A numerical test of differential equations for one- and two-loop sunrise diagrams using configuration space techniques

Size: px
Start display at page:

Download "A numerical test of differential equations for one- and two-loop sunrise diagrams using configuration space techniques"

Transcription

1 Eur. Phys. J. C 7:85 DOI.4/epjc/s5--85-z Special Article - Tools for Experiment and Theory A numerical test of differential equations for one- and two-loop sunrise diagrams using configuration space techniques S. Groote,,a, J.G. Körner, A.A. Pivovarov 3,4 Füüsika Instituut, Tartu Ülikool, Tähe 4, 5 Tartu, Estonia Institut für Physik, Johannes-Gutenberg-Universität, Staudinger Weg 7, 5599 Mainz, Germany 3 Institute for Nuclear Research, Russian Academy of Sciences, Moscow 73, Russia 4 Department Physik, Universität Siegen, Walter-Flex-Str. 3, 5768 Siegen, Germany Received: June / Revised: 5 July / Published online: 8 July The Authors. This article is published with open access at Springerlink.com Abstract We use configuration space methods to write down one-dimensional integral representations for one- and two-loop sunrise diagrams also called Bessel moments which we use to numerically check on the correctness of the second order differential equations for one- and two-loop sunrise diagrams that have recently been discussed in the literature. Introduction Sunrise-type diagrams have been under investigation since many years. Exact analytical results can be obtained only for special mass or kinematic configurations such as for the equal or zero mass cases or for the threshold region. For example, threshold expansions of the non-degenerate massive two-loop sunrise diagram have been studied in Refs. [, ]. The construction of differential equations for the corresponding correlator function provides some hope that by solving these differential equations, a general analytical solution can be obtained. Recently, mathematical methods were used to construct the coefficients of such a differential equation in a systematic way [3]. This work supplements the work of Kotikov [4] and Remiddi et al. [5 7] onthe same subject. While traditionally the correlator is calculated in momentum space, configuration space techniques allow for a surprisingly simple solution for sunrise-type diagrams: The correlator in configuration space is just a product of single propagators which in turn can be expressed by modified Bessel functions of the second kind. Transforming back to momentum space, one ends up with a one-dimensional a groote@thep.physik.uni-mainz.de integral over Bessel functions, known as Bessel moments [8, 9]. Asoutlinedin a series of papers [, 6], the corresponding one-dimensional integral can be easily integrated numerically for an arbitrary number of propagators with different masses in any space-time dimension. Therefore, configuration space techniques can be used to numerically check the differential equations for the correlator function obtained by other means. This will be detailed in this note. The paper is organized as follows: In Sect. we introduce the configuration space techniques which will be used in Sect. 3 to check the differential equations for one-loop sunrise-type diagrams. In Sect. 4 we check the differential equations for the two-loop sunrise diagrams for the equal mass case, while in Sect. 5 we will deal with nondegenerate cases. Our conclusions can be found in Sect. 6. Even though the configuration space techniques are well suited to treat general D 4 space-time dimensions, we will mainly deal with the case of D space-time dimensions in this paper. For reasons of simplicity, throughout this paper we work in the Euclidean domain. The transition to the Minkowskian domain can be obtained as usual by a Wick rotation or, equivalently, by replacing p p. Configuration space techniques In configuration space, the n-loop n-particle irreducible correlation function Πx T jxj connecting the space-time points and x is given by the product of the propagators, n+ Πx Dx,m i, i

2 Page of 6 Eur. Phys. J. C 7:85 where the free propagator of a particle with mass m in D- dimensional Euclidean space-time is given by Dx,m e ip x d D p π D p + m mxλ K λ mx π λ+ x λ 3 D λ +. K λ z is the McDonald function modified Bessel function of the second kind. Note that p and x in the integral expression of Eq. 3 ared-dimensional Lorentz vectors, i.e. p x p μ x μ, while the quantity x in the rightmost expression of Eq. 3 and, therefore, also in the argument of the propagator denotes the absolute value x x μ x μ. In the limit mx atfixedx, the propagator simplifies to Dx, π D e ip x d D p p Ɣλ 4π λ+, 4 xλ where Ɣλ is Euler s Gamma function. In this note we write the n-particle irreducible correlator function in Euclidean momentum space. The momentum space n-particle irreducible correlator function is given by the Fourier transform of the n-particle irreducible correlator function Πx in configuration space, Πp Πxe ip x d D x. 5 As a product of propagators, Πx in 5 depends only on the absolute value x x μ x μ. Therefore, one proceeds by first integrating the exponential factor over the D dimensional hypersphere. We write d D x x D d D ˆxdx where d D ˆx denotes the D dimensional integration measure over the D dimensional hypersphere. The integration of the exponential factor over the unit sphere gives λ J λ px. 6 px e ip x d D ˆx π λ+ J λ z is the Bessel function of the first kind. As before, p and x on the right hand side of Eq. 6 stand for the absolute values p p μ p μ and x x μ x μ. Therefore, the correlator in momentum space depends only on the absolute value of the momentum, px λ Πp π λ+ J λ pxπxx λ+ dx. 7 This is the central formula for our numerical verification of the correctness of the differential equations. 3 The one-loop case In Ref. [5], Remiddi explains how to obtain the differential equation for the one-loop sunrise-type diagram with arbitrary masses and dimensions. By applying the integrationby-parts technique to the correlator in momentum space, recurrence relations can be obtained. Finally, Euler s theorem for homogeneous functions connects the loose ends of the iterative steps involving partial derivative with respect to p. We have numerically checked all these steps and have found numerical consistency up to Stokes contributions due to surface terms in integer space-times dimensions. To be more precise, the integral d D k π D k μ v μ k + m p k + m for v k,p or a linear combination of both leads to a surface term which can be assumed to vanish up to Stokes contributions. The integration-by-parts technique consists in calculating the integral explicitly and one then expresses the result in terms of scalar integrals Sα,α : 8 d D k π D k + m α p k + m. 9 α The two resulting recurrence relations read DSα,α + α m Sα +,α Sα,α + α p + m + m Sα,α + Sα,α + Sα,α, α p m + m Sα +,α Sα +,α + Sα,α + α p + m m Sα,α + Sα,α + + Sα,α. Equation can be replaced by Eq. with the two lines interchanged, DSα,α + α m Sα,α + Sα,α + α p + m + m Sα +,α Sα +,α Sα,α. It is obvious that Eq. is reproduced as difference of Eq. and Eq.. Therefore, one has to check only Eq.. We will perform this numerical check for the parameter choice α α which is relevant for the differential equation, and for D space-time dimensions. As mentioned in Ref. [3], even though other dimensions are feasible, this choice avoids singular contributions and serves for the simplest integrand. The equation to be checked is m S, + p + m + m S, S, + S,. 3 Starting from d k S, π k + m p k + m J pxk m xk m xdx, 4 π the integrals Sα,α with higher integer values of α i can be obtained as partial derivatives with respect to the masses,

