Handout for Adequacy of Solutions Chapter SET ONE The solution to Make a small change in the right hand side vector of the equations

Size: px
Start display at page:

Download "Handout for Adequacy of Solutions Chapter SET ONE The solution to Make a small change in the right hand side vector of the equations"

Transcription

1 Handout for dequac of Solutions Chapter SET ONE The solution to Make a small change in the right hand side vector of the equations Make a small change in the coefficient matri of the equations

2 SET TWO The solution to Make a small change in the right hand side vector of the equations Make a small change in the coefficient matri of the equations

3 Chapter dequac of Solutions fter reading this chapter, ou should be able to:. know the difference between ill-conditioned and well-conditioned sstems of equations,. define the norm of a matri, and 3. relate the norm of a matri and of its inverse to the ill or well conditioning of the matri, that is, how much trust can ou having in the solution of the matri. What do ou mean b ill-conditioned and well-conditioned sstem of equations? sstem of equations is considered to be well-conditioned if a small change in the coefficient matri or a small change in the right hand side results in a small change in the solution vector. sstem of equations is considered to be ill-conditioned if a small change in the coefficient matri or a small change in the right hand side results in a large change in the solution vector. Eample Is this sstem of equations well-conditioned? Solution The solution to the above set of equations is Make a small change in the right hand side vector of the equations

4 Chapter gives Make a small change in the coefficient matri of the equations gives This last sstems of equation looks ill-conditioned because a small change in the coefficient matri or the right hand side resulted in a large change in the solution vector. Eample Is this sstem of equations well-conditioned? Solution The solution to the above equations is Make a small change in the right hand side vector of the equations gives Make a small change in the coefficient matri of the equations gives

5 dequac of Solution This sstem of equation looks well conditioned because small changes in the coefficient matri or the right hand side resulted in small changes in the solution vector. So what if the sstem of equations is ill conditioned or well conditioned? Well, if a sstem of equations is ill-conditioned, we cannot trust the solution as much. Revisit the velocit problem, Eample 5. in Chapter 5. The values in the coefficient matri [ ] are squares of time, etc. For eample, if instead of a 5, ou used a 4.99, would ou want this small change to make a huge difference in the solution vector. If it did, would ou trust the solution? Later we will see how much (quantifiable terms) we can trust the solution in a sstem of equations. Ever invertible square matri has a condition number and coupled with the machine epsilon, we can quantif how man significant digits one can trust in the solution. To calculate the condition number of an invertible square matri, I need to know what the norm of a matri means. How is the norm of a matri defined? Just like the determinant, the norm of a matri is a simple unique scalar number. However, the norm is alwas positive and is defined for all matrices square or rectangular, and invertible or noninvertible square matrices. One of the popular definitions of a norm is the row sum norm (also called the uniformmatri norm). For a m n matri [], the row sum norm of [] is defined as ma n a ij < i< m j that is, find the sum of the absolute value of the elements of each row of the matri []. The maimum out of the m such values is the row sum norm of the matri []. Eample 3 Find the row sum norm of the following matri []

6 Chapter Solution ma < i< 3 a ij 3 j [( ), ( ), ( )] [( ),( ),( 5 + 5) ] [ ] ma + ma + ma 7,.099, 7. How is the norm related to the conditioning of the matri? Let us start answering this question using an eample. Go back to the ill-conditioned sstem of equations, that gives the solution as Denoting the above set of equations as X C [ ][ ] [ ] X C Making a small change in the right hand side, gives Denoting the above set of equations b [ ][ X '] [ C' ] right hand side vector is found b [ C] [ C' ] [ C] and the change in the solution vector is found b [ X ] [ X '] [ X ] then

7 dequac of Solution and then [ C ] [ ] C The relative change in the norm of the solution vector is X.9995 The relative change in the norm of the right hand side vector is C 0.00 C See the small relative change of.50 0 in the right hand side vector results in a large relative change in the solution vector as In fact, the ratio between the relative change in the norm of the solution vector and the relative change in the norm of the right hand side vector is / X C / C Let us now go back to the well-conditioned sstem of equations gives

8 Chapter Denoting the sstem of equations b X C [ ][ ] [ ] X C 7 Making a small change in the right hand side vector gives Denoting the above set of equations b [ ][ X '] [ C' ] the change in the right hand side vector is then found b [ C] [ C' ] [ C] and the change in the solution vector is [ X ] [ X '] [ X ] then [ C ] and.999 [ ] then C The relative change in the norm of solution vector is

9 dequac of Solution X The relative change in the norm of the right hand side vector is C 0.00 C See the small relative change the right hand side vector of.49 4 small relative change in the solution vector of results in the In fact, the ratio between the relative change in the norm of the solution vector and the relative change in the norm of the right hand side vector is / X C / C What are some of the properties of norms?. For a matri [], 0. For a matri [] and a scalar k, k k 3. For two matrices [] and [B] of same order, + B + B 4. For two matrices [] and [B] that can be multiplied as [ ][ B], B B Is there a general relationship that eists between X / X and C / C or between X / X and /? If so, it could help us identif well-conditioned and ill conditioned sstem of equations. If there is such a relationship, will it help us quantif the conditioning of the matri? That is, will it tell us how man significant digits we could trust in the solution of a sstem of simultaneous linear equations? There is a relationship that eists between

10 Chapter C and X C and between and X These relationships are X + and X < C C The above two inequalities show that the relative change in the norm of the right hand side vector or the coefficient matri can be amplified b as much as. This number is called the condition number of the matri and coupled with the machine epsilon, we can quantif the accurac of the solution of [ ][ X ] [ C]. Prove for [ ][ X ] [ C] that. X + Proof Let [ ][ X ] [ C] () Then if [] is changed to [ '], the [X ] will change to [ X '], such that [ '][ X '] [ C] () From Equations () and (), [ ][ X ] [ ' ][ X '] Denoting change in [] and [X ] matrices as [ ] and [ X ], respectivel [ ] [ ' ] [ ] X X ' X [ ] [ ] [ ]

