The rare decay H Zγ in perturbative QCD

Size: px
Start display at page:

Download "The rare decay H Zγ in perturbative QCD"

Transcription

1 The rare decay H Zγ in perturbative QCD [arxiv: hep-ph/ ] Thomas Gehrmann, Sam Guns & Dominik Kara June 15, 2015 RADCOR 2015 AND LOOPFEST XIV - UNIVERSITY OF CALIFORNIA, LOS ANGELES Z Z H g q H g q γ γ

2 Contents 1 Introduction 2 The decay in the Standard Model 3 Calculation of the two-loop amplitude Integral basis and differential equations Renormalization 4 Numerical results 5 Conclusions Thomas Gehrmann, Sam Guns & Dominik Kara The rare decay H Zγ in perturbative QCD June 15, /20

3 Motivation: Experiment H γγ loop-mediated sensitive to new physics clean signature 20% relative precision Branching ratios ττ cc bb gg WW ZZ LHC HIGGS XS WG 2010 H Zγ more background smaller branching ratio spin-dependent particle correlations through Z ll γγ Zγ M H [GeV] Thomas Gehrmann, Sam Guns & Dominik Kara The rare decay H Zγ in perturbative QCD June 15, /20

4 Motivation: Experiment H γγ loop-mediated sensitive to new physics clean signature 20% relative precision Branching ratios ττ cc bb gg WW ZZ LHC HIGGS XS WG 2010 H Zγ more background smaller branching ratio spin-dependent particle correlations through Z ll γγ Zγ M H [GeV] broader spectrum of observables: more info on H couplings Thomas Gehrmann, Sam Guns & Dominik Kara The rare decay H Zγ in perturbative QCD June 15, /20

5 Motivation: Theory H Zγ Analytical LO result available [Cahn, Chanowitz, Fleishon (1979)] [Bergstrom, Huth (1985)] Numerical NLO result in QCD available [Spira, Djouadi, Zerwas (1992)] H + j production Analytical NLO result: independent check NLO result in QCD available for m t [Schmidt (1997)] [Glosser, Schmidt (2002)] [de Florian, Grazzini, Kunszt (1999)] [Ravindran, Smith, van Neerven (2002)] NNLO calculation in QCD well-advanced for m t [Gehrmann, Glover, Jaquier, Koukoutsakis (2012)] [Chen, Gehrmann, Glover, Jaquier (2012)] [Boughezal, Caola, Melnikov, Petriello, Schulze (2013, 2015)] [Boughezal, Focke, Giele, Liu, Petriello (2015)] Thomas Gehrmann, Sam Guns & Dominik Kara The rare decay H Zγ in perturbative QCD June 15, /20

6 Motivation: Theory H Zγ Analytical LO result available [Cahn, Chanowitz, Fleishon (1979)] [Bergstrom, Huth (1985)] Numerical NLO result in QCD available [Spira, Djouadi, Zerwas (1992)] H + j production Analytical NLO result: independent check NLO result in QCD available for m t [Schmidt (1997)] [Glosser, Schmidt (2002)] [de Florian, Grazzini, Kunszt (1999)] [Ravindran, Smith, van Neerven (2002)] NNLO calculation in QCD well-advanced for m t [Gehrmann, Glover, Jaquier, Koukoutsakis (2012)] [Chen, Gehrmann, Glover, Jaquier (2012)] [Boughezal, Caola, Melnikov, Petriello, Schulze (2013, 2015)] [Boughezal, Focke, Giele, Liu, Petriello (2015)] Thomas Gehrmann, Sam Guns & Dominik Kara The rare decay H Zγ in perturbative QCD June 15, /20

7 Motivation: Theory gg gq qq sum 10 2 [Harlander, Neumann (2013)] 1 σ i,j dσi,j dpt [1/GeV] Operator O 1 2 O 1O 2 O 1O 3 O 1O 5 SM SM m t p T [GeV] H + j production EFT is likely to break down at high p T High-priority aim: NLO QCD corrections with full m t dependence Two-loop integrals for H Zγ pave the way Thomas Gehrmann, Sam Guns & Dominik Kara The rare decay H Zγ in perturbative QCD June 15, /20

8 Outline of the calculation Qgraf Generate Feynman diagrams for process H(q) Z(p 1 )γ(p 2 ) Z Z Z Z H W H q H g q H g q γ γ γ γ Thomas Gehrmann, Sam Guns & Dominik Kara The rare decay H Zγ in perturbative QCD June 15, /20

9 Outline of the calculation Qgraf Generate Feynman diagrams for process H(q) Z(p 1 )γ(p 2 ) Z Z Z Z H W H q H g q H g q γ γ γ γ Form Project relevant Feynman diagrams onto tensor structure with projector M = A ɛ 1,µ (p 1, λ 1 ) ɛ 2,ν (p 2, λ 2 ) Pµν P 2 P µν = p µ 2 pν 1 (p 1 p 2 )g µν Thomas Gehrmann, Sam Guns & Dominik Kara The rare decay H Zγ in perturbative QCD June 15, /20

10 Outline of the calculation Qgraf Generate Feynman diagrams for process H(q) Z(p 1 )γ(p 2 ) Z Z Z Z H W H q H g q H g q γ γ γ γ Form Project relevant Feynman diagrams onto tensor structure with projector M = A ɛ 1,µ (p 1, λ 1 ) ɛ 2,ν (p 2, λ 2 ) Pµν P 2 P µν = p µ 2 pν 1 (p 1 p 2 )g µν Reduze Reduce Feynman Integrals to set of Master Integrals (MIs) Integration-by-parts identities (IBPs) Laporta algorithm Thomas Gehrmann, Sam Guns & Dominik Kara The rare decay H Zγ in perturbative QCD June 15, /20

11 Outline of the calculation Qgraf Generate Feynman diagrams for process H(q) Z(p 1 )γ(p 2 ) Z Z Z Z H W H q H g q H g q γ γ γ γ Form Project relevant Feynman diagrams onto tensor structure with projector M = A ɛ 1,µ (p 1, λ 1 ) ɛ 2,ν (p 2, λ 2 ) Pµν P 2 P µν = p µ 2 pν 1 (p 1 p 2 )g µν Reduze Reduce Feynman Integrals to set of Master Integrals (MIs) Integration-by-parts identities (IBPs) Laporta algorithm Thomas Gehrmann, Sam Guns & Dominik Kara The rare decay H Zγ in perturbative QCD June 15, /20

12 The amplitude can be further decomposed A = c W A W + q c q A q with c W = cos θ w sin θ w, Born-level contribution: ( ) 2 Q q I 3 q 2 Q q sin 2 θ w c q = N c sin θ w cos θ w NLO QCD corrections: A q (m H, m Z, m q, α s, µ) = A (1) q A (1) = c W A (1) W + c ta (1) t + c b A (1) b (m H, m Z, m q )+ α s(µ) π A(2) q (m H, m Z, m q, µ) Thomas Gehrmann, Sam Guns & Dominik Kara The rare decay H Zγ in perturbative QCD June 15, /20

13 The amplitude can be further decomposed A = c W A W + q c q A q with c W = cos θ w sin θ w, Born-level contribution: ( ) 2 Q q I 3 q 2 Q q sin 2 θ w c q = N c sin θ w cos θ w NLO QCD corrections: A q (m H, m Z, m q, α s, µ) = A (1) q A (1) = c W A (1) W + c ta (1) t + c b A (1) b (m H, m Z, m q )+ α s(µ) π A(2) q (m H, m Z, m q, µ) Thomas Gehrmann, Sam Guns & Dominik Kara The rare decay H Zγ in perturbative QCD June 15, /20

14 The decay width is obtained from the amplitude as Parametrization π G F α 2 Γ = 4 ( ) A 2 2 mh 3 m 2 H mz 2 We are left with computation of MIs Use Landau-type variables to absorb natural roots mh 2 = mq 2 (1 h) 2 h 1 4 m2 q m 2 H h + 1 h 1,, mz 2 = mq 2 (1 z) 2 z 1 4 m2 q m 2 Z z + 1 z 1 Thomas Gehrmann, Sam Guns & Dominik Kara The rare decay H Zγ in perturbative QCD June 15, /20

