Some linear transformations on R 2 Math 130 Linear Algebra D Joyce, Fall 2013

Size: px
Start display at page:

Download "Some linear transformations on R 2 Math 130 Linear Algebra D Joyce, Fall 2013"

Transcription

1 Some linear transformations on R 2 Math 3 Linear Algebra D Joce, Fall 23 Let s look at some some linear transformations on the plane R 2. We ll look at several kinds of operators on R 2 including reflections, rotations, scalings, and others. We ll illustrate these transformations b appling them to the leaf shown in figure. In each of the figures the -ais is the red line and the -ais is the blue line. Figure : Basic leaf Figure 2: Reflected across -ais Eample (A reflection). Consider the 2 2 matri A =. Take a generic point [ = (, ) in the plane, and write it as the column vector =. Then the matri product A is A = [ = Thus, the matri A transforms the point (, ) to the point T (, ) = (, ). You ll recognize this right awa as a reflection across the -ais. The -ais is special to this operator as it s the set of fied points. In other words, it s the -eigenspace. The -ais is also special as ever point (, ) is sent to its negation (, ). That means the -ais is an eigenspace with eigenvalue, that is, it s the - eigenspace. There aren t an other eigenspaces. A reflection alwas has these two eigenspaces a -eigenspace and a -eigenspace. Ever 2 2 matri describes some kind of geometric transformation of the plane. But since the origin (, ) is alwas sent to itself, not ever geometric transformation can be described b a matri in this wa. Eample 2 (A rotation). The matri A = the vector = to the vector = [ determines the transformation that sends. It determines the linear operator T (, ) =

2 (, ). In particular, the two basis vectors e = and e 2 = are sent to the vectors e 2 = and e 2 = respectivel. Note that these are the first and second columns of A. You ll recognize this transformation as a rotation around the origin b 9. (As alwas, the convention is to alwas take counterclockwise rotations to be b a positive number of degrees, but clockwise ones b a negative number of degrees.) There are no eigenvalues for this rotation. There are no nontrivial eigenvectors at all. (We don t consider since it s alwas sent to itself.) If, however, ou use comple scalars, there is one. The vector (, i) is sent to (i, ), so it s an i-eigenvector, and (, i) is sent to ( i, ), so it s a i-eigenvector. We ll look at comple eigenvalues later when we stud linear operators in detail. Figure 3: Rotated 9 Figure 4: Rotated Figure 5: Reflected across the line = Eample 3 (Other rotations). [ Rotations b other angles θ can be described with the help cos θ sin θ of trig functions. The matri describes a rotation of the plane b an angle sin θ cos θ of θ. For eample, the[ matri that describes a[ rotation of the plane around the origin of cos sin counterclockwise is sin cos = since sin =.736 and cos = Note that for an rotation, an circle centered at the origin is invariant. A set is said to be invariant under a transformation if it is sent to itself. The individual points in the set ma be moved, but the must sta within the set. All rotations and reflections preserve distance. That means that the distance between an two vectors v and w is the same as the distance between their images Av and Aw. Such transformations are called rigid transformations or isometries. Eample 4 (Other reflections). We ve alread seen that the matri describes a reflection across the -ais. Likewise, describes a reflection across the -ais. There s a 2 2 matri for reflection across an line through the origin. What matri describes a reflection across the line =? What are the eigenspaces for this reflection? 2

3 Eample 5 (Epansions). Not all linear[ operators preserve distance. For instance, [ contractions and epansions don t. The matri sends a vector to the vector Thus, ever point is sent twice as far awa from the origin. That s an epansion b a factor of 2. Note that ever vector is a 2-eigenvector. In other words, all of R 2 is the 2-eigenspace. Figure 6: Epansion Figure 7: Contraction Figure 8: Half turn A scalar matri is a multiple of the identit matri like this one was. If λ is a scalar, then λ λi = λ = λ is a scalar matri with scalar λ. Ever scalar matri where the scalar is greater than describes an epansion. Eample 6 (Contractions). [ When the scalar is between and, then the matri describes a.5 contraction. For instance moves vectors toward the origin half as far awa as where.5 the started. Eample 7 (Point inversion a.k.a half turn). The particular scalar matri sends a point to the other side of the origin, but the same distance awa from the origin. That s the same as a 8 rotation. This operation is called a half turn or point inversion. Other scalar matrices with negative scalars describe transformations that can be thought of as compositions of point inversions and either epansions or contractions. Sometimes the terms dilation and dilatation is used for an of these transformations determined b scalar matrices. 3

4 Eample 8 (Projections). Consider the 2 2 matri. It sends the vector to the vector. This particular transformation is a projection from 2-space onto the -ais that forgets the -coordinate. Projections have -eigenspaces and -eigenspaces. What are the for this projection? This projection will map our leaf to the -ais as shown in figure 9. Eample 9 (Shear transformations). The matri describes a shear transformation that fies the -ais, moves points in the upper half-plane to the right, but moves points in the lower half-plane to the left. In general, a shear transformation has a line of fied points, its -eigenspace, but no other eigenspace. Shears are deficient in that wa. Note that an line parallel to the line of fied points is invariant under the shear transformation. Figure 9: Projection to -ais Figure : A shear transformation Eample [ (Stretch and squeeze). Another interesting transformation is described b the 2 2 matri which sends the vector to the vector. The plane is transformed.5.5 b stretching horizontall b a factor of 2 at the same time as it s squeezed verticall. (What are its eigenvectors and eigenvalues?) For this transformation, each hperbola = c is invariant, where c is an constant. These last two eamples are plane transformations that preserve areas of figures, but don t preserve distance. If ou randoml choose a 2 2 matri, it probabl describes a linear transformation that doesn t preserve distance and doesn t preserve area. Let s look at one more eample before leaving dimension 2. Eample (Rotar contraction). [ If ou compose a rotation and a contraction, ou get cos θ sin θ a rotar contraction. The matri describes a rotation about the origin b [ sin θ cos θ.5 an angle of θ, while the matri contracts the plane toward the origin b.5, so the 2 4

