Delay-and-Sum Beamforming for Plane Waves

Size: px
Start display at page:

Download "Delay-and-Sum Beamforming for Plane Waves"

Transcription

1 Delay-and-Sum Beamforming for Plane Waves ECE 6279: Spatial Array Processing Spring 2011 Lecture 6 Prof. Aaron D. Lanterman School of Electrical & Computer Engineering Georgia Institute of Technology AL: <lanterma@ece.gatech.edu>

2 Where We Are in J&D Lecture material drawn from: Secs. 4.1, 4.1.2, (up to but not including Point Focusing part on p. 123), Next lecture: Secs , 4.1.3, ( Point Focusing part on p. 123)

3 Integrating Across Apertures Here s one way aperture smoothing functions show up Typically integrate across the aperture z(t) = w( x ) f ( x,t) d x Input a monochromatic plane wave to the system f ( x,t) = exp{ j(ω 0 t k 0 x )} z(t) = exp( jω 0 t) w( x )exp( jk 0 x ) W ( k 0 ) d x

4 Delay-and-Sum Beamforming x 0 x Array of M sensors at positions For convenience, put the phase center at the origin m = 0 x m = 0 Delay-and-sum beamforming m = 0 z(t) w m y m (t Δ m )

5 Beamforming for Plane Waves m = 0 m = 0 f ( x,t) = s(t α 0 x ) α 0 = ζ 0 /c y (t) = s(t α 0 x ) m m z(t) = w m y m (t Δ m ) = w m s(t Δ m α 0 x m )

6 z(t) = If we pick When Things Line Up w m m =0 s(t Δ m α 0 x m ) Δ = α 0 x = ζ 0 m m then we get the signal back! z(t) = w m m =0 c m =0 x m s(t) = s(t) w m

7 z(t) = When They Don t w m m =0 s(t Δ m α 0 x m ) More generally, if we pick Δ = α x = ζ m m then we get a degraded version of the signal z(t) = m =0 w m c x m s(t + ( α α 0 ) x m )

8 Strategy for Parameter Estimation m =0 z(t) w m y m (t Δ m ) Δ m = α x m = ζ x m c Find parameter that maximizes energy in z(t) Radar and sonar: If you know c, sweep ζ to find direction of arrival Seismology: If you know ζ, sweep c to find wave speed (determines material properties)

9 Monochromatic Plane Waves (1) f ( x,t) = exp{ jω 0 (t α 0 x )} = s(t α 0 x ) s(t) = exp( jω 0 t) Plane wave delay-and-sum beamformer response z(t) = m =0 w m = w m m =0 where s(t + ( α α 0 ) x m ) exp( jω 0 [t + ( α α 0 ) x m ])

10 = w m m =0 = w m m =0 Monochromatic Plane Waves (2) z(t) = w m m =0 exp( jω 0 [t + ( α α 0 ) x m ]) exp( jω 0 ( α α 0 ) x ) m exp( jω 0 t) Recall k 0 = ω 0 α 0 exp( j(ω 0 α k 0 ) x ) m exp( jω 0 t)

11 Monochromatic Plane Waves (3) z(t) = m =0 w m exp( j(ω 0 α k 0 ) x ) m exp( jω 0 t) = W (ω 0 α k 0 )exp( jω 0 t) where the aperture smoothing function is W ( k ) = w m m =0 exp( j k x m ) Also called the array pattern

12 General Wavefields f ( x,t) = 1 (2π) 4 F( k,ω)exp{ j(ωt k x )}dk dω Delay-and-sum beamformer focused on α z(t) = 1 (2π) 4 F( k,ω)w (ωα k )exp( jωt)dk dω

13 z(t) = 1 (2π) 4 = 1 2π General Plane Waves (1) f ( x,t) = s(t α 0 x ) F( k,ω) = S(ω)(2π) 3 δ( k ω α 0 ) F( k,ω)w (ωα k )exp( jωt)dk dω S(ω)W (ω[ α α 0 ])exp( jωt)dω Z(ω) = S(ω)W (ω[ α α 0 ])

14 If we pick General Plane Waves (2) Z(ω) = S(ω)W (ω[ α α 0 ]) α = α 0 Z(ω) = S(ω)W (0) z(t) = s(t)w (0) we get the original signal back! α α 0 If we pick we get a filtered version

15 Uniform Linear Array (1) From earlier slide, the response of delayand-sum beamformer (tuned to α ) to a monochromatic plane wave is z(t) = W (ω 0 α k 0 )exp( jω 0 t) For a linear uniform array from the last lecture W ( k ) = sin(mk x d /2) sin(k d /2) x W (ω 0 α k 0 ) = sin(m[ω 0 α x k x 0 ]d /2) sin([ω 0 α x k x 0 ]d /2)

16 Using Uniform Linear Array (2) k = ω 0 α x x W (k k 0 ) = sin(m[k x k 0 ]d /2) x x x sin([k k 0 ]d /2) x x In terms of angles, let k x = (2π /λ)sin(φ) W (k x k x 0 ) = sin M π λ [sinφ 0 sinφ]d sin π λ [sinφ 0 sinφ]d