15 The decay width is obtained from the amplitude as Parametrization π G F α 2 Γ = 4 ( ) A 2 2 mh 3 m 2 H mz 2 We are left with computation of MIs Use Landau-type variables to absorb natural roots mh 2 = mq 2 (1 h) 2 h 1 4 m2 q m 2 H h + 1 h 1,, mz 2 = mq 2 (1 z) 2 z 1 4 m2 q m 2 Z z + 1 z 1 Thomas Gehrmann, Sam Guns & Dominik Kara The rare decay H Zγ in perturbative QCD June 15, /20

16 Differential equations 1 Choose MI 2 Compute derivative of integrand with respect to internal mass and external invariants 3 Use IBPs to relate resulting integrals to original MI [Kotikov (1991)] [Remiddi (1997)] [Gehrmann, Remiddi (2000)] Full system takes form of total differential N d I(h, z) = R k (ɛ) d log(d k ) I(h, z) k=1 d 1 = z d 5 = h + 1 d 9 = h 2 hz h + 1 d 2 = z + 1 d 6 = h 1 d 10 = h 2 z hz h + z d 3 = z 1 d 7 = h z d 11 = z 2 hz z + 1 d 4 = h d 8 = hz 1 d 12 = z 2 h hz z + h... d N Thomas Gehrmann, Sam Guns & Dominik Kara The rare decay H Zγ in perturbative QCD June 15, /20

17 Differential equations 1 Choose MI 2 Compute derivative of integrand with respect to internal mass and external invariants 3 Use IBPs to relate resulting integrals to original MI [Kotikov (1991)] [Remiddi (1997)] [Gehrmann, Remiddi (2000)] Full system takes form of total differential N d I(h, z) = R k (ɛ) d log(d k ) I(h, z) k=1 d 1 = z d 5 = h + 1 d 9 = h 2 hz h + 1 d 2 = z + 1 d 6 = h 1 d 10 = h 2 z hz h + z d 3 = z 1 d 7 = h z d 11 = z 2 hz z + 1 d 4 = h d 8 = hz 1 d 12 = z 2 h hz z + h... d N Thomas Gehrmann, Sam Guns & Dominik Kara The rare decay H Zγ in perturbative QCD June 15, /20

18 Differential equations 1 Choose MI 2 Compute derivative of integrand with respect to internal mass and external invariants 3 Use IBPs to relate resulting integrals to original MI [Kotikov (1991)] [Remiddi (1997)] [Gehrmann, Remiddi (2000)] Full system takes form of total differential N ( ) d I(h, z) = R k ɛ d log(d k ) I(h, z) k=1 d 1 = z d 5 = h + 1 d 9 = h 2 hz h + 1 d 2 = z + 1 d 6 = h 1 d 10 = h 2 z hz h + z d 3 = z 1 d 7 = h z d 11 = z 2 hz z + 1 d 4 = h d 8 = hz 1 d 12 = z 2 h hz z + h... d N Thomas Gehrmann, Sam Guns & Dominik Kara The rare decay H Zγ in perturbative QCD June 15, /20

19 Differential equations Canonical form [[Henn (2013)]] 12 d M(h, z) = ɛ R k d log(d k ) M(h, z) k=1 reduced number of polynomials d k can be integrated in terms of GHPLs: x 1 G (w 1,..., w n ; x) dt G (w 2,..., w n ; t) 0 t w 1 ( ) G 0n ; x logn x n! leads to linear combinations of GHPLs of homogeneous weight Change basis from Laporta integrals I to canonical integrals M Thomas Gehrmann, Sam Guns & Dominik Kara The rare decay H Zγ in perturbative QCD June 15, /20

20 Differential equations Canonical form [[Henn (2013)]] 12 d M(h, z) = ɛ R k d log(d k ) M(h, z) k=1 reduced number of polynomials d k can be integrated in terms of GHPLs: x 1 G (w 1,..., w n ; x) dt G (w 2,..., w n ; t) 0 t w 1 ( ) G 0n ; x logn x n! leads to linear combinations of GHPLs of homogeneous weight Change basis from Laporta integrals I to canonical integrals M Thomas Gehrmann, Sam Guns & Dominik Kara The rare decay H Zγ in perturbative QCD June 15, /20

21 Integral basis 1 Start with Laporta basis: [Gehrmann, von Manteuffel, Tancredi, Weihs (2014)] Topology under consideration must have at most linear dependence on ɛ be triangular in D = 4 dimensions I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I 10 I 11 I 12 Thomas Gehrmann, Sam Guns & Dominik Kara The rare decay H Zγ in perturbative QCD June 15, /20

22 Integral basis 1 Start with Laporta basis: [Gehrmann, von Manteuffel, Tancredi, Weihs (2014)] I 13 I 14 I 15 I 16 I 17 I 18 I 19 I 20 I 21 I 22 I 23 I 24 I 25 I 26 I 27 I 28 Thomas Gehrmann, Sam Guns & Dominik Kara The rare decay H Zγ in perturbative QCD June 15, /20

23 Integral basis 1 Start with Laporta basis: [Gehrmann, von Manteuffel, Tancredi, Weihs (2014)] I 13 I 14 I 15 I 16 I 17 I 18 I 19 I 20 I 21 I 22 I 23 I 24 I 25 I 26 I 27 I 28 Thomas Gehrmann, Sam Guns & Dominik Kara The rare decay H Zγ in perturbative QCD June 15, /20

24 Integral basis di 15 2 Perform transformation to canonical basis by integrating out homogeneous parts in D = 4 dz = h z d 1 d 2 d 3 d 4 d 9 d 10 (2 z (h 2 + 1) h (z + 1) 2 ) { 3 2 h z (h 1)2 ( ( h ) ( z ) h (z + 1) 2) I 7 h [ h 4 z ( z ) h ( h ) ( z 4 + z 3 + 4z 2 + z + 1 ) 1 z +h ( 2 z 4 + 4z 3 + 2z 2 + 4z + 1 ) + z ( z )] (2 I 13 + I 14 ) [2 h 6 z ( 2 z ) 2 h z ( h ) (z + 1) 2 ( 2 z 2 z + 2 ) +h 2 ( h ) ( z z z z z z + 1 ) + 2 z 2 ( z )] I 15 } di 15 dh = h z d 1 d 4 d 9 d 10 (2 z (h 2 + 1) h (z + 1) 2 ) { 3 2 z2 (h 1) 3 (h + 1) I 7 + z ( h 2 1 ) ( z ( h ) h ( z )) (2 I 13 + I 14 ) h2 1 h [2z 2 ( h ) 2hz (z + 1) 2 ( h ) + h 2 ( z 4 + 2z 3 + 6z 2 + 2z + 1 )] I 15 } Thomas Gehrmann, Sam Guns & Dominik Kara The rare decay H Zγ in perturbative QCD June 15, /20

25 Integral basis 2 Perform transformation to canonical basis by integrating out homogeneous parts in D = 4 M 15 = z (h2 + 1) h (z + 1) 2 z (h 2 + 1) h (z + 1) 2 [ 3 (h 1) 2 2 h I 7 (h z)(hz 1) (2 I 13 + I 14 ) hz (z2 1)(h 2 ] + 1 h (z + 1)) I 15 hz Thomas Gehrmann, Sam Guns & Dominik Kara The rare decay H Zγ in perturbative QCD June 15, /20

26 Integral basis 2 Perform transformation to canonical basis by integrating out homogeneous parts in D = 4 [ dm 15 = ɛ (M ) M M 13 + M 14 4 M 15 d log(d 1 ) ( ) M M 13 + M 14 2 M 15 d log(d 2 ) (M ) M 7 + M 13 M 14 M 15 d log(d 3 ) (M M ) M 7 + M 13 M 14 M 15 d log(d 4 ) + 3 M 7 d log(d 6 ) + (M 2 + M M M 13 2 M 15 ) d log(d 7 ) + (M 2 M 6 + M M 13 2 M 15 ) d log(d 8 ) ( ) ] 3 2 M M 13 + M 14 M 15 d log(d 9 ) Thomas Gehrmann, Sam Guns & Dominik Kara The rare decay H Zγ in perturbative QCD June 15, /20

27 Integration Integrate differential equation in h or z up to constant C(z) or C(h) Use boundary conditions: h = 1 mh 2 = 0 z = 1 mz 2 = 0 h = z mh 2 = mz 2 h = 1 z m 2 H = m 2 Z Perform transformations with the help of symbol and coproduct: G (w 1 (x),..., w n (x); x) G (a 1,..., a n ; x) G (w 1 (x),..., w n (x); y) G (c 1 (y),..., c n (y); x) Thomas Gehrmann, Sam Guns & Dominik Kara The rare decay H Zγ in perturbative QCD June 15, /20