5 Figure : Stretch and squeeze Figure 2: A rotar contraction.5 cos θ.5 sin θ product of the matrices describes the composition of contracting and.5 sin θ.5 cos θ rotating. (In this case, the order of composing them doesn t matter since the two operations commute, but usuall order makes a difference.) The result is a kind of spiral transformation. If ou take an point and repeatedl appl this transformation, the orbit that is produced is a spiral toward the origin. Logarithmic spirals whose equations in polar coordinates r = c2 2θ/π are invariant subsets of this rotar contraction, where c is an constant. Transformations of R 3. A 3 3 matri describes a transformation of space, that is, a 3-D operator. There are man kinds of such transformations, some isometries, some not. Isometries include () reflections across planes that pass through the origin, (2) rotations around lines that pass through the origin, and (3) rotar reflections. Rotar reflections are compositions of a reflection across a plane and rotation around an ais perpendicular to that plane. Most of the linear transformations on R 3 aren t isometries. The include projections, epansions and contractions, shears, rotar epansions and contractions, and man others. Math 3 Home Page at 5

MATRIX TRANSFORMATIONS

MATRIX TRANSFORMATIONS CHAPTER 5. MATRIX TRANSFORMATIONS INSTITIÚID TEICNEOLAÍOCHTA CHEATHARLACH INSTITUTE OF TECHNOLOGY CARLOW MATRIX TRANSFORMATIONS Matri Transformations Definition Let A and B be sets. A function f : A B

More information

Eigenvectors and Eigenvalues 1

Eigenvectors and Eigenvalues 1 Ma 2015 page 1 Eigenvectors and Eigenvalues 1 In this handout, we will eplore eigenvectors and eigenvalues. We will begin with an eploration, then provide some direct eplanation and worked eamples, and

More information

LESSON 35: EIGENVALUES AND EIGENVECTORS APRIL 21, (1) We might also write v as v. Both notations refer to a vector.

LESSON 35: EIGENVALUES AND EIGENVECTORS APRIL 21, (1) We might also write v as v. Both notations refer to a vector. LESSON 5: EIGENVALUES AND EIGENVECTORS APRIL 2, 27 In this contet, a vector is a column matri E Note 2 v 2, v 4 5 6 () We might also write v as v Both notations refer to a vector (2) A vector can be man

More information

Graphics Example: Type Setting

Graphics Example: Type Setting D Transformations Graphics Eample: Tpe Setting Modern Computerized Tpesetting Each letter is defined in its own coordinate sstem And positioned on the page coordinate sstem It is ver simple, m she thought,

More information

Two conventions for coordinate systems. Left-Hand vs Right-Hand. x z. Which is which?

Two conventions for coordinate systems. Left-Hand vs Right-Hand. x z. Which is which? walters@buffalo.edu CSE 480/580 Lecture 2 Slide 3-D Transformations 3-D space Two conventions for coordinate sstems Left-Hand vs Right-Hand (Thumb is the ais, inde is the ais) Which is which? Most graphics

More information

6. Linear transformations. Consider the function. f : R 2 R 2 which sends (x, y) (x, y)

6. Linear transformations. Consider the function. f : R 2 R 2 which sends (x, y) (x, y) Consider the function 6 Linear transformations f : R 2 R 2 which sends (x, ) (, x) This is an example of a linear transformation Before we get into the definition of a linear transformation, let s investigate

More information

APPENDIX D Rotation and the General Second-Degree Equation

APPENDIX D Rotation and the General Second-Degree Equation APPENDIX D Rotation and the General Second-Degree Equation Rotation of Aes Invariants Under Rotation After rotation of the - and -aes counterclockwise through an angle, the rotated aes are denoted as the

More information

Affine transformations

Affine transformations Reading Optional reading: Affine transformations Brian Curless CSE 557 Autumn 207 Angel and Shreiner: 3., 3.7-3. Marschner and Shirle: 2.3, 2.4.-2.4.4, 6..-6..4, 6.2., 6.3 Further reading: Angel, the rest

More information

Outline. MA 138 Calculus 2 with Life Science Applications Linear Maps (Section 9.3) Graphical Representation of (Column) Vectors. Addition of Vectors

Outline. MA 138 Calculus 2 with Life Science Applications Linear Maps (Section 9.3) Graphical Representation of (Column) Vectors. Addition of Vectors MA 8 Calculus with Life Science Applications Linear Maps (Section 9) Alberto Corso albertocorso@ukedu Department of Mathematics Uniersit of Kentuck Wednesda, March 8, 07 Outline We mostl focus on matrices,

More information

Matrices and Deformation

Matrices and Deformation ES 111 Mathematical Methods in the Earth Sciences Matrices and Deformation Lecture Outline 13 - Thurs 9th Nov 2017 Strain Ellipse and Eigenvectors One way of thinking about a matrix is that it operates