11 dequac of Solution then [ ][ X ] ([ ] + [ ] )([ X ] + [ ]) Epanding the above epression [ ][ X ] [ ][ X ] + [ ][ ] + [ ][ X ] + [ ][ ] [ 0] [ ][ ] + [ ] ([ X ] + [ ]) [ ][ ] [ ] ([ X ] + [ ]) [ ] [ ] [ ] ([ X ] + [ ]) ppling the theorem of norms, that the norm of multiplied matrices is less than the multiplication of the individual norms of the matrices, < X + Multipling both sides b < X + < X + How do I use the above theorems to find how man significant digits are correct in m solution vector? The relative error in a solution vector is Cond () relative error in right hand side. The possible relative error in the solution vector is Cond () mach Hence Cond () mach should give us the number of significant digits, m that are at least correct in our solution b finding out the largest value of m for which Cond () m is less than mach Eample 4 How man significant digits can I trust in the solution of the following sstem of equations? Solution For [ ] 3.999

12 Chapter it can be shown [ ] ( ) Cond ssuming single precision with 4 bits used in the mantissa for real numbers, the machine epsilon is 4 mach Cond ( ) mach m For what maimum positive value of m, would Cond( ) mach be less than m m m log( ) log(0 ).067 m m.067 m So two significant digits are at least correct in the solution vector. Eample 5 How man significant digits can I trust in the solution of the following sstem of equations? Solution For [ ] 3

13 dequac of Solution it can be shown 3 Then 5, [ ] 5. Cond () ssuming single precision with 4 bits used in the mantissa for real numbers, the machine epsilon 4 mach Cond ( ) mach m For what maimum positive value of m, would Cond( ) mach be less than m m 5 So five significant digits are at least correct in the solution vector. Ke Terms: Ill-Conditioned matri Well-Conditioned matri Norm Condition Number Machine Epsilon Significant Digits

14 Problem Set Chapter dequac of Solutions. The adequac of the solution of simultaneous linear equations depends on () Condition number (B) Machine epsilon (C) Product of condition number and machine epsilon (D) Norm of the matri.. If a sstem of equations [ ][ X ] [ C] is ill conditioned, then () det( ) 0 (B) Cond ( ) (C) Cond( ) is large. (D) is large If Cond ( ) 0 and mach , then in [ ][ X ] [ C], at least these man significant digits are correct in our solution, () 0 (B) (C) (D) Make a small change in the coefficient matri of and find / X / Is it a large or small number? How is this number related to the condition number of the coefficient matri? 5. Make a small change in the coefficient matri of and find / X. / Is it a large or a small number? Compare our results with the previous problem. How is this number related to the condition number of the coefficient matri?

15 Chapter Prove X < C C 7. For [ ] gives [ ] () What is the condition number of []? (B) How man significant digits can we at least trust in the solution of 6 [ ][ X ] [ C] if mach 0.9 0? (C) Without calculating the inverse of the matri [], can ou estimate the condition number of [] using the theorem in problem#6? 8. Prove that the Cond ( ).

16 Trapezoidal Rule nswers to Selected Problems:. C. C 3. C 4. Changing [] to Results in solution of X Changing [] to Results in solution of X Use theorem that if [ ][ B] [ C] then B C 7.

17 Chapter () Cond () 7.56 (B) 5 T (C) Tr different values of right hand side of C [ ± ± ± ] with signs chosen randoml. Then X obtained from solving equation set [ ][ X ] [ C] as C. 8. We know that B B then if [ B ] [ ], I Cond ( )

Chapter Adequacy of Solutions

Chapter Adequacy of Solutions Chapter 04.09 dequac of Solutions fter reading this chapter, ou should be able to: 1. know the difference between ill-conditioned and well-conditioned sstems of equations,. define the norm of a matri,

More information

Unit 12 Study Notes 1 Systems of Equations

Unit 12 Study Notes 1 Systems of Equations You should learn to: Unit Stud Notes Sstems of Equations. Solve sstems of equations b substitution.. Solve sstems of equations b graphing (calculator). 3. Solve sstems of equations b elimination. 4. Solve

More information

Eigenvectors and Eigenvalues 1

Eigenvectors and Eigenvalues 1 Ma 2015 page 1 Eigenvectors and Eigenvalues 1 In this handout, we will eplore eigenvectors and eigenvalues. We will begin with an eploration, then provide some direct eplanation and worked eamples, and

More information

CE 601: Numerical Methods Lecture 7. Course Coordinator: Dr. Suresh A. Kartha, Associate Professor, Department of Civil Engineering, IIT Guwahati.

CE 601: Numerical Methods Lecture 7. Course Coordinator: Dr. Suresh A. Kartha, Associate Professor, Department of Civil Engineering, IIT Guwahati. CE 60: Numerical Methods Lecture 7 Course Coordinator: Dr. Suresh A. Kartha, Associate Professor, Department of Civil Engineering, IIT Guwahati. Drawback in Elimination Methods There are various drawbacks

More information

5/21/07 3:13 PM MATLAB Command Window 1 of 6

5/21/07 3:13 PM MATLAB Command Window 1 of 6 5/2/07 3:3 PM MATLAB Command Window of 6 Adequacy in Solution of Simultaneous Linear Equations 2007 Fabian Farelo, Autar Kaw University of South Florida United States of America kaw@eng.usf.edu NOTE: This

More information

15. Eigenvalues, Eigenvectors

15. Eigenvalues, Eigenvectors 5 Eigenvalues, Eigenvectors Matri of a Linear Transformation Consider a linear ( transformation ) L : a b R 2 R 2 Suppose we know that L and L Then c d because of linearit, we can determine what L does

More information

Error Analysis for Solving a Set of Linear Equations

Error Analysis for Solving a Set of Linear Equations Error Analysis for Solving a Set of Linear Equations We noted earlier that the solutions to an equation Ax = b depends significantly on the matrix A. In particular, a unique solution to Ax = b exists if