28 Integration Integrate differential equation in h or z up to constant C(z) or C(h) Use boundary conditions: h = 1 mh 2 = 0 z = 1 mz 2 = 0 h = z mh 2 = mz 2 h = 1 z m 2 H = m 2 Z Perform transformations with the help of symbol and coproduct: G (w 1 (x),..., w n (x); x) G (a 1,..., a n ; x) G (w 1 (x),..., w n (x); y) G (c 1 (y),..., c n (y); x) Thomas Gehrmann, Sam Guns & Dominik Kara The rare decay H Zγ in perturbative QCD June 15, /20

29 Integration Integrate differential equation in h or z up to constant C(z) or C(h) Use boundary conditions: h = 1 mh 2 = 0 z = 1 mz 2 = 0 h = z mh 2 = mz 2 h = 1 z m 2 H = m 2 Z Perform transformations with the help of symbol and coproduct: G (w 1 (x),..., w n (x); x) G (a 1,..., a n ; x) G (w 1 (x),..., w n (x); y) G (c 1 (y),..., c n (y); x) Thomas Gehrmann, Sam Guns & Dominik Kara The rare decay H Zγ in perturbative QCD June 15, /20

30 Integration Results in terms of GHPLs up to weight four G (a 1,..., a n ; h) with a i {0, ±1, z, 1 z, J z, 1 J z, K ± z, L ± z } G (b 1,..., b n ; z) with b i {0, ±1, c, c} c = 1 ( 1 + ) i 3 K ± z = 1 (1 + z ± ) z + z z J z = 1 z + z 2 L ± z = 1 (1 + z ± ) z 3 z 2 2 z verified through differential equation in other variable checked numerically against SecDec [Borowka, Heinrich, Jones, Kerner, Schlenk, Zirke (2015)] Thomas Gehrmann, Sam Guns & Dominik Kara The rare decay H Zγ in perturbative QCD June 15, /20

31 Integration Results in terms of GHPLs up to weight four G (a 1,..., a n ; h) with a i {0, ±1, z, 1 z, J z, 1 J z, K ± z, L ± z } G (b 1,..., b n ; z) with b i {0, ±1, c, c} c = 1 ( 1 + ) i 3 K ± z = 1 (1 + z ± ) z + z z J z = 1 z + z 2 L ± z = 1 (1 + z ± ) z 3 z 2 2 z verified through differential equation in other variable checked numerically against SecDec [Borowka, Heinrich, Jones, Kerner, Schlenk, Zirke (2015)] Thomas Gehrmann, Sam Guns & Dominik Kara The rare decay H Zγ in perturbative QCD June 15, /20

32 Integration Example M 15 = ɛ 2 [ π2 6 G( 1 z, 0; h) + G(z, 0; h) G(0; z)g( 1 ; h) G(0; z)g(z; h) + G(0; z)g(0; h) z 2G(0, 0; h) + G(1, 0; z)] [ + ɛ 3 5ζ 3 + 2G( 1 z, 1 z, 0; h) 2G( 1 2π2, z, 0; h) + z 3 G( 1 z ; h) + 6G( 1, 1, 0; h) z 3G( 1 z, 0, 0; h) + 2G( 1 z, 1, 0; h) + 2G(z, 1 π2, 0; h) 2G(z, z, 0; h) + G(z; h) z 3 6G(z, 1, 0; h) + 5G(z, 0, 0; h) 2G(z, 1, 0; h) G(K z, 1 z, 0; h) + G(K z, z, 0; h) π2 6 G(K z ; h) + 2G(K z, 0, 0; h) G(K + z, 1 z, 0; h) + G(K + z, z, 0; h) π2 6 G(K + z ; h) + 2G(K + π2 z, 0, 0; h) + 3 G( 1; z) + 2G( 1, 0; z)g( 1 ; h) + 2G( 1, 0; z)g(z; h) z 2G( 1, 0; z)g(0; h) + G( 1, 0, 0; z) 2G( 1, 1, 0; z) G(0, 1 z π2, 0; h) G(0; z) 2 Thomas Gehrmann, Sam Guns & Dominik Kara The rare decay H Zγ in perturbative QCD June 15, /20

33 Integration Example + 2G(0; z)g( 1 z, 1 z ; h) + 2G(0; z)g( 1 z, z; h) 2G(0; z)g( 1 z, 0; h) + 2G(0; z)g(z, 1 z ; h) + 2G(0; z)g(z, z; h) 2G(0; z)g(z, 0; h) G(0; z)g(k z, 1 z ; h) G(0; z)g(k z, z; h) + G(0; z)g(k z, 0; h) G(0; z)g(k + z, 1 z ; h) G(0; z)g(k + z, z; h) + G(0; z)g(k + z, 0; h) G(0; z)g(0, 1 ; h) G(0; z)g(0, z; h) + G(0, z, 0; h) + G(0; h)g(1, 0; z) + 12G(0, 1, 0; h) z G(0, 0; z)g( 1 z ; h) G(0, 0; z)g(z; h) G(0, 0; z)g(k z ; h) G(0, 0; z)g(k + z ; h) + 2G(0, 0; z)g(0; h) + G(0, 0; h)g(0; z) G(0, 0, 0; z) 8G(0, 0, 0; h) + 2G(0, 1, 0; z) + 4G(0, 1, 0; h) π2 3 G(1; z) 2G(1, 1, 0; z) 2G(1, 0; z)g( 1 ; h) 2G(1, 0; z)g(z; h) z +G(1, 0; z)g(k z ; h) + G(1, 0; z)g(k + z ; h) + 2G(1, 0, 0; z) 6G(1, 0, 0; h) + G(1, 1, 0; z) ] + O ( ɛ 4) Thomas Gehrmann, Sam Guns & Dominik Kara The rare decay H Zγ in perturbative QCD June 15, /20

34 Renormalization (a) quark mass M q and Yukawa coupling Y q in OS scheme A (2,a) q (m H, m Z, M q ) = A (2) q,bare + Z OS A (1) q + δm OS C (1) q m q Renormalization constants Z OS = α s(µ) π 16 i C F π2 S ɛ 4 δm OS = m q Z OS 3 2ɛ ɛ (1 2ɛ) Thomas Gehrmann, Sam Guns & Dominik Kara The rare decay H Zγ in perturbative QCD June 15, /20

35 Renormalization (a) quark mass M q and Yukawa coupling Y q in OS scheme A (2,a) q (m H, m Z, M q ) = A (2) q,bare + Z OS A (1) q + δm OS C (1) q m q Renormalization constants Z OS = α s(µ) π 16 i C F π2 S ɛ 4 δm OS = m q Z OS 3 2ɛ ɛ (1 2ɛ) Thomas Gehrmann, Sam Guns & Dominik Kara The rare decay H Zγ in perturbative QCD June 15, /20

36 Renormalization (a) quark mass M q and Yukawa coupling Y q in OS scheme A (2,a) q (m H, m Z, M q ) = A (2) q,bare + Z OS A (1) q + δm OS C (1) q m q Renormalization constants Counterterms Z OS = α s(µ) π 16 i C F π2 S ɛ 4 δm OS = m q Z OS 3 2ɛ ɛ (1 2ɛ) Z Z C (1) q = H q + H q + H q Z γ γ γ Thomas Gehrmann, Sam Guns & Dominik Kara The rare decay H Zγ in perturbative QCD June 15, /20

37 Renormalization (b) quark mass M q in OS, Yukawa coupling y q in MS scheme A (2,b) q (m H, m Z, m q, µ) = A (2,a) q (m H, m Z, m q (µ)) + A (1) q (m H, m Z, m q (µ)) The finite shift in the amplitude is induced by expressing the OS quantities in terms of MS quantities: M q = m q (µ) (1 + ) Y q = y q (µ) (1 + ) ( ) = α s(µ) C F π 4 log µ 2 m 2 q(µ) Thomas Gehrmann, Sam Guns & Dominik Kara The rare decay H Zγ in perturbative QCD June 15, /20

38 Renormalization (c) quark mass m q and Yukawa coupling y q in MS scheme A (2,c) q (m H, m Z, m q, µ) = A (2,b) q (m H, m Z, m q (µ)) + A(1) q (m H, m Z, M q ) M q is defined through the following replacements in A (1) q : h = h 2 h h 1 h + 1 z = z 2 z z 1 z + 1 Mq=m q(µ) Thomas Gehrmann, Sam Guns & Dominik Kara The rare decay H Zγ in perturbative QCD June 15, /20

