CS514 Fall '00 Numerical Analysis (Sketched) Solution of Homework 3 1. Questions from text in Chapter 3 Problem 1: 0 f 0 1 f 8 1 8(f 1 f 0 ) 1 f 4 2 8

Size: px
Start display at page:

Download "CS514 Fall '00 Numerical Analysis (Sketched) Solution of Homework 3 1. Questions from text in Chapter 3 Problem 1: 0 f 0 1 f 8 1 8(f 1 f 0 ) 1 f 4 2 8"

Transcription

1 CS514 Fll '00 Numericl Anlysis (Sketched) Solution of Homework 3 1. Questions from text in Chpter 3 Problem 1: 0 f 0 1 f 8 1 8(f 1 f 0 ) 1 f 4 2 8(f 2 f 1 ) 32(f 2 2f 1 f 0 ) 1 32 f 2 3 4(f 3 f 2 ) (f f 2 + 2f 1 ) (f 3 3 6f 2 + 8f 1 3f 0 ) Therefore, f 0 (0) = 1 3 (2f 3 24f f 1 42f 0 ) + e, nd jej» M 4 4! = M Problem 6: () I(h) = 1 3 h h7=2 ; T (h) = 1 2 h h7=2 : (b) Then, E(h) = O(h 3 ) s h! 0: I(h) = 1 3 h h3=2 ; T (h) = 1 2 h h3=2 : Then, E(h) = O(h 3=2 ) s h! 0: Problem 7: The error is lrger by order compred to (). f in () is in C 2 [0; h]; but f in (b) is in C[0; h]. 1

2 () By Tylor's Theorem, letting x k + 1 h be written s 2 x0, f(x) = f(x 0 ) + (x x 0 )f 0 (x 0 ) (x x0 ) 2 f 00 (ο(x)); x k» x» x k + h; where ο 2 [x k ; x k + h]. Integrting gives, Z +h f(x)dx = hf(x 0 ) + f 0 (x 0 ) Z +h (x x 0 )dx Z +h (x x 0 ) 2 f 00 (ο(x))dx: The second term on the right hnd side is zero nd pply Men Vlue Theorem, yields, Z +h f(x)dx = hf(x 0 ) f 00 (ο(x)) Clculte Hence, Z +h (b) Sum ll subintervls, Problem 8: () tht is, Z b 1 2 f 00 (ο(x)) Z +h Z +h (x x 0 ) 2 dx = h3 12 : (x x 0 ) 2 dx: f(x)dx = hf(x 0 )f(x 0 ) + h3 24 f 00 (ο k ); x k» ο k» x k + h: Z b X n 1 f(x)dx = h f(x 0 ) + h2 n 1 b f 00 (ο k ); 24 n X k=0 X k=0 n 1 f(x)dx = h f(x 0 ) + h2 24 (b )f 00 (ο);» ο» b: k=0 1 y 1 0 y 0 y 0 y 1 0 y 0 y y 1 y 1 y 0 y 0 y y 1 y 1 y 0 y (y 2 1 y 1 2y0) 0 p 3 (y; t) = y 1 + (t + 1)(y 0 y 1 ) + (t + 1)t(y 0 0 y 0 + y 1 ) (t + 1)t2 (y 1 y 1 2y 0 0): 2

3 Then, Z 1 p 3 (y; t)dt 1 = 2y 1 + 2(y 0 y 1 ) (y0 0 y 0 + y 1 ) (y 1 y 1 2y 0 0) = 1 3 (y 1 + 4y 0 + y 1 ): (b) E S (y) = Z 1 1 (t + 1)t 2 (t 1) y(4) (fi(t)) dt 4! = 1 90 y(4) (fi); 1» fi» 1: (c) Let n be even, h = (b )=n, x k = + kh, nd f k = f(x k ). Then, Z +2 f(x)dx = h Z 1 Let y(t) = f(x k+1 + th) in () nd (b), we obtin 1 f(x k+1 + th)dt: Z +2 Sum ll even k from 0 to n-2, f(x)dx = hf 1 3 (f k + 4f k+1 + f k+2 ) 1 90 h4 f (4) (ο k )g; Z b ο k = x k+1 + fih; 1» fi» 1: f(x)dx = n 2 X k is even. After clculting, we will get k=0 Z +2 f(x)dx; Z b f(x)dx = h 3 (f 0 + 4f 1 + 2f 2 + 4f f n 2 + 4f n 1 + f n ) + E S n (f); where Problem 10: E S n (f) = b 180 h4 f (4) (ο);» ο» b: f = e x2 ; f 00 = 2(2x 2 1)e x2 ; f (4) = 4(4x 4 12x 2 + 3)e x2 : so, jf 00 j» 2; jf (4) j» 12 on [0; 1]: 3

4 () E T n = 1 12n 2 f 00 (ο); 0» ο» 1; we get, Tht is, je T n j» 1 6n 2» if n : n 103 p 3 ß 578: (b) we get, if Tht is, E S n = 1 180n 4 f (4) (ο); 0» ο» 1; je S n j» 1 180n 4 12 = 1 15n 4» n : n [ ]1=4 10 ß 20: Problem 35 The re of unit disk cn be computed s A = 2 Z 1 1 (1 t 2 ) 1=2 dt = 2 Z 1 1 (1 t 2 )(1 t 2 ) 1=2 dt; hence cn be evluted exctly by 2 point Guss-Chebyshev qudrture rule pplied to f(t) = 1 t 2 : A = 2 ß 2 (1 t t 2 2) = ß(2 t 2 1 t2 2): But, nd Thus, t 1 = cos ß 4 = 1 p 2 t 2 = cos 3ß 4 = 1 p 2 : A = ß(2 1=2 1=2) = ß: 4

5 2. Mchine Assignment 1 in Chpter 3. After computing, we get The progrm is s following: e 1 (h) = ß (f 1 f 0 ) ; e 2 (h) = 2ß 2 f 1 2f 0 + f 1 ; h h 2 e 3 (h) = 6ß 3 f 2 3f 1 + 3f 0 f 1 h 3 ; e 4 (h) = 24ß 4 f 2 4f 1 + 6f 0 4f 1 + f 2 h 4 : % % Mchine ssignment 1 in Chpter 3, the problem description is not cler % fixed nd solve it. % index for in f is % formt long; i=[ ]; PI = 4*tn(1); E1 = PI; E2 = 2*pi^2; E3 = 6*pi^3; E4 = 24*pi^4; k = 0:10; h=2.^(-k-2); f = 1./ (1 - PI * (i'*h)); P = [ ((f(4,:)-f(3,:))./ h) ; ((f(4,:)-2*f(3,:)+f(2,:))./ (h.^2)); ((f(5,:)-3*f(4,:)+3*f(3,:)-f(2,:))./ (h.^3)); ((f(5,:)-4*f(4,:)+6*f(3,:)-4*f(2,:)+f(1,:))./ (h.^4)) ]; E = [E1 - ((f(4,:)-f(3,:))./ h) ; E2 - ((f(4,:)-2*f(3,:)+f(2,:))./ (h.^2)); E3 - ((f(5,:)-3*f(4,:)+3*f(3,:)-f(2,:))./ (h.^3)); E4 - ((f(5,:)-4*f(4,:)+6*f(3,:)-4*f(2,:)+f(1,:))./ (h.^4)) ]; R=[]; 5