More information

Lecture 27: More on Rotational Kinematics

Lecture 27: More on Rotational Kinematics Lecture 27: More on Rotational Kinematics Let s work out the kinematics of rotational motion if α is constant: dω α = 1 2 α dω αt = ω ω ω = αt + ω ( t ) dφ α + ω = dφ t 2 α + ωo = φ φo = 1 2 = t o 2 φ

More information

15. Eigenvalues, Eigenvectors

15. Eigenvalues, Eigenvectors 5 Eigenvalues, Eigenvectors Matri of a Linear Transformation Consider a linear ( transformation ) L : a b R 2 R 2 Suppose we know that L and L Then c d because of linearit, we can determine what L does

More information

Eigenvalues for Triangular Matrices. ENGI 7825: Linear Algebra Review Finding Eigenvalues and Diagonalization

Eigenvalues for Triangular Matrices. ENGI 7825: Linear Algebra Review Finding Eigenvalues and Diagonalization Eigenvalues for Triangular Matrices ENGI 78: Linear Algebra Review Finding Eigenvalues and Diagonalization Adapted from Notes Developed by Martin Scharlemann June 7, 04 The eigenvalues for a triangular

More information

Properties of Linear Transformations from R n to R m

Properties of Linear Transformations from R n to R m Properties of Linear Transformations from R n to R m MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Topic Overview Relationship between the properties of a matrix transformation

More information

Math 416, Spring 2010 More on Algebraic and Geometric Properties January 21, 2010 MORE ON ALGEBRAIC AND GEOMETRIC PROPERTIES

Math 416, Spring 2010 More on Algebraic and Geometric Properties January 21, 2010 MORE ON ALGEBRAIC AND GEOMETRIC PROPERTIES Math 46, Spring 2 More on Algebraic and Geometric Properties January 2, 2 MORE ON ALGEBRAIC AND GEOMETRIC PROPERTIES Algebraic properties Algebraic properties of matrix/vector multiplication Last time

More information

Math Review Packet #5 Algebra II (Part 2) Notes

Math Review Packet #5 Algebra II (Part 2) Notes SCIE 0, Spring 0 Miller Math Review Packet #5 Algebra II (Part ) Notes Quadratic Functions (cont.) So far, we have onl looked at quadratic functions in which the term is squared. A more general form of

More information

Eigenvalues and Eigenvectors. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

Eigenvalues and Eigenvectors. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB Eigenvalues and Eigenvectors Consider the equation A x = λ x, where A is an nxn matrix. We call x (must be non-zero) an eigenvector of A if this equation can be solved for some value of λ. We call λ an

More information

ZETA MATHS. Higher Mathematics Revision Checklist

ZETA MATHS. Higher Mathematics Revision Checklist ZETA MATHS Higher Mathematics Revision Checklist Contents: Epressions & Functions Page Logarithmic & Eponential Functions Addition Formulae. 3 Wave Function.... 4 Graphs of Functions. 5 Sets of Functions

More information

Affine transformations. Brian Curless CSE 557 Fall 2014

Affine transformations. Brian Curless CSE 557 Fall 2014 Affine transformations Brian Curless CSE 557 Fall 2014 1 Reading Required: Shirle, Sec. 2.4, 2.7 Shirle, Ch. 5.1-5.3 Shirle, Ch. 6 Further reading: Fole, et al, Chapter 5.1-5.5. David F. Rogers and J.

More information

Reading. 4. Affine transformations. Required: Watt, Section 1.1. Further reading:

Reading. 4. Affine transformations. Required: Watt, Section 1.1. Further reading: Reading Required: Watt, Section.. Further reading: 4. Affine transformations Fole, et al, Chapter 5.-5.5. David F. Rogers and J. Alan Adams, Mathematical Elements for Computer Graphics, 2 nd Ed., McGraw-Hill,

More information

REVISION SHEET FP2 (MEI) CALCULUS. x x 0.5. x x 1.5. π π. Standard Calculus of Inverse Trig and Hyperbolic Trig Functions = + = + arcsin x = +

REVISION SHEET FP2 (MEI) CALCULUS. x x 0.5. x x 1.5. π π. Standard Calculus of Inverse Trig and Hyperbolic Trig Functions = + = + arcsin x = + the Further Mathematics network www.fmnetwork.org.uk V 07 REVISION SHEET FP (MEI) CALCULUS The main ideas are: Calculus using inverse trig functions & hperbolic trig functions and their inverses. Maclaurin

More information

CS-184: Computer Graphics. Today

CS-184: Computer Graphics. Today CS-184: Computer Graphics Lecture #3: 2D Transformations Prof. James O Brien Universit of California, Berkele V2006-S-03-1.0 Toda 2D Transformations Primitive Operations Scale, Rotate, Shear, Flip, Translate

More information

1 HOMOGENEOUS TRANSFORMATIONS

1 HOMOGENEOUS TRANSFORMATIONS HOMOGENEOUS TRANSFORMATIONS Purpose: The purpose of this chapter is to introduce ou to the Homogeneous Transformation. This simple 4 4 transformation is used in the geometr engines of CAD sstems and in

More information

Chapter 1 Graph of Functions

Chapter 1 Graph of Functions Graph of Functions Chapter Graph of Functions. Rectangular Coordinate Sstem and Plotting points The Coordinate Plane Quadrant II Quadrant I (0,0) Quadrant III Quadrant IV Figure. The aes divide the plane

More information

Remark By definition, an eigenvector must be a nonzero vector, but eigenvalue could be zero.