More information

OBJECTIVE 5 SOLVING SYSTEMS 5/19/2016 SOLVING SYSTEMS OF TWO EQUATIONS BY SUBSTITUTION:

OBJECTIVE 5 SOLVING SYSTEMS 5/19/2016 SOLVING SYSTEMS OF TWO EQUATIONS BY SUBSTITUTION: /9/ OBJECTIVE Sstems & Matrices SOLVING SYSTEMS OF TWO EQUATIONS BY SUBSTITUTION:. Solve one of the equations for one of the variables in terms of the other.. Substitute this epression into the nd equation,

More information

Linear Equations in Linear Algebra

Linear Equations in Linear Algebra 1 Linear Equations in Linear Algebra 1.1 SYSTEMS OF LINEAR EQUATIONS LINEAR EQUATION,, 1 n A linear equation in the variables equation that can be written in the form a a a b 1 1 2 2 n n a a is an where

More information

FALL 2012 MATH 1324 REVIEW EXAM 2

FALL 2012 MATH 1324 REVIEW EXAM 2 FALL 0 MATH 3 REVIEW EXAM MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the order of the matri product AB and the product BA, whenever the

More information

MTH 112 Practice Test 3 Sections 3.3, 3.4, 3.5, 1.9, 7.4, 7.5, 8.1, 8.2

MTH 112 Practice Test 3 Sections 3.3, 3.4, 3.5, 1.9, 7.4, 7.5, 8.1, 8.2 MTH 112 Practice Test 3 Sections 3.3, 3., 3., 1.9, 7., 7., 8.1, 8.2 Use properties of logarithms to epand the logarithmic epression as much as possible. Where possible, evaluate logarithmic epressions

More information

Systems of Linear Equations: Solving by Graphing

Systems of Linear Equations: Solving by Graphing 8.1 Sstems of Linear Equations: Solving b Graphing 8.1 OBJECTIVE 1. Find the solution(s) for a set of linear equations b graphing NOTE There is no other ordered pair that satisfies both equations. From

More information

LESSON 35: EIGENVALUES AND EIGENVECTORS APRIL 21, (1) We might also write v as v. Both notations refer to a vector.

LESSON 35: EIGENVALUES AND EIGENVECTORS APRIL 21, (1) We might also write v as v. Both notations refer to a vector. LESSON 5: EIGENVALUES AND EIGENVECTORS APRIL 2, 27 In this contet, a vector is a column matri E Note 2 v 2, v 4 5 6 () We might also write v as v Both notations refer to a vector (2) A vector can be man

More information

Demonstrate solution methods for systems of linear equations. Show that a system of equations can be represented in matrix-vector form.

Demonstrate solution methods for systems of linear equations. Show that a system of equations can be represented in matrix-vector form. Chapter Linear lgebra Objective Demonstrate solution methods for sstems of linear equations. Show that a sstem of equations can be represented in matri-vector form. 4 Flowrates in kmol/hr Figure.: Two

More information

RELATIONS AND FUNCTIONS through

RELATIONS AND FUNCTIONS through RELATIONS AND FUNCTIONS 11.1.2 through 11.1. Relations and Functions establish a correspondence between the input values (usuall ) and the output values (usuall ) according to the particular relation or

More information

12.1 Systems of Linear equations: Substitution and Elimination

12.1 Systems of Linear equations: Substitution and Elimination . Sstems of Linear equations: Substitution and Elimination Sstems of two linear equations in two variables A sstem of equations is a collection of two or more equations. A solution of a sstem in two variables

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. MAT 10 Test 2 Review (chapters 6,7,11) Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Multipl both sides of each equation b a common denominator

More information

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures AB = BA = I,

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures AB = BA = I, FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING Lectures MODULE 7 MATRICES II Inverse of a matri Sstems of linear equations Solution of sets of linear equations elimination methods 4

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. MAT 1033 Test 2 Review (chapters 6,7,11) Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Multipl both sides of each equation b a common denominator

More information

Prepared by: M. S. KumarSwamy, TGT(Maths) Page

Prepared by: M. S. KumarSwamy, TGT(Maths) Page Prepared b: M. S. KumarSwam, TGT(Maths) Page - 77 - CHAPTER 4: DETERMINANTS QUICK REVISION (Important Concepts & Formulae) Determinant a b If A = c d, then determinant of A is written as A = a b = det

More information

14.1 Systems of Linear Equations in Two Variables

14.1 Systems of Linear Equations in Two Variables 86 Chapter 1 Sstems of Equations and Matrices 1.1 Sstems of Linear Equations in Two Variables Use the method of substitution to solve sstems of equations in two variables. Use the method of elimination

More information

Writing Quadratic Functions in Standard Form

Writing Quadratic Functions in Standard Form Chapter Summar Ke Terms standard form (general form) of a quadratic function (.1) parabola (.1) leading coefficient (.) second differences (.) vertical motion model (.3) zeros (.3) interval (.3) open interval

More information

Elementary maths for GMT

Elementary maths for GMT Elementary maths for GMT Linear Algebra Part 2: Matrices, Elimination and Determinant m n matrices The system of m linear equations in n variables x 1, x 2,, x n a 11 x 1 + a 12 x 2 + + a 1n x n = b 1

More information

3.7 InveRSe FUnCTIOnS

3.7 InveRSe FUnCTIOnS CHAPTER functions learning ObjeCTIveS In this section, ou will: Verif inverse functions. Determine the domain and range of an inverse function, and restrict the domain of a function to make it one-to-one.

