Differential Equations for Feynman Integrals

Size: px
Start display at page:

Download "Differential Equations for Feynman Integrals"

Transcription

1 for Feynman Integrals Ulrich Schubert Max-Planck-Institut für Physik Föhringer Ring 6, München January 18, 2015 based on work with M. Argeri, S. Di Vita, P. Mastrolia, E. Mirabella, J. Schlenk, L. Tancredi, V. Yundin arxiv: , arxiv: Ulrich Schubert for Feynman Integrals 1 / 45

2 Table of Contents Introduction 1 Introduction 2 3 massive QED vertex at two-loop 2 2 non-planar massless box Higgs+Jet at two-loop Higgs+Jet at three-loop 4 Ulrich Schubert for Feynman Integrals 2 / 45

3 Three Steps of a modern multi-loop and -leg calculation 1) Find integral basis for the process 2) Determine coefficients of the basis elements 3) Calculate elements (integrals) of the basis Ulrich Schubert for Feynman Integrals 3 / 45

4 Tools Integration-by-parts identities (IBP-Ids) Chetyrkin,Tkachov; Laporta Integrand Reduction Ossola, Papadopoulos, Pittau; Mastrolia, Ossola; Badger, Frellesvig, Zhang; Zhang; Mastrolia, Mirabella, Ossola, Peraro Generalized/Maximal Unitarity, Bern, Dixon, Dunbar, Kosower Kosower, Larsen; Caron-Huot; Carrasco, Johansson; Zhang, Kotikov;Remiddi; Gehrmann, Remiddi; Henn;Papadopoulos Ulrich Schubert for Feynman Integrals 4 / 45

5 one-loop two-loop graphs only planar planar and non-planar integral basis known determined case by case integrals known only for certain cases IR poles cancellation between cancellation between twoone-loop and tree level and one-loop and tree level appearing functions logs and dilogs logs, polylogarithms, generalized polylogs, elliptic functions and more?? a lot more exploring has to be done Ulrich Schubert for Feynman Integrals 5 / 45

6 1 Introduction 2 3 massive QED vertex at two-loop 2 2 non-planar massless box Higgs+Jet at two-loop Higgs+Jet at three-loop 4 Ulrich Schubert for Feynman Integrals 6 / 45

7 Feynman integrals are functions of Mandelstam variables Internal and external masses Spacetime dimensions Facts Not all Feynman integrals are independent IBP-ids connect different Feynman integrals We can find an integral basis called master integrals Exploit this by Taking derivatives of the master integrals in respect to the kinematic invariants Reduce result back to master integrals Solve the obtained first order differential equation analytically Let s have a look at an easy example Ulrich Schubert for Feynman Integrals 7 / 45

8 The one-loop massless bubble Construct differential operator Apply derivative Reduce back to master integrals with IBP-ids Gives us the differential equation Ulrich Schubert for Feynman Integrals 8 / 45

9 First order differential equation x f (x, ɛ) = A(x, ɛ) f (x, ɛ) where ɛ is the dimensional regularization parameter D = 4 2ɛ. Properties of A(x, ɛ) Block triangular Rational in x and ɛ Satisfies integrability condition (for at least two invariants x and y) y A(x, ɛ) xa(y, ɛ) + [A(x, ɛ), A(y, ɛ)] = 0 Bottom-up Approach Solve each line in A(x, ɛ) bottom up Previously solved integrals will appear as inhomogenous parts of the next DEQ Henn Conjecture: We can find a basis such that x g(x, ɛ) = ɛã(x) g(x, ɛ) Makes integration simple But finding the basis is difficult Ulrich Schubert for Feynman Integrals 9 / 45

10 1 Introduction 2 3 massive QED vertex at two-loop 2 2 non-planar massless box Higgs+Jet at two-loop Higgs+Jet at three-loop 4 Ulrich Schubert for Feynman Integrals 10 / 45

11 Change of Basis g(x, ɛ) = B(x, ɛ) f (x, ɛ) Â(x, ɛ) = B 1 (x, ɛ)a(x, ɛ)b(x, ɛ) B 1 (x, ɛ) xb(x, ɛ) Reformulate the Problem Find a change of basis which brings us to the canonical form Solving a DEQ for B(x, ɛ) xb(x, ɛ) = A(x, ɛ)b(x, ɛ) ɛb(x, ɛ)â(x) Can be as hard as initial problem Assumption Linear DEQ A(x, ɛ) = A 0(x) + ɛa 1(x) We have to solve xb(x) = A 0(x)B(x) Can be done with Magnus Theorem Ageri, Di Vita, Mastrolia, Mirabella, Schlenk, Tancredi, U.S. Ulrich Schubert for Feynman Integrals 11 / 45

12 Magnus theorem Starting from a first order differential equation x f (x) = A(x) f (x) The solution is given by the Magnus exponential f (x) = e Ω[A](x,x 0 ) f (x0) e Ω[A](x) f (x0) Ω[A](x) = Ω 1[A](x) = Ω 2[A](x) = 1 2 x x 0 dτ 1A(τ 1) x x 0 dτ 1 τ1 x 0 dτ 2[A(τ 1), A(τ 2)],... Ω n[a](x) n=1 Connected to the Dyson Series ) f (x) = (1 + P n(x) f (x0), P n(x) = n=1 P 1(x) = Ω 1(x) P 2(x) = Ω 2(x) Ω2 1(x),... x τn 1 dτ 1... dτ n A(τ 1)A(τ 2)...A(τ n) x 0 x 0 Ulrich Schubert for Feynman Integrals 12 / 45

13 Finding the canonical form with Magnus From a linear DEQ A(x, ɛ) = A 0(x) + ɛa 1(x) Magnus Theorem provides a basis change to the canonical form B(x) = e Ω[A 0](x) g(x, ɛ) = B(x) f (x, ɛ) Reducing DEQ Lee (2014) DEQ is rational in x Mosers algorithm reduces all poles to simple poles (if possible) k S n(ɛ) A(x, ɛ) = with x n being constant x x n n=1 Referred to as Fuchsian form If Eigenvalues of S n are linear in ɛ with integer coefficients We can shift them to multiples of ɛ A similarity transformation ɛ S = T 1 (ɛ)s(ɛ)t (ɛ) gives us the canonical form Ulrich Schubert for Feynman Integrals 13 / 45

14 Example: massive QED Sunrise Three master integrals Dimensionless variable s (1 x)2 = m2 x Linear and Fuchsian DEQ x f (x) = A(x, ɛ) f (x) A(x, ɛ) = ɛ ɛ 1+6ɛ + 1+3ɛ + 1 2(1 x) 2(1+x) 1+x x 1 x 0 Let s apply Magnus and Lees algorithm 2ɛ x + 4ɛ 1 x 1 2ɛ 2(1 x) ɛ x 1 6ɛ 2(1+x) x 1 x Ulrich Schubert for Feynman Integrals 14 / 45

15 QED Sunrise with Magnus Introduction Split ɛ 0 -part into diagonal and off-diagonal part and transform with diagonal part first A 0(x) = D 0(x) + N 0(x), dx D B 1 = e 0 (x) = x 1 x 2 0 x (1 x) 2 Transformed DEQ Â(x) = B 1 1 A(x)B 1 B 1 1 xb 1 = ɛ x 0 3ɛ x 6ɛ 1+x 1 2ɛ (x 1) 2 2ɛ x 0 ɛ x Ulrich Schubert for Feynman Integrals 15 / 45

16 QED Sunrise with Magnus Introduction Transform with off-diagonal part  0(x) = ˆN 0(x), Transformed DEQ II dx ˆN B 2 = e 0 (x) = Ã(x) = B 1 2 Â(x)B 2 B 1 2 xb Ã(x) = ɛ x 0 g = B 1 2 B 1 1 f = 2ɛ + 5ɛ 1 x x 2ɛ x x ɛ 2ɛ 6ɛ + 3ɛ 1+x 1 x x 1+x Masters for canonical basis are given by x 0 (1 x)(x+1) x 0 0 2ɛ 2ɛ 1 x x x (x 1) 2 x f Ulrich Schubert for Feynman Integrals 16 / 45

17 QED Sunrise with Lee Introduction Focus only on 2x2 system of the Sunrise, since the rest of the system is already ɛ-factorized System is Fuchsian Shift all Eigenvalues to multiples of ɛ x 1 : { 1 2ɛ, 2 + 2ɛ} x 0 : {1 + ɛ, 1 + 2ɛ} x 1 : {0, 1 6ɛ} x : {1 + ɛ, 1 + 2ɛ} A balance transformation will shift one eigenvalue by +1 the other one by 1 B(P, x 1, x 2 x) = P + c x x2 x x 1 P, P = u(λ 1)v (λ 2), P = 1 P After four transformation we brought all Eigenvalues in the right form x 1 : { 2ɛ, 2ɛ} x 0 : {ɛ, 2ɛ} x 1 : {0, 6ɛ} x : {ɛ, 2ɛ} Ulrich Schubert for Feynman Integrals 17 / 45