Remark By definition, an eigenvector must be a nonzero vector, but eigenvalue could be zero. Sec 6 Eigenvalues and Eigenvectors Definition An eigenvector of an n n matrix A is a nonzero vector x such that A x λ x for some scalar λ A scalar λ is called an eigenvalue of A if there is a nontrivial

More information

MATH 423 Linear Algebra II Lecture 20: Geometry of linear transformations. Eigenvalues and eigenvectors. Characteristic polynomial.

MATH 423 Linear Algebra II Lecture 20: Geometry of linear transformations. Eigenvalues and eigenvectors. Characteristic polynomial. MATH 423 Linear Algebra II Lecture 20: Geometry of linear transformations. Eigenvalues and eigenvectors. Characteristic polynomial. Geometric properties of determinants 2 2 determinants and plane geometry

More information

Affine transformations

Affine transformations Reading Required: Affine transformations Brian Curless CSE 557 Fall 2009 Shirle, Sec. 2.4, 2.7 Shirle, Ch. 5.-5.3 Shirle, Ch. 6 Further reading: Fole, et al, Chapter 5.-5.5. David F. Rogers and J. Alan

More information

Matrices. VCE Maths Methods - Unit 2 - Matrices

Matrices. VCE Maths Methods - Unit 2 - Matrices Matrices Introduction to matrices Addition subtraction Scalar multiplication Matri multiplication The unit matri Matri division - the inverse matri Using matrices - simultaneous equations Matri transformations

More information

STUDY KNOWHOW PROGRAM STUDY AND LEARNING CENTRE. Functions & Graphs

STUDY KNOWHOW PROGRAM STUDY AND LEARNING CENTRE. Functions & Graphs STUDY KNOWHOW PROGRAM STUDY AND LEARNING CENTRE Functions & Graphs Contents Functions and Relations... 1 Interval Notation... 3 Graphs: Linear Functions... 5 Lines and Gradients... 7 Graphs: Quadratic

More information

UNCORRECTED. To recognise the rules of a number of common algebraic relations: y = x 1 y 2 = x

UNCORRECTED. To recognise the rules of a number of common algebraic relations: y = x 1 y 2 = x 5A galler of graphs Objectives To recognise the rules of a number of common algebraic relations: = = = (rectangular hperbola) + = (circle). To be able to sketch the graphs of these relations. To be able

More information

we must pay attention to the role of the coordinate system w.r.t. which we perform a tform

we must pay attention to the role of the coordinate system w.r.t. which we perform a tform linear SO... we will want to represent the geometr of points in space we will often want to perform (rigid) transformations to these objects to position them translate rotate or move them in an animation

More information

Mathematics 309 Conic sections and their applicationsn. Chapter 2. Quadric figures. ai,j x i x j + b i x i + c =0. 1. Coordinate changes

Mathematics 309 Conic sections and their applicationsn. Chapter 2. Quadric figures. ai,j x i x j + b i x i + c =0. 1. Coordinate changes Mathematics 309 Conic sections and their applicationsn Chapter 2. Quadric figures In this chapter want to outline quickl how to decide what figure associated in 2D and 3D to quadratic equations look like.

More information

Math 110 Linear Algebra Midterm 2 Review October 28, 2017

Math 110 Linear Algebra Midterm 2 Review October 28, 2017 Math 11 Linear Algebra Midterm Review October 8, 17 Material Material covered on the midterm includes: All lectures from Thursday, Sept. 1st to Tuesday, Oct. 4th Homeworks 9 to 17 Quizzes 5 to 9 Sections

More information

Final Review Sheet. B = (1, 1 + 3x, 1 + x 2 ) then 2 + 3x + 6x 2

Final Review Sheet. B = (1, 1 + 3x, 1 + x 2 ) then 2 + 3x + 6x 2 Final Review Sheet The final will cover Sections Chapters 1,2,3 and 4, as well as sections 5.1-5.4, 6.1-6.2 and 7.1-7.3 from chapters 5,6 and 7. This is essentially all material covered this term. Watch

More information

Identifying second degree equations

Identifying second degree equations Chapter 7 Identifing second degree equations 71 The eigenvalue method In this section we appl eigenvalue methods to determine the geometrical nature of the second degree equation a 2 + 2h + b 2 + 2g +

More information

ES.1803 Topic 16 Notes Jeremy Orloff

ES.1803 Topic 16 Notes Jeremy Orloff ES803 Topic 6 Notes Jerem Orloff 6 Eigenalues, diagonalization, decoupling This note coers topics that will take us seeral classes to get through We will look almost eclusiel at 2 2 matrices These hae

More information

Vector and Affine Math

Vector and Affine Math Vector and Affine Math Computer Science Department The Universit of Teas at Austin Vectors A vector is a direction and a magnitude Does NOT include a point of reference Usuall thought of as an arrow in

More information

(6, 4, 0) = (3, 2, 0). Find the equation of the sphere that has the line segment from P to Q as a diameter.

(6, 4, 0) = (3, 2, 0). Find the equation of the sphere that has the line segment from P to Q as a diameter. Solutions Review for Eam #1 Math 1260 1. Consider the points P = (2, 5, 1) and Q = (4, 1, 1). (a) Find the distance from P to Q. Solution. dist(p, Q) = (4 2) 2 + (1 + 5) 2 + (1 + 1) 2 = 4 + 36 + 4 = 44

More information

we must pay attention to the role of the coordinate system w.r.t. which we perform a tform

we must pay attention to the role of the coordinate system w.r.t. which we perform a tform linear SO... we will want to represent the geometr of points in space we will often want to perform (rigid) transformations to these objects to position them translate rotate or move them in an animation

More information

Remark 1 By definition, an eigenvector must be a nonzero vector, but eigenvalue could be zero.