More information

Mathematics. Polynomials and Quadratics. hsn.uk.net. Higher. Contents. Polynomials and Quadratics 52 HSN22100

Mathematics. Polynomials and Quadratics. hsn.uk.net. Higher. Contents. Polynomials and Quadratics 52 HSN22100 Higher Mathematics UNIT OUTCOME 1 Polnomials and Quadratics Contents Polnomials and Quadratics 5 1 Quadratics 5 The Discriminant 54 Completing the Square 55 4 Sketching Parabolas 57 5 Determining the Equation

More information

Fixed Point Theorem and Sequences in One or Two Dimensions

Fixed Point Theorem and Sequences in One or Two Dimensions Fied Point Theorem and Sequences in One or Two Dimensions Dr. Wei-Chi Yang Let us consider a recursive sequence of n+ = n + sin n and the initial value can be an real number. Then we would like to ask

More information

Linear Programming. Maximize the function. P = Ax + By + C. subject to the constraints. a 1 x + b 1 y < c 1 a 2 x + b 2 y < c 2

Linear Programming. Maximize the function. P = Ax + By + C. subject to the constraints. a 1 x + b 1 y < c 1 a 2 x + b 2 y < c 2 Linear Programming Man real world problems require the optimization of some function subject to a collection of constraints. Note: Think of optimizing as maimizing or minimizing for MATH1010. For eample,

More information

Higher. Polynomials and Quadratics. Polynomials and Quadratics 1

Higher. Polynomials and Quadratics. Polynomials and Quadratics 1 Higher Mathematics Contents 1 1 Quadratics EF 1 The Discriminant EF 3 3 Completing the Square EF 4 4 Sketching Parabolas EF 7 5 Determining the Equation of a Parabola RC 9 6 Solving Quadratic Inequalities

More information

Unit 3 NOTES Honors Common Core Math 2 1. Day 1: Properties of Exponents

Unit 3 NOTES Honors Common Core Math 2 1. Day 1: Properties of Exponents Unit NOTES Honors Common Core Math Da : Properties of Eponents Warm-Up: Before we begin toda s lesson, how much do ou remember about eponents? Use epanded form to write the rules for the eponents. OBJECTIVE

More information

Get Solution of These Packages & Learn by Video Tutorials on Matrices

Get Solution of These Packages & Learn by Video Tutorials on  Matrices FEE Download Stud Package from website: wwwtekoclassescom & wwwmathsbsuhagcom Get Solution of These Packages & Learn b Video Tutorials on wwwmathsbsuhagcom Matrices An rectangular arrangement of numbers

More information

Exact and heuristic minimization of Boolean functions

Exact and heuristic minimization of Boolean functions Eact and heuristic minimization of Boolean functions Quine a McCluskey Method a) Generation of all prime implicants b) Selection of a minimum subset of prime implicants, which will represent the original

More information

Adequacy in Solution of Simultaneous Linear Equations

Adequacy in Solution of Simultaneous Linear Equations SOLUTION OF SYSTEMS OF SIMULTANEOUS LINEAR EQUATIONS Adequacy in Solution of Simultaneous Linear Equations 2006 Jamie Trahan, Autar Kaw, Kevin Martin University of South Florida United States of America

More information

Matrices. VCE Maths Methods - Unit 2 - Matrices

Matrices. VCE Maths Methods - Unit 2 - Matrices Matrices Introduction to matrices Addition & subtraction Scalar multiplication Matri multiplication The unit matri Matri division - the inverse matri Using matrices - simultaneous equations Matri transformations

More information

Matrices. VCE Maths Methods - Unit 2 - Matrices

Matrices. VCE Maths Methods - Unit 2 - Matrices Matrices Introduction to matrices Addition subtraction Scalar multiplication Matri multiplication The unit matri Matri division - the inverse matri Using matrices - simultaneous equations Matri transformations

More information

Now, if you see that x and y are present in both equations, you may write:

Now, if you see that x and y are present in both equations, you may write: Matrices: Suppose you have two simultaneous equations: y y 3 () Now, if you see that and y are present in both equations, you may write: y 3 () You should be able to see where the numbers have come from.

More information

Derivatives 2: The Derivative at a Point

Derivatives 2: The Derivative at a Point Derivatives 2: The Derivative at a Point 69 Derivatives 2: The Derivative at a Point Model 1: Review of Velocit In the previous activit we eplored position functions (distance versus time) and learned

More information

( ) ( ) ( )( ) Algebra II Semester 2 Practice Exam A DRAFT. = x. Which expression is equivalent to. 1. Find the solution set of. f g x? B.

( ) ( ) ( )( ) Algebra II Semester 2 Practice Exam A DRAFT. = x. Which expression is equivalent to. 1. Find the solution set of. f g x? B. Algebra II Semester Practice Eam A. Find the solution set of 5 5 +, 9 9 +, 5 5 +, =.. Let f ( ) = and g( ) =. Which epression is equivalent to f g? ( ) ( ) + ( ) 9 9 +, 5. If h( ) = 0 and j( ) h( ) + j

More information

Chapter 18 Quadratic Function 2

Chapter 18 Quadratic Function 2 Chapter 18 Quadratic Function Completed Square Form 1 Consider this special set of numbers - the square numbers or the set of perfect squares. 4 = = 9 = 3 = 16 = 4 = 5 = 5 = Numbers like 5, 11, 15 are

More information

Algebra 2 Semester Exam Review

Algebra 2 Semester Exam Review Algebra Semester Eam Review 7 Graph the numbers,,,, and 0 on a number line Identif the propert shown rs rs r when r and s Evaluate What is the value of k k when k? Simplif the epression 7 7 Solve the equation

More information

Some linear transformations on R 2 Math 130 Linear Algebra D Joyce, Fall 2013

Some linear transformations on R 2 Math 130 Linear Algebra D Joyce, Fall 2013 Some linear transformations on R 2 Math 3 Linear Algebra D Joce, Fall 23 Let s look at some some linear transformations on the plane R 2. We ll look at several kinds of operators on R 2 including reflections,

More information

Paul Heckbert. Computer Science Department Carnegie Mellon University. 26 Sept B - Introduction to Scientific Computing 1

Paul Heckbert. Computer Science Department Carnegie Mellon University. 26 Sept B - Introduction to Scientific Computing 1 Paul Heckbert Computer Science Department Carnegie Mellon University 26 Sept. 2 5-859B - Introduction to Scientific Computing aerospace: simulate subsonic & supersonic air flow around full aircraft, no

More information

Chapter 6: Systems of Equations and Inequalities

Chapter 6: Systems of Equations and Inequalities Chapter 6: Sstems of Equations and Inequalities 6-1: Solving Sstems b Graphing Objectives: Identif solutions of sstems of linear equation in two variables. Solve sstems of linear equation in two variables

More information

Vocabulary. Term Page Definition Clarifying Example degree of a monomial. degree of a polynomial. end behavior. leading coefficient.