17 Beam Pattern (Boresight) sin(m[k x k x 0 ]d /2) sin([k x k x 0 ]d /2) k x = 0 M =12

18 Beam Pattern (60 ) sin(m[k x k x 0 ]d /2) sin([k x k x 0 ]d /2) k x = (2π /λ)sin(φ) φ = π /3 M =12

19 Beam Pattern (Boresight) sin M π λ [sinφ 0 sinφ]d sin π λ [sinφ 0 sinφ]d φ = 0 M =12

20 Beam Pattern (60 ) sin M π λ [sinφ 0 sinφ]d sin π λ [sinφ 0 sinφ]d φ = π /3 M =12

21 Beampattern: fix If Steered response: fix Terminology α = k /ω = k func(ω 0, k 0 ) = W (ω 0 α k 0 ) If ω 0, k 0 func( α ) = W (ω 0 α k 0 ) ζ /ω, k k = W ω 0 k ω k 0 k = k 0 ζ, ω = ω 0 : func( ζ 0 ) = W (k 0 [ ζ ζ 0 ]) k = k 0 ζ, ω = ω 0 : = W ω 0 k ω k 0 func( ζ ) = W (k 0 [ ζ ζ 0 ])

Wavenumber-Frequency Space

Wavenumber-Frequency Space Wavenumber-Frequency Space ECE 6279: Spatial Array Processing Spring 2011 Lecture 3 Prof. Aaron D. Lanterman School of Electrical & Computer Engineering Georgia Institute of Technology AL: 404-385-2548

More information

Conventional beamforming

Conventional beamforming INF5410 2012. Conventional beamforming p.1 Conventional beamforming Slide 2: Beamforming Sven Peter Näsholm Department of Informatics, University of Oslo Spring semester 2012 svenpn@ifi.uio.no Office telephone

More information

Wavenumber-Frequency Space. Material drawn from Sec. 2.5

Wavenumber-Frequency Space. Material drawn from Sec. 2.5 Where We Are in J&D Wavenumber-Frequency Space ECE 6279: Spatial Array Processing Spring 20 Lecture 3 Material drawn from Sec. 2.5 For now, we will skip Sec. 2.6 on random space-time fields (but we will

More information

Adaptive beamforming. Slide 2: Chapter 7: Adaptive array processing. Slide 3: Delay-and-sum. Slide 4: Delay-and-sum, continued

Adaptive beamforming. Slide 2: Chapter 7: Adaptive array processing. Slide 3: Delay-and-sum. Slide 4: Delay-and-sum, continued INF540 202 Adaptive beamforming p Adaptive beamforming Sven Peter Näsholm Department of Informatics, University of Oslo Spring semester 202 svenpn@ifiuiono Office phone number: +47 22840068 Slide 2: Chapter

More information

EE 4372 Tomography. Carlos E. Davila, Dept. of Electrical Engineering Southern Methodist University

EE 4372 Tomography. Carlos E. Davila, Dept. of Electrical Engineering Southern Methodist University EE 4372 Tomography Carlos E. Davila, Dept. of Electrical Engineering Southern Methodist University EE 4372, SMU Department of Electrical Engineering 86 Tomography: Background 1-D Fourier Transform: F(

More information

Signals & Systems. Lecture 5 Continuous-Time Fourier Transform. Alp Ertürk

Signals & Systems. Lecture 5 Continuous-Time Fourier Transform. Alp Ertürk Signals & Systems Lecture 5 Continuous-Time Fourier Transform Alp Ertürk alp.erturk@kocaeli.edu.tr Fourier Series Representation of Continuous-Time Periodic Signals Synthesis equation: x t = a k e jkω

More information

Propagating Wave (1B)

Propagating Wave (1B) Wave (1B) 3-D Wave Copyright (c) 2011 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later

More information

Overview of Beamforming

Overview of Beamforming Overview of Beamforming Arye Nehorai Preston M. Green Department of Electrical and Systems Engineering Washington University in St. Louis March 14, 2012 CSSIP Lab 1 Outline Introduction Spatial and temporal

More information

Tim Habigt. May 30, 2014

Tim Habigt. May 30, 2014 Slide 1/26 Sound-Source Localization Tim Habigt May 2014 Sound-Source Localization Tim Habigt Lehrstuhl für Datenverarbeitung May 30, 2014 Slide 2/26 Sound-Source Localization Tim Habigt May 2014 Table

More information

Microphone-Array Signal Processing

Microphone-Array Signal Processing Microphone-Array Signal Processing, c Apolinárioi & Campos p. 1/27 Microphone-Array Signal Processing José A. Apolinário Jr. and Marcello L. R. de Campos {apolin},{mcampos}@ieee.org IME Lab. Processamento

More information

Signals and Systems Spring 2004 Lecture #9

Signals and Systems Spring 2004 Lecture #9 Signals and Systems Spring 2004 Lecture #9 (3/4/04). The convolution Property of the CTFT 2. Frequency Response and LTI Systems Revisited 3. Multiplication Property and Parseval s Relation 4. The DT Fourier

More information

Lecture 15: Time and Frequency Joint Perspective

Lecture 15: Time and Frequency Joint Perspective WAVELETS AND MULTIRATE DIGITAL SIGNAL PROCESSING Lecture 15: Time and Frequency Joint Perspective Prof.V.M.Gadre, EE, IIT Bombay Introduction In lecture 14, we studied steps required to design conjugate

More information

Control for. Maarten Steinbuch Dept. Mechanical Engineering Control Systems Technology Group TU/e

Control for. Maarten Steinbuch Dept. Mechanical Engineering Control Systems Technology Group TU/e Control for Maarten Steinbuch Dept. Mechanical Engineering Control Systems Technology Group TU/e Motion Systems m F Introduction Timedomain tuning Frequency domain & stability Filters Feedforward Servo-oriented