6 for j=2:11 R = [R bs(e(:,j)./ E(:,j-1))]; end fid1 = fopen('ma3_1','w'); fprintf(fid1,' exct derivtes n'); fprintf(fid1,' %8.3f %8.3f %8.3f %8.3f n', E1, E2, E3, E4); fprintf(fid1,' pproximte derivtes n'); fprintf(fid1,' %8.3f %8.3f %8.3f %8.3f n', P); fprintf(fid1,' pproximte errors n'); fprintf(fid1,' %8.3f %8.3f %8.3f %8.3f n', E); fprintf(fid1,' r1 r2 r3 r4 n'); fprintf(fid1,' %8.3f %8.3f %8.3f %8.3f n', R); fclose(fid1); The result is s exct derivtes pproximte derivtes pproximte errors

7 r1 r2 r3 r One cn relize tht the convergence order is O(h) for n = 1 nd n = 3, the rtion tends to 1. However, for n = 2 nd n = 4, the order is 2 O(h2 ) nd the rtio tends to be 1. 4 Rounding error occurs in the lst few vlues of n = 4 which corrupts the limit of the rtion. 3. Problem 3 on HW sheet. () trpezoid rule: Z 1 0 e x dx = 0:1( 1 2 e0 + 9X i=1 e i e 1 ) ß 0:63265: Then the error is Z 1 0 e x dx = 0:

8 (b) gussin qudrture: Let ß 3 (t) = t 3 +p 1 t 2 +p t 2+p 3 : Since it is orthogonl to 1, t, nd t 2, one cn solve the coefficients which p 1 = 3, p 2 2 = 3, nd p 5 3 = 1. Then, we 20 cn get 3 roots for ß 3. Then, one need to find the weights w 1, w 2, nd w 3. Consider f(t) 1, f(t) t, nd f(t) t 2, then solve the liner eqution system nd get w 1, w 2, nd w 3. The results re s t 1 = 0:887298; t 2 = 0:5; t 3 = 0:112702; w 1 = 0:277778; w 2 = 0:444444; w 3 = 0:277778: And, Z 1 0 e x dx ß 0: Z 1 0 e x dx = 0: Then the error is (more precision pplied here). Therefore, gussin qudrture preforms better for this problem 4. Questions from text in Chpter 4. Problem 7: () Plot the function. Since there re three intersections with the line x = 0, there (b) No. Problem 21: () re 3 rel root. Their pproximted loction is -2, 2, nd 10.5 respectively. x n+1 ff = 1 2 (x n + x n ) ff = x2 n + 2ffx n 2x n = x2 n 2ffx n + ff 2 2x n = (x n + ff) 2 2x n : ) 1 2x n (b) Let f(x) = x 3. Then f 0 (x) = 3x 2. = x n+1 ff x n ff : x n+1 ff lim n!1 x n ff = n!1 lim 1 = 1 2x n 2ff : x n+1 = x n f(x n) f 0 (x n ) = x n x3 n = 3x3 x 3 + n n 3x 2 3x 2 n n 8

9 = 1 3 (2x n + x 2 n ): Then, Problem 22: () Therefore, x n+1 ff = 1 3 (2x n + x 2 n = 2x3 n + ff 3 3ffx 2 n 2x 2 n = (ff3 x 3 n) 3x 2 n(ff x n ) 3x 2 n ) ff = 2x3 n + 3ffx 2 n 3x 2 n = ff3 x 3 n + 3(x 3 n ffx 2 n) 3x 2 n ) x n+1 ff (x n ff) = ff + 2x n : 2 3x 2 n x n+1 ff lim n!1 (x n ff) = lim ff + 2x n 2 n!1 3x 2 n = (ff x n) 2 (ff + 2x n ) : 3x 2 n = 1 ff : d n = x n+1 x n = 1 2 ( x n x n ): (b) ) 2d n x n = x 2 n : ) x n 2 + 2dx n = 0: ) x n = 2d n ± p 4dn = d n ± q d 2 n + : We ssume x 0 > 0, then x n > 0. Therefore, q x n = d n + d 2 + = + d2 p d 2 n n n d n + d 2 + : n ) x n = d n + p d 2 n + : ) x n = d n + p d 2 n + = 1 2 (x n 1 + = 1 2 ( d n 1 + qd 2n (d n 1 + x n 1 ) q d 2 n 1 + )): q p d n + d 2 + = 1 2 ((d n 1 d 2 + ) n 1 d 2 n n 1 d2 + d n 1 + n 1 = 1 2 ( qd 2 n 1 + d n 1 + d n 1 + q d 2 n 1 + ) qd 2n 1 + ) = q d 2 n 1 + : 9

10 () '(x) = 2 x, x 6= 0. Then, ' 0 (ff) = 2ff 1 6= 0: ) p q d n + d 2 + = d 2 + : n 1 n q ) d n + d 2 + = n qd 2n 1 + : ) q d 2 n + = ) d 2 n + = d 2 n ) q 2d n d 2 + = n 1 q d n : d 2 n 1 2d n 2 qd 2n d 2 + : n 1 d2 n 1 d 2 n 1 + 2: Problem 35: Therefore, d 2 n 1 ) d n = 2 qd 2n 1 + : d 2 n 1 jd n j = 2 qd 2n 1 + : Clim j 2 x 2 j < 1, then x 2 ( 1; p 2) [ ( p 2; 1). It will converge only when x 0 = ± p 2. Otherwise, it never converges. (b) '(x) = x 2 + x 2. Then, ' 0 (ff) = 2ff + 1 6= 0: Clim j2x + 1j < 1, then x 2 ( 1; 0). It will never converge to the root. (c) '(x) = x+2, x 6= 1. Then, x+1 ' 0 (ff) = 1 6= 0: (ff + 1) 2 1 Clim j j < 1, then, x 2 ( 1; 2) [ (0; 1). (x+1) 2 converge when x 0 > 0. Since p 2 > 2, it will 5. Mchine Assignment 1 in Chpter 4. The progrm is s following: FORTRAN(f90) prt, min progrm 10