39 Numerical results Analytic continuation from Euclidean to Minkowski region Region I: m 2 Z < m2 H < 4 m2 q top quark amplitude Region II: m 2 Z < 4 m2 q < m 2 H not needed Region III: 4 m 2 q < m 2 Z < m2 H bottom quark amplitude NLO decay width Γ (2) in renormalization schemes (a), (b) and (c) [ Γ (2,a) = [ Γ (2,b) = α s(µ) π α ( s(µ) π µ=m H = kev < 10 5 [ Γ (2,c) = α s(µ) π ( µ=m H = kev 3 o / oo ] kev µ=mh = kev 2 o / oo log m 2 t (µ) log µ 2 m 2 b(µ) µ 2 )] kev )] µ log m 2 t (µ) log µ 2 kev m 2 b(µ) Thomas Gehrmann, Sam Guns & Dominik Kara The rare decay H Zγ in perturbative QCD June 15, /20

40 Numerical results Analytic continuation from Euclidean to Minkowski region Region I: m 2 Z < m2 H < 4 m2 q top quark amplitude Region II: m 2 Z < 4 m2 q < m 2 H not needed Region III: 4 m 2 q < m 2 Z < m2 H bottom quark amplitude NLO decay width Γ (2) in renormalization schemes (a), (b) and (c) [ Γ (2,a) = [ Γ (2,b) = α s(µ) π α ( s(µ) π µ=m H = kev < 10 5 [ Γ (2,c) = α s(µ) π ( µ=m H = kev 3 o / oo ] kev µ=mh = kev 2 o / oo log m 2 t (µ) log µ 2 m 2 b(µ) µ 2 )] kev )] µ log m 2 t (µ) log µ 2 kev m 2 b(µ) Thomas Gehrmann, Sam Guns & Dominik Kara The rare decay H Zγ in perturbative QCD June 15, /20

41 Numerical results Partial width (a) (b) (c) Γ (1) WW Γ (1) Wt Γ (1) Wb Γ (1) tt Γ (1) tb Γ (1) bb Γ (1) Γ (2) Wt Γ (2) Wb Γ (2) tt Γ (2) tb Γ (2) bt Γ (2) bb Γ (2) Thomas Gehrmann, Sam Guns & Dominik Kara The rare decay H Zγ in perturbative QCD June 15, /20

42 Numerical results (a) (b) (c) 7.07 Γ (2) in kev o / oo o / oo µ = m H µ in GeV µ = 2m H Thomas Gehrmann, Sam Guns & Dominik Kara The rare decay H Zγ in perturbative QCD June 15, /20

43 Conclusions Renormalization OS scheme MS scheme hybrid scheme with OS mass and MS Yukawa coupling Numerical results Corrections in sub-per-cent range and consistent with each other Residual QCD uncertainty: 1.7 o / oo Checks Confirmation of previously available numerical OS result [Spira, Djouadi, Zerwas (1992)] Agreement with independent calculation [Bonciani, Del Duca, Frellesvig, Henn, Moriello, Smirnov (2015)] Master Integrals Two-loop three-point integrals with two different external legs and one internal mass derived analytically using differential equations Important ingredient to two-loop amplitudes of H + j production Thomas Gehrmann, Sam Guns & Dominik Kara The rare decay H Zγ in perturbative QCD June 15, /20

44 Conclusions Renormalization OS scheme MS scheme hybrid scheme with OS mass and MS Yukawa coupling Numerical results Corrections in sub-per-cent range and consistent with each other Residual QCD uncertainty: 1.7 o / oo Checks Confirmation of previously available numerical OS result [Spira, Djouadi, Zerwas (1992)] Agreement with independent calculation [Bonciani, Del Duca, Frellesvig, Henn, Moriello, Smirnov (2015)] Master Integrals Two-loop three-point integrals with two different external legs and one internal mass derived analytically using differential equations Important ingredient to two-loop amplitudes of H + j production Thomas Gehrmann, Sam Guns & Dominik Kara The rare decay H Zγ in perturbative QCD June 15, /20

45 Conclusions Renormalization OS scheme MS scheme hybrid scheme with OS mass and MS Yukawa coupling Numerical results Corrections in sub-per-cent range and consistent with each other Residual QCD uncertainty: 1.7 o / oo Checks Confirmation of previously available numerical OS result [Spira, Djouadi, Zerwas (1992)] Agreement with independent calculation [Bonciani, Del Duca, Frellesvig, Henn, Moriello, Smirnov (2015)] Master Integrals Two-loop three-point integrals with two different external legs and one internal mass derived analytically using differential equations Important ingredient to two-loop amplitudes of H + j production Thomas Gehrmann, Sam Guns & Dominik Kara The rare decay H Zγ in perturbative QCD June 15, /20

46 Conclusions Renormalization OS scheme MS scheme hybrid scheme with OS mass and MS Yukawa coupling Numerical results Corrections in sub-per-cent range and consistent with each other Residual QCD uncertainty: 1.7 o / oo Checks Confirmation of previously available numerical OS result [Spira, Djouadi, Zerwas (1992)] Agreement with independent calculation [Bonciani, Del Duca, Frellesvig, Henn, Moriello, Smirnov (2015)] Master Integrals Two-loop three-point integrals with two different external legs and one internal mass derived analytically using differential equations Important ingredient to two-loop amplitudes of H + j production Thomas Gehrmann, Sam Guns & Dominik Kara The rare decay H Zγ in perturbative QCD June 15, /20

Status of Higgs plus one jet at NNLO

Status of Higgs plus one jet at NNLO Status of Higgs plus one jet at NNLO Matthieu Jaquier Physics Institute University of Zürich Radcor-Loopfest UCLA 7 th June 205 Based on work with X. Chen, T. Gehrmann and E.W.N. Glover Matthieu Jaquier

More information

Non-planar two-loop Feynman integrals contributing to Higgs plus jet production

Non-planar two-loop Feynman integrals contributing to Higgs plus jet production Non-planar two-loop Feynman integrals contributing to Higgs plus jet production Institute for Theoretical Particle Physics (TTP), Karlsruhe Institute of Technology Engesserstraße 7, D-76128 Karlsruhe,

More information

Multiloop scattering amplitudes in the LHC Era

Multiloop scattering amplitudes in the LHC Era Multiloop scattering amplitudes in the LHC Era Francesco Moriello Based on arxiv:1609.06685 In collaboration with: R. Bonciani, V. Del Duca, H. Frellesvig, J.M. Henn, V. Smirnov October 26, 2016 Outline

More information

Precision Higgs physics. at hadron colliders

Precision Higgs physics. at hadron colliders Precision Higgs physics at hadron colliders Claude Duhr in collaboration with C. Anastasiou, F. Dulat, E. Furlan, T. Gehrmann, F. Herzog, A. Lazopoulos, B. Mistlberger RadCor/LoopFest 2015 UCLA, 16/06/2015

More information

Effects of Beyond Standard Model physics in Effective Field Theory approach on Higgs' pt spectrum

Effects of Beyond Standard Model physics in Effective Field Theory approach on Higgs' pt spectrum PhD Seminar 2015, PSI Effects of Beyond Standard Model physics in Effective Field Theory approach on Higgs' pt spectrum Agnieszka Ilnicka in collaboration with: M. Grazzini M. Spira M. Wiesemann Motivation

More information

NNLO Phenomenology Using Jettiness Subtraction

NNLO Phenomenology Using Jettiness Subtraction NNLO Phenomenology Using Jettiness Subtraction Radja Boughezal Radcor/Loopfest 2015, June 15-19, UCLA 1 Outline Motivation IR subtraction schemes at NNLO (local and non-local subtractions) The N-jettiness

More information

H + jet(s) (fixed order)

H + jet(s) (fixed order) Mass effects in gg H + jet(s) (fixed order) Gudrun Heinrich Max Planck Institute for Physics, Munich Higgs+jets workshop, IPPP Durham December 9, 2014 Higgs Effective Theory (HEFT) m t L eff = c 1 G µν,a

More information

Simplified differential equations approach for NNLO calculations

Simplified differential equations approach for NNLO calculations Simplified differential equations approach for NNLO calculations Costas. G. Papadopoulos INPP, NCSR Demokritos, Athens UCLA, June 19, 2015 Costas. G. Papadopoulos NNLO Radcor-Loopfest, LA, 2015 1 / 39