More information

Chapter 4 The Fourier Series and Fourier Transform

Chapter 4 The Fourier Series and Fourier Transform Chapter 4 The Fourier Series and Fourier Transform Representation of Signals in Terms of Frequency Components Consider the CT signal defined by N xt () = Acos( ω t+ θ ), t k = 1 k k k The frequencies `present

More information

Chapter 4 The Fourier Series and Fourier Transform

Chapter 4 The Fourier Series and Fourier Transform Chapter 4 The Fourier Series and Fourier Transform Fourier Series Representation of Periodic Signals Let x(t) be a CT periodic signal with period T, i.e., xt ( + T) = xt ( ), t R Example: the rectangular

More information

Circuits and Systems I

Circuits and Systems I Circuits and Systems I LECTURE #2 Phasor Addition lions@epfl Prof. Dr. Volkan Cevher LIONS/Laboratory for Information and Inference Systems License Info for SPFirst Slides This work released under a Creative

More information

Lecture 9 Infinite Impulse Response Filters

Lecture 9 Infinite Impulse Response Filters Lecture 9 Infinite Impulse Response Filters Outline 9 Infinite Impulse Response Filters 9 First-Order Low-Pass Filter 93 IIR Filter Design 5 93 CT Butterworth filter design 5 93 Bilinear transform 7 9

More information

Fourier Series and Fourier Transforms

Fourier Series and Fourier Transforms Fourier Series and Fourier Transforms EECS2 (6.082), MIT Fall 2006 Lectures 2 and 3 Fourier Series From your differential equations course, 18.03, you know Fourier s expression representing a T -periodic

More information

Fourier transform representation of CT aperiodic signals Section 4.1

Fourier transform representation of CT aperiodic signals Section 4.1 Fourier transform representation of CT aperiodic signals Section 4. A large class of aperiodic CT signals can be represented by the CT Fourier transform (CTFT). The (CT) Fourier transform (or spectrum)

More information

ECE 598: The Speech Chain. Lecture 5: Room Acoustics; Filters

ECE 598: The Speech Chain. Lecture 5: Room Acoustics; Filters ECE 598: The Speech Chain Lecture 5: Room Acoustics; Filters Today Room = A Source of Echoes Echo = Delayed, Scaled Copy Addition and Subtraction of Scaled Cosines Frequency Response Impulse Response Filter

More information

Chap 4. Sampling of Continuous-Time Signals

Chap 4. Sampling of Continuous-Time Signals Digital Signal Processing Chap 4. Sampling of Continuous-Time Signals Chang-Su Kim Digital Processing of Continuous-Time Signals Digital processing of a CT signal involves three basic steps 1. Conversion

More information

Beamforming. A brief introduction. Brian D. Jeffs Associate Professor Dept. of Electrical and Computer Engineering Brigham Young University

Beamforming. A brief introduction. Brian D. Jeffs Associate Professor Dept. of Electrical and Computer Engineering Brigham Young University Beamforming A brief introduction Brian D. Jeffs Associate Professor Dept. of Electrical and Computer Engineering Brigham Young University March 2008 References Barry D. Van Veen and Kevin Buckley, Beamforming:

More information

Lecture 13: Discrete Time Fourier Transform (DTFT)

Lecture 13: Discrete Time Fourier Transform (DTFT) Lecture 13: Discrete Time Fourier Transform (DTFT) ECE 401: Signal and Image Analysis University of Illinois 3/9/2017 1 Sampled Systems Review 2 DTFT and Convolution 3 Inverse DTFT 4 Ideal Lowpass Filter

More information

16.362: Signals and Systems: 1.0

16.362: Signals and Systems: 1.0 16.362: Signals and Systems: 1.0 Prof. K. Chandra ECE, UMASS Lowell September 1, 2016 1 Background The pre-requisites for this course are Calculus II and Differential Equations. A basic understanding of

More information

Overview of Bode Plots Transfer function review Piece-wise linear approximations First-order terms Second-order terms (complex poles & zeros)

Overview of Bode Plots Transfer function review Piece-wise linear approximations First-order terms Second-order terms (complex poles & zeros) Overview of Bode Plots Transfer function review Piece-wise linear approximations First-order terms Second-order terms (complex poles & zeros) J. McNames Portland State University ECE 222 Bode Plots Ver.

More information

Review of Discrete-Time System

Review of Discrete-Time System Review of Discrete-Time System Electrical & Computer Engineering University of Maryland, College Park Acknowledgment: ENEE630 slides were based on class notes developed by Profs. K.J. Ray Liu and Min Wu.

More information

The Selection of Weighting Functions For Linear Arrays Using Different Techniques

The Selection of Weighting Functions For Linear Arrays Using Different Techniques The Selection of Weighting Functions For Linear Arrays Using Different Techniques Dr. S. Ravishankar H. V. Kumaraswamy B. D. Satish 17 Apr 2007 Rajarshi Shahu College of Engineering National Conference

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering Dynamics and Control II Fall K(s +1)(s +2) G(s) =.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering Dynamics and Control II Fall K(s +1)(s +2) G(s) =. MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering. Dynamics and Control II Fall 7 Problem Set #7 Solution Posted: Friday, Nov., 7. Nise problem 5 from chapter 8, page 76. Answer:

More information

ECE 301. Division 2, Fall 2006 Instructor: Mimi Boutin Midterm Examination 3

ECE 301. Division 2, Fall 2006 Instructor: Mimi Boutin Midterm Examination 3 ECE 30 Division 2, Fall 2006 Instructor: Mimi Boutin Midterm Examination 3 Instructions:. Wait for the BEGIN signal before opening this booklet. In the meantime, read the instructions below and fill out

More information

Like bilateral Laplace transforms, ROC must be used to determine a unique inverse z-transform.