18 QED Sunrise with Lee Introduction The last step is to find a similarity transformation which brings us to the canonical form For each pole matrix we solve A(x, ɛ) A(x, µ) T (ɛ, µ) = T (ɛ, µ) ɛ µ Finally we arrive at ( 5 x x g = ɛ x 1 x x 1+x 1 x 2 x 2 1 x 2 x Combining all transformation we find for our masters ( ) (1 x)(1+x) 1 x x x g = f Reminder: BMagnus = 0 (x 1)2 x ) g (1 x)(x+1) x x x (x 1) 2 x Ulrich Schubert for Feynman Integrals 18 / 45

19 1 Introduction 2 3 massive QED vertex at two-loop 2 2 non-planar massless box Higgs+Jet at two-loop Higgs+Jet at three-loop 4 Ulrich Schubert for Feynman Integrals 19 / 45

20 Solving DEQ in the matrix approach The canonical form xg(x, ɛ) = ɛã(x)g(x, ɛ) implies ( ) g(x, ɛ) = 1 + ɛ n P n(x) g(x 0, ɛ) P n(x) = n=1 x Ã(x) determines the types of functions which will appear If Ã(x) is Fuchsian τn 1 dτ 1... dτ n Ã(τ 1)Ã(τ2)...Ã(τn) x 0 x 0 Ã(x) = k n=1 S n x x n with x n being constant then g(x, ɛ) can be written in terms of Goncharov Polylogarithms Ulrich Schubert for Feynman Integrals 20 / 45

21 Goncharov Polylogarithm Introduction Goncharov Basic definition G(a 1; x) = G(a 1,..., a n; x) = x 0 x 0 dt t a 1 G( 0 n; x) = 1 n! logn (x) n is the weight of the Polylog Connections to other functions: dt t a 1 G(a 2,..., a n ; t) Logarithm: G(a 1,..., a 1; x) = 1 n! logn (1 x a 1 ) classical Polylog G( 0 n, 1; x) = Li n(x) Harmonic Polylogs (HPLs) Remiddi, Vermaseren G( a; x) = ( 1) p H( a, x) with a i { 1, 0, 1} Two-dimensional harmonic polylogarithms Gehrmann, Remiddi G( a; x) = ( 1) p H( a, x) with a i {0, 1, y, 1 y} Ulrich Schubert for Feynman Integrals 21 / 45

22 Properties Introduction Invariant under rescaling for k C G(k a; k x) = G( a; x) Shuffle relations G( a; x)g( b; x) = c a b G( c; x) where a b means taking every permutation of the elements in a and b such that the individual ordering of a and b is kept e.g. G(a 1; x)g(b 1, b 2; x) = G(a 1, b 1, b 2; x) + G(b 1, a 1, b 2; x) + G(b 1, b 2, a 1; x) Many more known/unknown relations Led to development of Symbol and Coproduct Goncharov, Spradlin, Vergu, Volovich; Duhr Ulrich Schubert for Feynman Integrals 22 / 45

23 1 Introduction 2 3 massive QED vertex at two-loop 2 2 non-planar massless box Higgs+Jet at two-loop Higgs+Jet at three-loop 4 Ulrich Schubert for Feynman Integrals 23 / 45

24 Recap: of the canonical DEQ ( ) g(x, ɛ) = 1 + ɛ n P n(x) g(x 0, ɛ) n=1 We can obtain g(x 0, ɛ) by Known limits Taking the limit x x 0 to a known function Fix the boundary constant by matching the solution to the known function lim p s 0 p 2 1 s = p 1 p 2 Pseudo-thresholds has physical and unphysical divergences Physical divergences correspond to particle thresholds Unphysical divergences are absent in the final result Demanding their absence gives relations between the boundary constants of the master integrals Leftover constants must be provided (usually elementary integrals) Ulrich Schubert for Feynman Integrals 24 / 45

25 massive QED vertex at two-loop 2 2 non-planar massless box Higgs+Jet at two-loop Higgs+Jet at three-loop 1 Introduction 2 3 massive QED vertex at two-loop 2 2 non-planar massless box Higgs+Jet at two-loop Higgs+Jet at three-loop 4 Ulrich Schubert for Feynman Integrals 25 / 45

26 massive QED vertex at two-loop massive QED vertex at two-loop 2 2 non-planar massless box Higgs+Jet at two-loop Higgs+Jet at three-loop (1) Two-loop QED vertices [Bonciani, Mastrolia and Remiddi 03] Bonciani, Mastrolia, Remiddi 17 MI s for all relevant topologies p1 p2 p1 k1 p2 k2 s (1 x)2 m2 = x The f s obey an -linear DE [ADVMMSST 14] p12 p12 p1 p12 f1 = 2 T1 f2 = 2 T2 f3 = 2 T3 f4 = 2 T4 f5 = 2 T5 T1 T2(s) p1 T3(s) p1 T4 p1 T5(s) f6 = 2 T6 f7 = 2 T7 f8 = 3 T8 f9 = 3 T9 f10 = 2 T10 f11 = 3 T11 f12 = 3 T12 f13 = 2 T13 f14 = 3 T14 f15 = 4 T15 p12 p2 p2 p2 p2 f16 = 4 T16 f17 = 4 T17 p1 T6(s) p1 T7 p1 T8(s) p1 T9(s) p1 T10(s) After getting rid of A 0, the g s obey a canonical DE p2 T11(s) p2 T12(s) p1 p2 T13(s) p1 p2 T14(s) p2 x g(, x) = Â1(x) g(, x) Â 1 (x) = M 1 x + M x + M 3 1 x [(k1 +k2) 2 ] p2 p2 M1 = 0 T16(s) T17(s C A M2 = C A M3 = C A S. Di Vita (MPI Munich) Magnus and Dyson Series for MI s LoopFest XIII (NYC) 11 / 17 Ulrich Schubert for Feynman Integrals 26 / 45

27 Introduction massive QED vertex at two-loop 2 2 non-planar massless box Higgs+Jet at two-loop Higgs+Jet at three-loop ( ) Bonciani, Remiddi, P.M. (2013) T AdVMMSST (2014) p1 M 2 = 1 2, M 1 = 5 ] [1 2 2 H(0,x), (1 x) M0 = 19 [ ] 2 + ζ(2) [ζ(2) 5H(0, x)+2h( 1, 0, x)] (1 x) + 2 [ ] 1 H(0, 0,x)+ (1 x) (1 x) 1 [ζ(2)h(0,x) (1 + x) +H(0, 0, 0,x)]. [ ] N 2 a N 1 a N0 a [ ] [ ] [ (p2 k1) ] +H(0, 0, 0,x)]. ( = [ x + 1 ], ( 16 x = 9 [ 2+x + 1 ] 1 [ 4+x 1 ] 1 H(0,x)+ 32 x 8 x (1 x) H(0,x), ( = ζ(2) [( ) ζ(2) x + 1 ] ζ(2) x (1 x) 1 [ x 16 9 ] (16 + ζ(2)) ζ(2) H(0,x)+ H(0,x) x 4(1 x) 4(1 + x) H(0,x) 1 [ x 4 ] H(0, 0,x)+ 1 [ 4+x 1 ] (1 x) 4 x 8 H( 1,0,x) (1 x) + 1 [ ] 1 4 (1 x) 1 H(0, 0, 0,x). ( (1 + x) g (0) 12 =0, g (1) 12 =0, g (2) 12 =0, g (3) 12 = H(0, 0, 0; x) ζ2h(0; x), g (4) 12 = 2H( 1, 0, 0, 0; x) +2H(0, 1, 0, 0; x) +2H(0, 0, 1, 0; x) g (0) 13 =0, g (1) 13 =0, 3H(0, 0, 0, 0; x) 4H(0, 1, 0, 0; x) +ζ2( 2H( 1, 0; x) +6H(0, 1; x) H(0, 0; x)) + 2 ζ3 H(0; x)+ ζ4 4, g (2) ζ2 13 =H(0, 0; x)+3 2, g (3) 13 = 2H( 1, 0, 0; x) 2H(0, 1, 0; x)+4h(0, 0, 0; x)+4h(1, 0, 0; x) + ζ2( 6H( 1; x)+2h(0;x) 3log2) ζ3 4, g (4) 13 =4H( 1, 1, 0, 0; x) +4H( 1, 0, 1, 0; x) 8H( 1, 0, 0, 0; x) p2 p1 p2 8H( 1, 1, 0, 0; x) +4H(0, 1, 1, 0; x) 8H(0, 1, 0, 0; x) 8H(0, 0, 1, 0; x) +10H(0, 0, 0, 0; x) +12H(0, 1, 0, 0; x) 8H(1, 1, 0, 0; x) 8H(1, 0, 1, 0; x) +16H(1, 0, 0, 0; x) 1 +16H(1, 1, 0, 0; x) +12Li4 2 + log4 2 +2ζ2 (12 log 2 H( 1; x) 2 +12log2H(1;x)+6H( 1, 1; x) 2H( 1, 0; x) 8H(0, 1; x) +H(0, 0; x) 12 H(1, 1; x)+4h(1, 0; x)+3log 2 2 ) 2 ζ3(5 H( 1; x)+4h(0;x)+11h(1;x)) T T 47 ζ4, 4 Ulrich Schubert for Feynman Integrals 27 / 45

