H0ζ3 14H0,0ζ 9 H0,0,0 + 6H0,0,0,0 + 6Hζ + 3H3 + H3,0 + 1H4 + 1 x) H 3, H,0,0 + H0,0ζ 3H0,0,0,0 + 35H1 + 6H1ζ H1,0 + 5 H, x) 10 ζ 93 4 ζ 81 ζ3 15H,0 + 30H 1ζ + 1H 1, 1,0 H 1,0 6H 1,0,0 4H 1, H0 8H0ζ H0,0 + 0H0,0, H 3H,0,0 H3,0 + 13H3 4 H4 + 4ζ + 33ζ3 + 4H 3,0 + 10H, H0 + 6H0ζ3 + 19H0ζ 5H0,0 17H0,0,0 9 H H,0 4H3 + δ1 x) 3 ζζ ζ ζ + 17 ) 4 ζ3 15ζ5. 4.9) The x-space counterpart ofeq. 3.8) forthe evolutionof the minus combinations.) isgivenby P ) ns x) = P )+ ns x) + 16C A C F C F C A ) 134 pqq x) 9 ζ 4ζ 11ζ3 4H 3,0 + 3H ζ + 3 H,0 16H,0,0 3H, + 44 H 1ζ + 48H 1ζ3 64H 1, 1ζ 3 + 3H 1, 1,0,0 + 64H 1, 1, H 1,0 + 44H 1,0ζ + 3 H 1,0,0 1H 1,0,0, H 1, 3H 1,3 3H0 134 H0ζ 16H0ζ3 3 9 H0,0 1H0,0ζ 31 H0,0,0 + 4H0,0,0,0 + 8Hζ x) 3 H 1,0 + 1 H ζ + H H0,0 + δ1 x) ζ ζ + 5 ) 18 ζ C A C F pqqx) ζ3 6 0 ζ H 3,0 3H ζ 14H, 1,0 + 3H,0 + 5H,0,0 4H, H H0ζ H0ζ3 H0,0 4H0,0ζ 4 1 H0,0,0 + 5H0,0,0,0 + 3 H3 4H1ζ3 16H1,, H1,0 H1,0ζ + 31 H1,0,0 + 11H1,0,0,0 + 8H1,1,0,0 8H1,3 + H H Hζ H,0 + 5H,0,0 + H3,0 + pqq x) 4 ζ 67 9 ζ + 31 ζ3 + 5H 3,0 4 3H ζ 4H, 1, H,0 + 1H,0,0 + 30H, 31 3 H 1ζ 4H 1ζ H0 4H 1,,0 + 56H 1, 1ζ 36H 1, 1,0,0 56H 1, 1, 134 H 1,0 4H 1,0ζ H3, H 1, H0,0ζ H0,0,0 5H0,0,0,0 7Hζ 31 6 H3 10H4 + 1 x) H 1,0,0 + 17H 1,0,0,0 + H 1, + H 1,, H0ζ + 9 H0ζ H0, H0,0,0, ζ3 H0ζ3 H 3,0 + H ζ + H, 1,0 3H,0, H0,0,0 H1 7H1ζ H1,0, H1, x) 43 ζ 3ζ + 5 H,0 31H 1ζ 14H 1, 1, H 1,0 + 4H 1, + 3H 1,0, H0ζ + 5H0,0ζ + H0 H0,0 H + Hζ 15H H,0,0 3H4 5ζ 1 ζ + 50ζ3 H 3,0 7H,0 H0ζ H0ζ 9 H0 H0,0ζ H0,0 H0,0,0 4H0,0,0, H + 6H3 + δ1 x) 05 + ζζ ζ ζ ζ ) 45 ζ5 + 16C A C F pqqx) ζ ζ ζ H0 + H 3,0 + 4H, 1, H,0 H,0,0 + H, H0ζ + 4H0ζ3 + H0,0 H,0,0 1 7 H0,0,0,0 + 9H1ζ3 + 6H1,,0 H1,0ζ H1,0,0 3H1,0,0,0 4H1,1,0,0 + 4H1, H0,0, H3 + H4 + pqq x) 18 ζ ζ 11 4 ζ3 H 3,0 + 8H ζ + 11 H,0 4H,0,0 6 3H 1,0,0, H 1ζ + 1H 1ζ3 16H 1, 1ζ + 8H 1, 1,0,0 + 16H 1, 1, H 1,0 8H, + 11H 1,0ζ H 1,0, H 1, 8H 1,3 3 4 H H0ζ 4H0ζ H0,0 3H0,0ζ 31 1 H0,0,0 + H0,0,0,0 + Hζ H3 + H4 + 1 x) H0,0,0,0 + 11H1 H, 1,0 + 1 H 3,0 1 H ζ H,0, H0 + H0ζ H0,0 5 H0,0,0 + H1ζ H1,0, x) 8H 1ζ + 4H 1, 1, H 1,0 5H 1,0,0 6H 1, 13 3 ζ ζ H3 + 8H4 + 1 x) ζ + H 3,0 H ζ 4H, 1,0 10H,0 H0,0 + H,0,0 + H0ζ3 + H0,0ζ H0,0,0,0 + 8H1ζ H x) 3H 1ζ 18ζ 3ζ H 1,0 16H 1,0,0 3H 1, H0 9H0ζ + 5H0,0,0 + 4H H ) ζ ζ3 + 3H0 + 14H0ζ + H0,0,0 16H3 + 16C F n f C F C ) A pqq x) ζ3 0 9 ζ 4 3 H,0 8 3 H 1ζ 40 9 H 1,0 4 3 H 1,0, H 1, + 3 H0ζ H0, H0,0, H3 + 1 x) H x) H0,0 8 3 H 1, H0 4 ) 3 H + 16C F C F C ) A pqq x) 9ζ3 7ζ + 1H 3,0 64H ζ 16H, 1,0 6H,0 + 5H,0,0 + 56H, 1H 1ζ 7H 1ζ3 16H 1,,0 + 96H 1, 1ζ 80H 1, 1,0,0 96H 1, 1, 80H 1,0ζ 6H 1,0,0 + 44H 1,0,0,0 + 1H 1, + 8H 1,,0 + 64H 1,3 + 3H0 + 3H0ζ + 6H0ζ3 + 8H0,0ζ + 9H0,0,0 1H0,0,0,0 1Hζ 6H3 4H3,0 4H4 1 x) H 3,0 + 8H,0,0 + 61H0 + 6H0ζ3 + H0,0ζ 6H0,0,0,0 + 1H1ζ + 60H1 + 8H1, x) 4ζ + 57ζ3 + 10H,0 48H 1ζ 4H 1,0 + 40H 1,0,0 + 48H 1, + 59H0ζ H0,0 35H0,0,0 H 4H,0 44H3 + 8ζ 4ζ3 4H,0 + 4H0 ) 38H0ζ + 14H0,0 16H + 6H0,0,0 + 4H ) Finally the Mellin inversion of γ )s ns N) in Eq. 3.9) leads to the following result for the leading third-order) difference P ns )s x) of the valence and minus splitting functions: P ns )s x) = 16n f d abc dabc nc 1 1 x) ζ 5 4 ζ H 3,0 + H ζ H,0, H3 + H, 1,0 + 3 H0,0ζ 1 H1ζ 3 91 H1,0, H1 + 1 H 1, 1,0 1 + x) 3 H 1ζ H H 1,0 + 1 H 1,0,0 + H 1, 3 H, H0ζ + H0, H Hζ 1 H,0,0 + 3 H x + x) 3H 1ζ + H 1, 1,0 H 1,0,0 H 1, + H1ζ x 5ζ3 H3 + H,0 + 4H0ζ H0,0,0 + H1ζ H0 + ζ3 9 ζ + ζ H0ζ3 H0ζ H0,0ζ H0,0 1 4 H0,0,0 + 1 ) H0,0,0,0 + H,0 H ) Of particular interest is the end-point behaviour of the harmonic polylogarithms at x 0 or x 1, where logarithmic singularities occur. In the limit x 0, the factors lnx are related to trailing zeroes in the index field, whereas in the limit x 1 factors of ln1 x) emerge from 15