3 Eur. Phys. J. C 7:85 Page 3 of 6 S, p m m p + m m + m m + S,. m S, Because of J z J z, Eq. can be translated to d px [ pxj pxk m xk m x k m π k + m p k + m + J pxm xk m xk m x d k + J pxk m xm xk m x π k + m p k + m S, 5 J pxk m xk m x ] dx x. and accordingly We checked on the latter relation with an even better precision of the order of 3. The differential equation S, S,. 6 m m In addition one has d k S, π k + m 4πm, S, d k π p k + m 4πm. 7 The derivative can be expressed by K z K z. The higher order integrals in the configuration space representation are given by S, S, m m 4πm J pxm xk m xk m xx dx, 8 S, S, m m 4πm J pxk m xm xk m xx dx. Therefore, Eq. 3 in the configuration space representation reads J px [ m x m xk m xk m x + px + m x + m x K m xm xk m x m x K m xk m x ] dx x. 9 We were able to check this equation numerically for different values of p as function of m and m. The 3D-plot in MATHEMATICA shows stochastic fluctuations around the expected value of of the order of 9. Euler s theorem of homogeneous functions leads to the differential equation p + m + m p + m m S, p p + m + m S, in Ref. [5] is obtained by inserting the recurrence relations into Euler s differential equation. Using the configuration space representation, Eq. reads [ px px + m x + m x px + m x m x pxj px + px + m x + m x ] J px K m xk m x dx x. 3 This equation could be checked with a precision of the order of 8. While Euler s differential equation can be derived from general principles also for the configuration space representation, the recurrence relations can be derived only via the momentum space representation. If one does not use this technique, it remains unclear why such integral identities exist for general parameters p, m and m. In order to check whether one can derive further relations by using integral identities in configuration space, we have used the general ansatz J px [ A px, m x,m xk m xk m x + A px, m x,m xm xk m xk m x + A px, m x,m xk m xm xk m x ] dx x, 4 where A i p, m,m a i p +a i m +a im i,,. By choosing random values for p, m and m, and solving the resulting system of equations, one obtains a, a a, a + a, a a, a a, a a, 5 a a, a + a, a a,

4 Page 4 of 6 Eur. Phys. J. C 7:85 where a is an arbitrary parameter. This leads to Eq. 9 and J px [ m x m x K m xk m x + px + m x m x m x K m xk m x px m x + m x K m xm xk m x ] dx x, 6 which is the difference of Eq. 9 and the same equation with m and m interchanged. We conclude that no more recurrence relations can be found that go beyond Eq The two-loop case with equal masses The differential equation for the two-loop degenerate sunrise diagram has been given in Ref. [7]. It reads p p + m p + 9m d dp + 34 Dp Dm p + 9Dm 4 d dp + D 3 D 4p D + 4m S,, 3 D 4 π, 7 which simplifies to p p + m p + 9m d dp + 3p 4 + m p + 9m 4 d dp + p + 3m S,, 3 8π 8 in D space-time dimensions. We write S,, in a form which is easily adapted to the non-degenerate mass case to be discussed later on. One has S,, π Differentiation of Eq. 9 gives d S,, dp d S,, p dp J pxk m xk m xk m 3 xx dx. 9 π p pxj pxk m xk m x K m 3 xx dx 3 and d dp S,, 4π p 4 [ pxj px + px J px J px ] K m xk m xk m 3 xx dx. 3 Returning to the degenerate mass case the differential equation 8 can be translated to 3 [ p 4p + m p + 9m pxj px + px J px J px 3p 4 + m p + 9m 4 pxj px + 4p p + 3m ] J px K mx 3 xdx, 3 where J z J z J z J z/ is used. Because the result contains the second derivative of the Bessel function, one can use Bessel s differential equation z J λ z + zj λ z + z λ J λ z 33 for λ to compactify the result, 3 4p [ 4p p + 3m p + m p + 9m px J px p p + 5m J px ] K mx 3 xdx. 34 These results have been checked with a precision of the order of 8. 5 The two-loop case with arbitrary masses The final section of this paper is devoted to the second order differential equation, derived for the two-loop sunrise diagram with arbitrary masses in Ref. [3]. After adjusting the normalization, the differential equation can be written as [ p p d dp + p p d dp + p p ] S,, p 3 p 4π, 35 where the coefficients p i t i,,, 3 are given by

5 Eur. Phys. J. C 7:85 Page 5 of 6 p t t t m + m + m 3 t m + m + m 3 t m m + m 3 t m + m m 3 p 3 p [ p p p 4 pxj px + px 3t M t M + M, 36 J px J px p t 9t 6 3M t M + 7M t 4 p p 8M M + 44M t 3 p pxj px + 4p p ] J px K m xk m xk m 3 xx dx 3M 4 36M M 4M t [ 8M 5 + 4M 4 6M 3 96M 4p 3 p p p p 4 px J px + 44M t M 6 6M 5 + 5M ] 4 p p M M 4 M 3 6M, 37 p pxj px p t 3t 5 7M t 4 + M + 6M t 3 + 6M 3 4M t 5M 4 8M 3 + 6M 8M t + M 5 3M 4 + M 3 + 8M 3 M, 38 p 3 t 8t 4 + 4M t 3 + 4M 4M t + 8M 3 + 8M + 48M t + M 4 + 8M 3 M 8M + ct,m,m,m 3 ln m /μ K m xk m xk m 3 xx dx, 4 where p t p t + p t/t. Using different values for p and m 3, in terms of m and m we obtain a 3D-plot with MATHEMATICA which shows again stochastic fluctuations of the order of 4. In the course of our numerical checks we were able to identify two typos in the coefficients of ct,m,m,m 3 in the preprint version of Ref. [3] which we have corrected. 6 Conclusions + ct,m,m 3,m ln m /μ + ct,m 3,m,m ln m 3 /μ, 39 and where M λ λ λ 3 m σλ m σλ m σλ3 3 4 σ are monomial symmetric polynomials in m, m and m 3 and where ct,m,m,m 3 m + m + 3 m t 3 + 6m 4 3m4 3m 4 3 7m m 7m m 3 + 4m m 3 t + 6m 6 + 3m6 + 3m6 3 + m4 m + m4 m 3 8m m4 8m m4 3 3m4 m 3 3m m4 3 t + m 8 m8 m8 3 5m6 m 5m6 m 3 + m m6 + m m m6 m 3 + 4m m m 4 m4 + 3m4 m4 3 6m4 m4 3 + m4 m m 3 m m4 m 3 m m m4 3 4 for details, cf. Ref. [3]. Using Eqs. 9, 3 and 3, one obtains Using configuration space techniques, we were able to check numerically the differential equations for sunrise-type diagrams found in the literature. The precision of our numerical test is still quite moderate, but gives sufficient confidence in the validity of the differential equations derived by other means. For example, the introduction of artificial typos in the coefficients of the differential equations are easily discovered. More rigorous tests would require the use of more stable integration routines than those provided by MATHE- MATICA. For the future we hope to find independent routes to discover further relations between Bessel moments which may lead to generalizations of the present findings to cases involving three-loop or even higher order sunrise-type diagrams. Acknowledgements We want to thank Stefan Weinzierl and Anatoly Kotikov for helpful discussions and Volodya Smirnov for encouragement. S.G. acknowledges the support by the Estonian target financed Project No. 856s9, by the Estonian Science Foundation under grant No. 8769, and by the Deutsche Forschungsgemeinschaft DFG under No. KO 69/4-. A.A.P. acknowledges partial support by the RFFI grant No. --8-a. Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original authors and source are credited.