28 massive QED vertex at two-loop 2 2 non-planar massless box Higgs+Jet at two-loop Higgs+Jet at three-loop Non-planar massless box Tausk (1999); Anastasiou, Gehrmann, Oleari, Remiddi, Tausk (2) Two-loop non-planar box [Tausk 99; Anastasiou, Gehrmann, Oleari, Remiddi, Tausk 00] p1 p3 12 MI s for the crossed topology k1 k1 k2 p2 x = s t, s > 0, t < 0, s > t p2 p4 p1 p1 p3 p1 p3 The f s obey an -linear DE [ADVMMSST 14] p12 Ta(s) p1 p2 Te(s) p2 Tb(s) p1 p3 p2 p4 Tf (s,t) p2 p4 Tc(s,t) p1 p2 Tg(s,t p3 p4 p2 p4 Td(s,t) [(k2 +p1) 2 ] After getting rid of A 0, the g s obey a canonical x g(, x) = Â1(x) g(, x) Â 1 (x) = M 1 x + M 2 1 x M1 = C A f1 = 2 sta(s), f2 = 2 tta(t), f3 = 2 uta(u), f4 = 3 st b(s), f5 = 3 sttc(s, t), f6 = 3 sutc(s, u), f7 = 4 ut d(s, t), f8 = 4 st d(t, u), f9 = 4 tt d(u, s), f10 = 4 s 2 Te(s), f11 = 4 3 h stut f (s, t) 2 s 2 Ta(s)+t 2 Ta(t)+u 2 Ta(u) 4 s (4 + 1) i 4 4 u 2 T d(s, t)+s 2 T d(t, u)+t 2 T d(u, s), f12 = 4 3 h sttg(s, t) 2 s 2 Ta(s)+t 2 Ta(t)+u 2 Ta(u) 8 u (4 + 1) i 4 4 u 2 T d(s, t)+s 2 T d(t, u)+t 2 T d(u, s), M2 = S. Di Vita (MPI Munich) Magnus and Dyson Series for MI s LoopFest XIII (NYC) 12 / 17 Ulrich Schubert for Feynman Integrals 28 / 45 1 C A

29 massive QED vertex at two-loop 2 2 non-planar massless box Higgs+Jet at two-loop Higgs+Jet at three-loop Higgs+Jet at two-loop Gehrmann, Remiddi; Di Vita, Mastrolia, Yundin, U.S. T 1 T 2 T 3 T 4 T 5 T 6 T 7 T 8 T 9 T 10 T 11 T 12 T 13 (k1 + p2) 2 T 14 T 15 T 16 T 17 T 18 Ulrich Schubert for Feynman Integrals 29 / 45

30 massive QED vertex at two-loop 2 2 non-planar massless box Higgs+Jet at two-loop Higgs+Jet at three-loop Higgs+Jet at two-loop Gehrmann, Remiddi; Di Vita, Mastrolia, Yundin, U.S. dimensionless variables x = s mh 2 y = t m 2 h ɛ-linear basis x f (x, y, ɛ) = (A1,0(x, y) + ɛa 1,1(x, y)) f (x, y, ɛ) y f (x, y, ɛ) = (A2,0(x, y) + ɛa 2,1(x, y)) f (x, y, ɛ) Canonical form with Magnus x g(x, y, ɛ) = ɛâ 1(x, y) g(x, y, ɛ) y g(x, y, ɛ) = ɛâ2(x, y) g(x, y, ɛ) Log-form Â(x, y) = M 1log(x) + M 2log(1 x) + M 3log(y) + M 4log(1 y) +M 5log( x + y x ) + M 1 x y 6log( ) 1 x x Â(x, y) = Â 1(x, y) y Â(x, y) = Â 2(x, y) Alphabet {x, 1 x, y, 1 y, x + y, 1 x y} Ulrich Schubert for Feynman Integrals 30 / 45

31 Boundary condition Introduction massive QED vertex at two-loop 2 2 non-planar massless box Higgs+Jet at two-loop Higgs+Jet at three-loop Four pseudo-thresholds x 1 (s m 2 H), y 1 (t m 2 H), y x (u m 2 H), y 1 x (u 0) Demanding their absence at the matrix level leads to relations between the boundary constants of different integrals, After solving all relations only one input integral is needed Ulrich Schubert for Feynman Integrals 31 / 45

32 massive QED vertex at two-loop 2 2 non-planar massless box Higgs+Jet at two-loop Higgs+Jet at three-loop Higgs+Jet at two-loop Gehrmann, Remiddi; Di Vita, Mastrolia, Yundin, U.S. Ulrich Schubert for Feynman Integrals 32 / 45

33 massive QED vertex at two-loop 2 2 non-planar massless box Higgs+Jet at two-loop Higgs+Jet at three-loop Higgs+Jet at two-loop Gehrmann, Remiddi; Di Vita, Mastrolia, Yundin, U.S. Ulrich Schubert for Feynman Integrals 33 / 45

34 massive QED vertex at two-loop 2 2 non-planar massless box Higgs+Jet at two-loop Higgs+Jet at three-loop Higgs+Jet at three-loop Di Vita, Mastrolia, Yundin, U.S. (2014) (3) Higgs + 1Jet 3-loop ladder [Mastrolia, Schubert, Yundin, DV... work in progress!] taken from Pierpaolo s slides at Amplitudes 2014 Ulrich Schubert for Feynman Integrals 34 / 45

35 Higgs+Jet at three-loop Introduction massive QED vertex at two-loop 2 2 non-planar massless box Higgs+Jet at two-loop Higgs+Jet at three-loop Di Vita, Mastrolia, Yundin, U.S. ɛ-linear basis x f (x, y, ɛ) = (A1,0(x, y) + ɛa 1,1(x, y)) f (x, y, ɛ) y f (x, y, ɛ) = (A2,0(x, y) + ɛa 2,1(x, y)) f (x, y, ɛ) Canonical form with Magnus x g(x, y, ɛ) = ɛâ 1(x, y) g(x, y, ɛ) Log-form y g(x, y, ɛ) = ɛâ 2(x, y) g(x, y, ɛ) Â(x, y) = M 1log(x) + M 2log(1 x) + M 3log(y) + M 4log(1 y) +M 5log( x + y x ) + M 1 x y 6log( ) 1 x x Â(x, y) = Â 1(x, y) y Â(x, y) = Â 2(x, y) Alphabet {x, 1 x, y, 1 y, x + y, 1 x y} same as in the two-loop case! Ulrich Schubert for Feynman Integrals 35 / 45

36 1 Introduction 2 3 massive QED vertex at two-loop 2 2 non-planar massless box Higgs+Jet at two-loop Higgs+Jet at three-loop 4 Ulrich Schubert for Feynman Integrals 36 / 45

37 Finding the Canonical Form Introduction But first steps have been done: No algorithm for finding the canonical form Magnus Exponential DEQ has to be linear in ɛ Magnus series might not converge B(x) = e Ω[A 0](x) Reducing DEQ Not all DEQ are reducible to a Fuchsian Form k S n Ã(x) = x x n n=1 Related to the negative answer of the 21st Hilbert Problem Eigenvalues of S n have to be linear in ɛ Ulrich Schubert for Feynman Integrals 37 / 45

38 Equal-mass sunrise Introduction Laporta, Remiddi; Bloch, Vanhove; Adams, Bogner, Weinzierl m p m m DEQ is known to evaluate to elliptic functions Easy to find a DEQ s f = A(s, ɛ) f which is Fuchsian and linear in ɛ = (D 4) A(s, ɛ) = 1 ɛ 1 + ɛ 0 0 s ɛ 1 + ɛ ɛ 2ɛ 0 0 s m ɛ ɛ 1 + 2ɛ s 9m 2 0 2ɛ 1 2ɛ 4 ɛ ɛ Let s apply Magnus and Lees algorithm Ulrich Schubert for Feynman Integrals 38 / 45