13 Easy-to-use parametrization Combine exact limits for x 0 and x 1 with smooth fit for intermediate x fit quality better than one per mille Notation : end-point logarithms L 0 = lnx), L 1 = ln1 x), +-distribution D 0 = 1/1 x) + P )+ ns x) = D δ1 x) L x x 5.1 x 3 + L 0 L L L L /7 L /81 L0 4 + n f D δ1 x) 510/81 L x x + n f x xl L 0 L L 0 608/81 L0 64/7 L0 3 D 0 51/16 + 3ζ 3 5ζ ) δ1 x) + x1 x) 1 L 0 3/ L 0 + 5) + 1 ) + 1 x)6 + 11/ L 0 + 3/4 L0) 64/81 )

14 P ) ns x) = D δ1 x) L x x 433. x 3 + L 0 L L L L /9 L /81 L n f D δ1 x) 510/81 L x x + n f x xl L 0 L L 0 316/81 L0 56/81 L0 3 D 0 51/16 + 3ζ 3 5ζ ) δ1 x) + x1 x) 1 L 0 3/ L 0 + 5) + 1 ) + 1 x)6 + 11/ L 0 + 3/4 L0) 64/81 ) P )s ns x) = nf L x x) x 43.1 x x 3 1 x ) + L 0 L L L L0 + 40/7 L0 4 L0 3

15 The large x-limit : x 1 Large x-limit identical for P )±,v P )±,v x 1 x) = A 3 1 x) + + B 3 δ1 x) + C 3 ln1 x) + O1) Result for A 3 is new important for threshold resummation in soft/collinear limit one-loop A 1 = 4C F ) 67 two-loop A = 8C F C A 18 ζ 5 9 C Fn f 45 three-loop A 3 = 16C F CA ζ ζ ) 5 ζ + 16C Fn f 55 ) 4 + ζ C F C A n f ζ 7 3 ζ 3 ) + 16C F n f 1 7 ) Surprising relation for subleading logarithms C 1 = 0, C = 4C F A 1, C 3 = 8C F A

16 The small x-limit : x 0 Terms up to ln k x occur at order α k+1 s. P )i x 0 x) = Di 0 ln 4 x + D i 1 ln 3 x + D i ln x + D i 3 lnx + O1) P )+ ns : D + 0 = 3 C 3 F = P ) ns : D 0 = C F C A + 4C FC A 10 3 C 3 F = D + 1 = n f D 1 = n f D + = n f n f D = n f n f D + 3 = n f n f D 3 = n f n f Coefficient of ln 4 x in agreement with prediction Kirschner, Lipatov 83 ; Blümlein, Vogt 96 New colour structure in P )s ns D s 0 = n f, D s 1 =.9696 n f, D s = n f, D s 3 = n f

17 x) P ) x) +,0 exact N = x) P ) x) +,0 Lx NLx N Lx N 3 Lx exact x Left : comparison of exact result with estimates from fixed moments for n f -independent term van Neerven, Vogt 00 Right : comparison of exact result with the small-x approximations for n f -independent term x

18 x) P ) x),0 exact N = x) P ) x),0 Lx NLx N Lx N 3 Lx exact x Left : comparison of exact result with estimates from fixed moments for n f -independent term van Neerven, Vogt 00 Right : comparison of exact result with the small-x approximations for n f -independent term x

19 100 P ) x) S, P ) x) S, exact N = exact Lx NLx N Lx N 3 Lx x Left : comparison of exact result with estimates from fixed moments van Neerven, Vogt 00 Right : comparison of exact result with the small-x approximations x

20 Numerical implications for non-singlet distributions Perturbative expansion of logarithmic scale derivative d lnq i ns/d lnµ f d d lnµ f q i nsx,µ f ) = n=0 αs µ f ) 4π ) n+1 P n)i ns x) q i nsx,µ f ) NNLO corrections are generally rather small, even for large values of α s Parametrization of non-singlet quark distribution xq i ns = x a 1 x) b size of relative corrections weakly dependent on power b increase at small x with increasing power a

21 d ln q + / d ln µ f NS µ r = µ f LO NLO NNLO NLO/LO NNLO/NLO α S = 0., N f = x x Perturbative expansion of logarithmic scale derivative d lnq + ns/d lnµ f Non-singlet distribution xq + ns = x x) 3 at scale µ r = µ f with α s µ 0 ) = 0.