Like bilateral Laplace transforms, ROC must be used to determine a unique inverse z-transform. Inversion of the z-transform Focus on rational z-transform of z 1. Apply partial fraction expansion. Like bilateral Laplace transforms, ROC must be used to determine a unique inverse z-transform. Let X(z)

More information

6.003: Signals and Systems. Applications of Fourier Transforms

6.003: Signals and Systems. Applications of Fourier Transforms 6.003: Signals and Systems Applications of Fourier Transforms November 7, 20 Filtering Notion of a filter. LTI systems cannot create new frequencies. can only scale magnitudes and shift phases of existing

More information

Lecture 7 ELE 301: Signals and Systems

Lecture 7 ELE 301: Signals and Systems Lecture 7 ELE 30: Signals and Systems Prof. Paul Cuff Princeton University Fall 20-2 Cuff (Lecture 7) ELE 30: Signals and Systems Fall 20-2 / 22 Introduction to Fourier Transforms Fourier transform as

More information

Discrete-time Fourier transform (DTFT) representation of DT aperiodic signals Section The (DT) Fourier transform (or spectrum) of x[n] is

Discrete-time Fourier transform (DTFT) representation of DT aperiodic signals Section The (DT) Fourier transform (or spectrum) of x[n] is Discrete-time Fourier transform (DTFT) representation of DT aperiodic signals Section 5. 3 The (DT) Fourier transform (or spectrum) of x[n] is X ( e jω) = n= x[n]e jωn x[n] can be reconstructed from its

More information

ANALYSIS OF A PURINA FRACTAL BEAMFORMER. P. Karagiannakis 1, and S. Weiss 1

ANALYSIS OF A PURINA FRACTAL BEAMFORMER. P. Karagiannakis 1, and S. Weiss 1 ANALYSIS OF A PURINA FRACTAL BEAMFORMER P Karagiannakis 1, and S Weiss 1 1 Department of Electronics & Electrical Engineering University of Strathclyde, Glasgow G1 1XW, Scotland {philippkaragiannakis,stephanweiss}@strathacuk

More information

Final Exam of ECE301, Prof. Wang s section 1 3pm Tuesday, December 11, 2012, Lily 1105.

Final Exam of ECE301, Prof. Wang s section 1 3pm Tuesday, December 11, 2012, Lily 1105. Final Exam of ECE301, Prof. Wang s section 1 3pm Tuesday, December 11, 2012, Lily 1105. 1. Please make sure that it is your name printed on the exam booklet. Enter your student ID number, e-mail address,

More information

ADAPTIVE ANTENNAS. SPATIAL BF

ADAPTIVE ANTENNAS. SPATIAL BF ADAPTIVE ANTENNAS SPATIAL BF 1 1-Spatial reference BF -Spatial reference beamforming may not use of embedded training sequences. Instead, the directions of arrival (DoA) of the impinging waves are used

More information

Parametric Signal Modeling and Linear Prediction Theory 1. Discrete-time Stochastic Processes (cont d)

Parametric Signal Modeling and Linear Prediction Theory 1. Discrete-time Stochastic Processes (cont d) Parametric Signal Modeling and Linear Prediction Theory 1. Discrete-time Stochastic Processes (cont d) Electrical & Computer Engineering North Carolina State University Acknowledgment: ECE792-41 slides

More information

CMPT 318: Lecture 5 Complex Exponentials, Spectrum Representation

CMPT 318: Lecture 5 Complex Exponentials, Spectrum Representation CMPT 318: Lecture 5 Complex Exponentials, Spectrum Representation Tamara Smyth, tamaras@cs.sfu.ca School of Computing Science, Simon Fraser University January 23, 2006 1 Exponentials The exponential is

More information

Digital Filters Ying Sun

Digital Filters Ying Sun Digital Filters Ying Sun Digital filters Finite impulse response (FIR filter: h[n] has a finite numbers of terms. Infinite impulse response (IIR filter: h[n] has infinite numbers of terms. Causal filter:

More information

26. The Fourier Transform in optics

26. The Fourier Transform in optics 26. The Fourier Transform in optics What is the Fourier Transform? Anharmonic waves The spectrum of a light wave Fourier transform of an exponential The Dirac delta function The Fourier transform of e

More information

Lecture 8: Signal Reconstruction, DT vs CT Processing. 8.1 Reconstruction of a Band-limited Signal from its Samples

Lecture 8: Signal Reconstruction, DT vs CT Processing. 8.1 Reconstruction of a Band-limited Signal from its Samples EE518 Digital Signal Processing University of Washington Autumn 2001 Dept. of Electrical Engineering Lecture 8: Signal Reconstruction, D vs C Processing Oct 24, 2001 Prof: J. Bilmes

More information

Chapter 6 THE SAMPLING PROCESS 6.1 Introduction 6.2 Fourier Transform Revisited

Chapter 6 THE SAMPLING PROCESS 6.1 Introduction 6.2 Fourier Transform Revisited Chapter 6 THE SAMPLING PROCESS 6.1 Introduction 6.2 Fourier Transform Revisited Copyright c 2005 Andreas Antoniou Victoria, BC, Canada Email: aantoniou@ieee.org July 14, 2018 Frame # 1 Slide # 1 A. Antoniou

More information

The Johns Hopkins University Department of Electrical and Computer Engineering Introduction to Linear Systems Fall 2002.