6 Page 6 of 6 Eur. Phys. J. C 7:85 References. A.I. Davydychev, V.A. Smirnov, Nucl. Phys. B 554, S. Groote, A.A. Pivovarov, Nucl. Phys. B 58, S. Müller-Stach, S. Weinzierl, R. Zayadeh, Commun. Number Theory Phys. 6, 4. A.V. Kotikov, Phys. Lett. B 54, E. Remiddi, Nuovo Cimento A, M. Caffo, H. Czyż, S. Laporta, E. Remiddi, Nuovo Cimento A, S. Laporta, E. Remiddi, Nucl. Phys. B 74, D.H. Bailey, J.M. Borwein, D. Broadhurst, M.L. Glasser, arxiv:8.89 [hep-th] 9. D. Broadhurst, arxiv:8.483 [hep-th]. E. Mendels, Nuovo Cimento A 45, S. Groote, J.G. Körner, A.A. Pivovarov, Phys. Lett. B 443, S. Groote, J.G. Körner, A.A. Pivovarov, Nucl. Phys. B 54, S. Groote, J.G. Körner, A.A. Pivovarov, Eur. Phys. J. C, R. Delbourgo, M.L. Roberts, J. Phys. A 36, S. Groote, J.G. Körner, A.A. Pivovarov, Eur. Phys. J. C 36, S. Groote, J.G. Körner, A.A. Pivovarov, Ann. Phys. 3, 374 7

Single mass scale diagrams: construction of a basis for the ε-expansion.

Single mass scale diagrams: construction of a basis for the ε-expansion. BI-TP 99/4 Single mass scale diagrams: construction of a basis for the ε-expansion. J. Fleischer a 1, M. Yu. Kalmykov a,b 2 a b Fakultät für Physik, Universität Bielefeld, D-615 Bielefeld, Germany BLTP,

More information

arxiv: v2 [hep-ph] 23 Jan 2013

arxiv: v2 [hep-ph] 23 Jan 2013 MITP/13-009 January 2013 The decays of on-shell and off-shell polarized gauge bosons into massive uark pairs at NLO QCD 1 S. Groote a, J.G. Körner b and P. Tuvike a arxiv:1301.5217v2 hep-ph] 23 Jan 2013

More information

Functions associated to scattering amplitudes. Stefan Weinzierl

Functions associated to scattering amplitudes. Stefan Weinzierl Functions associated to scattering amplitudes Stefan Weinzierl Institut für Physik, Universität Mainz I: Periodic functions and periods II: III: Differential equations The two-loop sun-rise diagramm in

More information

arxiv:hep-ph/ v1 18 Nov 1996

arxiv:hep-ph/ v1 18 Nov 1996 TTP96-55 1 MPI/PhT/96-122 hep-ph/9611354 November 1996 arxiv:hep-ph/9611354v1 18 Nov 1996 AUTOMATIC COMPUTATION OF THREE-LOOP TWO-POINT FUNCTIONS IN LARGE MOMENTUM EXPANSION K.G. Chetyrkin a,b, R. Harlander

More information

On the evaluation of sunset-type Feynman diagrams

On the evaluation of sunset-type Feynman diagrams Nuclear Physics B 54 (999) 55547 On the evaluation of sunset-type Feynman diagrams S. Groote a,j.g.körner a, A.A. Pivovarov a,b a Institut für Physik, Johannes-Gutenberg-Universität, Staudinger Weg 7,

More information

Hypergeometric representation of the two-loop equal mass sunrise diagram

Hypergeometric representation of the two-loop equal mass sunrise diagram Physics Letters B 68 6 95 wwwelseviercom/locate/physletb Hypergeometric representation of the two-loop equal mass sunrise diagram OV Tarasov Deutsches Elektronen-Synchrotron DESY Platanenallee 6 D-578

More information

arxiv:hep-ph/ v1 28 Mar 2006

arxiv:hep-ph/ v1 28 Mar 2006 DESY-06-0 SFB/CPP-06- Hypergeometric representation of the two-loop equal mass sunrise diagram arxiv:hep-ph/0607v 8 Mar 006 O.V. Tarasov Deutsches Elektronen - Synchrotron DESY Platanenallee 6, D-578 Zeuthen,

More information

arxiv:hep-ph/ v1 21 Jan 1998

arxiv:hep-ph/ v1 21 Jan 1998 TARCER - A Mathematica program for the reduction of two-loop propagator integrals R. Mertig arxiv:hep-ph/980383v Jan 998 Abstract Mertig Research & Consulting, Kruislaan 49, NL-098 VA Amsterdam, The Netherlands

More information

Two-loop self-energy master integrals on shell

Two-loop self-energy master integrals on shell BI-TP 99/1 Two-loop self-energy master integrals on shell J. Fleischer 1, M. Yu. Kalmykov and A. V. Kotikov 3 Fakultät für Physik, Universität Bielefeld, D-33615 Bielefeld 1, Germany Abstract Analytic

More information

arxiv: v1 [hep-ph] 30 Dec 2015

arxiv: v1 [hep-ph] 30 Dec 2015 June 3, 8 Derivation of functional equations for Feynman integrals from algebraic relations arxiv:5.94v [hep-ph] 3 Dec 5 O.V. Tarasov II. Institut für Theoretische Physik, Universität Hamburg, Luruper

More information

arxiv:hep-ph/ v1 28 Jun 2005

arxiv:hep-ph/ v1 28 Jun 2005 MZ-TH/5-8 hep-ph/5686 June 5 On the evaluation of a certain class of Feynman diagrams in x-space: Sunrise-type topologies at any loop order arxiv:hep-ph/5686 v1 8 Jun 5 S. Groote 1,, J.G. Körner and A.A.