Vocabulary. Term Page Definition Clarifying Example degree of a monomial. degree of a polynomial. end behavior. leading coefficient. CHAPTER 6 Vocabular The table contains important vocabular terms from Chapter 6. As ou work through the chapter, fill in the page number, definition, and a clarifing eample. Term Page Definition Clarifing

More information

Mathematics. Polynomials and Quadratics. hsn.uk.net. Higher. Contents. Polynomials and Quadratics 1. CfE Edition

Mathematics. Polynomials and Quadratics. hsn.uk.net. Higher. Contents. Polynomials and Quadratics 1. CfE Edition Higher Mathematics Contents 1 1 Quadratics EF 1 The Discriminant EF 3 3 Completing the Square EF 4 4 Sketching Parabolas EF 7 5 Determining the Equation of a Parabola RC 9 6 Solving Quadratic Inequalities

More information

MATH 115: Final Exam Review. Can you find the distance between two points and the midpoint of a line segment? (1.1)

MATH 115: Final Exam Review. Can you find the distance between two points and the midpoint of a line segment? (1.1) MATH : Final Eam Review Can ou find the distance between two points and the midpoint of a line segment? (.) () Consider the points A (,) and ( 6, ) B. (a) Find the distance between A and B. (b) Find the

More information

8.4. If we let x denote the number of gallons pumped, then the price y in dollars can $ $1.70 $ $1.70 $ $1.70 $ $1.

8.4. If we let x denote the number of gallons pumped, then the price y in dollars can $ $1.70 $ $1.70 $ $1.70 $ $1. 8.4 An Introduction to Functions: Linear Functions, Applications, and Models We often describe one quantit in terms of another; for eample, the growth of a plant is related to the amount of light it receives,

More information

n n matrices The system of m linear equations in n variables x 1, x 2,..., x n can be written as a matrix equation by Ax = b, or in full

n n matrices The system of m linear equations in n variables x 1, x 2,..., x n can be written as a matrix equation by Ax = b, or in full n n matrices Matrices Definitions Diagonal, Identity, and zero matrices Addition Multiplication Transpose and inverse The system of m linear equations in n variables x 1, x 2,..., x n a 11 x 1 + a 12 x

More information

In this chapter a student has to learn the Concept of adjoint of a matrix. Inverse of a matrix. Rank of a matrix and methods finding these.

In this chapter a student has to learn the Concept of adjoint of a matrix. Inverse of a matrix. Rank of a matrix and methods finding these. MATRICES UNIT STRUCTURE.0 Objectives. Introduction. Definitions. Illustrative eamples.4 Rank of matri.5 Canonical form or Normal form.6 Normal form PAQ.7 Let Us Sum Up.8 Unit End Eercise.0 OBJECTIVES In

More information

What is the limit of a function? Intuitively, we want the limit to say that as x gets closer to some value a,

What is the limit of a function? Intuitively, we want the limit to say that as x gets closer to some value a, Limits The notion of a limit is fundamental to the stud of calculus. It is one of the primar concepts that distinguishes calculus from mathematical subjects that ou saw prior to calculus, such as algebra

More information

Review of Linear Algebra

Review of Linear Algebra Review of Linear Algebra Dr Gerhard Roth COMP 40A Winter 05 Version Linear algebra Is an important area of mathematics It is the basis of computer vision Is very widely taught, and there are many resources

More information

Lecture 27: More on Rotational Kinematics

Lecture 27: More on Rotational Kinematics Lecture 27: More on Rotational Kinematics Let s work out the kinematics of rotational motion if α is constant: dω α = 1 2 α dω αt = ω ω ω = αt + ω ( t ) dφ α + ω = dφ t 2 α + ωo = φ φo = 1 2 = t o 2 φ

More information

Integration. 5.1 Antiderivatives and Indefinite Integration. Suppose that f(x) = 5x 4. Can we find a function F (x) whose derivative is f(x)?

Integration. 5.1 Antiderivatives and Indefinite Integration. Suppose that f(x) = 5x 4. Can we find a function F (x) whose derivative is f(x)? 5 Integration 5. Antiderivatives and Indefinite Integration Suppose that f() = 5 4. Can we find a function F () whose derivative is f()? Definition. A function F is an antiderivative of f on an interval

More information

Section 4.1 Increasing and Decreasing Functions

Section 4.1 Increasing and Decreasing Functions Section.1 Increasing and Decreasing Functions The graph of the quadratic function f 1 is a parabola. If we imagine a particle moving along this parabola from left to right, we can see that, while the -coordinates

More information

Applied Algebra II Semester 2 Practice Exam A DRAFT. 6. Let f ( x) = 2x A. 47 B. 92 C. 139 D. 407

Applied Algebra II Semester 2 Practice Exam A DRAFT. 6. Let f ( x) = 2x A. 47 B. 92 C. 139 D. 407 Applied Algebra II Semester Practice Eam A. Find the solution set of { + 0, 0} { + i 0, i 0} { + i, i } { +, } + = 9.. Let f ( ) = and ( ) 0 g =. Which epression is equivalent to f g? ( ) ( ). What is

More information

Linear algebra in turn is built on two basic elements, MATRICES and VECTORS.