The Johns Hopkins University Department of Electrical and Computer Engineering Introduction to Linear Systems Fall 2002. The Johns Hopkins University Department of Electrical and Computer Engineering 505.460 Introduction to Linear Systems Fall 2002 Final exam Name: You are allowed to use: 1. Table 3.1 (page 206) & Table

More information

Peaking and Shelving Filter Properties

Peaking and Shelving Filter Properties MUS424: Signal Processing Techniques for Digital Audio Effects Handout #22 Jonathan Abel, David Berners May 18, 24 Lecture #14: May 18, 24 Lecture Notes 12 Peaking and Shelving Filter Properties Shelf

More information

ECE 3084 QUIZ 2 SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING GEORGIA INSTITUTE OF TECHNOLOGY APRIL 2, Name:

ECE 3084 QUIZ 2 SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING GEORGIA INSTITUTE OF TECHNOLOGY APRIL 2, Name: ECE 3084 QUIZ 2 SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING GEORGIA INSTITUTE OF TECHNOLOGY APRIL 2, 205 Name:. The quiz is closed book, except for one 2-sided sheet of handwritten notes. 2. Turn off

More information

Digital Control & Digital Filters. Lectures 21 & 22

Digital Control & Digital Filters. Lectures 21 & 22 Digital Controls & Digital Filters Lectures 2 & 22, Professor Department of Electrical and Computer Engineering Colorado State University Spring 205 Review of Analog Filters-Cont. Types of Analog Filters:

More information

Rational Implementation of Distributed Delay Using Extended Bilinear Transformations

Rational Implementation of Distributed Delay Using Extended Bilinear Transformations Rational Implementation of Distributed Delay Using Extended Bilinear Transformations Qing-Chang Zhong zhongqc@ieee.org, http://come.to/zhongqc School of Electronics University of Glamorgan United Kingdom

More information

Digital Beamforming in Ultrasound Imaging

Digital Beamforming in Ultrasound Imaging Digital Beamforming in Ultrasound Imaging Sverre Holm Vingmed Sound AS, Research Department, Vollsveien 3C, N-34 Lysaker, Norway, Department of Informatics, University of Oslo, Norway ABSTRACT In medical

More information

Series FOURIER SERIES. Graham S McDonald. A self-contained Tutorial Module for learning the technique of Fourier series analysis

Series FOURIER SERIES. Graham S McDonald. A self-contained Tutorial Module for learning the technique of Fourier series analysis Series FOURIER SERIES Graham S McDonald A self-contained Tutorial Module for learning the technique of Fourier series analysis Table of contents Begin Tutorial c 24 g.s.mcdonald@salford.ac.uk 1. Theory

More information

EE 313 Linear Systems and Signals The University of Texas at Austin. Solution Set for Homework #1 on Sinusoidal Signals

EE 313 Linear Systems and Signals The University of Texas at Austin. Solution Set for Homework #1 on Sinusoidal Signals Solution Set for Homework #1 on Sinusoidal Signals By Mr. Houshang Salimian and Prof. Brian L. Evans September 7, 2018 1. Prologue: This problem helps you to identify the points of interest in a sinusoidal

More information

Electronic Circuits EE359A

Electronic Circuits EE359A Electronic Circuits EE359A Bruce McNair B26 bmcnair@stevens.edu 21-216-5549 Lecture 22 569 Second order section Ts () = s as + as+ a 2 2 1 ω + s+ ω Q 2 2 ω 1 p, p = ± 1 Q 4 Q 1 2 2 57 Second order section

More information

6.302 Feedback Systems Recitation 27: Final Recitation and Review Prof. Joel L. Dawson

6.302 Feedback Systems Recitation 27: Final Recitation and Review Prof. Joel L. Dawson 6.302 Feedbac Systems We re going to spend some time in this recitation revisiting some of the very early examples of recitation #1. To aid us in this review, the final class exercise involves exploring

More information

Acoustic Source Separation with Microphone Arrays CCNY

Acoustic Source Separation with Microphone Arrays CCNY Acoustic Source Separation with Microphone Arrays Lucas C. Parra Biomedical Engineering Department City College of New York CCNY Craig Fancourt Clay Spence Chris Alvino Montreal Workshop, Nov 6, 2004 Blind

More information

ECE Spring Prof. David R. Jackson ECE Dept. Notes 1

ECE Spring Prof. David R. Jackson ECE Dept. Notes 1 ECE 6341 Spring 16 Prof. David R. Jackson ECE Dept. Notes 1 1 Fields in a Source-Free Region Sources Source-free homogeneous region ( ε, µ ) ( EH, ) Note: For a lossy region, we replace ε ε c ( / ) εc

More information

A system that is both linear and time-invariant is called linear time-invariant (LTI).