More information

Schematic Project of PhD Thesis: Two-Loop QCD Corrections with the Differential Equations Method

Schematic Project of PhD Thesis: Two-Loop QCD Corrections with the Differential Equations Method Schematic Project of PhD Thesis: Two-Loop QCD Corrections with the Differential Equations Method Matteo Becchetti Supervisor Roberto Bonciani University of Rome La Sapienza 24/01/2017 1 The subject of

More information

Analytical expressions of 3 and 4-loop sunrise Feynman integrals and 4-dimensional lattice integrals

Analytical expressions of 3 and 4-loop sunrise Feynman integrals and 4-dimensional lattice integrals 3 September 8 Analytical expressions of 3 and 4-loop sunrise Feynman integrals and 4-dimensional lattice integrals arxiv:83.7v3 [hep-ph] Mar 8 S. Laporta Museo Storico della Fisica e Centro Studi e Ricerche

More information

Asymptotic Expansions of Feynman Integrals on the Mass Shell in Momenta and Masses

Asymptotic Expansions of Feynman Integrals on the Mass Shell in Momenta and Masses Asymptotic Expansions of Feynman Integrals on the Mass Shell in Momenta and Masses arxiv:hep-ph/9708423v 2 Aug 997 V.A. Smirnov Nuclear Physics Institute of Moscow State University Moscow 9899, Russia

More information

Evaluating multiloop Feynman integrals by Mellin-Barnes representation

Evaluating multiloop Feynman integrals by Mellin-Barnes representation April 7, 004 Loops&Legs 04 Evaluating multiloop Feynman integrals by Mellin-Barnes representation V.A. Smirnov Nuclear Physics Institute of Moscow State University Mellin-Barnes representation as a tool

More information

One-Mass Two-Loop Master Integrals for Mixed

One-Mass Two-Loop Master Integrals for Mixed One-Mass Two-Loop Master Integrals for Mixed α s -Electroweak Drell-Yan Production work ongoing with Andreas von Manteuffel The PRISMA Cluster of Excellence and Institute of Physics Johannes Gutenberg

More information

arxiv: v1 [hep-lat] 22 Oct 2013

arxiv: v1 [hep-lat] 22 Oct 2013 Renormalization of the momentum density on the lattice using shifted boundary conditions arxiv:1310.6075v1 [hep-lat] 22 Oct 2013 Daniel Robaina PRISMA Cluster of Excellence, Institut für Kernphysik, Johannes

More information

Generalizations of polylogarithms for Feynman integrals

Generalizations of polylogarithms for Feynman integrals Journal of Physics: Conference Series PAPER OPEN ACCESS Generalizations of polylogarithms for Feynman integrals To cite this article: Christian Bogner 6 J. Phys.: Conf. Ser. 76 67 View the article online

More information

Exploratory studies for the position-space approach to hadronic light-by-light scattering in the muon g 2

Exploratory studies for the position-space approach to hadronic light-by-light scattering in the muon g 2 EPJ Web of Conferences 175, 623 (218) Lattice 217 https://doi.org/1.151/epjconf/218175623 Exploratory studies for the position-space approach to hadronic light-by-light scattering in the muon g 2 Nils

More information

Exploring the function space of Feynman integrals. Stefan Weinzierl

Exploring the function space of Feynman integrals. Stefan Weinzierl Exploring the function space of Feynman integrals Stefan Weinzierl Institut für Physik, Universität Mainz Mathematics intro: Physics intro: Part I: Part II: Periodic functions and periods Precision calculations

More information

Two-loop Remainder Functions in N = 4 SYM

Two-loop Remainder Functions in N = 4 SYM Two-loop Remainder Functions in N = 4 SYM Claude Duhr Institut für theoretische Physik, ETH Zürich, Wolfgang-Paulistr. 27, CH-8093, Switzerland E-mail: duhrc@itp.phys.ethz.ch 1 Introduction Over the last

More information

Reduction to Master Integrals. V.A. Smirnov Atrani, September 30 October 05, 2013 p.1

Reduction to Master Integrals. V.A. Smirnov Atrani, September 30 October 05, 2013 p.1 Reduction to Master Integrals V.A. Smirnov Atrani, September 30 October 05, 2013 p.1 Reduction to Master Integrals IBP (integration by parts) V.A. Smirnov Atrani, September 30 October 05, 2013 p.1 Reduction

More information

arxiv: v2 [math-ph] 24 Feb 2016

arxiv: v2 [math-ph] 24 Feb 2016 ON THE CLASSIFICATION OF MULTIDIMENSIONALLY CONSISTENT 3D MAPS MATTEO PETRERA AND YURI B. SURIS Institut für Mathemat MA 7-2 Technische Universität Berlin Str. des 17. Juni 136 10623 Berlin Germany arxiv:1509.03129v2

More information

arxiv: v2 [hep-th] 7 Jul 2016

arxiv: v2 [hep-th] 7 Jul 2016 Integration-by-parts reductions from unitarity cuts and algebraic geometry arxiv:1606.09447v [hep-th] 7 Jul 016 Institute for Theoretical Physics, ETH Zürich, 8093 Zürich, Switzerland E-mail: Kasper.Larsen@phys.ethz.ch

More information

Reduction of Feynman integrals to master integrals

Reduction of Feynman integrals to master integrals Reduction of Feynman integrals to master integrals A.V. Smirnov Scientific Research Computing Center of Moscow State University A.V. Smirnov ACAT 2007 p.1 Reduction problem for Feynman integrals A review

More information

arxiv:hep-ph/ v1 25 Mar 1997

arxiv:hep-ph/ v1 25 Mar 1997 MZ-TH/96-34 hep-ph/9703416 March 1997 arxiv:hep-ph/9703416v1 25 Mar 1997 Gluon Polarization in e + e t tg S. Groote, J.G. Körner and J.A. Leyva 1 Institut für Physik, Johannes-Gutenberg-Universität, Staudinger

More information

Evaluating double and triple (?) boxes

Evaluating double and triple (?) boxes Evaluating double and triple (?) boxes V.A. Smirnov a hep-ph/0209295 September 2002 a Nuclear Physics Institute of Moscow State University, Moscow 9992, Russia A brief review of recent results on analytical

More information

A magic connection between massive and massless diagrams. Department of Physics, University of Bergen, Allegaten 55, N-5007 Bergen, Norway

A magic connection between massive and massless diagrams. Department of Physics, University of Bergen, Allegaten 55, N-5007 Bergen, Norway University of Bergen, Department of Physics Scientific/Technical Report No.995-7 ISSN 8-696 MZ-TH{95-4 hep-ph/9544 April 995 A magic connection between massive and massless diagrams A.I. Davydychev a;

More information

NNLO antenna subtraction with two hadronic initial states

NNLO antenna subtraction with two hadronic initial states NNLO antenna subtraction with two hadronic initial states Institut für Theoretische Physik, Universität Zürich, Winterthurerstr. 190, 8057 Zürich, Switzerland E-mail: radja@physik.uzh.ch Aude Gehrmann-De

More information

Regularization Physics 230A, Spring 2007, Hitoshi Murayama

Regularization Physics 230A, Spring 2007, Hitoshi Murayama Regularization Physics 3A, Spring 7, Hitoshi Murayama Introduction In quantum field theories, we encounter many apparent divergences. Of course all physical quantities are finite, and therefore divergences