11 !! This is for Mchine Assignment 1 in Chpter 4! PROGRAM m4_1 rel e rel from, to, h integer i, n n=200 e = Eps()! For prt (): open(20, file='m4_1') from = 0.93 to = 1.07 h = (to-from)/n write(20,2) from write(20,2) to do i=0, n x = from+i*h write(20,1)(p(x)/e) enddo close(20) 1 formt(e16.7) 2 formt(f16.7)! For prt (b): open(20, file='m4_1b') from = 21.7 to = 22.2 h = (to-from)/n write(20,2) from write(20,2) to do i=0, n 11

12 x = from+i*h write(20,1)(pb(x)/e) enddo close(20) end rel function Eps() rel, b, c =4./3. b=-1 c=b+b+b Eps=bs(c-1) return end rel function p(x) rel x p=x**5-5*x**4+10*x**3-10*x**2+5*x-1; return end rel function pb(x) rel x pb=x**5-100*x**4+3995*x** *x** *x ; return end MATLAB prt, for plot only % % for plot in Mchine ssignment 1 of Chpter 4, red file m4_1 nd m4_1b % fid1 = fopen('m4_1', 'r'); 12

13 p = fscnf(fid1, '%g', [203]); fclose(fid1); fid1 = fopen('m4_1b', 'r'); pb = fscnf(fid1, '%g', [203]); fclose(fid1); h = (p(2)-p(1))/200; hb = (pb(2)-pb(1))/200; i = p(1):h:p(2); ib = pb(1):hb:pb(2); figure; subplot(2,1,1); plot(i, p(3:203), '-'); title('polynomil /eps'); grid on; subplot(2,1,2); plot(ib, pb(3:203), '-'); title('polynomil b/eps') grid on; The plots re s below 13

14 20 polynomil /eps x 107 polynomil b/eps Figure 1: The plots for two functions 14

3.4 Numerical integration

3.4 Numerical integration 3.4. Numericl integrtion 63 3.4 Numericl integrtion In mny economic pplictions it is necessry to compute the definite integrl of relvlued function f with respect to "weight" function w over n intervl [,

More information

Lecture 12: Numerical Quadrature

Lecture 12: Numerical Quadrature Lecture 12: Numericl Qudrture J.K. Ryn@tudelft.nl WI3097TU Delft Institute of Applied Mthemtics Delft University of Technology 5 December 2012 () Numericl Qudrture 5 December 2012 1 / 46 Outline 1 Review

More information

Lecture 14: Quadrature

Lecture 14: Quadrature Lecture 14: Qudrture This lecture is concerned with the evlution of integrls fx)dx 1) over finite intervl [, b] The integrnd fx) is ssumed to be rel-vlues nd smooth The pproximtion of n integrl by numericl

More information

Numerical Integration

Numerical Integration Chpter 5 Numericl Integrtion Numericl integrtion is the study of how the numericl vlue of n integrl cn be found. Methods of function pproximtion discussed in Chpter??, i.e., function pproximtion vi the

More information

COT4501 Spring Homework VII

COT4501 Spring Homework VII COT451 Spring 1 Homework VII The ssignment is due in clss on Thursdy, April 19, 1. There re five regulr problems nd one computer problem (using MATLAB). For written problems, you need to show your work

More information

Lecture 6: Singular Integrals, Open Quadrature rules, and Gauss Quadrature

Lecture 6: Singular Integrals, Open Quadrature rules, and Gauss Quadrature Lecture notes on Vritionl nd Approximte Methods in Applied Mthemtics - A Peirce UBC Lecture 6: Singulr Integrls, Open Qudrture rules, nd Guss Qudrture (Compiled 6 August 7) In this lecture we discuss the

More information

Numerical Integration. 1 Introduction. 2 Midpoint Rule, Trapezoid Rule, Simpson Rule. AMSC/CMSC 460/466 T. von Petersdorff 1

Numerical Integration. 1 Introduction. 2 Midpoint Rule, Trapezoid Rule, Simpson Rule. AMSC/CMSC 460/466 T. von Petersdorff 1 AMSC/CMSC 46/466 T. von Petersdorff 1 umericl Integrtion 1 Introduction We wnt to pproximte the integrl I := f xdx where we re given, b nd the function f s subroutine. We evlute f t points x 1,...,x n

More information

Lecture 14 Numerical integration: advanced topics

Lecture 14 Numerical integration: advanced topics Lecture 14 Numericl integrtion: dvnced topics Weinn E 1,2 nd Tiejun Li 2 1 Deprtment of Mthemtics, Princeton University, weinn@princeton.edu 2 School of Mthemticl Sciences, Peking University, tieli@pku.edu.cn

More information

NUMERICAL INTEGRATION. The inverse process to differentiation in calculus is integration. Mathematically, integration is represented by.

NUMERICAL INTEGRATION. The inverse process to differentiation in calculus is integration. Mathematically, integration is represented by. NUMERICAL INTEGRATION 1 Introduction The inverse process to differentition in clculus is integrtion. Mthemticlly, integrtion is represented by f(x) dx which stnds for the integrl of the function f(x) with

More information

Orthogonal Polynomials

Orthogonal Polynomials Mth 4401 Gussin Qudrture Pge 1 Orthogonl Polynomils Orthogonl polynomils rise from series solutions to differentil equtions, lthough they cn be rrived t in vriety of different mnners. Orthogonl polynomils

More information

Numerical integration

Numerical integration 2 Numericl integrtion This is pge i Printer: Opque this 2. Introduction Numericl integrtion is problem tht is prt of mny problems in the economics nd econometrics literture. The orgniztion of this chpter

More information

Numerical quadrature based on interpolating functions: A MATLAB implementation

Numerical quadrature based on interpolating functions: A MATLAB implementation SEMINAR REPORT Numericl qudrture bsed on interpolting functions: A MATLAB implementtion by Venkt Ayylsomyjul A seminr report submitted in prtil fulfillment for the degree of Mster of Science (M.Sc) in

More information

INTRODUCTION TO INTEGRATION

INTRODUCTION TO INTEGRATION INTRODUCTION TO INTEGRATION 5.1 Ares nd Distnces Assume f(x) 0 on the intervl [, b]. Let A be the re under the grph of f(x). b We will obtin n pproximtion of A in the following three steps. STEP 1: Divide

More information

COSC 3361 Numerical Analysis I Numerical Integration and Differentiation (III) - Gauss Quadrature and Adaptive Quadrature

COSC 3361 Numerical Analysis I Numerical Integration and Differentiation (III) - Gauss Quadrature and Adaptive Quadrature COSC 336 Numericl Anlysis I Numericl Integrtion nd Dierentition III - Guss Qudrture nd Adptive Qudrture Edgr Griel Fll 5 COSC 336 Numericl Anlysis I Edgr Griel Summry o the lst lecture I For pproximting

More information

B.Sc. in Mathematics (Ordinary)