A system that is both linear and time-invariant is called linear time-invariant (LTI). The Cooper Union Department of Electrical Engineering ECE111 Signal Processing & Systems Analysis Lecture Notes: Time, Frequency & Transform Domains February 28, 2012 Signals & Systems Signals are mapped

More information

Problem Value

Problem Value GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM DATE: 30-Apr-04 COURSE: ECE-2025 NAME: GT #: LAST, FIRST Recitation Section: Circle the date & time when your Recitation

More information

So far, we considered quantum static, as all our potentials did not depend on time. Therefore, our time dependence was trivial and always the same:

So far, we considered quantum static, as all our potentials did not depend on time. Therefore, our time dependence was trivial and always the same: Lecture 20 Page 1 Lecture #20 L20.P1 Time-dependent perturbation theory So far, we considered quantum static, as all our potentials did not depend on time. Therefore, our time dependence was trivial and

More information

ELEC2400 Signals & Systems

ELEC2400 Signals & Systems ELEC2400 Signals & Systems Chapter 7. Z-Transforms Brett Ninnes brett@newcastle.edu.au. School of Electrical Engineering and Computer Science The University of Newcastle Slides by Juan I. Yu (jiyue@ee.newcastle.edu.au

More information

Complex symmetry Signals and Systems Fall 2015

Complex symmetry Signals and Systems Fall 2015 18-90 Signals and Systems Fall 015 Complex symmetry 1. Complex symmetry This section deals with the complex symmetry property. As an example I will use the DTFT for a aperiodic discrete-time signal. The

More information

Interferometer Circuits. Professor David H. Staelin

Interferometer Circuits. Professor David H. Staelin Interferometer Circuits Professor David H. Staelin Massachusetts Institute of Technology Lec18.5-1 Basic Aperture Synthesis Equation Recall: E( ) E r,t,t E E λ = λ { } Ι ( Ψ ) E R E τ φ τ Ψ,t,T E A Ψ 2

More information

d 2 2 A = [A, d 2 A = 1 2 [[A, H ], dt 2 Visualizing IVR. [Chem. Phys. Lett. 320, 553 (2000)] 5.74 RWF Lecture #

d 2 2 A = [A, d 2 A = 1 2 [[A, H ], dt 2 Visualizing IVR. [Chem. Phys. Lett. 320, 553 (2000)] 5.74 RWF Lecture # MIT Department of Chemistry 5.74, Spring 004: Introductory Quantum Mechanics II Instructor: Prof. Robert Field 5.74 RWF Lecture #15 15 1 Visualizing IVR. [Chem. Phys. Lett. 30, 553 (000)] Readings: Chapter

More information

Massachusetts Institute of Technology

Massachusetts Institute of Technology Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.011: Introduction to Communication, Control and Signal Processing QUIZ 1, March 16, 2010 ANSWER BOOKLET

More information

X. Chen More on Sampling

X. Chen More on Sampling X. Chen More on Sampling 9 More on Sampling 9.1 Notations denotes the sampling time in second. Ω s = 2π/ and Ω s /2 are, respectively, the sampling frequency and Nyquist frequency in rad/sec. Ω and ω denote,

More information

ECE 301. Division 3, Fall 2007 Instructor: Mimi Boutin Midterm Examination 3

ECE 301. Division 3, Fall 2007 Instructor: Mimi Boutin Midterm Examination 3 ECE 30 Division 3, all 2007 Instructor: Mimi Boutin Midterm Examination 3 Instructions:. Wait for the BEGIN signal before opening this booklet. In the meantime, read the instructions below and fill out

More information

Homework 6 EE235, Spring 2011

Homework 6 EE235, Spring 2011 Homework 6 EE235, Spring 211 1. Fourier Series. Determine w and the non-zero Fourier series coefficients for the following functions: (a 2 cos(3πt + sin(1πt + π 3 w π e j3πt + e j3πt + 1 j2 [ej(1πt+ π

More information

Plane Wave Medical Ultrasound Imaging Using Adaptive Beamforming

Plane Wave Medical Ultrasound Imaging Using Adaptive Beamforming Downloaded from orbit.dtu.dk on: Jul 14, 2018 Plane Wave Medical Ultrasound Imaging Using Adaptive Beamforming Voxen, Iben Holfort; Gran, Fredrik; Jensen, Jørgen Arendt Published in: Proceedings of 5th

More information

Spatial Array Processing

Spatial Array Processing Spatial Array Processing Signal and Image Processing Seminar Murat Torlak Telecommunications & Information Sys Eng The University of Texas at Austin, Introduction A sensor array is a group of sensors located

More information

Homework 2. Spring 2019 (Due Thursday February 7)

Homework 2. Spring 2019 (Due Thursday February 7) ECE 302: Probabilistic Methods in Electrical and Computer Engineering Spring 2019 Instructor: Prof. A. R. Reibman Homework 2 Spring 2019 (Due Thursday February 7) Homework is due on Thursday February 7

More information

Table 1: Properties of the Continuous-Time Fourier Series. Property Periodic Signal Fourier Series Coefficients

Table 1: Properties of the Continuous-Time Fourier Series. Property Periodic Signal Fourier Series Coefficients able : Properties of the Continuous-ime Fourier Series x(t = e jkω0t = = x(te jkω0t dt = e jk(/t x(te jk(/t dt Property Periodic Signal Fourier Series Coefficients x(t y(t } Periodic with period and fundamental

More information

Step Response Analysis. Frequency Response, Relation Between Model Descriptions

Step Response Analysis. Frequency Response, Relation Between Model Descriptions Step Response Analysis. Frequency Response, Relation Between Model Descriptions Automatic Control, Basic Course, Lecture 3 November 9, 27 Lund University, Department of Automatic Control Content. Step