39 Magnus Introduction Split ɛ 0 -part into diagonal and off-diagonal part and construct transformation A 0 = D 0 + N D 0 = s s 9m s s m 2 s 9m 2 Transformed DEQ  =, B 1 = e ɛ s m 2 ɛ 2ɛ s dx D0 = 0 0 s m 2 0 2ɛ 2ɛ s s 9m 2 s s m 2 0 4mɛ (s 9m 2 ) 2 Transform with the ɛ 0 part of  3m2 (1+2ɛ) 18(2ɛm4 +m 4 ) 2(s 9m 2 ) 2 (s 9m 2 ) ˆN 0 = s 32 s m m4 (s 9m 2 ) 3 3m2 2(s 9m 2 ) 2 0 This matrix is not nilpotent Dyson/Magnus Series will not converge ɛ 2ɛ s s m s s 9m s m 2 s Ulrich Schubert for Feynman Integrals 39 / 45

40 Lees Algorithm Introduction Eigenvalues of pole matrices s 0 : {0, 0, 1 + ɛ, 1 + ɛ} s m 2 : {0, 0, 1 + 2ɛ, 2ɛ} s 9m 2 : {0, 0, 0, 2ɛ} s : {0, 1 + ɛ, 1 + ɛ, 1 + 2ɛ} Use balance transformation to shift eigenvalues B(P, x 1, x 2 x) = P + c x x2 x x 1 P, P = u(λ 1)v (λ 2), P = 1 P After two transformations we arrive at s 0 : {0, 0, ɛ, ɛ} s m 2 : {0, 0, 1 + 2ɛ, 2ɛ} s 9m 2 : {0, 0, 0, 2ɛ} s : {0, 1 + ɛ, ɛ, 2ɛ} Eigenvalues 1 + 2ɛ and 1 + ɛ can not be balanced since there eigenvectors are orthogonal to each other Both results indicate that the ɛ 0 -part is related to the elliptic functions Ulrich Schubert for Feynman Integrals 40 / 45

41 Conclusion Introduction New ideas stimulated the method -Work at matrix level -Bring DEQ in canonical form g = ɛa(x) g Magnus Series finds a canonical basis for a DEQ which is linear in ɛ Has been applied to a variety of known and unknown processes -QED Vertex at two-loop -2 2 massless box -Higgs+jet at two-loop -Ladder topology for Higgs+jet at three loop More are coming so stay tuned Ulrich Schubert for Feynman Integrals 41 / 45

42 Back up slides Ulrich Schubert for Feynman Integrals 42 / 45

43 x f = A(x) S 1(ɛ) f with A(x) = x S0(ɛ) + S1(ɛ) x x 1 Eigenvalues of the pole matrices: S 1(ɛ) : {0, 0, 3 6ɛ} S 0(ɛ) : {0, ɛ, 1 + 2ɛ} S 1(ɛ) : {0, 1 2ɛ, 2 + 2ɛ} S (ɛ) : {0, ɛ, 1 + 2ɛ} with S (ɛ) = S 1(ɛ) S 0(ɛ) S 1(ɛ) use balance transformations B(P, x 1, x 2 x) = P + c x x 2 x x 1 P to make all Eigenvalues ɛ S 1(ɛ) : {0, 0, 6ɛ} S0(ɛ) : {0, ɛ, 2ɛ} S 1(ɛ) : {0, 2ɛ, 2ɛ} S (ɛ) : {0, ɛ, 2ɛ} Find the similarity transformation which brings us to the canonical form through solving S i(ɛ) T = T S i(µ) ɛ µ Ulrich Schubert for Feynman Integrals 43 / 45

44 Our new masters are g = T f (1 2ɛ)(2 3ɛ)(1 3ɛ) 0 0 T = 2(4ɛ 1) + 2(3ɛ 1) ɛ + 8ɛ + 2ɛ 4(1 4ɛ) + 4ɛ 2xɛ 4(1 12ɛ) (x 1) 2 x 1 x x 1 x (x 1) 2 x 1 4ɛ(2 3ɛ) + 2ɛ(2 3ɛ) 2(12ɛ2 11ɛ+2) x 1 12ɛ 2 +11ɛ 2 + 9ɛ2 +9ɛ 2 (x 1) 2 x 1 which satisfy a canonical DEQ g = ɛã(x) Ã(x) = 1 3 x x (x 1) 2 1 x 1 After Integrating and fixing the boundary we find non uniform transcendental(ut) masters f 2 = 9ɛ2 8 + ɛ3 ( 1 4 G(0; x) ) ( + ɛ G(0; x) 3 G( 1, 0; x) G(0, 0; x) 2 ( )) π G(1, 0; x) canonical form does not imply UT masters Boundary conditions can spoil UT + 6ɛ 2(2 17ɛ) 10xɛ x 2(36ɛ2 27ɛ+2) x ɛ 39ɛ Ulrich Schubert for Feynman Integrals 44 / 45

45 massive Sunrise with Lee Starting from DEQ A(x) = Introduction ɛ x 1 ɛ x 0 0 ɛ 1 2ɛ x 2ɛ x 9 ɛ ɛ 2(x 9) 2(x 1) x ɛ 1 x 9 2ɛ 1 + 2ɛ 1 4(x 9) 2x + 3(2ɛ+1) 4(x 1) with x = s m 2 Transformation generated by shifting eigenvalues twice B = 1 x+1 0 x 2x Resulting DEQ Â = (x+1)ɛ 2x 1 x 4 x 9 2ɛ 1 + ɛ x 1 x x ɛ x ɛ 2ɛ + 8ɛ 9(x 9) x 1 9x 2ɛ 2ɛ 9x 9(x 9) ɛ 2 ɛ + 9ɛ 20ɛ2 9x 2(x 1) 18(x 9) 5ɛ2 9x 2ɛ + 5ɛ + 5(8ɛ+9) x 1 9x 9(x 9) 8ɛ 9 ɛ 9(x 9) 9x + 160ɛ2 108ɛ ɛ2 4ɛ 3 36(x 9) 4(x 1) (x 9) 9x 4 4 9x 9(x 9) 9 20ɛ + 2ɛ ɛ 9(x 9) x 1 9x Ulrich Schubert for Feynman Integrals 45 / 45

Multiloop integrals in dimensional regularization made simple

Multiloop integrals in dimensional regularization made simple Multiloop integrals in dimensional regularization made simple Johannes M. Henn Institute for Advanced Study based on PRL 110 (2013) [arxiv:1304.1806], JHEP 1307 (2013) 128 [arxiv:1306.2799] with A. V.

More information

Systems of differential equations for Feynman Integrals; Schouten identities and canonical bases.

Systems of differential equations for Feynman Integrals; Schouten identities and canonical bases. Systems of differential equations for Feynman Integrals; Schouten identities and canonical bases. Lorenzo Tancredi TTP, KIT - Karlsruhe Bologna, 18 Novembre 2014 Based on collaboration with Thomas Gehrmann,

More information

Multiloop scattering amplitudes in the LHC Era

Multiloop scattering amplitudes in the LHC Era Multiloop scattering amplitudes in the LHC Era Francesco Moriello Based on arxiv:1609.06685 In collaboration with: R. Bonciani, V. Del Duca, H. Frellesvig, J.M. Henn, V. Smirnov October 26, 2016 Outline

More information

Discontinuities of Feynman Integrals

Discontinuities of Feynman Integrals CEA Saclay Brown University, Twelfth Workshop on Non-Perturbative Quantum Chromodynamics June 10, 2013 Outline Landau and Cutkosky Classic unitarity cuts I I I Dispersion relations Modern unitarity method,

More information

Simplified differential equations approach for the calculation of multi-loop integrals

Simplified differential equations approach for the calculation of multi-loop integrals Simplified differential equations approach for the calculation of multi-loop integrals Chris Wever (N.C.S.R. Demokritos) 1 C. Papadopoulos [arxiv: 1401.6057 [hep-ph]] C. Papadopoulos, D. Tommasini, C.