B.Sc. in Mathematics (Ordinary) R48/0 DUBLIN INSTITUTE OF TECHNOLOGY KEVIN STREET, DUBLIN 8 B.Sc. in Mthemtics (Ordinry) SUPPLEMENTAL EXAMINATIONS 01 Numericl Methods Dr. D. Mckey Dr. C. Hills Dr. E.A. Cox Full mrks for complete nswers

More information

Lecture Note 4: Numerical differentiation and integration. Xiaoqun Zhang Shanghai Jiao Tong University

Lecture Note 4: Numerical differentiation and integration. Xiaoqun Zhang Shanghai Jiao Tong University Lecture Note 4: Numericl differentition nd integrtion Xioqun Zng Sngi Jio Tong University Lst updted: November, 0 Numericl Anlysis. Numericl differentition.. Introduction Find n pproximtion of f (x 0 ),

More information

Numerical Analysis. 10th ed. R L Burden, J D Faires, and A M Burden

Numerical Analysis. 10th ed. R L Burden, J D Faires, and A M Burden Numericl Anlysis 10th ed R L Burden, J D Fires, nd A M Burden Bemer Presenttion Slides Prepred by Dr. Annette M. Burden Youngstown Stte University July 9, 2015 Chpter 4.1: Numericl Differentition 1 Three-Point

More information

HOMEWORK SOLUTIONS MATH 1910 Sections 7.9, 8.1 Fall 2016

HOMEWORK SOLUTIONS MATH 1910 Sections 7.9, 8.1 Fall 2016 HOMEWORK SOLUTIONS MATH 9 Sections 7.9, 8. Fll 6 Problem 7.9.33 Show tht for ny constnts M,, nd, the function yt) = )) t ) M + tnh stisfies the logistic eqution: y SOLUTION. Let Then nd Finlly, y = y M

More information

Z b. f(x)dx. Yet in the above two cases we know what f(x) is. Sometimes, engineers want to calculate an area by computing I, but...

Z b. f(x)dx. Yet in the above two cases we know what f(x) is. Sometimes, engineers want to calculate an area by computing I, but... Chpter 7 Numericl Methods 7. Introduction In mny cses the integrl f(x)dx cn be found by finding function F (x) such tht F 0 (x) =f(x), nd using f(x)dx = F (b) F () which is known s the nlyticl (exct) solution.

More information

Best Approximation. Chapter The General Case

Best Approximation. Chapter The General Case Chpter 4 Best Approximtion 4.1 The Generl Cse In the previous chpter, we hve seen how n interpolting polynomil cn be used s n pproximtion to given function. We now wnt to find the best pproximtion to given

More information

Numerical Integration

Numerical Integration Numericl Integrtion Wouter J. Den Hn London School of Economics c 2011 by Wouter J. Den Hn June 3, 2011 Qudrture techniques I = f (x)dx n n w i f (x i ) = w i f i i=1 i=1 Nodes: x i Weights: w i Qudrture

More information

Functions of Several Variables

Functions of Several Variables Functions of Severl Vribles Sketching Level Curves Sections Prtil Derivtives on every open set on which f nd the prtils, 2 f y = 2 f y re continuous. Norml Vector x, y, 2 f y, 2 f y n = ± (x 0,y 0) (x

More information

Lecture 17. Integration: Gauss Quadrature. David Semeraro. University of Illinois at Urbana-Champaign. March 20, 2014

Lecture 17. Integration: Gauss Quadrature. David Semeraro. University of Illinois at Urbana-Champaign. March 20, 2014 Lecture 17 Integrtion: Guss Qudrture Dvid Semerro University of Illinois t Urbn-Chmpign Mrch 0, 014 Dvid Semerro (NCSA) CS 57 Mrch 0, 014 1 / 9 Tody: Objectives identify the most widely used qudrture method

More information

Construction of Gauss Quadrature Rules

Construction of Gauss Quadrature Rules Jim Lmbers MAT 772 Fll Semester 2010-11 Lecture 15 Notes These notes correspond to Sections 10.2 nd 10.3 in the text. Construction of Guss Qudrture Rules Previously, we lerned tht Newton-Cotes qudrture

More information

Chapter 6. Riemann Integral

Chapter 6. Riemann Integral Introduction to Riemnn integrl Chpter 6. Riemnn Integrl Won-Kwng Prk Deprtment of Mthemtics, The College of Nturl Sciences Kookmin University Second semester, 2015 1 / 41 Introduction to Riemnn integrl

More information

37 Kragujevac J. Math. 23 (2001) A NOTE ON DENSITY OF THE ZEROS OF ff-orthogonal POLYNOMIALS Gradimir V. Milovanović a and Miodrag M. Spalević

37 Kragujevac J. Math. 23 (2001) A NOTE ON DENSITY OF THE ZEROS OF ff-orthogonal POLYNOMIALS Gradimir V. Milovanović a and Miodrag M. Spalević 37 Krgujevc J. Mth. 23 (2001) 37 43. A NOTE ON DENSITY OF THE ZEROS OF ff-orthogonal POLYNOMIALS Grdimir V. Milovnović nd Miodrg M. Splević b Fculty of Electronic Engineering, Deprtment of Mthemtics, University

More information

1 The fundamental theorems of calculus.

1 The fundamental theorems of calculus. The fundmentl theorems of clculus. The fundmentl theorems of clculus. Evluting definite integrls. The indefinite integrl- new nme for nti-derivtive. Differentiting integrls. Tody we provide the connection

More information

Numerical Analysis: Trapezoidal and Simpson s Rule

Numerical Analysis: Trapezoidal and Simpson s Rule nd Simpson s Mthemticl question we re interested in numericlly nswering How to we evlute I = f (x) dx? Clculus tells us tht if F(x) is the ntiderivtive of function f (x) on the intervl [, b], then I =

More information

1. Gauss-Jacobi quadrature and Legendre polynomials. p(t)w(t)dt, p {p(x 0 ),...p(x n )} p(t)w(t)dt = w k p(x k ),

1. Gauss-Jacobi quadrature and Legendre polynomials. p(t)w(t)dt, p {p(x 0 ),...p(x n )} p(t)w(t)dt = w k p(x k ), 1. Guss-Jcobi qudrture nd Legendre polynomils Simpson s rule for evluting n integrl f(t)dt gives the correct nswer with error of bout O(n 4 ) (with constnt tht depends on f, in prticulr, it depends on

More information

The Fundamental Theorem of Calculus. The Total Change Theorem and the Area Under a Curve.

The Fundamental Theorem of Calculus. The Total Change Theorem and the Area Under a Curve. Clculus Li Vs The Fundmentl Theorem of Clculus. The Totl Chnge Theorem nd the Are Under Curve. Recll the following fct from Clculus course. If continuous function f(x) represents the rte of chnge of F

More information

Lecture 20: Numerical Integration III

Lecture 20: Numerical Integration III cs4: introduction to numericl nlysis /8/0 Lecture 0: Numericl Integrtion III Instructor: Professor Amos Ron Scribes: Mrk Cowlishw, Yunpeng Li, Nthnel Fillmore For the lst few lectures we hve discussed

More information

Advanced Computational Fluid Dynamics AA215A Lecture 3 Polynomial Interpolation: Numerical Differentiation and Integration.