22 0.1 0 d ln q / d ln µ f NS 1.3 µ r = µ f NLO/LO q v NNLO/NLO -0.3 LO -0.4 NLO NNLO 1 q α S = 0., N f = x Perturbative expansion of logarithmic scale derivative d lnq,v ns /d lnµ f Non-singlet distribution xq,v ns = x x) 3 at scale µ r = µ f with α s µ 0 ) = 0. x

23 d ln q + / d ln µ f NS -0.1 NLO NNLO x = x = x = x = x = x = µ r / µ f µ r / µ f NLO and NNLO dependence of q + ns d lnq + ns/d lnµ f on renormalization scale µ r

24 The Summary Complete NNLO non-singlet evolution for deep-inelastic structure functions F,F 3 milestone in calculation of QCD perturbative corrections NNLO offers high precision stable evolution corrections generally rather small Outlook Complete NNLO singlet evolution coming soon, stay tuned

arxiv:hep-ph/ v2 11 Jan 2007

arxiv:hep-ph/ v2 11 Jan 2007 IPM School and Conference on Hadrn and Lepton Physics, Tehran, 5-2 May 26 An approach to NNLO analysis of non-singlet structure function Ali N. Khorramian Physics Department, Semnan University, Semnan,

More information

Higher Order Corrections to the Drell-Yan Cross Section in the Mellin Space

Higher Order Corrections to the Drell-Yan Cross Section in the Mellin Space Higher Order Corrections to the Drell-Yan Cross Section in the Mellin Space Petra Kovačíková (DESY, Zeuthen) petra.kovacikova@desy.de Corfu Summer School 4 th September 21 Higher Order Corrections to the

More information

PoS(DIS 2010)139. On higher-order flavour-singlet splitting functions and coefficient functions at large x

PoS(DIS 2010)139. On higher-order flavour-singlet splitting functions and coefficient functions at large x On higher-order flavour-singlet splitting functions and coefficient functions at large x Department of Mathematical Sciences, University of Liverpool, UK E-mail: G.N.Soar@liv.ac.uk A. Vogt Department of

More information

The Three-Loop Splitting Functions in QCD: The Helicity-Dependent Case

The Three-Loop Splitting Functions in QCD: The Helicity-Dependent Case DESY 14 157, NIKHEF 14-033 LTH 1023 arxiv:1409.5131 The Three-Loop Splitting Functions in QCD: The Helicity-Dependent Case S. Moch a, J.A.M. Vermaseren b and A. Vogt c b II. Institute for Theoretical Physics,

More information

arxiv: v1 [hep-ph] 20 Jan 2010

arxiv: v1 [hep-ph] 20 Jan 2010 LTH 862, DESY 10-007, arxiv:1001.3554 [hep-ph] January 2010 Higher-order predictions for splitting functions and coefficient functions from physical evolution kernels arxiv:1001.3554v1 [hep-ph] 20 Jan

More information

Introduction to High Energy Nuclear Collisions I (QCD at high gluon density) Jamal Jalilian-Marian Baruch College, City University of New York

Introduction to High Energy Nuclear Collisions I (QCD at high gluon density) Jamal Jalilian-Marian Baruch College, City University of New York Introduction to High Energy Nuclear Collisions I (QCD at high gluon density) Jamal Jalilian-Marian Baruch College, City University of New York Many thanks to my colleagues, A. Deshpande, F. Gelis, B. Surrow

More information

Higher-Order Corrections in Threshold Resummation

Higher-Order Corrections in Threshold Resummation DESY 5-5, SFB/CPP-5-5 DCPT/5/6, IPPP/5/3 NIKHEF 5- June 5 hep-ph/5688 Higher-Order Corrections in Threshold Resummation S. Moch a, J.A.M. Vermaseren b and A. Vogt c a Deutsches Elektronensynchrotron DESY

More information

Anomalous dimensions and splitting functions beyond the next-to-next-to-leading order

Anomalous dimensions and splitting functions beyond the next-to-next-to-leading order Anomalous dimensions and splitting functions beyond the next-to-next-to-leading order Department of Mathematical Sciences, University of Liverpool, Liverpool L69 3BX, UK E-mail: Andreas.Vogt@liverpool.ac.uk

More information

QCD Precision Tests in Deeply Inelastic Scattering

QCD Precision Tests in Deeply Inelastic Scattering QCD Precision Tests in Deeply Inelastic Scattering Johannes Blümlein DESY Introduction and Method QCD Analysis of Unpolarized Structure Functions Λ QCD and α s (M 2 Z ) What would we like to know? J. Blümlein

More information

Computing of Charged Current DIS at three loops

Computing of Charged Current DIS at three loops Computing of Charged Current DIS at three loops Mikhail Rogal Mikhail.Rogal@desy.de DESY, Zeuthen, Germany ACAT 2007, Amsterdam, Netherlands, April 23-28, 2007 Computing of Charged CurrentDIS at three

More information

Large-n f Contributions to the Four-Loop Splitting Functions in QCD

Large-n f Contributions to the Four-Loop Splitting Functions in QCD Large-n Contributions to the Four-Loop Splitting Functions in QCD Nucl. Phys. B915 (2017) 335-362, arxiv:1610.07477 Joshua Davies Department o Mathematical Sciences University o Liverpool Collaborators:

More information

A. Mitov 3-loop time-like splitting functions in Mellin space and NNLO fragmentation

A. Mitov 3-loop time-like splitting functions in Mellin space and NNLO fragmentation Three-loop time-like splitting functions in Mellin space and NNLO fragmentation Alexander Mitov DESY Work in progress with: M. Cacciari; Lance Dixon; S-O. Moch Also based on: hep-ph/0604160 (with Sven

More information

Good Morning to Seattle! J. Blümlein Status of Unpolarized PDFs and αs(m 2 Z ) Seattle, WA, October 20th 2009 p.1

Good Morning to Seattle! J. Blümlein Status of Unpolarized PDFs and αs(m 2 Z ) Seattle, WA, October 20th 2009 p.1 Good Morning to Seattle! J. Blümlein Status of Unpolarized PDFs and αs(m 2 Z ) Seattle, WA, October 2th 29 p. Status of Unpolarized PDFs and α s (M 2 Z ) Johannes Blümlein DESY The Major Goals DIS Theory

More information

arxiv:hep-ph/ v1 29 Aug 2006

arxiv:hep-ph/ v1 29 Aug 2006 IPPP/6/59 August 26 arxiv:hep-ph/6837v1 29 Aug 26 Third-order QCD results on form factors and coefficient functions A. Vogt a, S. Moch b and J.A.M. Vermaseren c a IPPP, Physics Department, Durham University,

More information

Higgs boson production at the LHC: NNLO partonic cross sections through order ǫ and convolutions with splitting functions to N 3 LO

Higgs boson production at the LHC: NNLO partonic cross sections through order ǫ and convolutions with splitting functions to N 3 LO SFB/CPP-12-93 TTP12-45 LPN12-127 Higgs boson production at the LHC: NNLO partonic cross sections through order ǫ and convolutions with splitting functions to N 3 LO Maik Höschele, Jens Hoff, Aleey Pak,

More information

Resummed small-x and first moment evolution of fragmentation functions in pqcd

Resummed small-x and first moment evolution of fragmentation functions in pqcd Resummed small- and first moment evolution of fragmentation functions in pqcd Steve Kom University of Liverpool Presented at HP2: High Precision for Hard Processes, Munich 7 Sept 2012 Collaborators Talk

More information

arxiv:hep-ph/ v1 25 Sep 2002

arxiv:hep-ph/ v1 25 Sep 2002 hep-ph/0209302 Direct Higgs production at hadron colliders arxiv:hep-ph/0209302v1 25 Sep 2002 Massimiliano Grazzini (a,b) (a) Dipartimento di Fisica, Università di Firenze, I-50019 Sesto Fiorentino, Florence,