Remark 1 By definition, an eigenvector must be a nonzero vector, but eigenvalue could be zero. Sec 5 Eigenvectors and Eigenvalues In this chapter, vector means column vector Definition An eigenvector of an n n matrix A is a nonzero vector x such that A x λ x for some scalar λ A scalar λ is called

More information

KINEMATIC RELATIONS IN DEFORMATION OF SOLIDS

KINEMATIC RELATIONS IN DEFORMATION OF SOLIDS Chapter 8 KINEMATIC RELATIONS IN DEFORMATION OF SOLIDS Figure 8.1: 195 196 CHAPTER 8. KINEMATIC RELATIONS IN DEFORMATION OF SOLIDS 8.1 Motivation In Chapter 3, the conservation of linear momentum for a

More information

Appendix: A Computer-Generated Portrait Gallery

Appendix: A Computer-Generated Portrait Gallery Appendi: A Computer-Generated Portrait Galler There are a number of public-domain computer programs which produce phase portraits for 2 2 autonomous sstems. One has the option of displaing the trajectories

More information

Sept. 3, 2013 Math 3312 sec 003 Fall 2013

Sept. 3, 2013 Math 3312 sec 003 Fall 2013 Sept. 3, 2013 Math 3312 sec 003 Fall 2013 Section 1.8: Intro to Linear Transformations Recall that the product Ax is a linear combination of the columns of A turns out to be a vector. If the columns of

More information

CS 354R: Computer Game Technology

CS 354R: Computer Game Technology CS 354R: Computer Game Technolog Transformations Fall 207 Universit of Teas at Austin CS 354R Game Technolog S. Abraham Transformations What are the? Wh should we care? Universit of Teas at Austin CS 354R

More information

and let s calculate the image of some vectors under the transformation T.

and let s calculate the image of some vectors under the transformation T. Chapter 5 Eigenvalues and Eigenvectors 5. Eigenvalues and Eigenvectors Let T : R n R n be a linear transformation. Then T can be represented by a matrix (the standard matrix), and we can write T ( v) =

More information

Jordan Canonical Form Homework Solutions

Jordan Canonical Form Homework Solutions Jordan Canonical Form Homework Solutions For each of the following, put the matrix in Jordan canonical form and find the matrix S such that S AS = J. [ ]. A = A λi = λ λ = ( λ) = λ λ = λ =, Since we have

More information

Eigenvalues for Triangular Matrices. ENGI 7825: Linear Algebra Review Finding Eigenvalues and Diagonalization

Eigenvalues for Triangular Matrices. ENGI 7825: Linear Algebra Review Finding Eigenvalues and Diagonalization Eigenvalues for Triangular Matrices ENGI 78: Linear Algebra Review Finding Eigenvalues and Diagonalization Adapted from Notes Developed by Martin Scharlemann The eigenvalues for a triangular matrix are

More information

VECTORS IN THREE DIMENSIONS

VECTORS IN THREE DIMENSIONS 1 CHAPTER 2. BASIC TRIGONOMETRY 1 INSTITIÚID TEICNEOLAÍOCHTA CHEATHARLACH INSTITUTE OF TECHNOLOGY CARLOW VECTORS IN THREE DIMENSIONS 1 Vectors in Two Dimensions A vector is an object which has magnitude

More information

Topic 2 Quiz 2. choice C implies B and B implies C. correct-choice C implies B, but B does not imply C

Topic 2 Quiz 2. choice C implies B and B implies C. correct-choice C implies B, but B does not imply C Topic 1 Quiz 1 text A reduced row-echelon form of a 3 by 4 matrix can have how many leading one s? choice must have 3 choice may have 1, 2, or 3 correct-choice may have 0, 1, 2, or 3 choice may have 0,

More information

Math 123 Summary of Important Algebra & Trigonometry Concepts Chapter 1 & Appendix D, Stewart, Calculus Early Transcendentals

Math 123 Summary of Important Algebra & Trigonometry Concepts Chapter 1 & Appendix D, Stewart, Calculus Early Transcendentals Math Summar of Important Algebra & Trigonometr Concepts Chapter & Appendi D, Stewart, Calculus Earl Transcendentals Function a rule that assigns to each element in a set D eactl one element, called f (

More information

MATH 1553 PRACTICE MIDTERM 3 (VERSION B)

MATH 1553 PRACTICE MIDTERM 3 (VERSION B) MATH 1553 PRACTICE MIDTERM 3 (VERSION B) Name Section 1 2 3 4 5 Total Please read all instructions carefully before beginning. Each problem is worth 10 points. The maximum score on this exam is 50 points.

More information

11.4 Polar Coordinates

11.4 Polar Coordinates 11. Polar Coordinates 917 11. Polar Coordinates In Section 1.1, we introduced the Cartesian coordinates of a point in the plane as a means of assigning ordered pairs of numbers to points in the plane.