Advanced Computational Fluid Dynamics AA215A Lecture 3 Polynomial Interpolation: Numerical Differentiation and Integration. Advnced Computtionl Fluid Dynmics AA215A Lecture 3 Polynomil Interpoltion: Numericl Differentition nd Integrtion Antony Jmeson Winter Qurter, 2016, Stnford, CA Lst revised on Jnury 7, 2016 Contents 3 Polynomil

More information

2

2 1 Notes for Numericl Anlysis Mth 5466 by S. Adjerid Virgini Polytechnic Institute nd Stte University (A Rough Drft) 2 Contents 1 Differentition nd Integrtion 5 1.1 Introduction............................

More information

Abstract inner product spaces

Abstract inner product spaces WEEK 4 Abstrct inner product spces Definition An inner product spce is vector spce V over the rel field R equipped with rule for multiplying vectors, such tht the product of two vectors is sclr, nd the

More information

Trapezoidal Rule, n = 1, x 0 = a, x 1 = b, h = b a. f (x)dx = h 2 (f (x 0) + f (x 1 )) h3

Trapezoidal Rule, n = 1, x 0 = a, x 1 = b, h = b a. f (x)dx = h 2 (f (x 0) + f (x 1 )) h3 Trpezoidl Rule, n = 1, x 0 =, x 1 = b, h = b f (x)dx = h 2 (f (x 0) + f (x 1 )) h3 12 f (ξ). Simpson s Rule: n = 3, x 0 =, x 1 = +b 2, x 2 = b, h = b 2. Qudrture Rule, double node t x 1 P 3 (x)dx = f (x

More information

Sections 5.2: The Definite Integral

Sections 5.2: The Definite Integral Sections 5.2: The Definite Integrl In this section we shll formlize the ides from the lst section to functions in generl. We strt with forml definition.. The Definite Integrl Definition.. Suppose f(x)

More information

Math 1B, lecture 4: Error bounds for numerical methods

Math 1B, lecture 4: Error bounds for numerical methods Mth B, lecture 4: Error bounds for numericl methods Nthn Pflueger 4 September 0 Introduction The five numericl methods descried in the previous lecture ll operte by the sme principle: they pproximte the

More information

AN INTEGRAL INEQUALITY FOR CONVEX FUNCTIONS AND APPLICATIONS IN NUMERICAL INTEGRATION

AN INTEGRAL INEQUALITY FOR CONVEX FUNCTIONS AND APPLICATIONS IN NUMERICAL INTEGRATION Applied Mthemtics E-Notes, 5(005), 53-60 c ISSN 1607-510 Avilble free t mirror sites of http://www.mth.nthu.edu.tw/ men/ AN INTEGRAL INEQUALITY FOR CONVEX FUNCTIONS AND APPLICATIONS IN NUMERICAL INTEGRATION

More information

Best Approximation in the 2-norm

Best Approximation in the 2-norm Jim Lmbers MAT 77 Fll Semester 1-11 Lecture 1 Notes These notes correspond to Sections 9. nd 9.3 in the text. Best Approximtion in the -norm Suppose tht we wish to obtin function f n (x) tht is liner combintion

More information

Orthogonal Polynomials and Least-Squares Approximations to Functions

Orthogonal Polynomials and Least-Squares Approximations to Functions Chpter Orthogonl Polynomils nd Lest-Squres Approximtions to Functions **4/5/3 ET. Discrete Lest-Squres Approximtions Given set of dt points (x,y ), (x,y ),..., (x m,y m ), norml nd useful prctice in mny

More information

Math 100 Review Sheet

Math 100 Review Sheet Mth 100 Review Sheet Joseph H. Silvermn December 2010 This outline of Mth 100 is summry of the mteril covered in the course. It is designed to be study id, but it is only n outline nd should be used s

More information

Fundamental Theorem of Calculus

Fundamental Theorem of Calculus Fundmentl Theorem of Clculus Recll tht if f is nonnegtive nd continuous on [, ], then the re under its grph etween nd is the definite integrl A= f() d Now, for in the intervl [, ], let A() e the re under

More information

Section 4.8. D v(t j 1 ) t. (4.8.1) j=1

Section 4.8. D v(t j 1 ) t. (4.8.1) j=1 Difference Equtions to Differentil Equtions Section.8 Distnce, Position, nd the Length of Curves Although we motivted the definition of the definite integrl with the notion of re, there re mny pplictions

More information

The Riemann Integral

The Riemann Integral Deprtment of Mthemtics King Sud University 2017-2018 Tble of contents 1 Anti-derivtive Function nd Indefinite Integrls 2 3 4 5 Indefinite Integrls & Anti-derivtive Function Definition Let f : I R be function

More information

Math& 152 Section Integration by Parts

Math& 152 Section Integration by Parts Mth& 5 Section 7. - Integrtion by Prts Integrtion by prts is rule tht trnsforms the integrl of the product of two functions into other (idelly simpler) integrls. Recll from Clculus I tht given two differentible

More information

Chapter 2. Numerical Integration also called quadrature. 2.2 Trapezoidal Rule. 2.1 A basic principle Extending the Trapezoidal Rule DRAWINGS

Chapter 2. Numerical Integration also called quadrature. 2.2 Trapezoidal Rule. 2.1 A basic principle Extending the Trapezoidal Rule DRAWINGS S Cpter Numericl Integrtion lso clled qudrture Te gol of numericl integrtion is to pproximte numericlly. f(x)dx Tis is useful for difficult integrls like sin(x) ; sin(x ); x + x 4 Or worse still for multiple-dimensionl

More information

7. Numerical evaluation of definite integrals

7. Numerical evaluation of definite integrals 7. Numericl evlution of definite integrls Tento učení text yl podpořen z Operčního progrmu Prh - Adptilit Hn Hldíková Numericl pproximtion of definite integrl is clled numericl qudrture, the formuls re

More information

Solutions to Assignment #8

Solutions to Assignment #8 Mth 1 Numericl Anlysis (Bueler) December 9, 29 Solutions to Assignment #8 Problems 64, exercise 14: The nswer turns out to be yes, which mens tht I hve to be orgnized in writing it up There re lot of fcts

More information

Chapter 3 Solving Nonlinear Equations

Chapter 3 Solving Nonlinear Equations Chpter 3 Solving Nonliner Equtions 3.1 Introduction The nonliner function of unknown vrible x is in the form of where n could be non-integer. Root is the numericl vlue of x tht stisfies f ( x) 0. Grphiclly,