More information

Next-to-leading order corrections to the valon model

Next-to-leading order corrections to the valon model PRAMANA c Indian Academy of Sciences Vol. 86, No. 1 journal of January 216 physics pp. 77 86 Next-to-leading order corrections to the valon model G R BOROUN E ESFANDYARI Physics Department, Razi University,

More information

Johannes Blümlein, DESY [in collaboration with I. Bierenbaum and S. Klein]

Johannes Blümlein, DESY [in collaboration with I. Bierenbaum and S. Klein] Oα 3 1 s Heavy Flavor Wilson Coefficients in DIS @ Q m Johannes Blümlein, DESY [in collaboration with I. Bierenbaum and S. Klein Introduction Theory Status The Method Asymptotic Loop Results all N Asymptotic

More information

arxiv:hep-ph/ v1 12 Sep 1995

arxiv:hep-ph/ v1 12 Sep 1995 1 LTH-346 Large N f methods for computing the perturbative structure of deep inelastic scattering arxiv:hep-ph/9509276v1 12 Sep 1995 J.A. Gracey, Department of Mathematical Sciences, University of Durham,

More information

Parton Distribution Functions, Part 1. Daniel Stump. Department of Physics and Astronomy Michigan State University

Parton Distribution Functions, Part 1. Daniel Stump. Department of Physics and Astronomy Michigan State University Parton Distribution Functions, Part 1 Daniel Stump Department of Physics and Astronomy Michigan State University A. Introduction B. Properties of the PDFs C. Results of CT10-NNLO Global Analysis D. Uncertainties

More information

Physics at LHC. lecture one. Sven-Olaf Moch. DESY, Zeuthen. in collaboration with Martin zur Nedden

Physics at LHC. lecture one. Sven-Olaf Moch. DESY, Zeuthen. in collaboration with Martin zur Nedden Physics at LHC lecture one Sven-Olaf Moch Sven-Olaf.Moch@desy.de DESY, Zeuthen in collaboration with Martin zur Nedden Humboldt-Universität, October 22, 2007, Berlin Sven-Olaf Moch Physics at LHC p.1 LHC

More information

QCD al tempo di LHC. Vittorio Del Duca INFN LNF

QCD al tempo di LHC. Vittorio Del Duca INFN LNF QCD al tempo di LHC Vittorio Del Duca INFN LNF Roma3 maggio 2009 Strong interactions High-energy collisions Fixed-target experiments (pn, πn, γn) DIS (HERA) Hadron colliders (Tevatron, LHC) Hadron properties

More information

QCD threshold corrections for gluino pair production at NNLL

QCD threshold corrections for gluino pair production at NNLL Introduction: Gluino pair production at fixed order QCD threshold corrections for gluino pair production at NNLL in collaboration with Ulrich Langenfeld and Sven-Olaf Moch, based on arxiv:1208.4281 Munich,

More information

A Matrix Formulation for Small-x RG Improved Evolution

A Matrix Formulation for Small-x RG Improved Evolution A Matrix Formulation for Small-x RG Improved Evolution Marcello Ciafaloni ciafaloni@fi.infn.it University of Florence and INFN Florence (Italy) In collaboration with: D. Colferai G.P. Salam A.M. Staśto

More information

Generalizing the DGLAP Evolution of Fragmentation Functions to the Smallest x Values

Generalizing the DGLAP Evolution of Fragmentation Functions to the Smallest x Values Generalizing the DGLAP Evolution of Fragmentation Functions to the Smallest x Values Bernd Kniehl 1 2nd Institute for Theoretical Physics, University of Hamburg Describe inclusive hadron production,...

More information

Progress on QCD evolution equations

Progress on QCD evolution equations Rome, 8 September 08 Progress on QCD evolution equations Guido Altarelli Roma Tre/CERN In honour of Giorgio Parisi for his 60th birthday In the years 1976-78 I have done a few papers on QCD with Giorgio

More information

QCD studies and Higgs searches at the LHC part two

QCD studies and Higgs searches at the LHC part two QCD studies and Higgs searches at the LHC part two Sven-Olaf Moch sven-olaf.moch@desy.de DESY, Zeuthen CALC-01, Dubna, July 8-9 01 Sven-Olaf Moch QCD studies and Higgs searches at the LHC p.1 Introduction

More information

High Energy Physics. Lecture 9. Deep Inelastic Scattering Scaling Violation. HEP Lecture 9 1

High Energy Physics. Lecture 9. Deep Inelastic Scattering Scaling Violation. HEP Lecture 9 1 High Energy Physics Lecture 9 Deep Inelastic Scattering Scaling Violation HEP Lecture 9 1 Deep Inelastic Scattering: The reaction equation of DIS is written e+ p e+ X where X is a system of outgoing hadrons

More information

arxiv:hep-ph/ v2 2 Sep 1996

arxiv:hep-ph/ v2 2 Sep 1996 arxiv:hep-ph/960927v2 2 Sep 996 DESY 96 72 INLO-PUB-7/96 WUE-ITP-96-07 August 996 Theoretical Uncertainties in the QCD Evolution of Structure Functions and their Impact on α s (M 2 Z ) J. Blümlein, S.

More information

3.2 DIS in the quark parton model (QPM)

3.2 DIS in the quark parton model (QPM) Experimental studies of QCD 1. Elements of QCD 2. Tests of QCD in annihilation 3. Studies of QCD in DIS 4. QCD in collisions 3.2 DIS in the quark parton model (QPM) M W Elastic scattering: W = M only one

More information

2. HEAVY QUARK PRODUCTION

2. HEAVY QUARK PRODUCTION 2. HEAVY QUARK PRODUCTION In this chapter a brief overview of the theoretical and experimental knowledge of heavy quark production is given. In particular the production of open beauty and J/ψ in hadronic

More information

! s. and QCD tests at hadron colliders. world summary of! s newest results (selection)! s from hadron colliders remarks

! s. and QCD tests at hadron colliders. world summary of! s newest results (selection)! s from hadron colliders remarks ! s and QCD tests at hadron colliders world summary of! s newest results (selection)! s from hadron colliders remarks S. Bethke MPI für Physik, Munich S. Bethke: a s and QCD tests at hadron colliders Collider

More information

arxiv:hep-ph/ v1 4 May 1999

arxiv:hep-ph/ v1 4 May 1999 NIKHEF-99-5 TTP99-8 Harmonic Polylogarithms arxiv:hep-ph/995237 v1 4 May 1999 E. Remiddi a,b and J. A. M. Vermaseren c a Institut für Theoretische TeilchenPhysik University of Karlsruhe - D76128 Karlsruhe,