More information

Generalized Eigenvectors and Jordan Form

Generalized Eigenvectors and Jordan Form Generalized Eigenvectors and Jordan Form We have seen that an n n matrix A is diagonalizable precisely when the dimensions of its eigenspaces sum to n. So if A is not diagonalizable, there is at least

More information

CS 378: Computer Game Technology

CS 378: Computer Game Technology CS 378: Computer Game Technolog 3D Engines and Scene Graphs Spring 202 Universit of Teas at Austin CS 378 Game Technolog Don Fussell Representation! We can represent a point, p =,), in the plane! as a

More information

Matrices. VCE Maths Methods - Unit 2 - Matrices

Matrices. VCE Maths Methods - Unit 2 - Matrices Matrices Introduction to matrices Addition & subtraction Scalar multiplication Matri multiplication The unit matri Matri division - the inverse matri Using matrices - simultaneous equations Matri transformations

More information

Definition (T -invariant subspace) Example. Example

Definition (T -invariant subspace) Example. Example Eigenvalues, Eigenvectors, Similarity, and Diagonalization We now turn our attention to linear transformations of the form T : V V. To better understand the effect of T on the vector space V, we begin

More information

Rigid Body Transforms-3D. J.C. Dill transforms3d 27Jan99

Rigid Body Transforms-3D. J.C. Dill transforms3d 27Jan99 ESC 489 3D ransforms 1 igid Bod ransforms-3d J.C. Dill transforms3d 27Jan99 hese notes on (2D and) 3D rigid bod transform are currentl in hand-done notes which are being converted to this file from that

More information

Math 181/281. Rumbos Spring 2011 Page 1. Solutions to Assignment #5. Hence, the dynamical system, θ(t, p, q), for (t, p, q) R 3 corresponding = F.

Math 181/281. Rumbos Spring 2011 Page 1. Solutions to Assignment #5. Hence, the dynamical system, θ(t, p, q), for (t, p, q) R 3 corresponding = F. Math 181/281. Rumbos Spring 2011 Page 1 Solutions to Assignment #5 1. For real numbers a and b with a 2 + b 2 = 0, let F : R 2 R 2 be given b ( ) ( ) ( ) x ax b x F =, for all R 2. (1) bx + a (a) Explain

More information

Lab 5 Forces Part 1. Physics 211 Lab. You will be using Newton s 2 nd Law to help you examine the nature of these forces.

Lab 5 Forces Part 1. Physics 211 Lab. You will be using Newton s 2 nd Law to help you examine the nature of these forces. b Lab 5 Forces Part 1 Phsics 211 Lab Introduction This is the first week of a two part lab that deals with forces and related concepts. A force is a push or a pull on an object that can be caused b a variet

More information

LINEAR ALGEBRA BOOT CAMP WEEK 4: THE SPECTRAL THEOREM

LINEAR ALGEBRA BOOT CAMP WEEK 4: THE SPECTRAL THEOREM LINEAR ALGEBRA BOOT CAMP WEEK 4: THE SPECTRAL THEOREM Unless otherwise stated, all vector spaces in this worksheet are finite dimensional and the scalar field F is R or C. Definition 1. A linear operator

More information

Math 214 Spring problem set (a) Consider these two first order equations. (I) dy dx = x + 1 dy

Math 214 Spring problem set (a) Consider these two first order equations. (I) dy dx = x + 1 dy Math 4 Spring 08 problem set. (a) Consider these two first order equations. (I) d d = + d (II) d = Below are four direction fields. Match the differential equations above to their direction fields. Provide

More information

Higher. Functions and Graphs. Functions and Graphs 15

Higher. Functions and Graphs. Functions and Graphs 15 Higher Mathematics UNIT UTCME Functions and Graphs Contents Functions and Graphs 5 Set Theor 5 Functions 6 Inverse Functions 9 4 Eponential Functions 0 5 Introduction to Logarithms 0 6 Radians 7 Eact Values

More information

MATH 304 Linear Algebra Lecture 20: The Gram-Schmidt process (continued). Eigenvalues and eigenvectors.

MATH 304 Linear Algebra Lecture 20: The Gram-Schmidt process (continued). Eigenvalues and eigenvectors. MATH 304 Linear Algebra Lecture 20: The Gram-Schmidt process (continued). Eigenvalues and eigenvectors. Orthogonal sets Let V be a vector space with an inner product. Definition. Nonzero vectors v 1,v

More information

1 Last time: multiplying vectors matrices

1 Last time: multiplying vectors matrices MATH Linear algebra (Fall 7) Lecture Last time: multiplying vectors matrices Given a matrix A = a a a n a a a n and a vector v = a m a m a mn Av = v a a + v a a v v + + Rn we define a n a n a m a m a mn

More information

Affine transformations

Affine transformations Reading Required: Affine transformations Brian Curless CSEP 557 Fall 2016 Angel 3.1, 3.7-3.11 Further reading: Angel, the rest of Chapter 3 Fole, et al, Chapter 5.1-5.5. David F. Rogers and J. Alan Adams,

More information

ES.182A Topic 36 Notes Jeremy Orloff

ES.182A Topic 36 Notes Jeremy Orloff ES.82A Topic 36 Notes Jerem Orloff 36 Vector fields and line integrals in the plane 36. Vector analsis We now will begin our stud of the part of 8.2 called vector analsis. This is the stud of vector fields

More information

Unit 12 Study Notes 1 Systems of Equations

Unit 12 Study Notes 1 Systems of Equations You should learn to: Unit Stud Notes Sstems of Equations. Solve sstems of equations b substitution.. Solve sstems of equations b graphing (calculator). 3. Solve sstems of equations b elimination. 4. Solve