More information

Physics at LHC. lecture seven. Sven-Olaf Moch. DESY, Zeuthen. in collaboration with Martin zur Nedden

Physics at LHC. lecture seven. Sven-Olaf Moch. DESY, Zeuthen. in collaboration with Martin zur Nedden Physics at LHC lecture seven Sven-Olaf Moch Sven-Olaf.Moch@desy.de DESY, Zeuthen in collaboration with Martin zur Nedden Humboldt-Universität, December 03, 2007, Berlin Sven-Olaf Moch Physics at LHC p.1

More information

SM Predictions for Gluon- Fusion Higgs Production

SM Predictions for Gluon- Fusion Higgs Production SM Predictions for Gluon- Fusion Higgs Production Massimiliano Grazzini, Frank Petriello, Jianming Qian, Fabian Stoeckli Higgs Workshop, CERN, June 5, 2010 Outline Introduction: status of ggh Three updates:

More information

Simplified differential equations approach for the calculation of multi-loop integrals

Simplified differential equations approach for the calculation of multi-loop integrals Simplified differential equations approach for the calculation of multi-loop integrals Chris Wever (N.C.S.R. Demokritos) 1 C. Papadopoulos [arxiv: 1401.6057 [hep-ph]] C. Papadopoulos, D. Tommasini, C.

More information

The forward-backward asymmetry in electron-positron annihilation. Stefan Weinzierl

The forward-backward asymmetry in electron-positron annihilation. Stefan Weinzierl The forward-backward asymmetry in electron-positron annihilation Stefan Weinzierl Universität Mainz Introduction: I.: II: III: IV.: Electroweak precision physics Higher order corrections Infrared-safe

More information

The Higgs pt distribution

The Higgs pt distribution The Higgs pt distribution Chris Wever (TUM) In collaboration with: F. Caola, K. Kudashkin, J. Lindert, K. Melnikov, P. Monni, L. Tancredi GGI: Amplitudes in the LHC era, Florence 16 Oktober, 2018 Outline

More information

Higgs Production at LHC

Higgs Production at LHC Higgs Production at LHC Vittorio Del Duca INFN Torino Havana 3 April 2006 1 In proton collisions at 14 TeV, and for the Higgs is produced mostly via M H > 100 GeV gluon fusion gg H largest rate for all

More information

From Tensor Integral to IBP

From Tensor Integral to IBP From Tensor Integral to IBP Mohammad Assadsolimani, in collaboration with P. Kant, B. Tausk and P. Uwer 11. Sep. 2012 Mohammad Assadsolimani From Tensor Integral to IBP 1 Contents Motivation NNLO Tensor

More information

ggf Theory Overview For Highest Precision

ggf Theory Overview For Highest Precision ggf Theory Overview For Highest Precision Lumley Castle Franz Herzog Nikhef LHC Higgs Production in the Standard Model 2 LHC Higgs Data 3 Theoretical Formalism To compute cross sections we use the Factorisation

More information

THE STRONG COUPLING AND LHC CROSS SECTIONS

THE STRONG COUPLING AND LHC CROSS SECTIONS THE STRONG COUPLING AND LHC CROSS SECTIONS Frank Petriello Argonne National Laboratory and Northwestern University Workshop on Precision Measurements of α S February 11, 2011 Outline Focus of talk: customer

More information

New physics effects in Higgs cross sections

New physics effects in Higgs cross sections New physics effects in Higgs cross sections Robert Harlander Bergische Universität Wuppertal ERC Workshop Nov 2014, Mainz supported by rescaled couplings new Higgs bosons BSM particle effects new processes

More information

Multiloop integrals in dimensional regularization made simple

Multiloop integrals in dimensional regularization made simple Multiloop integrals in dimensional regularization made simple Johannes M. Henn Institute for Advanced Study based on PRL 110 (2013) [arxiv:1304.1806], JHEP 1307 (2013) 128 [arxiv:1306.2799] with A. V.

More information

Fully exclusive NNLO QCD computations

Fully exclusive NNLO QCD computations Fully exclusive NNLO QCD computations Kirill Melnikov University of Hawaii Loopfest V, SLAC, June 2006 Fully exclusive NNLO QCD computations p. 1/20 Outline Introduction Technology Higgs boson production

More information

Two-loop QCD Corrections to the Heavy Quark Form Factors p.1

Two-loop QCD Corrections to the Heavy Quark Form Factors p.1 Two-loop QCD Corrections to the Heavy Quark Form Factors Thomas Gehrmann Universität Zürich UNIVERSITAS TURICENSIS MDCCC XXXIII Snowmass Linear Collider Worksho005 Two-loop QCD Corrections to the Heavy

More information

Precision Calculations for Collider Physics

Precision Calculations for Collider Physics SFB Arbeitstreffen März 2005 Precision Calculations for Collider Physics Michael Krämer (RWTH Aachen) Radiative corrections to Higgs and gauge boson production Combining NLO calculations with parton showers

More information

Systems of differential equations for Feynman Integrals; Schouten identities and canonical bases.

Systems of differential equations for Feynman Integrals; Schouten identities and canonical bases. Systems of differential equations for Feynman Integrals; Schouten identities and canonical bases. Lorenzo Tancredi TTP, KIT - Karlsruhe Bologna, 18 Novembre 2014 Based on collaboration with Thomas Gehrmann,

More information

Multi-loop calculations: numerical methods and applications

Multi-loop calculations: numerical methods and applications Journal of Physics: Conference Series PAPER OPEN ACCESS Multi-loop calculations: numerical methods and applications To cite this article: S. Borowka et al 217 J. Phys.: Conf. Ser. 92 123 View the article

More information

Top mass effects in gluon fusion processes

Top mass effects in gluon fusion processes Top mass effects in gluon fusion processes Thomas Rauh AEC, University of Bern Ramona Gröber, Andreas Maier, TR arxiv:1709.07799 JHEP 1803 (2018) 020 Outline 2 Gluon fusion processes Validity of approximations

More information

arxiv:hep-ph/ v1 25 Sep 2002

arxiv:hep-ph/ v1 25 Sep 2002 hep-ph/0209302 Direct Higgs production at hadron colliders arxiv:hep-ph/0209302v1 25 Sep 2002 Massimiliano Grazzini (a,b) (a) Dipartimento di Fisica, Università di Firenze, I-50019 Sesto Fiorentino, Florence,

More information

Threshold cross sections for Drell-Yan & Higgs productions in N 3 LO QCD

Threshold cross sections for Drell-Yan & Higgs productions in N 3 LO QCD Narayan Rana 20/10/2016 1/46 Threshold cross sections for Drell-Yan & Higgs productions in N 3 LO QCD Narayan Rana 20/10/2016 in collaboration with T. Ahmed, M. C. Kumar, M. Mahakhud, M. K. Mandal, P.

More information

N-jettiness as a subtraction scheme for NNLO

N-jettiness as a subtraction scheme for NNLO N-jettiness as a subtraction scheme for NNLO! Xiaohui Liu based on:! arxiv:1504.02131, Boughezal, Focke, XL and Petriello arxiv:1505.03893, Boughezal, Focke, Giele, XL and Petriello arxiv:1504.02540, Boughezal,

More information

e + e 3j at NNLO: Results for all QED-type Colour Factors p.1

e + e 3j at NNLO: Results for all QED-type Colour Factors p.1 e + e 3j at NNLO: Results for all QED-type Colour Factors Thomas Gehrmann Universität ürich UNIVERSITAS TURICENSIS MDCCC XXXIII in collaboration with A. Gehrmann De Ridder, E.W.N. Glover, G. Heinrich Loopfest

More information

PSEUDO SCALAR FORM FACTORS AT 3-LOOP QCD. Taushif Ahmed Institute of Mathematical Sciences, India March 22, 2016

PSEUDO SCALAR FORM FACTORS AT 3-LOOP QCD. Taushif Ahmed Institute of Mathematical Sciences, India March 22, 2016 PSEUDO SCALAR FORM FACTORS AT 3-LOOP QCD Taushif Ahmed Institute of Mathematical Sciences, India March, 016 PROLOGUE: SM & MSSM SM Complex scalar doublet (4 DOF) 3 DOF transform into longitudinal modes