More information

Research in QCD factorization

Research in QCD factorization Research in QCD factorization Bowen Wang Southern Methodist University (Dallas TX) Jefferson Lab Newport News VA 1/1/015 My research at SMU in 011-015 Ph. D. advisor: Pavel Nadolsky Ph. D. thesis: The

More information

Breakdown of QCD coherence? arxiv:hep-ph/ v1 16 Dec 2006

Breakdown of QCD coherence? arxiv:hep-ph/ v1 16 Dec 2006 Breakdown of QCD coherence? arxiv:hep-ph/61v1 16 Dec 6 University of Manchester, U.K. E-mail: kyrieleis@hep.man.ac.uk J.R. Forshaw University of Manchester, U.K. E-mail: forshaw@mail.cern.ch M.H. Seymour

More information

The Drell Levy Yan Relation: ep vs e + e Scattering to O(ff 2 s ) Johannes Blümlein DESY 1. The DLY Relation 2. Structure and Fragmentation Functions

The Drell Levy Yan Relation: ep vs e + e Scattering to O(ff 2 s ) Johannes Blümlein DESY 1. The DLY Relation 2. Structure and Fragmentation Functions The DrellLevyYan Relation: ep vs e e Scattering to O(ff s ) Johannes Blümlein DESY. The Relation. Structure and Fragmentation Functions. Scheme Invariant Combinations 4. DrellYanLevy Relations for Evolution

More information

QCD at hadron colliders Lecture 3: Parton Distribution Functions

QCD at hadron colliders Lecture 3: Parton Distribution Functions QCD at hadron colliders Lecture : Parton Distribution Functions Gavin Salam CERN, Princeton & LPTHE/CNRS (Paris) Maria Laach Herbtschule für Hochenenergiephysik September, Germany QCD lecture (p. ) PDF

More information

Resummation in PDF fits. Luca Rottoli Rudolf Peierls Centre for Theoretical Physics, University of Oxford

Resummation in PDF fits. Luca Rottoli Rudolf Peierls Centre for Theoretical Physics, University of Oxford Resummation in PDF fits Luca Rottoli Rudolf Peierls Centre for Theoretical Physics, University of Oxford LHC, New Physics, and the pursuit of Precision LHC as a discovery machine Higgs Boson 10 1 BSM particles

More information

Introduction to the physics of hard probes in hadron collisions: lecture I. Michelangelo Mangano TH Division, CERN

Introduction to the physics of hard probes in hadron collisions: lecture I. Michelangelo Mangano TH Division, CERN Introduction to the physics of hard probes in hadron collisions: lecture I Michelangelo Mangano TH Division, CERN michelangelo.mangano@cern.ch Contents The structure of the proton the initial-state : parton

More information

MT: a Mathematica package to compute convolutions

MT: a Mathematica package to compute convolutions SFB/CPP-13-50 TTP13-27 LPN13-052 MT: a Mathematica package to compute convolutions Maik Höschele a, Jens Hoff a, Alexey Pak a, Matthias Steinhauser a,, Takahiro Ueda a a Institut für Theoretische Teilchenphysik,

More information

Energy evolution of the soft parton-to-hadron fragmentation functions

Energy evolution of the soft parton-to-hadron fragmentation functions α s from soft parton-to-hadron fragmentation functions David d Enterria and Redamy Pérez-Ramos,, CERN, PH Department, CH- Geneva, Switzerland Sorbonne Universités, UPMC Univ Paris, UMR 789, LPTHE, F-7,

More information

Status and news of the ABM PDFs

Status and news of the ABM PDFs Status and news of the ABM PDFs S.Alekhin (DESY-Zeuthen & IHEP Protvino) Basics heavy quarks in NNLO, mc, mb and αs Strange sea new DIS charm data sa, Blümlein, Caminadac, Lipka, Lohwasser, Moch, Petti,

More information

Quantum Chromodynamics at LHC

Quantum Chromodynamics at LHC Quantum Chromodynamics at LHC Zouina Belghobsi LPTh, Université de Jijel EPAM-2011, TAZA 26 Mars 03 Avril Today s high energy colliders past, present and future proton/antiproton colliders Tevatron (1987

More information

Threshold cross sections for Drell-Yan & Higgs productions in N 3 LO QCD

Threshold cross sections for Drell-Yan & Higgs productions in N 3 LO QCD Narayan Rana 20/10/2016 1/46 Threshold cross sections for Drell-Yan & Higgs productions in N 3 LO QCD Narayan Rana 20/10/2016 in collaboration with T. Ahmed, M. C. Kumar, M. Mahakhud, M. K. Mandal, P.

More information

arxiv:hep-ph/ v1 5 Jan 1996

arxiv:hep-ph/ v1 5 Jan 1996 SLAC PUB 95 763 December 1995 Renormalization Scale Setting for Evolution Equation of Non-Singlet Structure Functions and Their Moments Wing Kai Wong arxiv:hep-ph/961215v1 5 Jan 1996 Stanford Linear Accelerator

More information

QCD studies and Higgs searches at the LHC. part three. Sven-Olaf Moch. DESY, Zeuthen. CALC-2012, Dubna, July

QCD studies and Higgs searches at the LHC. part three. Sven-Olaf Moch. DESY, Zeuthen. CALC-2012, Dubna, July QCD studies and Higgs searches at the LHC part three Sven-Olaf Moch sven-olaf.moch@desy.de DESY, Zeuthen CALC-212, Dubna, July 28-29 212 Sven-Olaf Moch QCD studies and Higgs searches at the LHC p.1 Plan

More information

Tercera Sesión. XI Escuela de Física Fundamental. Universidad Veracruzana, Xalapa. 28 de Septiembre de 2016

Tercera Sesión. XI Escuela de Física Fundamental. Universidad Veracruzana, Xalapa. 28 de Septiembre de 2016 Tercera Sesión XI Escuela de Física Fundamental Universidad Veracruzana, Xalapa. 28 de Septiembre de 2016 1 / M.E. Tejeda-Yeomans elena.tejeda@fisica.uson.mx Iniciación a la QCD 1/35 35 3 lectures: three

More information

Feynman integrals and multiple polylogarithms. Stefan Weinzierl

Feynman integrals and multiple polylogarithms. Stefan Weinzierl Feynman integrals and multiple polylogarithms Stefan Weinzierl Universität Mainz I. Basic techniques II. Nested sums and iterated integrals III. Multiple Polylogarithms IV. Applications The need for precision

More information

Large-n f Contributions to the Four-Loop Splitting Functions in QCD

Large-n f Contributions to the Four-Loop Splitting Functions in QCD Large-n Contributio to the Four-Loop Splitting Functio in QCD Nucl. Phys. B915 (2017) 335-362 [arxiv:1711.05267] [arxiv:1610.07477], Joshua Davies Collaborators: A. Vogt (University o Liverpool), B. Ruijl