More information

City Suburbs. : population distribution after m years

City Suburbs. : population distribution after m years Section 5.3 Diagonalization of Matrices Definition Example: stochastic matrix To City Suburbs From City Suburbs.85.03 = A.15.97 City.15.85 Suburbs.97.03 probability matrix of a sample person s residence

More information

is Use at most six elementary row operations. (Partial

is Use at most six elementary row operations. (Partial MATH 235 SPRING 2 EXAM SOLUTIONS () (6 points) a) Show that the reduced row echelon form of the augmented matrix of the system x + + 2x 4 + x 5 = 3 x x 3 + x 4 + x 5 = 2 2x + 2x 3 2x 4 x 5 = 3 is. Use

More information

Math 2331 Linear Algebra

Math 2331 Linear Algebra 5. Eigenvectors & Eigenvalues Math 233 Linear Algebra 5. Eigenvectors & Eigenvalues Shang-Huan Chiu Department of Mathematics, University of Houston schiu@math.uh.edu math.uh.edu/ schiu/ Shang-Huan Chiu,

More information

SAMPLE. A Gallery of Graphs. To recognise the rules of a number of common algebraic relationships: y = x 1,

SAMPLE. A Gallery of Graphs. To recognise the rules of a number of common algebraic relationships: y = x 1, Objectives C H A P T E R 5 A Galler of Graphs To recognise the rules of a number of common algebraic relationships: =, =, = / and + =. To be able to sketch the graphs and simple transformations of these

More information

Green s Theorem Jeremy Orloff

Green s Theorem Jeremy Orloff Green s Theorem Jerem Orloff Line integrals and Green s theorem. Vector Fields Vector notation. In 8.4 we will mostl use the notation (v) = (a, b) for vectors. The other common notation (v) = ai + bj runs

More information

LU Factorization. A m x n matrix A admits an LU factorization if it can be written in the form of A = LU

LU Factorization. A m x n matrix A admits an LU factorization if it can be written in the form of A = LU LU Factorization A m n matri A admits an LU factorization if it can be written in the form of Where, A = LU L : is a m m lower triangular matri with s on the diagonal. The matri L is invertible and is

More information

Math 3191 Applied Linear Algebra

Math 3191 Applied Linear Algebra Math 9 Applied Linear Algebra Lecture 9: Diagonalization Stephen Billups University of Colorado at Denver Math 9Applied Linear Algebra p./9 Section. Diagonalization The goal here is to develop a useful

More information

Practice Questions for Midterm 2 - Math 1060Q - Fall 2013

Practice Questions for Midterm 2 - Math 1060Q - Fall 2013 Eam Review Practice Questions for Midterm - Math 060Q - Fall 0 The following is a selection of problems to help prepare ou for the second midterm eam. Please note the following: anthing from Module/Chapter

More information

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET This is a (not quite comprehensive) list of definitions and theorems given in Math 1553. Pay particular attention to the ones in red. Study Tip For each

More information

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors Sec. 6.1 Eigenvalues and Eigenvectors Linear transformations L : V V that go from a vector space to itself are often called linear operators. Many linear operators can be understood geometrically by identifying

More information

The value of a problem is not so much coming up with the answer as in the ideas and attempted ideas it forces on the would be solver I.N.

The value of a problem is not so much coming up with the answer as in the ideas and attempted ideas it forces on the would be solver I.N. Math 410 Homework Problems In the following pages you will find all of the homework problems for the semester. Homework should be written out neatly and stapled and turned in at the beginning of class

More information

Mathematics 1. Part II: Linear Algebra. Exercises and problems

Mathematics 1. Part II: Linear Algebra. Exercises and problems Bachelor Degree in Informatics Engineering Barcelona School of Informatics Mathematics Part II: Linear Algebra Eercises and problems February 5 Departament de Matemàtica Aplicada Universitat Politècnica

More information

Introduction to Vector Spaces Linear Algebra, Spring 2011

Introduction to Vector Spaces Linear Algebra, Spring 2011 Introduction to Vector Spaces Linear Algebra, Spring 2011 You probabl have heard the word vector before, perhaps in the contet of Calculus III or phsics. You probabl think of a vector like this: 5 3 or

More information

Andrew s handout. 1 Trig identities. 1.1 Fundamental identities. 1.2 Other identities coming from the Pythagorean identity

Andrew s handout. 1 Trig identities. 1.1 Fundamental identities. 1.2 Other identities coming from the Pythagorean identity Andrew s handout Trig identities. Fundamental identities These are the most fundamental identities, in the sense that ou should probabl memorize these and use them to derive the rest (or, if ou prefer,

More information

Functions 3: Compositions of Functions

Functions 3: Compositions of Functions Functions : Compositions of Functions 7 Functions : Compositions of Functions Model : Word Machines SIGN SIGNS ONK KNO COW COWS RT TR HI HIS KYK KYK Construct Your Understanding Questions (to do in class).

More information

Table of Contents. Module 1

Table of Contents. Module 1 Table of Contents Module 1 11 Order of Operations 16 Signed Numbers 1 Factorization of Integers 17 Further Signed Numbers 13 Fractions 18 Power Laws 14 Fractions and Decimals 19 Introduction to Algebra

More information

88 CHAPTER 3. SYMMETRIES

88 CHAPTER 3. SYMMETRIES 88 CHAPTER 3 SYMMETRIES 31 Linear Algebra Start with a field F (this will be the field of scalars) Definition: A vector space over F is a set V with a vector addition and scalar multiplication ( scalars

More information

Question: Given an n x n matrix A, how do we find its eigenvalues? Idea: Suppose c is an eigenvalue of A, then what is the determinant of A-cI?