More information

HIGGS BOSONS AT THE LHC

HIGGS BOSONS AT THE LHC IGGS BOSONS AT TE LC Dieter Zeppenfeld Universität Karlsruhe, Germany SUSY06 UC Irvine, June 12-17, 2006 Goals of iggs Physics SM Channels MSSM: /A and ± Coupling measurements QCD Corrections VV vertex

More information

The Pentabox Master Integrals with the Simplified Differential Equations approach

The Pentabox Master Integrals with the Simplified Differential Equations approach The Pentabox Master Integrals with the Simplified Differential Equations approach Costas G. Papadopoulos INPP, NCSR Demokritos Zurich, August 25, 2016 C.G.Papadopoulos (INPP) 5box QCD@LHC 2016 1 / 36 Introduction

More information

Higgs + Jet angular and p T distributions : MSSM versus SM

Higgs + Jet angular and p T distributions : MSSM versus SM Higgs + Jet angular and p T distributions : MSSM versus SM Oliver Brein ( Institute for Particle Physics Phenomenology, Durham, UK ) in collaboration with Wolfgang Hollik e-mail: oliver.brein@durham.ac.uk

More information

Higher Order QCD Lecture 2

Higher Order QCD Lecture 2 Higher Order QCD Lecture 2 Lance Dixon, SLAC SLAC Summer Institute The Next Frontier: Exploring with the LHC July 21, 2006 Lecture 2 Outline NLO NNLO L. Dixon, 7/21/06 Higher Order QCD: Lect. 2 2 What

More information

Towards improved predictions for electroweak vector boson pair production at the LHC

Towards improved predictions for electroweak vector boson pair production at the LHC Towards improved predictions for electroweak vector boson pair production at the LHC Kirill Melnikov TTP KIT Based on collaboration with M. Dowling, F. Caola, J. Henn, A. Smirnov, V. Smirnov Outline 1)

More information

Numerical multi-loop calculations: tools and applications

Numerical multi-loop calculations: tools and applications Journal of Physics: Conference Series PAPER OPEN ACCESS Numerical multi-loop calculations: tools and applications To cite this article: S. Borowka et al 2016 J. Phys.: Conf. Ser. 762 012073 Related content

More information

NLO QCD corrections to Higgs boson pair production via gluon fusion

NLO QCD corrections to Higgs boson pair production via gluon fusion Wir schaffen Wissen heute für morgen NLO QCD corrections to Higgs boson pair production via gluon fusion Seraina Glaus Theory Group LTP, Paul Scherrer Institute & University Zurich In collaboration with

More information

gg! hh in the high energy limit

gg! hh in the high energy limit gg! hh in the high energy limit Go Mishima Karlsruhe Institute of Technology (KIT), TTP in collaboration with Matthias Steinhauser, Joshua Davies, David Wellmann work in progress gg! hh : previous works

More information

Higgs-charm Couplings

Higgs-charm Couplings Higgs-charm Couplings Wai Kin Lai TUM December 21, 2017 MLL Colloquium, TUM OUTLINE Higgs physics at the LHC OUTLINE Higgs physics at the LHC H J/ψ + γ as a key channel to measure Hc c coupling CHRISTMAS

More information

Threshold Corrections To DY and Higgs at N 3 LO QCD

Threshold Corrections To DY and Higgs at N 3 LO QCD Threshold Corrections To DY and Higgs at N 3 LO QCD Taushif Ahmed Institute of Mathematical Sciences, India April 12, 2016 Threshold Corrections To DY and Higgs at N 3 LO QCD Bergische Universitat Wuppertal

More information

One-Mass Two-Loop Master Integrals for Mixed

One-Mass Two-Loop Master Integrals for Mixed One-Mass Two-Loop Master Integrals for Mixed α s -Electroweak Drell-Yan Production work ongoing with Andreas von Manteuffel The PRISMA Cluster of Excellence and Institute of Physics Johannes Gutenberg

More information

The Pentabox Master Integrals with the Simplified Differential Equations approach

The Pentabox Master Integrals with the Simplified Differential Equations approach Prepared for submission to JHEP TTP15-042 The Pentabox Master Integrals with the Simplified Differential Equations approach Costas G. Papadopoulos ab Damiano Tommasini a and Christopher Wever ac a Institute

More information

arxiv: v1 [hep-ph] 27 Aug 2009

arxiv: v1 [hep-ph] 27 Aug 2009 arxiv:0908.3969v1 [hep-ph] 27 Au 2009 QCD-electroweak effects and a new prediction for His production in luon fusion process Institut für Theoretische Physik, Universität Zürich, Winterthurerstr. 190,

More information

δm W = 15 MeV δm top = 1 GeV

δm W = 15 MeV δm top = 1 GeV Precision SM physics at the LHC... what we hope to see (Bentvelsen, Grünewald) Repeat the electroweak fit changing the uncertainties δm W = 15 MeV δm top = 1 GeV same central values Michael Krämer Page

More information

Higher-order QCD corrections to the Higgs-boson qt distribution

Higher-order QCD corrections to the Higgs-boson qt distribution Higher-order QCD corrections to the Higgs-boson qt distribution Jun Gao Argonne National Laboratory June 5, 05 In collaboration with Radja Boughezal and Frank Petriello Radcor/Loopfest, UCLA 05 qq Motivation

More information

Fiducial cross sections for Higgs boson production in association with a jet at next-to-next-to-leading order in QCD. Abstract

Fiducial cross sections for Higgs boson production in association with a jet at next-to-next-to-leading order in QCD. Abstract CERN-PH-TH-2015-192 TTP15-030 Fiducial cross sections for Higgs boson production in association with a jet at next-to-next-to-leading order in QCD Fabrizio Caola, 1, Kirill Melnikov, 2, and Markus Schulze

More information

Evaluating multiloop Feynman integrals by Mellin-Barnes representation

Evaluating multiloop Feynman integrals by Mellin-Barnes representation April 7, 004 Loops&Legs 04 Evaluating multiloop Feynman integrals by Mellin-Barnes representation V.A. Smirnov Nuclear Physics Institute of Moscow State University Mellin-Barnes representation as a tool

More information

NNLO antenna subtraction with two hadronic initial states

NNLO antenna subtraction with two hadronic initial states NNLO antenna subtraction with two hadronic initial states Institut für Theoretische Physik, Universität Zürich, Winterthurerstr. 190, 8057 Zürich, Switzerland E-mail: radja@physik.uzh.ch Aude Gehrmann-De

More information

Numerical Evaluation of Multi-loop Integrals

Numerical Evaluation of Multi-loop Integrals Numerical Evaluation of Multi-loop Integrals Sophia Borowka MPI for Physics, Munich In collaboration with: J. Carter and G. Heinrich Based on arxiv:124.4152 [hep-ph] http://secdec.hepforge.org DESY-HU

More information

Heavy Quark Production at High Energies

Heavy Quark Production at High Energies Heavy Quark Production at High Energies Andrea Ferroglia Johannes Gutenberg Universität Mainz OpenCharm@PANDA Mainz, 19 November 29 Outline 1 Heavy Quarks, High Energies, and Perturbative QCD 2 Heavy Quark

More information

Precision calculations for collider processes Gudrun Heinrich Max Planck Institute for Physics, Munich

Precision calculations for collider processes Gudrun Heinrich Max Planck Institute for Physics, Munich Precision calculations for collider processes Gudrun Heinrich Max Planck Institute for Physics, Munich Scientific Board Meeting July 27, 2016 Overview tools FeynArts/FormCalc, Cuba GoSam SecDec NLO phenomenology

More information

Higgs boson production at the LHC: NNLO partonic cross sections through order ǫ and convolutions with splitting functions to N 3 LO

Higgs boson production at the LHC: NNLO partonic cross sections through order ǫ and convolutions with splitting functions to N 3 LO SFB/CPP-12-93 TTP12-45 LPN12-127 Higgs boson production at the LHC: NNLO partonic cross sections through order ǫ and convolutions with splitting functions to N 3 LO Maik Höschele, Jens Hoff, Aleey Pak,

More information

PoS(DIS2017)295. Hadronic Higgs boson decay at order α 4 s and α 5 s

PoS(DIS2017)295. Hadronic Higgs boson decay at order α 4 s and α 5 s Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology (KIT) 7618 Karlsruhe, Germany E-mail: joshua.davies@kit.edu Matthias Steinhauser Institut für Theoretische Teilchenphysik, Karlsruhe