Linear algebra in turn is built on two basic elements, MATRICES and VECTORS. M-Lecture():.-. Linear algebra provides concepts that are crucial to man areas of information technolog and computing, including: Graphics Image processing Crptograph Machine learning Computer vision Optimiation

More information

Affine transformations

Affine transformations Reading Optional reading: Affine transformations Brian Curless CSE 557 Autumn 207 Angel and Shreiner: 3., 3.7-3. Marschner and Shirle: 2.3, 2.4.-2.4.4, 6..-6..4, 6.2., 6.3 Further reading: Angel, the rest

More information

MATRIX TRANSFORMATIONS

MATRIX TRANSFORMATIONS CHAPTER 5. MATRIX TRANSFORMATIONS INSTITIÚID TEICNEOLAÍOCHTA CHEATHARLACH INSTITUTE OF TECHNOLOGY CARLOW MATRIX TRANSFORMATIONS Matri Transformations Definition Let A and B be sets. A function f : A B

More information

INTRODUCTION GOOD LUCK!

INTRODUCTION GOOD LUCK! INTRODUCTION The Summer Skills Assignment for has been developed to provide all learners of our St. Mar s Count Public Schools communit an opportunit to shore up their prerequisite mathematical skills

More information

Math for ML: review. Milos Hauskrecht 5329 Sennott Square, x people.cs.pitt.edu/~milos/courses/cs1675/

Math for ML: review. Milos Hauskrecht 5329 Sennott Square, x people.cs.pitt.edu/~milos/courses/cs1675/ Math for ML: review Milos Hauskrecht milos@pitt.edu 5 Sennott Square, -5 people.cs.pitt.edu/~milos/courses/cs75/ Administrivia Recitations Held on Wednesdays at :00am and :00pm This week: Matlab tutorial

More information

CBSE Examination Paper, Foreign-2014

CBSE Examination Paper, Foreign-2014 CBSE Eamination Paper, Foreign-4 Time allowed: hours Maimum marks: General Instructions: As per given in CBSE Eamination Paper Delhi-4. SET I SECTION A Question numbers to carr mark each.. Let R = {(a,

More information

CS 378: Computer Game Technology

CS 378: Computer Game Technology CS 378: Computer Game Technolog 3D Engines and Scene Graphs Spring 202 Universit of Teas at Austin CS 378 Game Technolog Don Fussell Representation! We can represent a point, p =,), in the plane! as a

More information

Lines and Planes 1. x(t) = at + b y(t) = ct + d

Lines and Planes 1. x(t) = at + b y(t) = ct + d 1 Lines in the Plane Lines and Planes 1 Ever line of points L in R 2 can be epressed as the solution set for an equation of the form A + B = C. Will we call this the ABC form. Recall that the slope-intercept

More information

A Review of Matrix Analysis

A Review of Matrix Analysis Matrix Notation Part Matrix Operations Matrices are simply rectangular arrays of quantities Each quantity in the array is called an element of the matrix and an element can be either a numerical value

More information

Statistical Geometry Processing Winter Semester 2011/2012

Statistical Geometry Processing Winter Semester 2011/2012 Statistical Geometry Processing Winter Semester 2011/2012 Linear Algebra, Function Spaces & Inverse Problems Vector and Function Spaces 3 Vectors vectors are arrows in space classically: 2 or 3 dim. Euclidian

More information

1 HOMOGENEOUS TRANSFORMATIONS

1 HOMOGENEOUS TRANSFORMATIONS HOMOGENEOUS TRANSFORMATIONS Purpose: The purpose of this chapter is to introduce ou to the Homogeneous Transformation. This simple 4 4 transformation is used in the geometr engines of CAD sstems and in

More information

Functions. Introduction

Functions. Introduction Functions,00 P,000 00 0 70 7 80 8 0 000 00 00 Figure Standard and Poor s Inde with dividends reinvested (credit "bull": modification of work b Praitno Hadinata; credit "graph": modification of work b MeasuringWorth)

More information

Constrained Maxima and Minima EXAMPLE 1 Finding a Minimum with Constraint

Constrained Maxima and Minima EXAMPLE 1 Finding a Minimum with Constraint 1038 Chapter 14: Partial Derivatives 14.8 Lagrange Multipliers HISTORICAL BIOGRAPHY Joseph Louis Lagrange (1736 1813) Sometimes we need to find the etreme values of a function whose domain is constrained

More information

Pre Calculus Spring Final Exam REVIEW

Pre Calculus Spring Final Exam REVIEW Pre Calculus Spring Final Eam REVIEW Solve the triangle. Round lengths to the nearest tenth and angle measures to the nearest degree. ) B = 43 C = 7 b = 4 Two sides and an angle (SSA) of a triangle are

More information

Strain Transformation and Rosette Gage Theory

Strain Transformation and Rosette Gage Theory Strain Transformation and Rosette Gage Theor It is often desired to measure the full state of strain on the surface of a part, that is to measure not onl the two etensional strains, and, but also the shear

More information

m x n matrix with m rows and n columns is called an array of m.n real numbers

m x n matrix with m rows and n columns is called an array of m.n real numbers LINEAR ALGEBRA Matrices Linear Algebra Definitions m n matri with m rows and n columns is called an arra of mn real numbers The entr a a an A = a a an = ( a ij ) am am amn a ij denotes the element in the

More information

For questions 5-8, solve each inequality and graph the solution set. You must show work for full credit. (2 pts each)

For questions 5-8, solve each inequality and graph the solution set. You must show work for full credit. (2 pts each) Alg Midterm Review Practice Level 1 C 1. Find the opposite and the reciprocal of 0. a. 0, 1 b. 0, 1 0 0 c. 0, 1 0 d. 0, 1 0 For questions -, insert , or = to make the sentence true. (1pt each) A. 5

More information

Numerical Methods - Lecture 2. Numerical Methods. Lecture 2. Analysis of errors in numerical methods