More information

PoS(LATTICE 2015)263. The leading hadronic contribution to γ-z mixing. Vera Gülpers 1, Harvey Meyer 1,2, Georg von Hippel 1, Hartmut Wittig 1,2

PoS(LATTICE 2015)263. The leading hadronic contribution to γ-z mixing. Vera Gülpers 1, Harvey Meyer 1,2, Georg von Hippel 1, Hartmut Wittig 1,2 , Harvey Meyer,2, Georg von Hippel, Hartmut Wittig,2 PRISMA Cluster of Excellence, Institut für Kernphysik, Johannes Gutenberg Universität Mainz, 5599 Mainz, Germany 2 Helmholtz Institute Mainz, Johannes

More information

Bound states of two particles confined to parallel two-dimensional layers and interacting via dipole-dipole or dipole-charge laws

Bound states of two particles confined to parallel two-dimensional layers and interacting via dipole-dipole or dipole-charge laws PHYSICAL REVIEW B VOLUME 55, NUMBER 8 15 FEBRUARY 1997-II Bound states of two particles confined to parallel two-dimensional layers and interacting via dipole-dipole or dipole-charge laws V. I. Yudson

More information

Recursive calculation of effective potential and variational resummation

Recursive calculation of effective potential and variational resummation JOURNAL OF MATHEMATICAL PHYSICS 46, 032101 2005 Recursive calculation of effective potential and variational resummation Sebastian F. Brandt and Hagen Kleinert Freie Universität Berlin, Institut für Theoretische

More information

Scalar One-Loop Integrals using the Negative-Dimension Approach

Scalar One-Loop Integrals using the Negative-Dimension Approach DTP/99/80 hep-ph/9907494 Scalar One-Loop Integrals using the Negative-Dimension Approach arxiv:hep-ph/9907494v 6 Jul 999 C. Anastasiou, E. W. N. Glover and C. Oleari Department of Physics, University of

More information

arxiv: v2 [hep-ph] 4 Jun 2018

arxiv: v2 [hep-ph] 4 Jun 2018 Prepared for submission to JHEP Evaluating elliptic master integrals at special kinematic values: using differential equations and their solutions via expansions near singular points arxiv:1805.00227v2

More information

The infinite square well in a reformulation of quantum mechanics without potential function

The infinite square well in a reformulation of quantum mechanics without potential function The infinite square well in a reformulation of quantum mechanics without potential function A.D. Alhaidari (a), T.J. Taiwo (b) (a) Saudi Center for Theoretical Physics, P.O Box 32741, Jeddah 21438, Saudi

More information

Hopf algebra structures in particle physics

Hopf algebra structures in particle physics EPJ manuscript No. will be inserted by the editor) Hopf algebra structures in particle physics Stefan Weinzierl a Max-Planck-Institut für Physik Werner-Heisenberg-Institut), Föhringer Ring 6, D-80805 München,

More information

INP MSU 96-34/441 hep-ph/ October 1996 Some techniques for calculating two-loop diagrams 1 Andrei I. Davydychev Institute for Nuclear Physics,

INP MSU 96-34/441 hep-ph/ October 1996 Some techniques for calculating two-loop diagrams 1 Andrei I. Davydychev Institute for Nuclear Physics, INP MSU 96-34/441 hep-ph/9610510 October 1996 Some techniques for calculating two-loop diagrams 1 Andrei I. Davydychev Institute for Nuclear Physics, Moscow State University, 119899 Moscow, Russia Abstract

More information

I. INTRODUCTION In a recent paper [1] we managed to derive closed forms for ladder corrections to selfenergy graphs (rainbows) and vertices, in the co

I. INTRODUCTION In a recent paper [1] we managed to derive closed forms for ladder corrections to selfenergy graphs (rainbows) and vertices, in the co Dimensional renormalization in 3 theory: ladders and rainbows R. Delbourgo and D. Elliott University of Tasmania, GPO Box 252-21, Hobart, Tasmania 7001, Australia D.S. McAnally University of Queensland,

More information

NNLO antenna subtraction with one hadronic initial state

NNLO antenna subtraction with one hadronic initial state antenna subtraction with one hadronic initial state Alejandro Daleo, Aude Gehrmann-De Ridder Institute for Theoretical Physics, ETH Zürich E-mail: adaleo@phys.ethz.ch, gehra@phys.ethz.ch Thomas Gehrmann,

More information

arxiv:hep-th/ v1 2 Jul 1998

arxiv:hep-th/ v1 2 Jul 1998 α-representation for QCD Richard Hong Tuan arxiv:hep-th/9807021v1 2 Jul 1998 Laboratoire de Physique Théorique et Hautes Energies 1 Université de Paris XI, Bâtiment 210, F-91405 Orsay Cedex, France Abstract

More information

Numerical Evaluation of Multi-loop Integrals

Numerical Evaluation of Multi-loop Integrals Numerical Evaluation of Multi-loop Integrals Sophia Borowka MPI for Physics, Munich In collaboration with G. Heinrich Based on arxiv:124.4152 [hep-ph] HP 8 :Workshop on High Precision for Hard Processes,

More information

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 8 Oct 1996

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 8 Oct 1996 December 21, 2013 arxiv:cond-mat/9610066v1 [cond-mat.stat-mech] 8 Oct 1996 Some Finite Size Effects in Simulations of Glass Dynamics Jürgen Horbach, Walter Kob, Kurt Binder Institut für Physik, Johannes

More information

arxiv: v2 [hep-ph] 18 Nov 2009

arxiv: v2 [hep-ph] 18 Nov 2009 Space-time dimensionality D as complex variable: calculating loop integrals using dimensional recurrence relation and analytical properties with respect to D. arxiv:0911.05v [hep-ph] 18 Nov 009 R.N. Lee

More information

Two special equations: Bessel s and Legendre s equations. p Fourier-Bessel and Fourier-Legendre series. p

Two special equations: Bessel s and Legendre s equations. p Fourier-Bessel and Fourier-Legendre series. p LECTURE 1 Table of Contents Two special equations: Bessel s and Legendre s equations. p. 259-268. Fourier-Bessel and Fourier-Legendre series. p. 453-460. Boundary value problems in other coordinate system.