More information

Schematic Project of PhD Thesis: Two-Loop QCD Corrections with the Differential Equations Method

Schematic Project of PhD Thesis: Two-Loop QCD Corrections with the Differential Equations Method Schematic Project of PhD Thesis: Two-Loop QCD Corrections with the Differential Equations Method Matteo Becchetti Supervisor Roberto Bonciani University of Rome La Sapienza 24/01/2017 1 The subject of

More information

Simplified differential equations approach for NNLO calculations

Simplified differential equations approach for NNLO calculations Simplified differential equations approach for NNLO calculations Costas. G. Papadopoulos INPP, NCSR Demokritos, Athens UCLA, June 19, 2015 Costas. G. Papadopoulos NNLO Radcor-Loopfest, LA, 2015 1 / 39

More information

The Two-Loop Five-Point Amplitude in N=4 Super-Yang-Mills Theory and N=8 Supergravity

The Two-Loop Five-Point Amplitude in N=4 Super-Yang-Mills Theory and N=8 Supergravity The Two-Loop Five-Point Amplitude in N=4 Super-Yang-Mills Theory and N=8 Supergravity Lance Dixon (SLAC) S. Abreu, LD, E. Herrmann, B. Page and M. Zeng 1812.08941, 1901.nnnnn DESY Zeuthen, 24 January 2019

More information

Maximal Unitarity at Two Loops

Maximal Unitarity at Two Loops Maximal Unitarity at Two Loops David A. Kosower Institut de Physique Théorique, CEA Saclay work with Kasper Larsen & Henrik Johansson; & work of Simon Caron- Huot & Kasper Larsen 1108.1180, 1205.0801,

More information

Evaluating multiloop Feynman integrals by Mellin-Barnes representation

Evaluating multiloop Feynman integrals by Mellin-Barnes representation April 7, 004 Loops&Legs 04 Evaluating multiloop Feynman integrals by Mellin-Barnes representation V.A. Smirnov Nuclear Physics Institute of Moscow State University Mellin-Barnes representation as a tool

More information

arxiv: v2 [hep-ph] 21 Jan 2014

arxiv: v2 [hep-ph] 21 Jan 2014 Preprint typeset in JHEP style - HYPER VERSION MPP-014-7, ZU-TH 01/14 Magnus and Dyson Series for Master Integrals arxiv:1401.979v [hep-ph] 1 Jan 014 Mario Argeri Dipartimento di Scienze e Innovazione

More information

Feynman Integrals, Regulators and Elliptic Polylogarithms

Feynman Integrals, Regulators and Elliptic Polylogarithms Feynman Integrals, Regulators and Elliptic Polylogarithms Pierre Vanhove Automorphic Forms, Lie Algebras and String Theory March 5, 2014 based on [arxiv:1309.5865] and work in progress Spencer Bloch, Matt

More information

Two-loop Remainder Functions in N = 4 SYM

Two-loop Remainder Functions in N = 4 SYM Two-loop Remainder Functions in N = 4 SYM Claude Duhr Institut für theoretische Physik, ETH Zürich, Wolfgang-Paulistr. 27, CH-8093, Switzerland E-mail: duhrc@itp.phys.ethz.ch 1 Introduction Over the last

More information

The Pentabox Master Integrals with the Simplified Differential Equations approach

The Pentabox Master Integrals with the Simplified Differential Equations approach The Pentabox Master Integrals with the Simplified Differential Equations approach Costas G. Papadopoulos INPP, NCSR Demokritos Zurich, August 25, 2016 C.G.Papadopoulos (INPP) 5box QCD@LHC 2016 1 / 36 Introduction

More information

Functions associated to scattering amplitudes. Stefan Weinzierl

Functions associated to scattering amplitudes. Stefan Weinzierl Functions associated to scattering amplitudes Stefan Weinzierl Institut für Physik, Universität Mainz I: Periodic functions and periods II: III: Differential equations The two-loop sun-rise diagramm in

More information

The rare decay H Zγ in perturbative QCD

The rare decay H Zγ in perturbative QCD The rare decay H Zγ in perturbative QCD [arxiv: hep-ph/1505.00561] Thomas Gehrmann, Sam Guns & Dominik Kara June 15, 2015 RADCOR 2015 AND LOOPFEST XIV - UNIVERSITY OF CALIFORNIA, LOS ANGELES Z Z H g q

More information

The Steinmann-Assisted Bootstrap at Five Loops

The Steinmann-Assisted Bootstrap at Five Loops The Steinmann-Assisted Bootstrap at Five Loops Lance Dixon (SLAC) S. Caron-Huot, LD, M. von Hippel, A. McLeod, 1609.00669 New Formulations for Scattering Amplitudes LMU, Munich 5 Sept., 2016 Hexagon function

More information

Analytic 2-loop Form factor in N=4 SYM

Analytic 2-loop Form factor in N=4 SYM Analytic 2-loop Form factor in N=4 SYM Gang Yang University of Hamburg Nordic String Theory Meeting Feb 20-21, 2012, NBI Based on the work Brandhuber, Travaglini, GY 1201.4170 [hep-th] Brandhuber, Gurdogan,

More information

Reducing full one-loop amplitudes at the integrand level

Reducing full one-loop amplitudes at the integrand level Reducing full one-loop amplitudes at the integrand level Costas Papadopoulos, Les Houches 2007 In collaboration with G. Ossola and R. Pittau 27/06/2007 HEP-NCSR DEMOKRITOS 1 The History Passarino-Veltman

More information

Feynman Integrals, Polylogarithms and Symbols

Feynman Integrals, Polylogarithms and Symbols Feynman Integrals, Polylogarithms and Symbols Vittorio Del Duca INFN LNF based on work with Claude Duhr & Volodya Smirnov ACAT2011 7 September 2011 let us consider l-loop n-point Feynman integrals example:

More information

Multiple polylogarithms and Feynman integrals

Multiple polylogarithms and Feynman integrals Multiple polylogarithms and Feynman integrals Erik Panzer Institute des Hautes E tudes Scientifiques Amplitudes 215 July 7th ETH/University of Zu rich Topics 1 hyperlogarithms & iterated integrals 2 multiple

More information

Multiple polylogarithms and Feynman integrals

Multiple polylogarithms and Feynman integrals Multiple polylogarithms and Feynman integrals Erik Panzer Institute des Hautes E tudes Scientifiques Amplitudes 215 July 7th ETH/University of Zu rich Topics 1 hyperlogarithms & iterated integrals 2 multiple

More information

Non-planar two-loop Feynman integrals contributing to Higgs plus jet production

Non-planar two-loop Feynman integrals contributing to Higgs plus jet production Non-planar two-loop Feynman integrals contributing to Higgs plus jet production Institute for Theoretical Particle Physics (TTP), Karlsruhe Institute of Technology Engesserstraße 7, D-76128 Karlsruhe,

More information

The Pentabox Master Integrals with the Simplified Differential Equations approach

The Pentabox Master Integrals with the Simplified Differential Equations approach Prepared for submission to JHEP TTP15-042 The Pentabox Master Integrals with the Simplified Differential Equations approach Costas G. Papadopoulos ab Damiano Tommasini a and Christopher Wever ac a Institute

More information

Exploring the function space of Feynman integrals. Stefan Weinzierl

Exploring the function space of Feynman integrals. Stefan Weinzierl Exploring the function space of Feynman integrals Stefan Weinzierl Institut für Physik, Universität Mainz Mathematics intro: Physics intro: Part I: Part II: Periodic functions and periods Precision calculations

More information

arxiv: v2 [hep-ph] 4 Jun 2018

arxiv: v2 [hep-ph] 4 Jun 2018 Prepared for submission to JHEP Evaluating elliptic master integrals at special kinematic values: using differential equations and their solutions via expansions near singular points arxiv:1805.00227v2

More information

One-Mass Two-Loop Master Integrals for Mixed

One-Mass Two-Loop Master Integrals for Mixed One-Mass Two-Loop Master Integrals for Mixed α s -Electroweak Drell-Yan Production work ongoing with Andreas von Manteuffel The PRISMA Cluster of Excellence and Institute of Physics Johannes Gutenberg

More information

arxiv: v2 [hep-th] 7 Jul 2016

arxiv: v2 [hep-th] 7 Jul 2016 Integration-by-parts reductions from unitarity cuts and algebraic geometry arxiv:1606.09447v [hep-th] 7 Jul 016 Institute for Theoretical Physics, ETH Zürich, 8093 Zürich, Switzerland E-mail: Kasper.Larsen@phys.ethz.ch

More information

Generalized Prescriptive Unitarity. Jacob Bourjaily University of Copenhagen QCD Meets Gravity 2017 University of California, Los Angeles

Generalized Prescriptive Unitarity. Jacob Bourjaily University of Copenhagen QCD Meets Gravity 2017 University of California, Los Angeles Generalized Prescriptive Unitarity Jacob Bourjaily University of Copenhagen QCD Meets Gravity 2017 University of California, Los Angeles Organization and Outline Overview: Generalized & Prescriptive Unitarity

More information

Hexagon Functions and Six-Gluon Scattering in Planar N=4 Super-Yang-Mills

Hexagon Functions and Six-Gluon Scattering in Planar N=4 Super-Yang-Mills Hexagon Functions and Six-Gluon Scattering in Planar N=4 Super-Yang-Mills L. Dixon, J. Drummond, M. von Hippel and J. Pennington, 1307.nnnn LMS Symposium, Durham July 8, 2013 All planar N=4 SYM integrands