Numerical Methods - Lecture 2. Numerical Methods. Lecture 2. Analysis of errors in numerical methods Numerical Methods - Lecture 1 Numerical Methods Lecture. Analysis o errors in numerical methods Numerical Methods - Lecture Why represent numbers in loating point ormat? Eample 1. How a number 56.78 can

More information

10.3 Solving Nonlinear Systems of Equations

10.3 Solving Nonlinear Systems of Equations 60 CHAPTER 0 Conic Sections Identif whether each equation, when graphed, will be a parabola, circle, ellipse, or hperbola. Then graph each equation.. - 7 + - =. = +. = + + 6. + 9 =. 9-9 = 6. 6 - = 7. 6

More information

Review of Prerequisite Skills, p. 350 C( 2, 0, 1) B( 3, 2, 0) y A(0, 1, 0) D(0, 2, 3) j! k! 2k! Section 7.1, pp

Review of Prerequisite Skills, p. 350 C( 2, 0, 1) B( 3, 2, 0) y A(0, 1, 0) D(0, 2, 3) j! k! 2k! Section 7.1, pp . 5. a. a a b a a b. Case If and are collinear, then b is also collinear with both and. But is perpendicular to and c c c b 9 b c, so a a b b is perpendicular to. Case If b and c b c are not collinear,

More information

Graph the linear system and estimate the solution. Then check the solution algebraically.

Graph the linear system and estimate the solution. Then check the solution algebraically. (Chapters and ) A. Linear Sstems (pp. 6 0). Solve a Sstem b Graphing Vocabular Solution For a sstem of linear equations in two variables, an ordered pair (x, ) that satisfies each equation. Consistent

More information

Law of Sines, Law of Cosines, Heron s Formula:

Law of Sines, Law of Cosines, Heron s Formula: PreAP Math Analsis nd Semester Review Law of Sines, Law of Cosines, Heron s Formula:. Determine how man solutions the triangle has and eplain our reasoning. (FIND YOUR FLOW CHART) a. A = 4, a = 4 ards,

More information

Let s try an example of Unit Analysis. Your friend gives you this formula: x=at. You have to figure out if it s right using Unit Analysis.

Let s try an example of Unit Analysis. Your friend gives you this formula: x=at. You have to figure out if it s right using Unit Analysis. Lecture 1 Introduction to Measurement - SI sstem Dimensional nalsis / Unit nalsis Unit Conversions Vectors and Mathematics International Sstem of Units (SI) Table 1.1, p.5 The Seven Base Units What is

More information

Chapter 6 Class Notes 6-1 Solving Inequalities Using Addition and Subtraction p n 1

Chapter 6 Class Notes 6-1 Solving Inequalities Using Addition and Subtraction p n 1 Chapter Class Notes Alg. CP - Solving Inequalities Using Addition and Subtraction p.. t. a. n. r r - Solving Inequalities Using Multiplication and Division p. 0-0 A) n B) n A) B) p When ou multipl or divide

More information

Matrices Gaussian elimination Determinants. Graphics 2009/2010, period 1. Lecture 4: matrices

Matrices Gaussian elimination Determinants. Graphics 2009/2010, period 1. Lecture 4: matrices Graphics 2009/2010, period 1 Lecture 4 Matrices m n matrices Matrices Definitions Diagonal, Identity, and zero matrices Addition Multiplication Transpose and inverse The system of m linear equations in

More information

REVISION SHEET FP2 (MEI) CALCULUS. x x 0.5. x x 1.5. π π. Standard Calculus of Inverse Trig and Hyperbolic Trig Functions = + = + arcsin x = +

REVISION SHEET FP2 (MEI) CALCULUS. x x 0.5. x x 1.5. π π. Standard Calculus of Inverse Trig and Hyperbolic Trig Functions = + = + arcsin x = + the Further Mathematics network www.fmnetwork.org.uk V 07 REVISION SHEET FP (MEI) CALCULUS The main ideas are: Calculus using inverse trig functions & hperbolic trig functions and their inverses. Maclaurin

More information

Linear Equations and Vectors

Linear Equations and Vectors Chapter Linear Equations and Vectors Linear Algebra, Fall 6 Matrices and Systems of Linear Equations Figure. Linear Algebra, Fall 6 Figure. Linear Algebra, Fall 6 Figure. Linear Algebra, Fall 6 Unique

More information

3.1 Graphing Quadratic Functions. Quadratic functions are of the form.

3.1 Graphing Quadratic Functions. Quadratic functions are of the form. 3.1 Graphing Quadratic Functions A. Quadratic Functions Completing the Square Quadratic functions are of the form. 3. It is easiest to graph quadratic functions when the are in the form using transformations.

More information

d. 2x 3 7x 2 5x 2 2x 2 3x 1 x 2x 3 3x 2 1x 2 4x 2 6x 2 3. a. x 5 x x 2 5x 5 5x 25 b. x 4 2x 2x 2 8x 3 3x 12 c. x 6 x x 2 6x 6 6x 36

d. 2x 3 7x 2 5x 2 2x 2 3x 1 x 2x 3 3x 2 1x 2 4x 2 6x 2 3. a. x 5 x x 2 5x 5 5x 25 b. x 4 2x 2x 2 8x 3 3x 12 c. x 6 x x 2 6x 6 6x 36 Vertices: (.8, 5.), (.37, 3.563), (.6, 0.980), (5.373, 6.66), (.8, 7.88), (.95,.) Graph the equation for an value of P (the second graph shows the circle with P 5) and imagine increasing the value of P,

More information

INF Introduction to classifiction Anne Solberg

INF Introduction to classifiction Anne Solberg INF 4300 8.09.17 Introduction to classifiction Anne Solberg anne@ifi.uio.no Introduction to classification Based on handout from Pattern Recognition b Theodoridis, available after the lecture INF 4300