More information

Role of Spin in NN NNπ

Role of Spin in NN NNπ Spin Physics (SPIN2014) International Journal of Modern Physics: Conference Series Vol. 40 (2016) 1660061 (6 pages) c The Author(s) DOI: 10.1142/S2010194516600612 Role of Spin in NN NNπ Vadim Baru Institut

More information

Numerical Evaluation of Multi-loop Integrals

Numerical Evaluation of Multi-loop Integrals Numerical Evaluation of Multi-loop Integrals Sophia Borowka MPI for Physics, Munich In collaboration with: J. Carter and G. Heinrich Based on arxiv:124.4152 [hep-ph] http://secdec.hepforge.org DESY-HU

More information

arxiv: v1 [hep-ph] 28 Jul 2017

arxiv: v1 [hep-ph] 28 Jul 2017 with Calibrated Uncertainty arxiv:1707.09404v1 [hep-ph] 28 Jul 2017 Departamento de Física Teórica Instituto de Física Universidad Nacional Autónoma de México Apartado Postal 20 364, México CDMX 01000,

More information

Experimental mathematics and integration

Experimental mathematics and integration Experimental mathematics and integration David H. Bailey http://www.davidhbailey.com Lawrence Berkeley National Laboratory (retired) Computer Science Department, University of California, Davis October

More information

Feyman integrals and difference equations

Feyman integrals and difference equations Deutsches Elektronen Synchrotron, DESY Platanenallee 6, D 15738 Zeuthen, Germany E-mail: sven-olaf.moch@desy.de C. Schneider Research Institute for Symbolic Computation, Johannes Kepler University Linz,

More information

Computing the Adler function from the vacuum polarization function

Computing the Adler function from the vacuum polarization function Computing the Adler function from the vacuum polarization function 1, Gregorio Herdoiza 1, Benjamin Jäger 1,2, Hartmut Wittig 1,2 1 PRISMA Cluster of Excellence, Institut für Kernphysik, Johannes Gutenberg

More information

Numerical Evaluation of Loop Integrals

Numerical Evaluation of Loop Integrals Numerical Evaluation of Loop Integrals Institut für Theoretische Physik Universität Zürich Tsukuba, April 22 nd 2006 In collaboration with Babis Anastasiou Rationale (Why do we need complicated loop amplitudes?)

More information

PoS(CD09)065. Hadronic atoms

PoS(CD09)065. Hadronic atoms Vadim Baru Forschungszentrum Jülich, Institut für Kernphysik (Theorie), and Jülich Center for Hadron Physics, 52425 Jülich, Germany, and Institute for Theoretical and Experimental Physics, B. Cheremushkinskaya

More information

arxiv:hep-ph/ v2 8 Aug 2002

arxiv:hep-ph/ v2 8 Aug 2002 Ω, J/ψ and ψ ransverse Mass Spectra at RHIC K.A. Bugaev a,b, M. Gaździcki c and M.I. Gorenstein a,d a Bogolyubov Institute for heoretical Physics, Kiev, Ukraine b Gesellschaft für Schwerionenforschung

More information

GENERATION OF COLORED NOISE

GENERATION OF COLORED NOISE International Journal of Modern Physics C, Vol. 12, No. 6 (2001) 851 855 c World Scientific Publishing Company GENERATION OF COLORED NOISE LORENZ BARTOSCH Institut für Theoretische Physik, Johann Wolfgang

More information

arxiv: v1 [hep-lat] 27 Sep 2011

arxiv: v1 [hep-lat] 27 Sep 2011 HIM-011-09 Glueball masses from ratios of path integrals arxiv:1109.5974v1 [hep-lat] 7 Sep 011 Dipartimento di Fisica, Universitá di Milano-Bicocca, Piazza della Scienza 3, I-016 Milano, Italy E-mail:

More information

Reducing differential systems for multiloop integrals

Reducing differential systems for multiloop integrals Reducing differential systems for multiloop integrals Roman N. Lee Amplitudes 2017 The Budker Institute of Nuclear Physics, Novosibirsk 1 Outline Differential equations in multiloop calculations Algorithm

More information

Two loop O N f s 2 corrections to the decay width of the Higgs boson to two massive fermions

Two loop O N f s 2 corrections to the decay width of the Higgs boson to two massive fermions PHYSICAL REVIEW D VOLUME 53, NUMBER 9 1 MAY 1996 Two loop O N f s corrections to the decay width of the Higgs boson to two massive fermions K Melnikov Institut für Physik, THEP, Johannes Gutenberg Universität,

More information

Energy conservation and the prevalence of power distributions

Energy conservation and the prevalence of power distributions Eur. Phys. J. A 2018) 54: 190 DOI 10.1140/epja/i2018-12631-2 Regular Article Theoretical Physics THE EROPEAN PHYSICAL JORNAL A Energy conservation and the prevalence of power distributions Maciej Rybczyński

More information

Triangle diagrams in the Standard Model

Triangle diagrams in the Standard Model Triangle diagrams in the Standard Model A. I. Davydychev and M. N. Dubinin Institute for Nuclear Physics, Moscow State University, 119899 Moscow, USSR Abstract Method of massive loop Feynman diagrams evaluation

More information

A note on proving the strong NP-hardness of some scheduling problems with start time dependent job processing times

A note on proving the strong NP-hardness of some scheduling problems with start time dependent job processing times Optim Lett (2012) 6:1021 1025 DOI 10.1007/s11590-011-0330-2 SHORT COMMUNICATION A note on proving the strong NP-hardness of some scheduling problems with start time dependent job processing times Radosław

More information

arxiv:hep-th/ v1 25 Jul 1997

arxiv:hep-th/ v1 25 Jul 1997 Kinematics and uncertainty relations of a quantum test particle in a curved space-time arxiv:hep-th/970716v1 5 Jul 1997 Piret Kuusk Institute of Physics, Riia 14, Tartu EE400, Estonia piret@fi.tartu.ee

More information

arxiv: v2 [hep-ph] 2 Apr 2019

arxiv: v2 [hep-ph] 2 Apr 2019 MITP/19-023 arxiv:1904.00382v2 [hep-ph] 2 Apr 2019 Two-loop master integrals for the mixed QCD-electroweak corrections for H b b through a Ht t-coupling Ekta Chaubey and Stefan Weinzierl PRISMA Cluster

More information

Group theory aspects of chaotic strings

Group theory aspects of chaotic strings Journal of Physics: Conference Series OPEN ACCESS Group theory aspects of chaotic strings To cite this article: S Groote and R Saar 2014 J. Phys.: Conf. Ser. 532 012006 View the article online for updates

More information

The Orear regime in elastic pp-scattering at s=7 TeV. I.M. Dremin and V.A. Nechitailo. Lebedev Physical Institute, Moscow , Russia

The Orear regime in elastic pp-scattering at s=7 TeV. I.M. Dremin and V.A. Nechitailo. Lebedev Physical Institute, Moscow , Russia The Orear regime in elastic pp-scattering at s=7 TeV I.M. Dremin and V.A. Nechitailo Lebedev Physical Institute, Moscow 119991, Russia Abstract The unitarity condition unambigously requires the Orear region

More information

Math123 Lecture 1. Dr. Robert C. Busby. Lecturer: Office: Korman 266 Phone :

Math123 Lecture 1. Dr. Robert C. Busby. Lecturer: Office: Korman 266 Phone : Lecturer: Math1 Lecture 1 Dr. Robert C. Busby Office: Korman 66 Phone : 15-895-1957 Email: rbusby@mcs.drexel.edu Course Web Site: http://www.mcs.drexel.edu/classes/calculus/math1_spring0/ (Links are case