More information

HyperInt - exact integration with hyperlogarithms

HyperInt - exact integration with hyperlogarithms HyperInt - exact integration with hyperlogarithms Erik Panzer erikpanzer@ihes.fr (CNRS, ERC grant 257638, F. Brown) Institute des Hautes Études Scientifiques 35 Route de Chartres 9144 Bures-sur-Yvette

More information

Two-loop corrections to t t production in the gluon channel. Matteo Capozi Sapienza University of Rome

Two-loop corrections to t t production in the gluon channel. Matteo Capozi Sapienza University of Rome Two-loop corrections to t t production in the gluon channel Matteo Capozi Sapienza University of Rome November 7, 2016 Top quark With a mass of m t = 172.44 ± 0.13(stat) ± 0.47(syst)GeV, the top quark

More information

Radcor-Loopfest 2015

Radcor-Loopfest 2015 E H U N I V E R S I T T Y O H F E D I N B U R G Radcor-Loopfest 205 Long-distance singularities in multi-leg scattering amplitudes Einan Gardi Higgs Centre for theoretical physics, Edinburgh! new 3-loop

More information

A New Identity for Gauge Theory Amplitudes

A New Identity for Gauge Theory Amplitudes A New Identity for Gauge Theory Amplitudes Hidden Structures workshop, NBI Sept 10, 2008 Henrik Johansson, UCLA Z. Bern, J.J. Carrasco, HJ arxive:0805 :0805.3993 [hep-ph[ hep-ph] Z. Bern, J.J. Carrasco,

More information

arxiv: v2 [hep-ph] 25 Sep 2018

arxiv: v2 [hep-ph] 25 Sep 2018 Applications of integrand reduction to two-loop five-point scattering amplitudes in QCD arxiv:1807.09709v2 [hep-ph] 25 Sep 2018 Institute for Particle Physics Phenomenology, Department of Physics, Durham

More information

N = 4 SYM and new insights into

N = 4 SYM and new insights into N = 4 SYM and new insights into QCD tree-level amplitudes N = 4 SUSY and QCD workshop LPTHE, Jussieu, Paris Dec 12, 2008 Henrik Johansson, UCLA Bern, Carrasco, HJ, Kosower arxiv:0705.1864 [hep-th] Bern,

More information

Precision Calculations for the LHC

Precision Calculations for the LHC Precision Calculations for the LHC LHC Olympics 2006 Zvi Bern, UCLA with Carola Berger, Lance Dixon, Darren Forde and David Kosower hep-ph/0501240 hep-ph/0505055 hep-ph/0507005 hep-ph/0604195 hep-ph/0607014

More information

arxiv: v1 [hep-ph] 28 Dec 2018

arxiv: v1 [hep-ph] 28 Dec 2018 MPP-208-06 All master integrals for three-jet production at NNLO D. Chicherin a, T. Gehrmann b, J. M. Henn a, P. Wasser c, Y. Zhang a, S. Zoia a a Max-Planck-Institut für Physik, Werner-Heisenberg-Institut,

More information

arxiv: v2 [hep-th] 26 Aug 2015

arxiv: v2 [hep-th] 26 Aug 2015 Prepared for submission to JHEP arxiv:1507.06310v2 [hep-th] 26 Aug 2015 Two-loop Integral Reduction from Elliptic and Hyperelliptic Curves Alessandro Georgoudis a Yang Zhang a a ETH Zürich, Institute for

More information

Numerical Evaluation of Multi-loop Integrals

Numerical Evaluation of Multi-loop Integrals Numerical Evaluation of Multi-loop Integrals Sophia Borowka MPI for Physics, Munich In collaboration with G. Heinrich Based on arxiv:124.4152 [hep-ph] HP 8 :Workshop on High Precision for Hard Processes,

More information

Numerical Evaluation of Multi-loop Integrals

Numerical Evaluation of Multi-loop Integrals Numerical Evaluation of Multi-loop Integrals Sophia Borowka MPI for Physics, Munich In collaboration with: J. Carter and G. Heinrich Based on arxiv:124.4152 [hep-ph] http://secdec.hepforge.org DESY-HU

More information

Bootstrapping One-Loop 2 n Amplitudes

Bootstrapping One-Loop 2 n Amplitudes Bootstrapping One-Loop 2 n Amplitudes Carola F. Berger Stanford Linear Accelerator Center with Zvi Bern, Lance Dixon, Darren Forde, David Kosower Loopfest V June 19th, 2006 [1] Z. Bern, L. J. Dixon, D.

More information

Evaluating double and triple (?) boxes

Evaluating double and triple (?) boxes Evaluating double and triple (?) boxes V.A. Smirnov a hep-ph/0209295 September 2002 a Nuclear Physics Institute of Moscow State University, Moscow 9992, Russia A brief review of recent results on analytical

More information

The Higgs pt distribution

The Higgs pt distribution The Higgs pt distribution Chris Wever (TUM) In collaboration with: F. Caola, K. Kudashkin, J. Lindert, K. Melnikov, P. Monni, L. Tancredi GGI: Amplitudes in the LHC era, Florence 16 Oktober, 2018 Outline

More information

Feynman integrals as Periods

Feynman integrals as Periods Feynman integrals as Periods Pierre Vanhove Amplitudes 2017, Higgs Center, Edinburgh, UK based on [arxiv:1309.5865], [arxiv:1406.2664], [arxiv:1601.08181] Spencer Bloch, Matt Kerr Pierre Vanhove (IPhT)

More information

Feynman integrals and Mirror symmetry

Feynman integrals and Mirror symmetry Feynman integrals and Mirror symmetry Pierre Vanhove & Amplitudes and Periods, HIM, Bonn based on 1309.5865, 1406.2664, 1601.08181 and work in progress Spencer Bloch, Matt Kerr, Charles Doran, Andrey Novoseltsev

More information

Numerical Evaluation of Loop Integrals

Numerical Evaluation of Loop Integrals Numerical Evaluation of Loop Integrals Institut für Theoretische Physik Universität Zürich Tsukuba, April 22 nd 2006 In collaboration with Babis Anastasiou Rationale (Why do we need complicated loop amplitudes?)

More information

The Non-commutative S matrix

The Non-commutative S matrix The Suvrat Raju Harish-Chandra Research Institute 9 Dec 2008 (work in progress) CONTEMPORARY HISTORY In the past few years, S-matrix techniques have seen a revival. (Bern et al., Britto et al., Arkani-Hamed

More information

arxiv: v1 [hep-th] 10 Apr 2014

arxiv: v1 [hep-th] 10 Apr 2014 Prepared for submission to JHEP Iterative structure of finite loop integrals arxiv:404.2922v [hep-th] 0 Apr 204 Simon Caron-Huot a,b Johannes M. Henn a a Institute for Advanced Study, Princeton, NJ 08540,

More information

Master integrals without subdivergences

Master integrals without subdivergences Master integrals without subdivergences Joint work with Andreas von Manteuffel and Robert Schabinger Erik Panzer 1 (CNRS, ERC grant 257638) Institute des Hautes Études Scientifiques 35 Route de Chartres

More information

New insights in the amplitude/wilson loop duality

New insights in the amplitude/wilson loop duality New insights in the amplitude/wilson loop duality Paul Heslop Amplitudes 2010 6th May based on 0910.4898: Brandhuber, Khoze, Travaglini, PH 1004.2855: Brandhuber, Katsaroumpas, Nguyen, Spence, Spradlin,

More information

Reducing differential systems for multiloop integrals

Reducing differential systems for multiloop integrals Reducing differential systems for multiloop integrals Roman N. Lee Amplitudes 2017 The Budker Institute of Nuclear Physics, Novosibirsk 1 Outline Differential equations in multiloop calculations Algorithm

More information

From Tensor Integral to IBP

From Tensor Integral to IBP From Tensor Integral to IBP Mohammad Assadsolimani, in collaboration with P. Kant, B. Tausk and P. Uwer 11. Sep. 2012 Mohammad Assadsolimani From Tensor Integral to IBP 1 Contents Motivation NNLO Tensor

More information

arxiv: v2 [hep-ph] 2 Apr 2019

arxiv: v2 [hep-ph] 2 Apr 2019 MITP/19-023 arxiv:1904.00382v2 [hep-ph] 2 Apr 2019 Two-loop master integrals for the mixed QCD-electroweak corrections for H b b through a Ht t-coupling Ekta Chaubey and Stefan Weinzierl PRISMA Cluster

More information

(Elliptic) multiple zeta values in open superstring amplitudes

(Elliptic) multiple zeta values in open superstring amplitudes (Elliptic) multiple zeta values in open superstring amplitudes Johannes Broedel Humboldt University Berlin based on joint work with Carlos Mafra, Nils Matthes and Oliver Schlotterer arxiv:42.5535, arxiv:57.2254