More information

Definite integral. Mathematics FRDIS MENDELU

Definite integral. Mathematics FRDIS MENDELU Definite integrl Mthemtics FRDIS MENDELU Simon Fišnrová Brno 1 Motivtion - re under curve Suppose, for simplicity, tht y = f(x) is nonnegtive nd continuous function defined on [, b]. Wht is the re of the

More information

Definite integral. Mathematics FRDIS MENDELU. Simona Fišnarová (Mendel University) Definite integral MENDELU 1 / 30

Definite integral. Mathematics FRDIS MENDELU. Simona Fišnarová (Mendel University) Definite integral MENDELU 1 / 30 Definite integrl Mthemtics FRDIS MENDELU Simon Fišnrová (Mendel University) Definite integrl MENDELU / Motivtion - re under curve Suppose, for simplicity, tht y = f(x) is nonnegtive nd continuous function

More information

We know that if f is a continuous nonnegative function on the interval [a, b], then b

We know that if f is a continuous nonnegative function on the interval [a, b], then b 1 Ares Between Curves c 22 Donld Kreider nd Dwight Lhr We know tht if f is continuous nonnegtive function on the intervl [, b], then f(x) dx is the re under the grph of f nd bove the intervl. We re going

More information

Interpolation. Gaussian Quadrature. September 25, 2011

Interpolation. Gaussian Quadrature. September 25, 2011 Gussin Qudrture September 25, 2011 Approximtion of integrls Approximtion of integrls by qudrture Mny definite integrls cnnot be computed in closed form, nd must be pproximted numericlly. Bsic building

More information

Numerical integration. Quentin Louveaux (ULiège - Institut Montefiore) Numerical analysis / 10

Numerical integration. Quentin Louveaux (ULiège - Institut Montefiore) Numerical analysis / 10 Numericl integrtion Quentin Louveux (ULiège Institut Montefiore) Numericl nlysis 2018 1 / 10 Numericl integrtion We consider definite integrls Z b f (x)dx better to it use if known! A We do not ssume tht

More information

Lecture 23: Interpolatory Quadrature

Lecture 23: Interpolatory Quadrature Lecture 3: Interpoltory Qudrture. Qudrture. The computtion of continuous lest squres pproximtions to f C[, b] required evlutions of the inner product f, φ j = fxφ jx dx, where φ j is polynomil bsis function

More information

New Expansion and Infinite Series

New Expansion and Infinite Series Interntionl Mthemticl Forum, Vol. 9, 204, no. 22, 06-073 HIKARI Ltd, www.m-hikri.com http://dx.doi.org/0.2988/imf.204.4502 New Expnsion nd Infinite Series Diyun Zhng College of Computer Nnjing University

More information

DOING PHYSICS WITH MATLAB MATHEMATICAL ROUTINES

DOING PHYSICS WITH MATLAB MATHEMATICAL ROUTINES DOIG PHYSICS WITH MATLAB MATHEMATICAL ROUTIES COMPUTATIO OF OE-DIMESIOAL ITEGRALS In Cooper School of Physics, University of Sydney in.cooper@sydney.edu.u DOWLOAD DIRECTORY FOR MATLAB SCRIPTS mth_integrtion_1d.m

More information

Review of Calculus, cont d

Review of Calculus, cont d Jim Lmbers MAT 460 Fll Semester 2009-10 Lecture 3 Notes These notes correspond to Section 1.1 in the text. Review of Clculus, cont d Riemnn Sums nd the Definite Integrl There re mny cses in which some

More information

Exam 2, Mathematics 4701, Section ETY6 6:05 pm 7:40 pm, March 31, 2016, IH-1105 Instructor: Attila Máté 1

Exam 2, Mathematics 4701, Section ETY6 6:05 pm 7:40 pm, March 31, 2016, IH-1105 Instructor: Attila Máté 1 Exm, Mthemtics 471, Section ETY6 6:5 pm 7:4 pm, Mrch 1, 16, IH-115 Instructor: Attil Máté 1 17 copies 1. ) Stte the usul sufficient condition for the fixed-point itertion to converge when solving the eqution

More information

Lecture 19: Continuous Least Squares Approximation

Lecture 19: Continuous Least Squares Approximation Lecture 19: Continuous Lest Squres Approximtion 33 Continuous lest squres pproximtion We begn 31 with the problem of pproximting some f C[, b] with polynomil p P n t the discrete points x, x 1,, x m for

More information

Math 113 Fall Final Exam Review. 2. Applications of Integration Chapter 6 including sections and section 6.8

Math 113 Fall Final Exam Review. 2. Applications of Integration Chapter 6 including sections and section 6.8 Mth 3 Fll 0 The scope of the finl exm will include: Finl Exm Review. Integrls Chpter 5 including sections 5. 5.7, 5.0. Applictions of Integrtion Chpter 6 including sections 6. 6.5 nd section 6.8 3. Infinite

More information

Final Exam - Review MATH Spring 2017

Final Exam - Review MATH Spring 2017 Finl Exm - Review MATH 5 - Spring 7 Chpter, 3, nd Sections 5.-5.5, 5.7 Finl Exm: Tuesdy 5/9, :3-7:pm The following is list of importnt concepts from the sections which were not covered by Midterm Exm or.

More information

Euler-Maclaurin Summation Formula 1

Euler-Maclaurin Summation Formula 1 Jnury 9, Euler-Mclurin Summtion Formul Suppose tht f nd its derivtive re continuous functions on the closed intervl [, b]. Let ψ(x) {x}, where {x} x [x] is the frctionl prt of x. Lemm : If < b nd, b Z,

More information

Euler, Ioachimescu and the trapezium rule. G.J.O. Jameson (Math. Gazette 96 (2012), )

Euler, Ioachimescu and the trapezium rule. G.J.O. Jameson (Math. Gazette 96 (2012), ) Euler, Iochimescu nd the trpezium rule G.J.O. Jmeson (Mth. Gzette 96 (0), 36 4) The following results were estblished in recent Gzette rticle [, Theorems, 3, 4]. Given > 0 nd 0 < s

More information

Module 11.4: nag quad util Numerical Integration Utilities. Contents

Module 11.4: nag quad util Numerical Integration Utilities. Contents Qudrture Module Contents Module 11.4: ng qud util Numericl Integrtion Utilities ng qud util provides utility procedures for computtion involving integrtion of functions, e.g., the computtion of the weights

More information

CAAM 453 NUMERICAL ANALYSIS I Examination There are four questions, plus a bonus. Do not look at them until you begin the exam.