More information

arxiv:hep-ph/ v3 2 Mar 1999

arxiv:hep-ph/ v3 2 Mar 1999 MZ-TH/98-47 hep-ph/9811482 November 1998 arxiv:hep-ph/9811482v3 2 Mar 1999 Polarized top decay into polarized W t( ) W( )+b at O(α s ) M. Fischer, S. Groote, J.G. Körner and M.C. Mauser Institut für Physik,

More information

arxiv: v1 [nucl-ex] 9 Jul 2013

arxiv: v1 [nucl-ex] 9 Jul 2013 Study of the partial wave structure of π η photoproduction on protons A. Fix 1, V.L. Kashevarov 2,3, M. Ostrick 2 1 Tomsk Polytechnic University, Tomsk, Russia 2 Institut für Kernphysik, Johannes Gutenberg-Universität

More information

Muon as a Composition of Massless Preons: A Confinement Mechanism beyond the Standard Model

Muon as a Composition of Massless Preons: A Confinement Mechanism beyond the Standard Model International Journal of Advanced Research in Physical Science (IJARPS) Volume 4, Issue 10, 2017, PP 7-11 ISSN No. (Online) 2349-7882 www.arcjournals.org Muon as a Composition of Massless Preons: A Confinement

More information

Lepton pair production by high-energy neutrino in an external electromagnetic field

Lepton pair production by high-energy neutrino in an external electromagnetic field Yaroslavl State University Preprint YARU-HE-00/03 hep-ph/000316 Lepton pair production by high-energy neutrino in an external electromagnetic field A.V. Kuznetsov, N.V. Mikheev, D.A. Rumyantsev Division

More information

Five-loop renormalization group functions of O(n)-symmetric φ 4 -theory and ǫ-expansions of critical exponents up to ǫ 5

Five-loop renormalization group functions of O(n)-symmetric φ 4 -theory and ǫ-expansions of critical exponents up to ǫ 5 arxiv:hep-th/9503230v1 1 Apr 1995 Five-loop renormalization group functions of O(n)-symmetric φ 4 -theory and ǫ-expansions of critical exponents up to ǫ 5 H. Kleinert, J. Neu and V. Schulte-Frohlinde Institut

More information

TVID: Three-loop Vacuum Integrals from Dispersion relations

TVID: Three-loop Vacuum Integrals from Dispersion relations TVID: Three-loop Vacuum Integrals from Dispersion relations Stefan Bauberger, Ayres Freitas Hochschule für Philosophie, Philosophische Fakultät S.J., Kaulbachstr. 3, 80539 München, Germany Pittsburgh Particle-physics

More information

arxiv: v2 [hep-ph] 12 Jul 2017

arxiv: v2 [hep-ph] 12 Jul 2017 MaPhy-AvH/7-5 MITP/7-38 arxiv:75.895v [hep-ph] Jul 7 Analytic continuation and numerical evaluation of the kite integral and the equal mass sunrise integral Christian Bogner a, Armin Schweitzer a and Stefan

More information

Functional equations for Feynman integrals

Functional equations for Feynman integrals Functional equations for Feynman integrals O.V. Tarasov JINR, Dubna, Russia October 9, 016, Hayama, Japan O.V. Tarasov (JINR) Functional equations for Feynman integrals 1 / 34 Contents 1 Functional equations

More information

Renormalization of the fermion self energy

Renormalization of the fermion self energy Part I Renormalization of the fermion self energy Electron self energy in general gauge The self energy in n = 4 Z i 0 = ( ie 0 ) d n k () n (! dimensions is i k )[g ( a 0 ) k k k ] i /p + /k m 0 use Z

More information

arxiv:hep-lat/ v1 30 Sep 2005

arxiv:hep-lat/ v1 30 Sep 2005 September 2005 Applying Gröbner Bases to Solve Reduction Problems for Feynman Integrals arxiv:hep-lat/0509187v1 30 Sep 2005 A.V. Smirnov 1 Mechanical and Mathematical Department and Scientific Research

More information

MATH 205C: STATIONARY PHASE LEMMA

MATH 205C: STATIONARY PHASE LEMMA MATH 205C: STATIONARY PHASE LEMMA For ω, consider an integral of the form I(ω) = e iωf(x) u(x) dx, where u Cc (R n ) complex valued, with support in a compact set K, and f C (R n ) real valued. Thus, I(ω)

More information

Systems of differential equations for Feynman Integrals; Schouten identities and canonical bases.

Systems of differential equations for Feynman Integrals; Schouten identities and canonical bases. Systems of differential equations for Feynman Integrals; Schouten identities and canonical bases. Lorenzo Tancredi TTP, KIT - Karlsruhe Bologna, 18 Novembre 2014 Based on collaboration with Thomas Gehrmann,

More information

Heavy-quark spin-symmetry partners of hadronic molecules

Heavy-quark spin-symmetry partners of hadronic molecules Heavy-quark spin-symmetry partners of hadronic molecules Institut für Theoretische Physik II, Ruhr-Universität Bochum, D-44780 Bochum, Germany and Institute for Theoretical and Experimental Physics, B.

More information

d 1 µ 2 Θ = 0. (4.1) consider first the case of m = 0 where there is no azimuthal dependence on the angle φ.

d 1 µ 2 Θ = 0. (4.1) consider first the case of m = 0 where there is no azimuthal dependence on the angle φ. 4 Legendre Functions In order to investigate the solutions of Legendre s differential equation d ( µ ) dθ ] ] + l(l + ) m dµ dµ µ Θ = 0. (4.) consider first the case of m = 0 where there is no azimuthal

More information

Exercises * on Principal Component Analysis

Exercises * on Principal Component Analysis Exercises * on Principal Component Analysis Laurenz Wiskott Institut für Neuroinformatik Ruhr-Universität Bochum, Germany, EU 4 February 207 Contents Intuition 3. Problem statement..........................................