More information

Modern Approaches to Scattering Amplitudes

Modern Approaches to Scattering Amplitudes Ph.D. Workshop, 10 October 2017 Outline Scattering Amplitudes 1 Scattering Amplitudes Introduction The Standard Method 2 On-Shell vs Off-Shell On-Shell building blocks BCFW Recursion Relations 3 Amplitudes

More information

Feynman integrals and multiple polylogarithms. Stefan Weinzierl

Feynman integrals and multiple polylogarithms. Stefan Weinzierl Feynman integrals and multiple polylogarithms Stefan Weinzierl Universität Mainz I. Basic techniques II. Nested sums and iterated integrals III. Multiple Polylogarithms IV. Applications The need for precision

More information

Symbolic integration of multiple polylogarithms

Symbolic integration of multiple polylogarithms Symbolic integration of multiple polylogarithms Erik Panzer Institute des Hautes E tudes Scientifiques Applications of Computer Algebra July 22nd, 215 Kalamata, Greece Problem: Multiple integrals of rational

More information

W + W + jet compact analytic results

W + W + jet compact analytic results W + W + jet compact analytic results Tania Robens. based on. J. Campbell, D. Miller, TR (arxiv:1506.xxxxx) IKTP, TU Dresden 2015 Radcor-Loopfest UCLA, Los Angeles, California WW + jet: Motivation from

More information

Linear reducibility of Feynman integrals

Linear reducibility of Feynman integrals Linear reducibility of Feynman integrals Erik Panzer Institute des Hautes Études Scientifiques RADCOR/LoopFest 2015 June 19th, 2015 UCLA, Los Angeles Feynman integrals: special functions and numbers Some

More information

Poles at Infinity in Gravity

Poles at Infinity in Gravity Poles at Infinity in Gravity Enrico Herrmann QCD Meets Gravity Workshop @ UCLA Based on: arxiv:1412.8584, 1512.08591, 1604.03479. in collaboration with:. Zvi Bern, Sean Litsey, James Stankowicz, Jaroslav

More information

Non-Planar N =4 SYM at Four Loops and Supersum Structures

Non-Planar N =4 SYM at Four Loops and Supersum Structures Non-Planar N =4 SYM at Four Loops and Supersum Structures NBIA workshop Aug 12, 2009 Henrik Johansson UCLA & IPhT Saclay 0903.5348[hep-th]: Z.Bern, J.J.Carrasco, H.Ita, HJ, R.Roiban to appear: Z.Bern,

More information

SPLITTING FUNCTIONS AND FEYNMAN INTEGRALS

SPLITTING FUNCTIONS AND FEYNMAN INTEGRALS SPLITTING FUNCTIONS AND FEYNMAN INTEGRALS Germán F. R. Sborlini Departamento de Física, FCEyN, UBA (Argentina) 10/12/2012 - IFIC CONTENT Introduction Collinear limits Splitting functions Computing splitting

More information

Sector Decomposition

Sector Decomposition Sector Decomposition J. Carter Institute for Particle Physics Phenomenology University of Durham Student Seminar, 06/05/2009 Outline 1 What is Sector Decomposition? Why is Sector Decomposition Important?

More information

Elliptic dilogarithms and two-loop Feynman integrals

Elliptic dilogarithms and two-loop Feynman integrals Elliptic dilogarithms and two-loop Feynman integrals Pierre Vanhove 12th Workshop on Non-Perturbative Quantum Chromodynamics IAP, Paris June, 10 2013 based on work to appear with Spencer Bloch Pierre Vanhove

More information

Wilson loops and amplitudes in N=4 Super Yang-Mills

Wilson loops and amplitudes in N=4 Super Yang-Mills Wilson loops and amplitudes in N=4 Super Yang-Mills Vittorio Del Duca INFN LNF TH-LPCC CERN 8 August 2011 N=4 Super Yang-Mills maximal supersymmetric theory (without gravity) conformally invariant, β fn.

More information

Reduction of one-loop amplitudes at the integrand level-nlo QCD calculations

Reduction of one-loop amplitudes at the integrand level-nlo QCD calculations Reduction of one-loop amplitudes at the integrand level-nlo QCD calculations Costas G. Papadopoulos NCSR Demokritos, Athens Epiphany 2008, Krakow, 3-6 January 2008 Costas G. Papadopoulos (Athens) OPP Reduction

More information

Structural Aspects of Numerical Loop Calculus

Structural Aspects of Numerical Loop Calculus Structural Aspects of Numerical Loop Calculus Do we need it? What is it about? Can we handle it? Giampiero Passarino Dipartimento di Fisica Teorica, Università di Torino, Italy INFN, Sezione di Torino,

More information

Computing amplitudes using Wilson loops

Computing amplitudes using Wilson loops Computing amplitudes using Wilson loops Paul Heslop Queen Mary, University of London NBIA, Copenhagen 13th August 2009 based on: 0707.1153 Brandhuber, Travaglini, P.H. 0902.2245 Anastasiou, Brandhuber,

More information

Progress on Color-Dual Loop Amplitudes

Progress on Color-Dual Loop Amplitudes Progress on Color-Dual Loop Amplitudes Henrik Johansson IPhT Saclay Sept 28, 2011 INT: Frontiers in QCD U. of Washington 1106.4711 [hep-th], 1107.1935 [hep-th], (and ongoing work) Zvi Bern, Camille Boucher-Veronneau,

More information

Math 141: Lecture 11

Math 141: Lecture 11 Math 141: Lecture 11 The Fundamental Theorem of Calculus and integration methods Bob Hough October 12, 2016 Bob Hough Math 141: Lecture 11 October 12, 2016 1 / 36 First Fundamental Theorem of Calculus

More information

arxiv: v2 [hep-th] 1 Aug 2018

arxiv: v2 [hep-th] 1 Aug 2018 Differential equations for loop integrals in Baikov representation Jorrit Bosma 1 Kasper J Larsen and Yang Zhang 1 3 1 ETH Zürich Wolfang-Pauli-Strasse 7 893 Zürich Switzerland School of Physics and Astronomy

More information

MSYM amplitudes in the high-energy limit. Vittorio Del Duca INFN LNF

MSYM amplitudes in the high-energy limit. Vittorio Del Duca INFN LNF MSYM amplitudes in the high-energy limit Vittorio Del Duca INFN LNF Gauge theory and String theory Zürich 2 July 2008 In principio erat Bern-Dixon-Smirnov ansatz... an ansatz for MHV amplitudes in N=4

More information

arxiv: v1 [hep-th] 28 Dec 2018

arxiv: v1 [hep-th] 28 Dec 2018 MPP-018-0 Analytic result for a two-loop five-particle amplitude D. Chicherin a, J. M. Henn a, P. Wasser c, T. Gehrmann b, Y. Zhang a, S. Zoia a a Max-Planck-Institut für Physik, Werner-Heisenberg-Institut,

More information

Amplitudes in N=8 supergravity and Wilson Loops

Amplitudes in N=8 supergravity and Wilson Loops Amplitudes in N=8 supergravity and Wilson Loops Gabriele Travaglini Queen Mary, University of London Brandhuber, Heslop, GT Brandhuber, Heslop, Nasti, Spence, GT 0707.1153 [hep-th] 0805.2763 [hep-th] Galileo

More information

Color-Kinematics Duality for Pure Yang-Mills and Gravity at One and Two Loops

Color-Kinematics Duality for Pure Yang-Mills and Gravity at One and Two Loops Physics Amplitudes Color-Kinematics Duality for Pure Yang-Mills and Gravity at One and Two Loops Josh Nohle [Bern, Davies, Dennen, Huang, JN - arxiv: 1303.6605] [JN - arxiv:1309.7416] [Bern, Davies, JN

More information

Hopf algebra structures in particle physics

Hopf algebra structures in particle physics EPJ manuscript No. will be inserted by the editor) Hopf algebra structures in particle physics Stefan Weinzierl a Max-Planck-Institut für Physik Werner-Heisenberg-Institut), Föhringer Ring 6, D-80805 München,

More information

Cluster Algebras, Steinmann Relations, and the Lie Cobracket in planar N = 4 sym

Cluster Algebras, Steinmann Relations, and the Lie Cobracket in planar N = 4 sym Steinmann Relations, and in sym (Niels Bohr Institute) Galileo Galilei Institute November 8, 2018 Based on work in collaboration with John Golden 1810.12181, 190x.xxxxx Outline Planar N = 4 supersymmetric

More information

arxiv:hep-ph/ v2 12 Jan 2001

arxiv:hep-ph/ v2 12 Jan 2001 TTP 2 hep-ph/8287 August 2 arxiv:hep-ph/8287v2 12 Jan 21 Two-Loop Master Integrals for γ 3 Jets: The planar topologies T. Gehrmann a and E. Remiddi b a Institut für Theoretische Teilchenphysik, Universität