More information

is represented by a convolution of a gluon density in the collinear limit and a universal

is represented by a convolution of a gluon density in the collinear limit and a universal . On the k? dependent gluon density in hadrons and in the photon J. Blumlein DESY{Zeuthen, Platanenallee 6, D{15735 Zeuthen, Germany Abstract The k? dependent gluon distribution for protons, pions and

More information

arxiv: v1 [hep-ph] 3 Jul 2015

arxiv: v1 [hep-ph] 3 Jul 2015 LPSC-15-180 IFJ PAN-IV-2015- Evolution kernels for parton shower Monte Carlo A. Kusina a, O. Gituliar b, S. Jadach b, M. Skrzypek b arxiv:1507.00842v1 [hep-ph Jul 2015 a Laboratoire de Physique Subatomique

More information

Collinear and TMD densities from Parton Branching Methods

Collinear and TMD densities from Parton Branching Methods Ola Lelek 1 Francesco Hautmann 2 Hannes Jung 1 Voica Radescu 3 Radek Žlebčík 1 1 Deutsches Elektronen-Synchrotron DESY) 2 University of Oford 3 CERN 29.03.2017 Rencontres de Moriond, QCD and High Energy

More information

SCET for Colliders. Matthias Neubert. Cornell University. Based on work with Thomas Becher (FNAL) and Ben Pecjak (Siegen)

SCET for Colliders. Matthias Neubert. Cornell University. Based on work with Thomas Becher (FNAL) and Ben Pecjak (Siegen) SCET for Colliders Matthias Neubert Cornell University LoopFest V, SLAC June 21, 2006 Based on work with Thomas Becher (FNAL) and Ben Pecjak (Siegen) 1 2 SCET for Colliders Introduction Overview of SCET

More information

PoS(DIS2017)295. Hadronic Higgs boson decay at order α 4 s and α 5 s

PoS(DIS2017)295. Hadronic Higgs boson decay at order α 4 s and α 5 s Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology (KIT) 7618 Karlsruhe, Germany E-mail: joshua.davies@kit.edu Matthias Steinhauser Institut für Theoretische Teilchenphysik, Karlsruhe

More information

TF 2 -Contributions to 3-Loop Deep-Inelastic Wilson Coefficients and the Asymptotic Representation of Charged Current DIS

TF 2 -Contributions to 3-Loop Deep-Inelastic Wilson Coefficients and the Asymptotic Representation of Charged Current DIS 1/30 TF 2 -Contributions to 3-Loop Deep-Inelastic Wilson Coefficients and the Asymptotic Representation of Charged Current DIS Alexander Hasselhuhn RISC (LHCPhenonet) 26.9.2013 in collaboration with: J.

More information

Two and Three Loop Heavy Flavor Corrections in DIS

Two and Three Loop Heavy Flavor Corrections in DIS Two and Three Loop Heavy Flavor Corrections in DIS 1 Johannes Blümlein, DESY in collaboration with I. Bierenbaum and S. Klein based on: Introduction Renormalization of the OME s to 3 Loops Oǫ terms at

More information

Latest results on the 3-loop heavy flavor Wilson coefficients in DIS

Latest results on the 3-loop heavy flavor Wilson coefficients in DIS 1/34 Latest results on the 3-loop heavy flavor Wilson coefficients in DIS A. De Freitas 1, J. Ablinger, A. Behring 1, J. Blümlein 1, A. Hasselhuhn 1,,4, A. von Manteuffel 3, C. Raab 1, C. Schneider, M.

More information

Two-loop massive fermionic operator matrix elements and intial state QED corrections to e + e γ /Z

Two-loop massive fermionic operator matrix elements and intial state QED corrections to e + e γ /Z Two-loop massive fermionic operator matrix elements and intial state QED corrections to e + e γ /Z J. Blümlein, a ab and W. van Neerven c a DESY, Zeuthen, Platanenalle 6, D-173 Zeuthen, Germany. b Departamento

More information

Matthias Strohmaier. given at QCD Evolution , JLAB. University of Regensburg. Introduction Method Analysis Conclusion

Matthias Strohmaier. given at QCD Evolution , JLAB. University of Regensburg. Introduction Method Analysis Conclusion Three-loop evolution equation for non-singlet leading-twist operator based on: V. M. Braun, A. N. Manashov, S. Moch, M. S., not yet published, arxiv:1703.09532 Matthias Strohmaier University of Regensburg

More information

Threshold Corrections To DY and Higgs at N 3 LO QCD

Threshold Corrections To DY and Higgs at N 3 LO QCD Threshold Corrections To DY and Higgs at N 3 LO QCD Taushif Ahmed Institute of Mathematical Sciences, India July 2, 2015 Threshold Corrections To DY and Higgs at N 3 LO QCD INFN Sezione Di Torino 1 Prologue

More information

Physics at LHC. lecture seven. Sven-Olaf Moch. DESY, Zeuthen. in collaboration with Martin zur Nedden

Physics at LHC. lecture seven. Sven-Olaf Moch. DESY, Zeuthen. in collaboration with Martin zur Nedden Physics at LHC lecture seven Sven-Olaf Moch Sven-Olaf.Moch@desy.de DESY, Zeuthen in collaboration with Martin zur Nedden Humboldt-Universität, December 03, 2007, Berlin Sven-Olaf Moch Physics at LHC p.1

More information

arxiv:hep-ph/ v1 26 May 1994

arxiv:hep-ph/ v1 26 May 1994 ETH-TH/94-4 KLTE-DTP/94-3 May 5, 994 arxiv:hep-ph/9405386v 6 May 994 One-loop radiative corrections to the helicity amplitudes of QCD processes involving four quarks and one gluon Zoltan Kunszt a, Adrian

More information

Matching collinear and small x factorization calculations for inclusive hadron production in pa collisions

Matching collinear and small x factorization calculations for inclusive hadron production in pa collisions Matching collinear and small x factorization calculations for inclusive hadron production in pa collisions The Pennsylvania State University, Physics Department, University Park, PA 16802 H. Niewodniczański

More information

Proton Structure Function Measurements from HERA

Proton Structure Function Measurements from HERA Proton Structure Function Measurements from HERA Jörg Gayler DESY, Notkestrasse 85, 2263 Hamburg, Germany E-mail: gayler@mail.desy.de Abstract. Measurements of proton structure functions made in neutral

More information

Physique des Particules Avancées 2

Physique des Particules Avancées 2 Physique des Particules Avancées Interactions Fortes et Interactions Faibles Leçon 6 Les collisions p p (http://dpnc.unige.ch/~bravar/ppa/l6) enseignant Alessandro Bravar Alessandro.Bravar@unige.ch tél.:

More information

Resummation at small x

Resummation at small x Resummation at small Anna Stasto Penn State University & RIKEN BNL & INP Cracow 09/13/0, INT Workshop, Seattle Outline Limitations of the collinear framework and the fied order (DGLAP) calculations. Signals

More information

QCD resummation for jet and hadron production

QCD resummation for jet and hadron production QCD resummation for jet and hadron production Werner Vogelsang Univ. Tübingen UCL, 14 Feb 2014 Outline: Introduction: QCD threshold resummation Drell-Yan process Resummation in QCD hard-scattering Hadron

More information

ZEUS physics results for summer 2013

ZEUS physics results for summer 2013 ZEUS physics results for summer 2013 Misha Lisovyi (DESY) on behalf of the ZEUS and H1 Collaborations HERA Forum 18.06.2013 HERA physics p HERA physics: Structure functions and electro weak effects QCD

More information

Initial-state splitting

Initial-state splitting QCD lecture (p. 14) 1st order analysis For initial state splitting, hard process occurs after splitting, and momentum entering hard process is modified: p zp. σ g+h (p) σ h (zp) α sc F π dz dkt 1 z kt

More information

e + e 3j at NNLO: Results for all QED-type Colour Factors p.1

e + e 3j at NNLO: Results for all QED-type Colour Factors p.1 e + e 3j at NNLO: Results for all QED-type Colour Factors Thomas Gehrmann Universität ürich UNIVERSITAS TURICENSIS MDCCC XXXIII in collaboration with A. Gehrmann De Ridder, E.W.N. Glover, G. Heinrich Loopfest

More information

Theory introduction to Standard Model processes at LHC. lecture one. Sven-Olaf Moch. DESY, Zeuthen

Theory introduction to Standard Model processes at LHC. lecture one. Sven-Olaf Moch. DESY, Zeuthen Theory introduction to Standard Model processes at LHC lecture one Sven-Olaf Moch Sven-Olaf.Moch@desy.de DESY, Zeuthen in collaboration with Martin zur Nedden DESY Academic Training, June 4, 2007, Zeuthen

More information

Feyman integrals and difference equations

Feyman integrals and difference equations Deutsches Elektronen Synchrotron, DESY Platanenallee 6, D 15738 Zeuthen, Germany E-mail: sven-olaf.moch@desy.de C. Schneider Research Institute for Symbolic Computation, Johannes Kepler University Linz,

More information

Heavy Quarks in MRST/MSTW Global Fits

Heavy Quarks in MRST/MSTW Global Fits Heavy Quarks in MRST/MSTW Global Fits Robert Thorne October 6th, 8 University College London Ringberg8-Heavy Flavour Will discuss Charm 1.5GeV, bottom 4.3GeV, and at end strange.3gev as heavy flavours.

More information

Higgs boson production at the LHC: Transverse-momentum resummation and rapidity dependence

Higgs boson production at the LHC: Transverse-momentum resummation and rapidity dependence Nuclear Physics B 791 (2008) 1 19 Higgs boson production at the LHC: Transverse-momentum resummation and rapidity dependence Giuseppe Bozzi a, Stefano Catani b, Daniel de Florian c, Massimiliano Grazzini

More information

Analytical expressions of 3 and 4-loop sunrise Feynman integrals and 4-dimensional lattice integrals

Analytical expressions of 3 and 4-loop sunrise Feynman integrals and 4-dimensional lattice integrals 3 September 8 Analytical expressions of 3 and 4-loop sunrise Feynman integrals and 4-dimensional lattice integrals arxiv:83.7v3 [hep-ph] Mar 8 S. Laporta Museo Storico della Fisica e Centro Studi e Ricerche

More information

Particles and Deep Inelastic Scattering

Particles and Deep Inelastic Scattering Particles and Deep Inelastic Scattering University HUGS - JLab - June 2010 June 2010 HUGS 1 Sum rules You can integrate the structure functions and recover quantities like the net number of quarks. Momentum

More information

11 FCC-ee workshop: Theory & Experiments

11 FCC-ee workshop: Theory & Experiments s extractions at FCC-ee th 11 FCC-ee workshop: Theory & Experiments th CERN, 8 Jan. 2019 David d'enterria CERN Mostly based on: D. d'enterria, P.Z. Skands (eds.), Proceeds. High-precision s from LHC to

More information

Universal Parton Distri. Fn s (non-pert.; QCD evolved)

Universal Parton Distri. Fn s (non-pert.; QCD evolved) Charm Production at HERA and Theory of Heavy Quark Production Why is Heavy Quark Production a non-trivial problem in PQCD? it is a Multi-large-scale Problem Conventional approaches: one-scale problem approximate

More information

Estimation of uncertainties from missing higher orders in perturbative calculations. Emanuele A. Bagnaschi (DESY Hamburg)

Estimation of uncertainties from missing higher orders in perturbative calculations. Emanuele A. Bagnaschi (DESY Hamburg) Estimation of uncertainties from missing higher orders in perturbative calculations Emanuele A. Bagnaschi (DESY Hamburg) Rencontres de Moriond QCD and High energy interactions 24 March 2015 La Thuile,

More information

arxiv:hep-ph/ v2 13 Mar 2001

arxiv:hep-ph/ v2 13 Mar 2001 TTP00-13 NIKHEF-2000-018 Some higher moments o deep inelastic structure unctions at next-to-next-to leading order o perturbative QCD arxiv:hep-ph/0007294 v2 13 Mar 2001 A. Rétey a and J.A.M. Vermaseren

More information

Johannes Blümlein Deutsches Elektronensynchrotron DESY, Platanenallee 6, D Zeuthen, Germany

Johannes Blümlein Deutsches Elektronensynchrotron DESY, Platanenallee 6, D Zeuthen, Germany II. Institut für Theoretische Physik, Universität Hamburg, Luruper Chaussee 149, D-22761 Hamburg, Germany; Institute for High Energy Physics,142281 Protvino, Russia E-mail: sergey.alekhin@desy.de Johannes

More information

Introduction to Perturbative QCD

Introduction to Perturbative QCD Introduction to Perturbative QCD Lecture 3 Jianwei Qiu Iowa State University/Argonne National Laboratory PHENIX Spinfest at RIKEN 007 June 11 - July 7, 007 RIKEN Wako Campus, Wako, Japan June 6, 007 1

More information

arxiv: v1 [hep-ph] 8 Dec 2010

arxiv: v1 [hep-ph] 8 Dec 2010 arxiv:02.806v [hep-ph] 8 Dec 200 Charged Higgs production via vector-boson fusion at NN in QCD Université Catholique de Louvain - CP3 E-mail: marco.zaro@uclouvain.be Paolo Bolzoni Institut für Theoretische