More information

arxiv:hep-ph/ v1 4 Nov 1998

arxiv:hep-ph/ v1 4 Nov 1998 Gluon- vs. Sea quark-shadowing N. Hammon, H. Stöcker, W. Greiner 1 arxiv:hep-ph/9811242v1 4 Nov 1998 Institut Für Theoretische Physik Robert-Mayer Str. 10 Johann Wolfgang Goethe-Universität 60054 Frankfurt

More information

XVII International Conference on Hadron Spectroscopy and Structure - Hadron September, 2017 University of Salamanca, Salamanca, Spain

XVII International Conference on Hadron Spectroscopy and Structure - Hadron September, 2017 University of Salamanca, Salamanca, Spain , L. Tiator and M. Ostrick Institut für Kernphysik, Johannes Gutenberg-Universität Mainz, Germany E-mail: kashevar@uni-mainz.de, tiator@uni-mainz.de, ostrick@uni-mainz.de A phenomenological analysis of

More information

The propagator seagull: general evaluation of a two loop diagram

The propagator seagull: general evaluation of a two loop diagram Prepared for submission to JHEP arxiv:1809.05040v [hep-th] 11 Oct 018 The propagator seagull: general evaluation of a two loop diagram Barak Kol and Ruth Shir The Racah Institute of Physics, The Hebrew

More information

QFT PS7: Interacting Quantum Field Theory: λφ 4 (30/11/17) The full propagator in λφ 4 theory. Consider a theory of a real scalar field φ

QFT PS7: Interacting Quantum Field Theory: λφ 4 (30/11/17) The full propagator in λφ 4 theory. Consider a theory of a real scalar field φ QFT PS7: Interacting Quantum Field Theory: λφ 4 (30/11/17) 1 Problem Sheet 7: Interacting Quantum Field Theory: λφ 4 Comments on these questions are always welcome. For instance if you spot any typos or

More information

Laplace Transform of Spherical Bessel Functions

Laplace Transform of Spherical Bessel Functions Laplace Transform of Spherical Bessel Functions arxiv:math-ph/01000v 18 Jan 00 A. Ludu Department of Chemistry and Physics, Northwestern State University, Natchitoches, LA 71497 R. F. O Connell Department

More information

The Ward Identity from the Background Field Dependence of the Effective Action

The Ward Identity from the Background Field Dependence of the Effective Action HD-THEP-96-0 The Ward Identity from the Bacground Field Dependence of the Effective Action F. Freire and C. Wetterich 2 Institut für Theoretische Physi, Universität Heidelberg, Philosophenweg 6, D-6920

More information

1 The Quantum Anharmonic Oscillator

1 The Quantum Anharmonic Oscillator 1 The Quantum Anharmonic Oscillator Perturbation theory based on Feynman diagrams can be used to calculate observables in Quantum Electrodynamics, like the anomalous magnetic moment of the electron, and

More information

A LAGRANGIAN FORMULATION OF THE JOOS-WEINBERG WAVE EQUATIONS FOR SPIN-S PARTICLES. D. Shay

A LAGRANGIAN FORMULATION OF THE JOOS-WEINBERG WAVE EQUATIONS FOR SPIN-S PARTICLES. D. Shay IC/68/13 INTERNAL REPORT (Limited distribution) A LAGRANGIAN FORMULATION OF THE JOOS-WEINBERG WAVE EQUATIONS FOR SPIN-S PARTICLES D. Shay ABSTRACT The Lorentz covariant, spin-s, Joos-Weinberg equations

More information

Nonequilibrium dynamics and transport near the chiral phase transition of a quark-meson model

Nonequilibrium dynamics and transport near the chiral phase transition of a quark-meson model FAIRNESS 2013, 15-21 September 1 Nonequilibrium dynamics and transport near the chiral phase transition of a quark-meson model A Meistrenko 1, C Wesp 1, H van Hees 1,2 and C Greiner 1 1 Institut für Theoretische

More information

XV Mexican Workshop on Particles and Fields

XV Mexican Workshop on Particles and Fields XV Mexican Workshop on Particles and Fields Constructing Scalar-Photon Three Point Vertex in Massless Quenched Scalar QED Dra. Yajaira Concha Sánchez, Michoacana University, México 2-6 November 2015 Mazatlán,

More information

Schouten identities for Feynman graph amplitudes; The Master Integrals for the two-loop massive sunrise graph

Schouten identities for Feynman graph amplitudes; The Master Integrals for the two-loop massive sunrise graph Available online at www.sciencedirect.com ScienceDirect Nuclear Physics B 880 0 33 377 www.elsevier.com/locate/nuclphysb Schouten identities for Feynman graph amplitudes; The Master Integrals for the two-loop

More information

End-to-End Distribution Function of Two-Dimensional Stiff Polymers for all Persistence Lengths

End-to-End Distribution Function of Two-Dimensional Stiff Polymers for all Persistence Lengths End-to-End Distribution Function of Two-Dimensional Stiff Polymers for all Persistence Lengths B. Hamprecht 1, W. Janke and H. Kleinert 1 1 Institut für Theoretische Physik, Freie Universität Berlin, Arnimallee

More information

COMPUTATION OF BESSEL AND AIRY FUNCTIONS AND OF RELATED GAUSSIAN QUADRATURE FORMULAE

COMPUTATION OF BESSEL AND AIRY FUNCTIONS AND OF RELATED GAUSSIAN QUADRATURE FORMULAE BIT 6-85//41-11 $16., Vol. 4, No. 1, pp. 11 118 c Swets & Zeitlinger COMPUTATION OF BESSEL AND AIRY FUNCTIONS AND OF RELATED GAUSSIAN QUADRATURE FORMULAE WALTER GAUTSCHI Department of Computer Sciences,

More information

RICCATI MEETS FIBONACCI

RICCATI MEETS FIBONACCI Wolfdieter Lang Institut für Theoretische Physik, Universität Karlsruhe Kaiserstrasse 2, D-763 Karlsruhe, Germany e-mail: wolfdieter.lang@physik.uni-karlsruhe.de (Submitted November 200- Final Revision

More information

Tadpole Summation by Dyson-Schwinger Equations

Tadpole Summation by Dyson-Schwinger Equations MS-TPI-96-4 hep-th/963145 Tadpole Summation by Dyson-Schwinger Equations arxiv:hep-th/963145v1 18 Mar 1996 Jens Küster and Gernot Münster Institut für Theoretische Physik I, Universität Münster Wilhelm-Klemm-Str.

More information

Two-loop Heavy Fermion Corrections to Bhabha Scattering

Two-loop Heavy Fermion Corrections to Bhabha Scattering Two-loop Heavy Fermion Corrections to Bhabha Scattering S. Actis 1, M. Czakon 2, J. Gluza 3 and T. Riemann 1 1 Deutsches Elektronen-Synchrotron DESY Platanenallee 6, D 15738 Zeuthen, Germany 2 Institut

More information

hep-ph/ Sep 1998

hep-ph/ Sep 1998 Some Aspects of Trace Anomaly Martin Schnabl Nuclear Centre, Faculty of Mathematics and Physics, Charles University, V Holesovickach 2, C-8000 Praha 8, Czech Republic July 998 hep-ph/9809534 25 Sep 998

More information

Quantum Mechanics for Scientists and Engineers. David Miller

Quantum Mechanics for Scientists and Engineers. David Miller Quantum Mechanics for Scientists and Engineers David Miller Background mathematics 5 Sum, factorial and product notations Summation notation If we want to add a set of numbers a 1, a 2, a 3, and a 4, we

More information

Evaporation/Condensation of Ising Droplets

Evaporation/Condensation of Ising Droplets , Elmar Bittner and Wolfhard Janke Institut für Theoretische Physik, Universität Leipzig, Augustusplatz 10/11, D-04109 Leipzig, Germany E-mail: andreas.nussbaumer@itp.uni-leipzig.de Recently Biskup et

More information