CAAM 453 NUMERICAL ANALYSIS I Examination There are four questions, plus a bonus. Do not look at them until you begin the exam. Exmintion 1 Posted 23 October 2002. Due no lter thn 5pm on Mondy, 28 October 2002. Instructions: 1. Time limit: 3 uninterrupted hours. 2. There re four questions, plus bonus. Do not look t them until you

More information

Discrete Least-squares Approximations

Discrete Least-squares Approximations Discrete Lest-squres Approximtions Given set of dt points (x, y ), (x, y ),, (x m, y m ), norml nd useful prctice in mny pplictions in sttistics, engineering nd other pplied sciences is to construct curve

More information

THE HANKEL MATRIX METHOD FOR GAUSSIAN QUADRATURE IN 1 AND 2 DIMENSIONS

THE HANKEL MATRIX METHOD FOR GAUSSIAN QUADRATURE IN 1 AND 2 DIMENSIONS THE HANKEL MATRIX METHOD FOR GAUSSIAN QUADRATURE IN 1 AND 2 DIMENSIONS CARLOS SUERO, MAURICIO ALMANZAR CONTENTS 1 Introduction 1 2 Proof of Gussin Qudrture 6 3 Iterted 2-Dimensionl Gussin Qudrture 20 4

More information

Review of Gaussian Quadrature method

Review of Gaussian Quadrature method Review of Gussin Qudrture method Nsser M. Asi Spring 006 compiled on Sundy Decemer 1, 017 t 09:1 PM 1 The prolem To find numericl vlue for the integrl of rel vlued function of rel vrile over specific rnge

More information

CMDA 4604: Intermediate Topics in Mathematical Modeling Lecture 19: Interpolation and Quadrature

CMDA 4604: Intermediate Topics in Mathematical Modeling Lecture 19: Interpolation and Quadrature CMDA 4604: Intermedite Topics in Mthemticl Modeling Lecture 19: Interpoltion nd Qudrture In this lecture we mke brief diversion into the res of interpoltion nd qudrture. Given function f C[, b], we sy

More information

P 3 (x) = f(0) + f (0)x + f (0) 2. x 2 + f (0) . In the problem set, you are asked to show, in general, the n th order term is a n = f (n) (0)

P 3 (x) = f(0) + f (0)x + f (0) 2. x 2 + f (0) . In the problem set, you are asked to show, in general, the n th order term is a n = f (n) (0) 1 Tylor polynomils In Section 3.5, we discussed how to pproximte function f(x) round point in terms of its first derivtive f (x) evluted t, tht is using the liner pproximtion f() + f ()(x ). We clled this

More information

AM1 Mathematical Analysis 1 Oct Feb Exercises Lecture 3. sin(x + h) sin x h cos(x + h) cos x h

AM1 Mathematical Analysis 1 Oct Feb Exercises Lecture 3. sin(x + h) sin x h cos(x + h) cos x h AM Mthemticl Anlysis Oct. Feb. Dte: October Exercises Lecture Exercise.. If h, prove the following identities hold for ll x: sin(x + h) sin x h cos(x + h) cos x h = sin γ γ = sin γ γ cos(x + γ) (.) sin(x

More information

Main topics for the First Midterm

Main topics for the First Midterm Min topics for the First Midterm The Midterm will cover Section 1.8, Chpters 2-3, Sections 4.1-4.8, nd Sections 5.1-5.3 (essentilly ll of the mteril covered in clss). Be sure to know the results of the

More information

NUMERICAL INTEGRATION

NUMERICAL INTEGRATION NUMERICAL INTEGRATION How do we evlute I = f (x) dx By the fundmentl theorem of clculus, if F (x) is n ntiderivtive of f (x), then I = f (x) dx = F (x) b = F (b) F () However, in prctice most integrls

More information

p(x) = 3x 3 + x n 3 k=0 so the right hand side of the equality we have to show is obtained for r = b 0, s = b 1 and 2n 3 b k x k, q 2n 3 (x) =

p(x) = 3x 3 + x n 3 k=0 so the right hand side of the equality we have to show is obtained for r = b 0, s = b 1 and 2n 3 b k x k, q 2n 3 (x) = Norwegin University of Science nd Technology Deprtment of Mthemticl Sciences Pge 1 of 5 Contct during the exm: Elen Celledoni, tlf. 73593541, cell phone 48238584 PLESE NOTE: this solution is for the students

More information

Arithmetic Mean Derivative Based Midpoint Rule

Arithmetic Mean Derivative Based Midpoint Rule Applied Mthemticl Sciences, Vol. 1, 018, no. 13, 65-633 HIKARI Ltd www.m-hikri.com https://doi.org/10.1988/ms.018.858 Arithmetic Men Derivtive Bsed Midpoint Rule Rike Mrjulis 1, M. Imrn, Symsudhuh Numericl

More information

APPROXIMATE INTEGRATION

APPROXIMATE INTEGRATION APPROXIMATE INTEGRATION. Introduction We hve seen tht there re functions whose nti-derivtives cnnot be expressed in closed form. For these resons ny definite integrl involving these integrnds cnnot be

More information

n f(x i ) x. i=1 In section 4.2, we defined the definite integral of f from x = a to x = b as n f(x i ) x; f(x) dx = lim i=1

n f(x i ) x. i=1 In section 4.2, we defined the definite integral of f from x = a to x = b as n f(x i ) x; f(x) dx = lim i=1 The Fundmentl Theorem of Clculus As we continue to study the re problem, let s think bck to wht we know bout computing res of regions enclosed by curves. If we wnt to find the re of the region below the

More information

Physics 116C Solution of inhomogeneous ordinary differential equations using Green s functions

Physics 116C Solution of inhomogeneous ordinary differential equations using Green s functions Physics 6C Solution of inhomogeneous ordinry differentil equtions using Green s functions Peter Young November 5, 29 Homogeneous Equtions We hve studied, especilly in long HW problem, second order liner

More information

JDEP 384H: Numerical Methods in Business

JDEP 384H: Numerical Methods in Business BT 3.4: Solving Nonliner Systems Chpter 4: Numericl Integrtion: Deterministic nd Monte Crlo Methods Instructor: Thoms Shores Deprtment of Mthemtics Lecture 20, Februry 29, 2007 110 Kufmnn Center Instructor:

More information

We divide the interval [a, b] into subintervals of equal length x = b a n

We divide the interval [a, b] into subintervals of equal length x = b a n Arc Length Given curve C defined by function f(x), we wnt to find the length of this curve between nd b. We do this by using process similr to wht we did in defining the Riemnn Sum of definite integrl:

More information

Composite Mendeleev s Quadratures for Solving a Linear Fredholm Integral Equation of The Second Kind

Composite Mendeleev s Quadratures for Solving a Linear Fredholm Integral Equation of The Second Kind Globl Journl of Pure nd Applied Mthemtics. ISSN 0973-1768 Volume 12, Number (2016), pp. 393 398 Reserch Indi Publictions http://www.ripubliction.com/gjpm.htm Composite Mendeleev s Qudrtures for Solving

More information

The final exam will take place on Friday May 11th from 8am 11am in Evans room 60.