More information

Cross sections for SM Higgs boson production

Cross sections for SM Higgs boson production Cross sections for SM Higgs boson production Massimiliano Grazzini (INFN & ETH Zurich) Higgs MiniWorkshop, Torino, november 24, 2009 Outline Introduction Total cross section: - The NNLL+NNLO calculation

More information

Recent theoretical issues in Higgs production

Recent theoretical issues in Higgs production Recent theoretical issues in Higgs production Frank Petriello MCTP Spring Symposium on Higgs Physics April 16, 2012 The Higgs search from LEP to the LHC In early 2000: MH

More information

Summary. Keith Ellis Fermilab

Summary. Keith Ellis Fermilab Summary Keith Ellis Fermilab A world created with us in mind The most significant result of Run I of the LHC is the discovery of the Higgs boson in 2012 Higgs boson (produced predominantly by gluon fusion)

More information

Potential Discoveries at the Large Hadron Collider. Chris Quigg

Potential Discoveries at the Large Hadron Collider. Chris Quigg Potential Discoveries at the Large Hadron Collider Chris Quigg Fermilab quigg@fnal.gov XXIII Taiwan Spring School Tainan 31 March - 3 April 2010 Electroweak theory successes Theoretical Physics Department,

More information

arxiv: v2 [hep-ph] 20 Jul 2014

arxiv: v2 [hep-ph] 20 Jul 2014 arxiv:407.67v [hep-ph] 0 Jul 04 Mass-corrections to double-higgs production & TopoID Jonathan Grigo and Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology (KIT) E-mail: jonathan.grigo@kit.edu,

More information

NLO for Higgs signals

NLO for Higgs signals NLO for Higgs signals Gudrun Heinrich Max Planck Institute for Physics, Munich P.Meridiani, EPS 2017 P.Meridiani, EPS 2017 we need to be sure about the systematic uncertainties to see something like this

More information

Threshold Corrections To DY and Higgs at N 3 LO QCD

Threshold Corrections To DY and Higgs at N 3 LO QCD Threshold Corrections To DY and Higgs at N 3 LO QCD Taushif Ahmed Institute of Mathematical Sciences, India July 2, 2015 Threshold Corrections To DY and Higgs at N 3 LO QCD INFN Sezione Di Torino 1 Prologue

More information

The package TopoID and its applications to Higgs physics

The package TopoID and its applications to Higgs physics The package TopoID and its applications to Higgs physics Jens Hoff (DESY, KIT) Theory Seminar, University of Zurich 3rd of November, 2015 1 TopoID Polynomial ordering Topology classification Relations

More information

HIGGS + 2 JET PRODUCTION AT THE LHC

HIGGS + 2 JET PRODUCTION AT THE LHC IGGS + 2 JET PRODUCTION AT TE LC Dieter Zeppenfeld Universität Karlsruhe, Germany Seminar at KITP, Santa Barbara, March 13, 2008 LC goals Vector boson fusion Measurement of iggs couplings jj production

More information

Two-loop light fermion contribution to Higgs production and decays

Two-loop light fermion contribution to Higgs production and decays Physics Letters B 595 24) 432 441 www.elsevier.com/locate/physletb Two-loop light fermion contribution to Higgs production and decays U. Aglietti a, R. Bonciani b,1, G. Degrassi c, A. Vicini d a Dipartimento

More information

The Higgs boson discovery. Kern-und Teilchenphysik II Prof. Nicola Serra Dr. Annapaola de Cosa Dr. Marcin Chrzaszcz

The Higgs boson discovery. Kern-und Teilchenphysik II Prof. Nicola Serra Dr. Annapaola de Cosa Dr. Marcin Chrzaszcz The Higgs boson discovery Kern-und Teilchenphysik II Prof. Nicola Serra Dr. Annapaola de Cosa Dr. Marcin Chrzaszcz Higgs production at the LHC g H VBF (Vector Boson Fusion) g gg fusion q 2 W/Z q 0 2 H

More information

Four-fermion production near the W-pair production threshold. Giulia Zanderighi, Theory Division, CERN ILC Physics in Florence September

Four-fermion production near the W-pair production threshold. Giulia Zanderighi, Theory Division, CERN ILC Physics in Florence September Four-fermion production near the W-pair production threshold Giulia Zanderighi, Theory Division, CERN ILC Physics in Florence September 12-14 2007 International Linear Collider we all believe that no matter

More information

arxiv: v2 [hep-ph] 17 Jan 2019

arxiv: v2 [hep-ph] 17 Jan 2019 Preprint typeset in JHEP style - HYPER VERSION TTP19-4 P3H-19-1 arxiv:191.513v [hep-ph] 17 Jan 19 Integrated triple-collinear counter-terms for the nested soft-collinear subtraction scheme Maximilian Delto

More information

High precision study for boosted Higgs at LHC

High precision study for boosted Higgs at LHC High precision study for boosted Higgs at LHC Second China High Precision HEP Workshop Xuan Chen Centre for High Energy Physics Peking University Beijing, June 15, 2016 Xuan Chen (CHEP, Peking University)

More information

BACKGROUND EXPERIENCE AND THEORY INNOVATION FOR LHC

BACKGROUND EXPERIENCE AND THEORY INNOVATION FOR LHC BACKGROUND EXPERIENCE AND THEORY INNOVATION FOR LHC Babis Anastasiou ETH Zurich PADOVA 20-01-2010 A theory revolution Deeper understanding of the structure of gauge theories Sharp theoretical predictions

More information

Higgs Boson Phenomenology Lecture I

Higgs Boson Phenomenology Lecture I iggs Boson Phenomenology Lecture I Laura Reina TASI 2011, CU-Boulder, June 2011 Outline of Lecture I Understanding the Electroweak Symmetry Breaking as a first step towards a more fundamental theory of

More information

Differential Equations for Feynman Integrals

Differential Equations for Feynman Integrals for Feynman Integrals Ulrich Schubert Max-Planck-Institut für Physik Föhringer Ring 6, München January 18, 2015 based on work with M. Argeri, S. Di Vita, P. Mastrolia, E. Mirabella, J. Schlenk, L. Tancredi,

More information

NNLO antenna subtraction with one hadronic initial state

NNLO antenna subtraction with one hadronic initial state antenna subtraction with one hadronic initial state Alejandro Daleo, Aude Gehrmann-De Ridder Institute for Theoretical Physics, ETH Zürich E-mail: adaleo@phys.ethz.ch, gehra@phys.ethz.ch Thomas Gehrmann,

More information

W + W + jet compact analytic results

W + W + jet compact analytic results W + W + jet compact analytic results Tania Robens. based on. J. Campbell, D. Miller, TR (arxiv:1506.xxxxx) IKTP, TU Dresden 2015 Radcor-Loopfest UCLA, Los Angeles, California WW + jet: Motivation from

More information

THE SEARCH FOR THE HIGGS BOSON AT THE LHC

THE SEARCH FOR THE HIGGS BOSON AT THE LHC THE SEARCH FOR THE HIGGS BOSON AT THE LHC Massimiliano Grazzini (INFN, Firenze) Padova, march 22 2007 Outline Introduction Higgs search at the LHC Main production channels Theoretical predictions Higgs

More information

Vector boson pair production at NNLO

Vector boson pair production at NNLO Vector boson pair production at NNLO Massimiliano Grazzini* University of Zurich La Thuile 2015, march 5 2015! *On leave of absence from INFN, Sezione di Firenze Outline Introduction pp Vγ+X at NNLO The

More information

Wei-Ming Yao(LBNL) For CEPC Physics and Simulation Group

Wei-Ming Yao(LBNL) For CEPC Physics and Simulation Group Search for Exotic and Rare Higgs Decays at CEPC Wei-Ming Yao(LBNL) For CEPC Physics and Simulation Group Outline Introduction Motivation Higgs Exotic Decays H Invisible H bb χ0χ0 H bbbb H μτ, eτ Higgs

More information

SPLITTING FUNCTIONS AND FEYNMAN INTEGRALS

SPLITTING FUNCTIONS AND FEYNMAN INTEGRALS SPLITTING FUNCTIONS AND FEYNMAN INTEGRALS Germán F. R. Sborlini Departamento de Física, FCEyN, UBA (Argentina) 10/12/2012 - IFIC CONTENT Introduction Collinear limits Splitting functions Computing splitting

More information

W + W Production with Many Jets at the LHC

W + W Production with Many Jets at the LHC W + W Production with Many Jets at the LHC NLO QCD with BlackHat+Sherpa Fernando Febres Cordero Department of Physics, University of Freiburg Radcor-Loopfest 2015, UCLA June 2015 With Philipp Hofmann and