More information

INF5410 Array signal processing. Ch. 3: Apertures and Arrays

INF5410 Array signal processing. Ch. 3: Apertures and Arrays INF5410 Array signal processing. Ch. 3: Apertures and Arrays Endrias G. Asgedom Department of Informatics, University of Oslo February 2012 Outline Finite Continuous Apetrures Apertures and Arrays Aperture

More information

Modeling and Experimentation: Mass-Spring-Damper System Dynamics

Modeling and Experimentation: Mass-Spring-Damper System Dynamics Modeling and Experimentation: Mass-Spring-Damper System Dynamics Prof. R.G. Longoria Department of Mechanical Engineering The University of Texas at Austin July 20, 2014 Overview 1 This lab is meant to

More information

4 Classical Coherence Theory

4 Classical Coherence Theory This chapter is based largely on Wolf, Introduction to the theory of coherence and polarization of light [? ]. Until now, we have not been concerned with the nature of the light field itself. Instead,

More information

Speaker Tracking and Beamforming

Speaker Tracking and Beamforming Speaker Tracking and Beamforming Dr. John McDonough Spoken Language Systems Saarland University January 13, 2010 Introduction Many problems in science and engineering can be formulated in terms of estimating

More information

Lecture 8: Signal Detection and Noise Assumption

Lecture 8: Signal Detection and Noise Assumption ECE 830 Fall 0 Statistical Signal Processing instructor: R. Nowak Lecture 8: Signal Detection and Noise Assumption Signal Detection : X = W H : X = S + W where W N(0, σ I n n and S = [s, s,..., s n ] T

More information

Microphone-Array Signal Processing

Microphone-Array Signal Processing Microphone-Array Signal Processing, c Apolinárioi & Campos p. 1/115 Microphone-Array Signal Processing José A. Apolinário Jr. and Marcello L. R. de Campos {apolin},{mcampos}@ieee.org IME Lab. Processamento

More information

Response to a pure sinusoid

Response to a pure sinusoid Harvard University Division of Engineering and Applied Sciences ES 145/215 - INTRODUCTION TO SYSTEMS ANALYSIS WITH PHYSIOLOGICAL APPLICATIONS Fall Lecture 14: The Bode Plot Response to a pure sinusoid

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering Dynamics and Control II Fall 2007

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering Dynamics and Control II Fall 2007 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering.4 Dynamics and Control II Fall 7 Problem Set #9 Solution Posted: Sunday, Dec., 7. The.4 Tower system. The system parameters are

More information

Seminar 6: COUPLED HARMONIC OSCILLATORS

Seminar 6: COUPLED HARMONIC OSCILLATORS Seminar 6: COUPLED HARMONIC OSCILLATORS 1. Lagrangian Equations of Motion Let consider a system consisting of two harmonic oscillators that are coupled together. As a model, we will use two particles attached

More information

EE 3054: Signals, Systems, and Transforms Summer It is observed of some continuous-time LTI system that the input signal.

EE 3054: Signals, Systems, and Transforms Summer It is observed of some continuous-time LTI system that the input signal. EE 34: Signals, Systems, and Transforms Summer 7 Test No notes, closed book. Show your work. Simplify your answers. 3. It is observed of some continuous-time LTI system that the input signal = 3 u(t) produces

More information

ECE295, Data Assimilation and Inverse Problems, Spring 2015

ECE295, Data Assimilation and Inverse Problems, Spring 2015 ECE295, Data Assimilation and Inverse Problems, Spring 2015 1 April, Intro; Linear discrete Inverse problems (Aster Ch 1 and 2) Slides 8 April, SVD (Aster ch 2 and 3) Slides 15 April, Regularization (ch

More information

arxiv: v1 [cs.it] 6 Nov 2016

arxiv: v1 [cs.it] 6 Nov 2016 UNIT CIRCLE MVDR BEAMFORMER Saurav R. Tuladhar, John R. Buck University of Massachusetts Dartmouth Electrical and Computer Engineering Department North Dartmouth, Massachusetts, USA arxiv:6.272v [cs.it]

More information

2.161 Signal Processing: Continuous and Discrete Fall 2008

2.161 Signal Processing: Continuous and Discrete Fall 2008 IT OpenCourseWare http://ocw.mit.edu 2.161 Signal Processing: Continuous and Discrete all 2008 or information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. assachusetts

More information

Modal Beamforming for Small Circular Arrays of Particle Velocity Sensors

Modal Beamforming for Small Circular Arrays of Particle Velocity Sensors Modal Beamforming for Small Circular Arrays of Particle Velocity Sensors Berke Gur Department of Mechatronics Engineering Bahcesehir University Istanbul, Turkey 34349 Email: berke.gur@eng.bau.edu.tr Abstract

More information

Reliable Data Transport: Sliding Windows

Reliable Data Transport: Sliding Windows Reliable Data Transport: Sliding Windows 6.02 Fall 2013 Lecture 23 Exclusive! A Brief History of the Internet guest lecture by Prof. Hari Balakrishnan Wenesday December 4, 2013, usual 6.02 lecture time