More information

Introduction to the physics of hard probes in hadron collisions: lecture II. Michelangelo Mangano TH Division, CERN

Introduction to the physics of hard probes in hadron collisions: lecture II. Michelangelo Mangano TH Division, CERN Introduction to the physics of hard probes in hadron collisions: lecture II Michelangelo Mangano TH Division, CERN michelangelo.mangano@cern.ch Jet production gg gg 2 3 2 4 3 2 1 4 1 3 1 4 gg qq _ qg qg

More information

A M Cooper-Sarkar on behalf of ZEUS and H1 collaborations

A M Cooper-Sarkar on behalf of ZEUS and H1 collaborations α s (M Z ) and charm quark mass determination from HERA data International Workshop Determining the Fundamental Parameters of QCD IAS Singapore March 2013 A M Cooper-Sarkar on behalf of ZEUS and H1 collaborations

More information

4th Particle Physcis Workshop. National Center for Physics, Islamabad. Proton Structure and QCD tests at HERA. Jan Olsson, DESY.

4th Particle Physcis Workshop. National Center for Physics, Islamabad. Proton Structure and QCD tests at HERA. Jan Olsson, DESY. th 4 Particle Physics Workshop National Center for Physics, Islamabad Proton Structure and QCD tests at HERA Part 2 The proton structure function F2 NLO QCD describes data over >4 orders of magnitude in

More information

IFUSP/P August Heavy Quarks in Polarized Structure Functions. F.M. Steffens 1

IFUSP/P August Heavy Quarks in Polarized Structure Functions. F.M. Steffens 1 IFUSP/P - 176 August 1997 Heavy Quarks in Polarized Structure Functions F.M. Steffens 1 Instituto de Física Universidade de São Paulo C.P. 66318 05389-970, São Paulo, Brazil Abstract Quark mass effects

More information

ABSTRACT. A N 1 (x, Q2 )=(1+γ 2 ) gn 1 (x, Q2 ) F N 1 (x, Q2 )

ABSTRACT. A N 1 (x, Q2 )=(1+γ 2 ) gn 1 (x, Q2 ) F N 1 (x, Q2 ) hep-ph/0302101 The constraints on the non-singlet polarised parton densities from the infrared-renormalon model A.L. Kataev Institute for Nuclear Research of the Academy of Sciences of Russia, 117312,

More information

Azimuthal angle decorrelation of Mueller Navelet jets at NLO

Azimuthal angle decorrelation of Mueller Navelet jets at NLO Azimuthal angle decorrelation of Mueller Navelet jets at NLO Physics Department, Theory Division, CERN, CH- Geneva 3, Switzerland E-mail: Agustin.Sabio.Vera@cern.ch F. Schwennsen II. Institut für Theoretische

More information

Lecture notes Particle Physics II. Quantum Chromo Dynamics. 6. Asymptotic Freedom. Michiel Botje Nikhef, Science Park, Amsterdam

Lecture notes Particle Physics II. Quantum Chromo Dynamics. 6. Asymptotic Freedom. Michiel Botje Nikhef, Science Park, Amsterdam Lecture notes Particle Physics II Quantum Chromo Dynamics 6. Asymptotic Freedom Michiel Botje Nikhef, Science Park, Amsterdam December, 03 Charge screening in QED In QED, a charged particle like the electron

More information

QCD Collinear Factorization for Single Transverse Spin Asymmetries

QCD Collinear Factorization for Single Transverse Spin Asymmetries INT workshop on 3D parton structure of nucleon encoded in GPD s and TMD s September 14 18, 2009 QCD Collinear Factorization for Single Transverse Spin Asymmetries Iowa State University Based on work with

More information

Phenomenology at low Q 2

Phenomenology at low Q 2 Phenomenology at low Q 2 Lecture IV Barbara Badelek Warsaw University and Uppsala University HUGS @ JLAB June 26 B. Badelek (Warsaw & Uppsala) Low Q 2, lecture IV HUGS, June 26 / 37 Outline High energy

More information

arxiv:hep-ph/ v1 22 Dec 1999

arxiv:hep-ph/ v1 22 Dec 1999 DTP/99/4 DAMTP-999-79 Cavendish-HEP-99/9 BFKL Dynamics at Hadron Colliders arxiv:hep-ph/992469v 22 Dec 999 Carlo Ewerz a,b,, Lynne H. Orr c,2, W. James Stirling d,e,3 and Bryan R. Webber a,f,4 a Cavendish

More information

High energy scattering in QCD

High energy scattering in QCD High energy scattering in QCD I Parton model, Bjorken scaling, François Gelis and CEA/Saclay General introduction IR & Coll. divergences Multiple scatterings Heavy Ion Collisions General introduction François

More information

Five-loop massive tadpoles

Five-loop massive tadpoles Five-loop massive tadpoles York Schröder (Univ del Bío-Bío, Chillán, Chile) recent work with Thomas Luthe and earlier work with: J. Möller, C. Studerus Radcor, UCLA, Jun 0 Motivation pressure of hot QCD

More information

AN INTRODUCTION TO QCD

AN INTRODUCTION TO QCD AN INTRODUCTION TO QCD Frank Petriello Northwestern U. & ANL TASI 2013: The Higgs Boson and Beyond June 3-7, 2013 1 Outline We ll begin with motivation for the continued study of QCD, especially in the

More information

Two-loop QCD Corrections to the Heavy Quark Form Factors p.1

Two-loop QCD Corrections to the Heavy Quark Form Factors p.1 Two-loop QCD Corrections to the Heavy Quark Form Factors Thomas Gehrmann Universität Zürich UNIVERSITAS TURICENSIS MDCCC XXXIII Snowmass Linear Collider Worksho005 Two-loop QCD Corrections to the Heavy

More information

MASTER S THESIS. Evolution of Parton Distribution Functions FLORIAN HERRMANN INSTITUTE FOR THEORETICAL PHYSICS

MASTER S THESIS. Evolution of Parton Distribution Functions FLORIAN HERRMANN INSTITUTE FOR THEORETICAL PHYSICS MASTER S THESIS Evolution of Parton Distribution Functions FLORIAN HERRMANN INSTITUTE FOR THEORETICAL PHYSICS SUPERVISOR: DR. KAROL KOVARIK SUPERVISOR AND FIRST EXAMINER: PROF. DR. MICHAEL KLASEN SECOND

More information

TMD Fragmentation Function at NNLO

TMD Fragmentation Function at NNLO TMD Fragmentation Function at NNLO Institut für Theoretische Physik, Universität Regensburg, D-9040 Regensburg, Germany E-mail: vladimirov.aleksey@gmail.com The calculation of the unpolarized non-singlet

More information