More information

Two-Loop Corrections to Top-Quark Pair Production

Two-Loop Corrections to Top-Quark Pair Production Two-Loop Corrections to Top-Quark Pair Production Andrea Ferroglia Johannes Gutenberg Universität Mainz Padova, June 2, 29 Outline 1 Top-Quark Pair Production at Hadron Colliders 2 NNLO Virtual Corrections

More information

Single Higgs production at LHC as a probe for an anomalous Higgs self coupling

Single Higgs production at LHC as a probe for an anomalous Higgs self coupling Single Higgs production at LHC as a probe for an anomalous Higgs self coupling Brookhaven National Laboratory E-mail: pgiardino@bnl.gov We explore the possibility of probing the trilinear Higgs self coupling

More information

Towards Jet Cross Sections at NNLO

Towards Jet Cross Sections at NNLO Towards Jet Cross Sections at HP.4, September, MPI Munich Expectations at LHC Large production rates for Standard Model processes single jet inclusive and differential di-jet cross section will be measured

More information

The study of the extended Higgs boson sector within 2HDM model

The study of the extended Higgs boson sector within 2HDM model The study of the extended Higgs boson sector within 2HDM model arxiv:1703.09776v1 [hep-ph] 24 Mar 2017 T.V. Obikhod, E.A. Petrenko Institute for Nuclear Research, National Academy of Science of Ukraine

More information

Higgs Coupling Measurements!

Higgs Coupling Measurements! Status, prospects, and interplay with searches for physics BSM Seminar University of California - Irvine April 23rd, 2014 Introduction Fantastic progress since discovery July 2012 Observation in three

More information

THE TRANSVERSE MOMENTUM DISTRIBUTION OF THE HIGGS BOSON AT THE LHC

THE TRANSVERSE MOMENTUM DISTRIBUTION OF THE HIGGS BOSON AT THE LHC THE TRANSVERSE MOMENTUM DISTRIBUTION OF THE HIGGS BOSON AT THE LHC Massimiliano Grazzini (INFN, Firenze) Les Houches, may 2005 Outline Introduction The Higgs spectrum The program HqT NLL+LO and NNLL+NLO

More information

Model independent determination of the top quark Yukawa coupling from LHC and ILC data

Model independent determination of the top quark Yukawa coupling from LHC and ILC data Model independent determination of the top quark Yukawa coupling from LHC and ILC data Klaus Desch, Hamburg University Markus Schumacher, Bonn University Motivation and Idea LHC rate measurement ILC branching

More information

HIGGS&AT&HADRON&COLLIDER

HIGGS&AT&HADRON&COLLIDER IGGS&AT&ADRON&COLLIDER iggs&proper,es&and&precision&tes& Lecure&1& Shahram&Rahalou Fisica&delle&Par,celle&Elemenari,&Anno&Accademico&014815 hp://www.roma1.infn.i/people/rahalou/paricelle/ WY&AND&WIC&BOSON?

More information

Numerical Evaluation of Multi-loop Integrals

Numerical Evaluation of Multi-loop Integrals Numerical Evaluation of Multi-loop Integrals Sophia Borowka MPI for Physics, Munich In collaboration with G. Heinrich Based on arxiv:124.4152 [hep-ph] HP 8 :Workshop on High Precision for Hard Processes,

More information

Higgs Property Measurement with ATLAS

Higgs Property Measurement with ATLAS Higgs Property Measurement with ATLAS Haijun Yang (on behalf of the ATLAS) Shanghai Jiao Tong University Hadron Collider Physics Symposium HCP 2012, Kyoto University, Japan November 12-16, 2012 Observation

More information

Schematic Project of PhD Thesis: Two-Loop QCD Corrections with the Differential Equations Method

Schematic Project of PhD Thesis: Two-Loop QCD Corrections with the Differential Equations Method Schematic Project of PhD Thesis: Two-Loop QCD Corrections with the Differential Equations Method Matteo Becchetti Supervisor Roberto Bonciani University of Rome La Sapienza 24/01/2017 1 The subject of

More information

arxiv: v2 [hep-th] 7 Jul 2016

arxiv: v2 [hep-th] 7 Jul 2016 Integration-by-parts reductions from unitarity cuts and algebraic geometry arxiv:1606.09447v [hep-th] 7 Jul 016 Institute for Theoretical Physics, ETH Zürich, 8093 Zürich, Switzerland E-mail: Kasper.Larsen@phys.ethz.ch

More information

Search for Higgs in H WW lνlν

Search for Higgs in H WW lνlν Search for Higgs in H WW lνlν John Alison University of Pennsylvania on behalf of the ATLAS Collaboration Higgs Physics Standard Model Remarkably Accurate Description Data. One Remaining Piece: Higgs Boson.

More information

Two-loop corrections to t t production in the gluon channel. Matteo Capozi Sapienza University of Rome

Two-loop corrections to t t production in the gluon channel. Matteo Capozi Sapienza University of Rome Two-loop corrections to t t production in the gluon channel Matteo Capozi Sapienza University of Rome November 7, 2016 Top quark With a mass of m t = 172.44 ± 0.13(stat) ± 0.47(syst)GeV, the top quark

More information

Photon Coupling with Matter, u R

Photon Coupling with Matter, u R 1 / 16 Photon Coupling with Matter, u R Consider the up quark. We know that the u R has electric charge 2 3 e (where e is the proton charge), and that the photon A is a linear combination of the B and

More information

SM/BSM physics with GoSam

SM/BSM physics with GoSam Physik-Institut SM/BSM physics with GoSam Nicolas Greiner On behalf of the GoSam collaboration Monte Carlo Tools for Physics Beyond the Standard Model -- 20-24.7.2016 Beijing Outline q Very brief introduction

More information

Precision Measurements in Electron-Positron Annihilation: Theory and Experiment

Precision Measurements in Electron-Positron Annihilation: Theory and Experiment Precision Measurements in Electron-Positron Annihilation: Theory and Experiment Konstantin Chetyrkin and Institut für Theoretische Teilchenphysik, KIT, 76131 Karlsruhe E-mail: Johann.Kuehn@KIT.edu Theory

More information

Higgs theory. Achilleas Lazopoulos (ETH Zurich) ATLAS HSG2 meeting Athens, 7 Sep Friday, December 30, 11

Higgs theory. Achilleas Lazopoulos (ETH Zurich) ATLAS HSG2 meeting Athens, 7 Sep Friday, December 30, 11 Higgs theory Achilleas Lazopoulos (ETH Zurich) ATLAS HSG2 meeting Athens, 7 Sep. 2011 Why is Higgs production different In the dominant channel, gluon fusion, it starts already at second order in as, so

More information

Antenna Subtraction at NNLO

Antenna Subtraction at NNLO Antenna Subtraction at NNLO Aude Gehrmann-De Ridder ETH Zürich in collaboration with T. Gehrmann, E.W.N. Glover Loopfest IV Snowmass 2005 Antenna Subtraction at NNLO p.1 Outline Jet observables Jets in

More information

Searches for dark matter at CMS and ATLAS

Searches for dark matter at CMS and ATLAS Searches for dark matter at CMS and ATLAS K. Bierwagen Johannes Gutenberg University Mainz On behalf of the ATLAS and CMS Collaboration March 20, 2018 Introduction Astrophysical observations point to the

More information

MadGolem: Automated NLO predictions for SUSY and beyond

MadGolem: Automated NLO predictions for SUSY and beyond David López-Val D. Gonçalves Netto (MPI, Munich), T. Plehn (Heidelberg U.), I. Wigmore (Edinburgh U.), K. Mawatari (Vrije U.) together with ITP - Universität Heidelberg SUSY 2013, Trieste (Italy) - August

More information

Higgs production at the Tevatron and LHC

Higgs production at the Tevatron and LHC at the Tevatron and LHC Dipartimento di Fisica Teorica, Università di Torino, Italy INFN, Sezione di Torino, Italy E-mail: giampiero@to.infn.it Status of the art in the calculation of Higgs cross sections

More information

Top-Antitop Production at Hadron Colliders

Top-Antitop Production at Hadron Colliders Top-Antitop Production at Hadron Colliders Roberto BONCIANI Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier/CNRS-INP3/INPG, F-3806 Grenoble, France HP.3rd GGI-Florence,

More information