More information

a [A] +Algebra 2/Trig Final Exam Review Fall Semester x [E] None of these [C] 512 [A] [B] 1) Simplify: [D] x z [E] None of these 2) Simplify: [A]

a [A] +Algebra 2/Trig Final Exam Review Fall Semester x [E] None of these [C] 512 [A] [B] 1) Simplify: [D] x z [E] None of these 2) Simplify: [A] ) Simplif: z z z 6 6 z 6 z 6 ) Simplif: 9 9 0 ) Simplif: a a a 0 a a ) Simplif: 0 0 ) Simplif: 9 9 6) Evaluate: / 6 6 6 ) Rationalize: ) Rationalize: 6 6 0 6 9) Which of the following are polnomials? None

More information

Mathematics of Cryptography Part I

Mathematics of Cryptography Part I CHAPTER 2 Mathematics of Crptograph Part I (Solution to Practice Set) Review Questions 1. The set of integers is Z. It contains all integral numbers from negative infinit to positive infinit. The set of

More information

5. Nonholonomic constraint Mechanics of Manipulation

5. Nonholonomic constraint Mechanics of Manipulation 5. Nonholonomic constraint Mechanics of Manipulation Matt Mason matt.mason@cs.cmu.edu http://www.cs.cmu.edu/~mason Carnegie Mellon Lecture 5. Mechanics of Manipulation p.1 Lecture 5. Nonholonomic constraint.

More information

Exam 2 Review Math1324. Solve the system of two equations in two variables. 1) 8x + 7y = 36 3x - 4y = -13 A) (1, 5) B) (0, 5) C) No solution D) (1, 4)

Exam 2 Review Math1324. Solve the system of two equations in two variables. 1) 8x + 7y = 36 3x - 4y = -13 A) (1, 5) B) (0, 5) C) No solution D) (1, 4) Eam Review Math3 Solve the sstem of two equations in two variables. ) + 7 = 3 3 - = -3 (, 5) B) (0, 5) C) No solution D) (, ) ) 3 + 5 = + 30 = -, B) No solution 3 C) - 5 3 + 3, for an real number D) 3,

More information

3.1 Exponential Functions and Their Graphs

3.1 Exponential Functions and Their Graphs .1 Eponential Functions and Their Graphs Sllabus Objective: 9.1 The student will sketch the graph of a eponential, logistic, or logarithmic function. 9. The student will evaluate eponential or logarithmic

More information

Review of Linear Algebra

Review of Linear Algebra Review of Linear Algebra Definitions An m n (read "m by n") matrix, is a rectangular array of entries, where m is the number of rows and n the number of columns. 2 Definitions (Con t) A is square if m=

More information

A: Level 14, 474 Flinders Street Melbourne VIC 3000 T: W: tssm.com.au E: TSSM 2011 Page 1 of 8

A: Level 14, 474 Flinders Street Melbourne VIC 3000 T: W: tssm.com.au E: TSSM 2011 Page 1 of 8 MATHEMATICAL METHODS CAS Teach Yourself Series Topic 3: Functions and Relations Inverse Functions, Hybrid Functions, Modulus Functions, Composite Functions and Functional Equations A: Level 4, 474 Flinders

More information

6-1 Study Guide and Intervention

6-1 Study Guide and Intervention NAME DATE PERID 6- Stud Guide and Intervention Graphing Sstems of Equations Possible Number of Solutions Two or more linear equations involving the same variables form a sstem of equations. A solution

More information

Adequacy in Solution of Simultaneous Linear Equations

Adequacy in Solution of Simultaneous Linear Equations nbm_sle_sim_adequacysoltn.nb 1 Adequacy in Solution of Simultaneous Linear Equations Jamie Trahan, Autar Kaw, Kevin Martin University of South Florida United States of America kaw@eng.usf.edu Introduction

More information

M 340L CS Homework Set 1

M 340L CS Homework Set 1 M 340L CS Homework Set 1 Solve each system in Problems 1 6 by using elementary row operations on the equations or on the augmented matri. Follow the systematic elimination procedure described in Lay, Section

More information

4.7. Newton s Method. Procedure for Newton s Method HISTORICAL BIOGRAPHY

4.7. Newton s Method. Procedure for Newton s Method HISTORICAL BIOGRAPHY 4. Newton s Method 99 4. Newton s Method HISTORICAL BIOGRAPHY Niels Henrik Abel (18 189) One of the basic problems of mathematics is solving equations. Using the quadratic root formula, we know how to

More information

Linear Algebraic Equations

Linear Algebraic Equations Linear Algebraic Equations Linear Equations: a + a + a + a +... + a = c 11 1 12 2 13 3 14 4 1n n 1 a + a + a + a +... + a = c 21 2 2 23 3 24 4 2n n 2 a + a + a + a +... + a = c 31 1 32 2 33 3 34 4 3n n

More information

Name Class Date. Solving Special Systems by Graphing. Does this linear system have a solution? Use the graph to explain.

Name Class Date. Solving Special Systems by Graphing. Does this linear system have a solution? Use the graph to explain. Name Class Date 5 Solving Special Sstems Going Deeper Essential question: How do ou solve sstems with no or infinitel man solutions? 1 A-REI.3.6 EXAMPLE Solving Special Sstems b Graphing Use the graph

More information

Matrices and Determinants

Matrices and Determinants Math Assignment Eperts is a leading provider of online Math help. Our eperts have prepared sample assignments to demonstrate the quality of solution we provide. If you are looking for mathematics help

More information

VECTORS IN THREE DIMENSIONS

VECTORS IN THREE DIMENSIONS 1 CHAPTER 2. BASIC TRIGONOMETRY 1 INSTITIÚID TEICNEOLAÍOCHTA CHEATHARLACH INSTITUTE OF TECHNOLOGY CARLOW VECTORS IN THREE DIMENSIONS 1 Vectors in Two Dimensions A vector is an object which has magnitude

More information

3.7 Linear and Quadratic Models

3.7 Linear and Quadratic Models 3.7. Linear and Quadratic Models www.ck12.org 3.7 Linear and Quadratic Models Learning Objectives Identif functions using differences and ratios. Write equations for functions. Perform eponential and quadratic

More information