The final exam will take place on Friday May 11th from 8am 11am in Evans room 60. Mth 104: finl informtion The finl exm will tke plce on Fridy My 11th from 8m 11m in Evns room 60. The exm will cover ll prts of the course with equl weighting. It will cover Chpters 1 5, 7 15, 17 21, 23

More information

QUADRATURE is an old-fashioned word that refers to

QUADRATURE is an old-fashioned word that refers to World Acdemy of Science Engineering nd Technology Interntionl Journl of Mthemticl nd Computtionl Sciences Vol:5 No:7 011 A New Qudrture Rule Derived from Spline Interpoltion with Error Anlysis Hdi Tghvfrd

More information

III. Lecture on Numerical Integration. File faclib/dattab/lecture-notes/numerical-inter03.tex /by EC, 3/14/2008 at 15:11, version 9

III. Lecture on Numerical Integration. File faclib/dattab/lecture-notes/numerical-inter03.tex /by EC, 3/14/2008 at 15:11, version 9 III Lecture on Numericl Integrtion File fclib/dttb/lecture-notes/numerical-inter03.tex /by EC, 3/14/008 t 15:11, version 9 1 Sttement of the Numericl Integrtion Problem In this lecture we consider the

More information

Big idea in Calculus: approximation

Big idea in Calculus: approximation Big ide in Clculus: pproximtion Derivtive: f (x) = df dx f f(x +h) f(x) =, x h rte of chnge is pproximtely the rtio of chnges in the function vlue nd in the vrible in very short time Liner pproximtion:

More information

Math 473: Practice Problems for the Material after Test 2, Fall 2011

Math 473: Practice Problems for the Material after Test 2, Fall 2011 Mth 473: Prctice Problems for the Mteril fter Test, Fll SOLUTION. Consider the following modified het eqution u t = u xx + u x. () Use the relevnt 3 point pproximtion formuls for u xx nd u x to derive

More information

AP Calculus Multiple Choice: BC Edition Solutions

AP Calculus Multiple Choice: BC Edition Solutions AP Clculus Multiple Choice: BC Edition Solutions J. Slon Mrch 8, 04 ) 0 dx ( x) is A) B) C) D) E) Divergent This function inside the integrl hs verticl symptotes t x =, nd the integrl bounds contin this

More information

Integration Techniques

Integration Techniques Integrtion Techniques. Integrtion of Trigonometric Functions Exmple. Evlute cos x. Recll tht cos x = cos x. Hence, cos x Exmple. Evlute = ( + cos x) = (x + sin x) + C = x + 4 sin x + C. cos 3 x. Let u

More information

APPLICATIONS OF THE DEFINITE INTEGRAL

APPLICATIONS OF THE DEFINITE INTEGRAL APPLICATIONS OF THE DEFINITE INTEGRAL. Volume: Slicing, disks nd wshers.. Volumes by Slicing. Suppose solid object hs boundries extending from x =, to x = b, nd tht its cross-section in plne pssing through

More information

Space Curves. Recall the parametric equations of a curve in xy-plane and compare them with parametric equations of a curve in space.

Space Curves. Recall the parametric equations of a curve in xy-plane and compare them with parametric equations of a curve in space. Clculus 3 Li Vs Spce Curves Recll the prmetric equtions of curve in xy-plne nd compre them with prmetric equtions of curve in spce. Prmetric curve in plne x = x(t) y = y(t) Prmetric curve in spce x = x(t)

More information

Taylor Polynomial Inequalities

Taylor Polynomial Inequalities Tylor Polynomil Inequlities Ben Glin September 17, 24 Abstrct There re instnces where we my wish to pproximte the vlue of complicted function round given point by constructing simpler function such s polynomil

More information

4181H Problem Set 11 Selected Solutions. Chapter 19. n(log x) n 1 1 x x dx,

4181H Problem Set 11 Selected Solutions. Chapter 19. n(log x) n 1 1 x x dx, 48H Problem Set Selected Solutions Chpter 9 # () Tke f(x) = x n, g (x) = e x, nd use integrtion by prts; this gives reduction formul: x n e x dx = x n e x n x n e x dx. (b) Tke f(x) = (log x) n, g (x)

More information

MA 124 January 18, Derivatives are. Integrals are.

MA 124 January 18, Derivatives are. Integrals are. MA 124 Jnury 18, 2018 Prof PB s one-minute introduction to clculus Derivtives re. Integrls re. In Clculus 1, we lern limits, derivtives, some pplictions of derivtives, indefinite integrls, definite integrls,

More information

different methods (left endpoint, right endpoint, midpoint, trapezoid, Simpson s).

different methods (left endpoint, right endpoint, midpoint, trapezoid, Simpson s). Mth 1A with Professor Stnkov Worksheet, Discussion #41; Wednesdy, 12/6/217 GSI nme: Roy Zho Problems 1. Write the integrl 3 dx s limit of Riemnn sums. Write it using 2 intervls using the 1 x different

More information

The Regulated and Riemann Integrals

The Regulated and Riemann Integrals Chpter 1 The Regulted nd Riemnn Integrls 1.1 Introduction We will consider severl different pproches to defining the definite integrl f(x) dx of function f(x). These definitions will ll ssign the sme vlue

More information

8 Laplace s Method and Local Limit Theorems

8 Laplace s Method and Local Limit Theorems 8 Lplce s Method nd Locl Limit Theorems 8. Fourier Anlysis in Higher DImensions Most of the theorems of Fourier nlysis tht we hve proved hve nturl generliztions to higher dimensions, nd these cn be proved

More information

Calculus II: Integrations and Series

Calculus II: Integrations and Series Clculus II: Integrtions nd Series August 7, 200 Integrls Suppose we hve generl function y = f(x) For simplicity, let f(x) > 0 nd f(x) continuous Denote F (x) = re under the grph of f in the intervl [,x]

More information

Final Exam Review. [Top Bottom]dx =

Final Exam Review. [Top Bottom]dx = Finl Exm Review Are Between Curves See 7.1 exmples 1, 2, 4, 5 nd exerises 1-33 (odd) The re of the region bounded by the urves y = f(x), y = g(x), nd the lines x = nd x = b, where f nd g re ontinuous nd

More information

Test , 8.2, 8.4 (density only), 8.5 (work only), 9.1, 9.2 and 9.3 related test 1 material and material from prior classes

Test , 8.2, 8.4 (density only), 8.5 (work only), 9.1, 9.2 and 9.3 related test 1 material and material from prior classes Test 2 8., 8.2, 8.4 (density only), 8.5 (work only), 9., 9.2 nd 9.3 relted test mteril nd mteril from prior clsses Locl to Globl Perspectives Anlyze smll pieces to understnd the big picture. Exmples: numericl

More information