Question: Given an n x n matrix A, how do we find its eigenvalues? Idea: Suppose c is an eigenvalue of A, then what is the determinant of A-cI? Section 5. The Characteristic Polynomial Question: Given an n x n matrix A, how do we find its eigenvalues? Idea: Suppose c is an eigenvalue of A, then what is the determinant of A-cI? Property The eigenvalues

More information

Math 208 Surface integrals and the differentials for flux integrals. n and separately. But the proof on page 889 of the formula dσ = r r du dv on page

Math 208 Surface integrals and the differentials for flux integrals. n and separately. But the proof on page 889 of the formula dσ = r r du dv on page Math 08 urface integrals and the differentials for flu integrals Our tet fails to eplicitl state the formulas for n dσ, instead preferring to give formulas for n and separatel But the proof on page 88

More information

Pure Further Mathematics 2. Revision Notes

Pure Further Mathematics 2. Revision Notes Pure Further Mathematics Revision Notes October 016 FP OCT 016 SDB Further Pure 1 Inequalities... 3 Algebraic solutions... 3 Graphical solutions... 4 Series Method of Differences... 5 3 Comple Numbers...

More information

1. In this problem, if the statement is always true, circle T; otherwise, circle F.

1. In this problem, if the statement is always true, circle T; otherwise, circle F. Math 1553, Extra Practice for Midterm 3 (sections 45-65) Solutions 1 In this problem, if the statement is always true, circle T; otherwise, circle F a) T F If A is a square matrix and the homogeneous equation

More information

Analytic Geometry in Three Dimensions

Analytic Geometry in Three Dimensions Analtic Geometr in Three Dimensions. The Three-Dimensional Coordinate Sstem. Vectors in Space. The Cross Product of Two Vectors. Lines and Planes in Space The three-dimensional coordinate sstem is used

More information

Transformations. Chapter D Transformations Translation

Transformations. Chapter D Transformations Translation Chapter 4 Transformations Transformations between arbitrary vector spaces, especially linear transformations, are usually studied in a linear algebra class. Here, we focus our attention to transformation

More information

Homogeneous Constant Matrix Systems, Part II

Homogeneous Constant Matrix Systems, Part II 4 Homogeneous Constant Matri Systems, Part II Let us now epand our discussions begun in the previous chapter, and consider homogeneous constant matri systems whose matrices either have comple eigenvalues

More information

Math Linear Algebra Final Exam Review Sheet

Math Linear Algebra Final Exam Review Sheet Math 15-1 Linear Algebra Final Exam Review Sheet Vector Operations Vector addition is a component-wise operation. Two vectors v and w may be added together as long as they contain the same number n of

More information

18.02 Review Jeremy Orloff. 1 Review of multivariable calculus (18.02) constructs

18.02 Review Jeremy Orloff. 1 Review of multivariable calculus (18.02) constructs 18.02 eview Jerem Orloff 1 eview of multivariable calculus (18.02) constructs 1.1 Introduction These notes are a terse summar of what we ll need from multivariable calculus. If, after reading these, some

More information

Roberto s Notes on Linear Algebra Chapter 10: Eigenvalues and diagonalization Section 3. Diagonal matrices

Roberto s Notes on Linear Algebra Chapter 10: Eigenvalues and diagonalization Section 3. Diagonal matrices Roberto s Notes on Linear Algebra Chapter 10: Eigenvalues and diagonalization Section 3 Diagonal matrices What you need to know already: Basic definition, properties and operations of matrix. What you

More information

A Tutorial on Euler Angles and Quaternions

A Tutorial on Euler Angles and Quaternions A Tutorial on Euler Angles and Quaternions Moti Ben-Ari Department of Science Teaching Weimann Institute of Science http://www.weimann.ac.il/sci-tea/benari/ Version.0.1 c 01 17 b Moti Ben-Ari. This work

More information

ES.182A Topic 41 Notes Jeremy Orloff. 41 Extensions and applications of Green s theorem

ES.182A Topic 41 Notes Jeremy Orloff. 41 Extensions and applications of Green s theorem ES.182A Topic 41 Notes Jerem Orloff 41 Etensions and applications of Green s theorem 41.1 eview of Green s theorem: Tangential (work) form: F T ds = curlf d d M d + N d = N M d d. Normal (flu) form: F

More information

1.4 Linear Transformation I

1.4 Linear Transformation I .4. LINEAR TRANSFORMATION I.4 Linear Transformation I MATH 9 FALL 99 PRELIM # 5 9FA9PQ5.tex.4. a) Consider the vector transformation y f(x) from V to V such that if y (y ; y ); x (x ; x ); y (x + x ) p

More information

A = 3 B = A 1 1 matrix is the same as a number or scalar, 3 = [3].

A = 3 B = A 1 1 matrix is the same as a number or scalar, 3 = [3]. Appendix : A Very Brief Linear ALgebra Review Introduction Linear Algebra, also known as matrix theory, is an important element of all branches of mathematics Very often in this course we study the shapes

More information

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET This is a (not quite comprehensive) list of definitions and theorems given in Math 1553. Pay particular attention to the ones in red. Study Tip For each

More information

Definitions for Quizzes

Definitions for Quizzes Definitions for Quizzes Italicized text (or something close to it) will be given to you. Plain text is (an example of) what you should write as a definition. [Bracketed text will not be given, nor does

More information