More information

1.1.3 The narrowband Uniform Linear Array (ULA) with d = λ/2:

1.1.3 The narrowband Uniform Linear Array (ULA) with d = λ/2: Seminar 1: Signal Processing Antennas 4ED024, Sven Nordebo 1.1.3 The narrowband Uniform Linear Array (ULA) with d = λ/2: d Array response vector: a() = e e 1 jπ sin. j(π sin )(M 1) = 1 e jω. e jω(m 1)

More information

6.003: Signals and Systems. CT Fourier Transform

6.003: Signals and Systems. CT Fourier Transform 6.003: Signals and Systems CT Fourier Transform April 8, 200 CT Fourier Transform Representing signals by their frequency content. X(jω)= x(t)e jωt dt ( analysis equation) x(t)= 2π X(jω)e jωt dω ( synthesis

More information

Lecture 15: H Control Synthesis

Lecture 15: H Control Synthesis c A. Shiriaev/L. Freidovich. March 12, 2010. Optimal Control for Linear Systems: Lecture 15 p. 1/14 Lecture 15: H Control Synthesis Example c A. Shiriaev/L. Freidovich. March 12, 2010. Optimal Control

More information

Physics 2D Lecture Slides Week of May 11,2009. Sunil Sinha UCSD Physics

Physics 2D Lecture Slides Week of May 11,2009. Sunil Sinha UCSD Physics Physics 2D Lecture Slides Week of May 11,2009 Sunil Sinha UCSD Physics Recap!! Wave Packet : Localization Finite # of diff. Monochromatic waves always produce INFINTE sequence of repeating wave groups

More information

221B Lecture Notes on Resonances in Classical Mechanics

221B Lecture Notes on Resonances in Classical Mechanics 1B Lecture Notes on Resonances in Classical Mechanics 1 Harmonic Oscillators Harmonic oscillators appear in many different contexts in classical mechanics. Examples include: spring, pendulum (with a small

More information

Lecture 8 Finite Impulse Response Filters

Lecture 8 Finite Impulse Response Filters Lecture 8 Finite Impulse Response Filters Outline 8. Finite Impulse Response Filters.......................... 8. oving Average Filter............................... 8.. Phase response...............................

More information

Homework 3 Solutions

Homework 3 Solutions EECS Signals & Systems University of California, Berkeley: Fall 7 Ramchandran September, 7 Homework 3 Solutions (Send your grades to ee.gsi@gmail.com. Check the course website for details) Review Problem

More information

ECE 240a - Notes on Spontaneous Emission within a Cavity

ECE 240a - Notes on Spontaneous Emission within a Cavity ECE 0a - Notes on Spontaneous Emission within a Cavity Introduction Many treatments of lasers treat the rate of spontaneous emission as specified by the time constant τ sp as a constant that is independent

More information

7. Find the Fourier transform of f (t)=2 cos(2π t)[u (t) u(t 1)]. 8. (a) Show that a periodic signal with exponential Fourier series f (t)= δ (ω nω 0

7. Find the Fourier transform of f (t)=2 cos(2π t)[u (t) u(t 1)]. 8. (a) Show that a periodic signal with exponential Fourier series f (t)= δ (ω nω 0 Fourier Transform Problems 1. Find the Fourier transform of the following signals: a) f 1 (t )=e 3 t sin(10 t)u (t) b) f 1 (t )=e 4 t cos(10 t)u (t) 2. Find the Fourier transform of the following signals:

More information

High Voltage DC Transmission Prof. Dr. S.N. Singh Department of Electrical Engineering Indian Institute of Technology, Kanpur

High Voltage DC Transmission Prof. Dr. S.N. Singh Department of Electrical Engineering Indian Institute of Technology, Kanpur High Voltage DC Transmission Prof. Dr. S.N. Singh Department of Electrical Engineering Indian Institute of Technology, Kanpur Module No. # 02 Lecture No. # 09 Analysis of Converter Circuit So, let us,

More information

ME 563 HOMEWORK # 7 SOLUTIONS Fall 2010

ME 563 HOMEWORK # 7 SOLUTIONS Fall 2010 ME 563 HOMEWORK # 7 SOLUTIONS Fall 2010 PROBLEM 1: Given the mass matrix and two undamped natural frequencies for a general two degree-of-freedom system with a symmetric stiffness matrix, find the stiffness

More information

Introduction to Seismology

Introduction to Seismology 1.510 Introduction to Seismology Lecture 5 Feb., 005 1 Introduction At previous lectures, we derived the equation of motion (λ + µ) ( u(x, t)) µ ( u(x, t)) = ρ u(x, t) (1) t This equation of motion can

More information

If you need more room, use the backs of the pages and indicate that you have done so.

If you need more room, use the backs of the pages and indicate that you have done so. EE 343 Exam II Ahmad F. Taha Spring 206 Your Name: Your Signature: Exam duration: hour and 30 minutes. This exam is closed book, closed notes, closed laptops, closed phones, closed tablets, closed pretty

More information

4. Complex Oscillations

4. Complex Oscillations 4. Complex Oscillations The most common use of complex numbers in physics is for analyzing oscillations and waves. We will illustrate this with a simple but crucially important model, the damped harmonic

More information

ECE 301 Division 1, Fall 2008 Instructor: Mimi Boutin Final Examination Instructions:

ECE 301 Division 1, Fall 2008 Instructor: Mimi Boutin Final Examination Instructions: ECE 30 Division, all 2008 Instructor: Mimi Boutin inal Examination Instructions:. Wait for the BEGIN signal before opening this booklet. In the meantime, read the instructions below and fill out the requested

More information