More information

On-Shell Recursion Relations for Multi-Parton One-Loop Amplitudes

On-Shell Recursion Relations for Multi-Parton One-Loop Amplitudes for Multi-Parton One-Loop Amplitudes Carola F. Berger Stanford Linear Accelerator Center with Zvi Bern, Lance Dixon, Darren Forde, David Kosower SUSY06 June 13th, 2006 [1] Z. Bern, L. J. Dixon, D. A. Kosower,

More information

Towards improved predictions for electroweak vector boson pair production at the LHC

Towards improved predictions for electroweak vector boson pair production at the LHC Towards improved predictions for electroweak vector boson pair production at the LHC Kirill Melnikov TTP KIT Based on collaboration with M. Dowling, F. Caola, J. Henn, A. Smirnov, V. Smirnov Outline 1)

More information

NNLO antenna subtraction with one hadronic initial state

NNLO antenna subtraction with one hadronic initial state antenna subtraction with one hadronic initial state Alejandro Daleo, Aude Gehrmann-De Ridder Institute for Theoretical Physics, ETH Zürich E-mail: adaleo@phys.ethz.ch, gehra@phys.ethz.ch Thomas Gehrmann,

More information

1 The Quantum Anharmonic Oscillator

1 The Quantum Anharmonic Oscillator 1 The Quantum Anharmonic Oscillator Perturbation theory based on Feynman diagrams can be used to calculate observables in Quantum Electrodynamics, like the anomalous magnetic moment of the electron, and

More information

Numerical multi-loop calculations: tools and applications

Numerical multi-loop calculations: tools and applications Journal of Physics: Conference Series PAPER OPEN ACCESS Numerical multi-loop calculations: tools and applications To cite this article: S. Borowka et al 2016 J. Phys.: Conf. Ser. 762 012073 Related content

More information

Reduction to Master Integrals. V.A. Smirnov Atrani, September 30 October 05, 2013 p.1

Reduction to Master Integrals. V.A. Smirnov Atrani, September 30 October 05, 2013 p.1 Reduction to Master Integrals V.A. Smirnov Atrani, September 30 October 05, 2013 p.1 Reduction to Master Integrals IBP (integration by parts) V.A. Smirnov Atrani, September 30 October 05, 2013 p.1 Reduction

More information

arxiv:hep-ph/ v3 8 Apr 2003

arxiv:hep-ph/ v3 8 Apr 2003 Freiburg-THEP 03/0 hep-ph/03070 arxiv:hep-ph/03070v3 8 Apr 003 Vertex diagrams for the QED form factors at the -loop level R. Bonciani, Facultät für Mathematik und Physik, Albert-Ludwigs-Universität Freiburg,

More information

GoSam: automated multi-process scattering amplitudes at one loop

GoSam: automated multi-process scattering amplitudes at one loop GoSam: automated multi-process scattering amplitudes at one loop Gionata Luisoni luisonig@mpp.mpg.de Max Planck Institute for Physics Munich In collaboration with: G.Cullen, N. Greiner, G.Heinrich, P.Mastrolia,

More information

BACKGROUND EXPERIENCE AND THEORY INNOVATION FOR LHC

BACKGROUND EXPERIENCE AND THEORY INNOVATION FOR LHC BACKGROUND EXPERIENCE AND THEORY INNOVATION FOR LHC Babis Anastasiou ETH Zurich PADOVA 20-01-2010 A theory revolution Deeper understanding of the structure of gauge theories Sharp theoretical predictions

More information

Two-loop Heavy Fermion Corrections to Bhabha Scattering

Two-loop Heavy Fermion Corrections to Bhabha Scattering Two-loop Heavy Fermion Corrections to Bhabha Scattering S. Actis 1, M. Czakon 2, J. Gluza 3 and T. Riemann 1 1 Deutsches Elektronen-Synchrotron DESY Platanenallee 6, D 15738 Zeuthen, Germany 2 Institut

More information

PSEUDO SCALAR FORM FACTORS AT 3-LOOP QCD. Taushif Ahmed Institute of Mathematical Sciences, India March 22, 2016

PSEUDO SCALAR FORM FACTORS AT 3-LOOP QCD. Taushif Ahmed Institute of Mathematical Sciences, India March 22, 2016 PSEUDO SCALAR FORM FACTORS AT 3-LOOP QCD Taushif Ahmed Institute of Mathematical Sciences, India March, 016 PROLOGUE: SM & MSSM SM Complex scalar doublet (4 DOF) 3 DOF transform into longitudinal modes

More information

A New Regulariation of N = 4 Super Yang-Mills Theory

A New Regulariation of N = 4 Super Yang-Mills Theory A New Regulariation of N = 4 Super Yang-Mills Theory Humboldt Universität zu Berlin Institut für Physik 10.07.2009 F. Alday, J. Henn, J. Plefka and T. Schuster, arxiv:0908.0684 Outline 1 Motivation Why

More information

Scattering amplitudes and AdS/CFT

Scattering amplitudes and AdS/CFT Scattering amplitudes and AdS/CFT Cristian Vergu Brown University BOX 1843 Providence, RI 02912 1 Introduction and notation Scattering amplitudes in the maximally supersymmetric N = 4 gauge theory are

More information

Towards Determining the UV Behavior of Maximal Supergravity

Towards Determining the UV Behavior of Maximal Supergravity Towards Determining the UV Behavior of Maximal Supergravity Henrik Johansson CERN Aug 9, 0 SUSY 0, ICTP Trieste!! Based on work with: Zvi Bern, John Joseph Carrasco, Lance Dixon, Radu Roiban Text-book:

More information

Introduction The MPLs Hopf algebra Application to Feynman integrals. Federico Granata. Ph.D. XXIX cicle 16/09/2014 Tutor: Carlo Oleari

Introduction The MPLs Hopf algebra Application to Feynman integrals. Federico Granata. Ph.D. XXIX cicle 16/09/2014 Tutor: Carlo Oleari Federico Granata Ph.D. XXIX cicle 16/09/2014 Tutor: Carlo Oleari Seminar based on NNLO ante portas summer school 18-25 June 2014, Debrecen Hungary) Polylogarithms The analytic computation of Feynman scalar

More information

Twistors and Unitarity

Twistors and Unitarity Twistors and Unitarity NLO six-gluon Amplitude in QCD Pierpaolo Mastrolia Institute for Theoretical Physics, University of Zürich IFAE 2006, April 19, 2006 in collaboration with: Ruth Britto and Bo Feng

More information

FOLLOWING PINO - THROUGH THE CUSPS AND BEYOND THE PLANAR LANDS. Lorenzo Magnea. University of Torino - INFN Torino. Pino Day, Cortona, 29/05/12

FOLLOWING PINO - THROUGH THE CUSPS AND BEYOND THE PLANAR LANDS. Lorenzo Magnea. University of Torino - INFN Torino. Pino Day, Cortona, 29/05/12 FOLLOWING PINO - THROUGH THE CUSPS AND BEYOND THE PLANAR LANDS Lorenzo Magnea University of Torino - INFN Torino Pino Day, Cortona, 29/05/12 Outline Crossing paths with Pino Cusps, Wilson lines and Factorization

More information

Renormalization in the Unitarity Method

Renormalization in the Unitarity Method CEA Saclay NBI Summer Institute: Strings, Gauge Theory and the LHC August 23, 2011 One-loop amplitudes Events / 10 GeV 100 80 60 40 tth(120) ttjj ttbb (QCD) ttbb (EW) 20 0 0 50 100 150 200 250 300 350

More information

arxiv: v1 [hep-ph] 26 Nov 2017

arxiv: v1 [hep-ph] 26 Nov 2017 Recent Developments in Higher-Order Calculations: Hard Functions at NLO with GoSam arxiv:1711.09462v1 [hep-ph] 26 Nov 2017 Alessandro Broggio a alessandro.broggio@tum.de Andrea Ferroglia b,c aferroglia@citytech.cuny.edu

More information

The Steinmann Cluster Bootstrap for N = 4 SYM Amplitudes

The Steinmann Cluster Bootstrap for N = 4 SYM Amplitudes The Steinmann Cluster Bootstrap for N = 4 SYM Amplitudes Georgios Papathanasiou 1412.3763 w/ Drummond,Spradlin 1612.08976 w/ Dixon,Drummond,Harrington,McLeod,Spradlin + in progress w/ Caron-Huot,Dixon,McLeod,von

More information

HIGH ENERGY BEHAVIOUR OF FORM FACTORS

HIGH ENERGY BEHAVIOUR OF FORM FACTORS HIGH ENERGY BEHAVIOUR OF FORM FACTORS Taushif Ahmed Johannes Gutenberg University Mainz Germany Skype Seminar IIT Hyderabad May 10, 018 With Johannes Henn & Matthias Steinhauser Ref: JHEP 1706 (017) 15

More information