ECE Spring Prof. David R. Jackson ECE Dept. Notes 1

Size: px
Start display at page:

Download "ECE Spring Prof. David R. Jackson ECE Dept. Notes 1"

Transcription

1 ECE 6341 Spring 16 Prof. David R. Jackson ECE Dept. Notes 1 1

2 Fields in a Source-Free Region Sources Source-free homogeneous region ( ε, µ ) ( EH, ) Note: For a lossy region, we replace ε ε c ( / ) εc ε j σ ω ε c jε c ε c εε rc εε ( 1 j tanδ) ( 1 j tanδ) rc E jωµ H H jωε E E H

3 Fields in a Source-Free Region (cont.) (a) (b) E H H 1 µ A E 1 ε F Ampere s law: Faraday s law: E 1 1 jωε µ A H 1 1 jωµ ε F The field can be represented using either A or F 3

4 Fields in a Source-Free Region (cont.) Case (a) Assume we use A: 1 H A µ E jωµ H E jω A ( ) ( E jω A) + E+ jω A Φ Hence E Φ jω A This is the mixed potential form for the electric field. 4

5 Fields in a Source-Free Region (cont.) Next, use H jωε E 1 A jωε Φ jω A µ ( ) ( ) ( ) ( ) A k A j ωεµ Φ A A k A j ωεµ Φ Recall : A ( A) ( A) 5

6 Fields in a Source-Free Region (cont.) ( ) A A k A jωεµ Φ Choose A jωεµ Φ (Loren Gauge) Then A+ k A This is the vector Helmholt equation for the magnetic vector potential. 6

7 Fields in a Source-Free Region (cont.) Case (b) Assume we use F: 1 E F ε H Invoking duality: Ψ jω F Ψmagnetic scalar potential Choose F jωεµ Ψ We then have: F + k F 7

8 Fields in a Source-Free Region (cont.) To be even more general, let a E E + E a H H + H f f where (E a, H a ) and (E f, H f ) each satisfy Maxwell s equations. (This is an arbitrary partition.) The representation is not unique, since there are many ways to split the field. For example, we could use E E a f.1e.9e 8

9 Fields in a Source-Free Region (cont.) We construct the vector potentials so that A ( E, H ) F ( E, H ) a f a f We then have 1 1 E ( A) F jωµε ε 1 1 H A+ F µ jωµε ( ) 9

10 Fields in a Source-Free Region (cont.) Depending on the type of source (outside the source-free region) that is producing the field within the source-free region, it may be more convenient to represent the field using only A or only F. EXAMPLES Electric dipole: choose only A (A is in the same direction as J) Magnetic dipole: choose only F (F is in the same direction as M) This solution was discussed in ECE 634. In principle, one could represent the field of the electric dipole using the F vector potential, but it would be much more difficult than with the A vector potential! 1

11 TE /TM Theorem In a source-free homogeneous region, we can always represent the field using the following form: A F A ˆ ( x, y, ) F ˆ ( x, y, ) ẑ is an arbitrary fixed direction (called here the pilot vector direction). (A proof of this theorem is given later.) This theorem gives us a systematic way to represent the fields in a source-free region, involving only two scalar field components. 11

12 TE /TM Theorem (cont.) Note: A simpler solution often results if we choose the best direction for the pilot vector. EXAMPLE An infinitesimal unit-amplitude electric dipole pointing in the direction: A A ˆ ( x, y, ) The solution is A( xy,, ) e µ 4 π jkr r We only need A and not F. If we had picked the pilot vector direction to be something different, such as x, we would need BOTH A x and F x. 1

13 TE /TM Theorem (cont.) Consider, for example, H a TE / TM property of Fields 1 µ ( A ˆ ) A F 1 a ( A ˆ ˆ A) H µ A ˆ ( x, y, ) F ˆ ( x, y, ) a Hence, H Similarly, E f (A TM ) (F TE ) 13

14 TE /TM Theorem (cont.) The fields are found as follows: ψ A E 1 + jωµε k ψ H x 1 ψ µ y E x 1 ψ jωµε x H y 1 ψ µ x E y 1 ψ jωµε y H Note: There is a factor µ difference with the Harrington text. 14

15 TE /TM Theorem (cont.) ψ F H 1 + jωµε k ψ E x 1 ψ ε y H x 1 ψ jωµε x E y 1 ψ ε x H y 1 ψ jωµε y E Note: There is a factor ε difference with the Harrington text. 15

16 TE /TM Theorem (cont.) From the vector Helmholt equation we have: A+ k A Taking the component gives: ( ) ( ) ˆ A + ˆ k A or Similarly, A + k A F+ kf Hence, any EM problem in a source-free region reduces to solving the scalar Helmholt equation: ψ + k ψ 16

17 Summary of TE /TM Result Source-free homogeneous region Sources ( ε, µ ) ( EH, ) A F Arbitrary pilot direction A F A ˆ ( x, y, ) F ˆ ( x, y, ) ψ + k ψ ψ A or F 17

18 Proof of TE /TM Theorem ( ε, µ ) ( EH, ) S ˆn Source-free region Apply equivalence principle: Keep original material and fields inside S. Put ero fields outside S. Put (ε, µ) outside S. 18

19 Proof of TE /TM Theorem ( ε, µ ) ( EH, ) S e J s ( ε, µ ) ˆn e M s Infinite homogenous space e s e s ( ˆ) ( ˆ) J n H ( ) M n E 19

20 Proof of TE /TM Theorem (cont.) Consider the component of the currents: J M e e A F (from 634) Also, from a horiontal dipole source, we can show that: e xy, + J A F e xy, + M A F This will be established later in the class notes and the homework by solving the problem of a horiontal (x or y directed) dipole source using A and F. Hence, the fields in the source-free region due to all of the equivalent currents may be represented with A and F.

21 Non-Uniqueness of Potentials A and F are not unique. To illustrate, consider: A F ce 1 jk, k ω µε TM field ( ) 1 + jωµε E k A E E x y 1 A jωµε x 1 A jωµε y This set of potentials produces a null field! 1 H E jωµ Hence, adding this set of potentials to a solution does not change the fields. 1

ECE 107: Electromagnetism

ECE 107: Electromagnetism ECE 107: Electromagnetism Set 7: Dynamic fields Instructor: Prof. Vitaliy Lomakin Department of Electrical and Computer Engineering University of California, San Diego, CA 92093 1 Maxwell s equations Maxwell

More information

1 Electromagnetic concepts useful for radar applications

1 Electromagnetic concepts useful for radar applications Electromagnetic concepts useful for radar applications The scattering of electromagnetic waves by precipitation particles and their propagation through precipitation media are of fundamental importance

More information

ECE 6340 Intermediate EM Waves. Fall Prof. David R. Jackson Dept. of ECE. Notes 7

ECE 6340 Intermediate EM Waves. Fall Prof. David R. Jackson Dept. of ECE. Notes 7 ECE 634 Intermediate EM Waves Fall 16 Prof. David R. Jackson Dept. of ECE Notes 7 1 TEM Transmission Line conductors 4 parameters C capacitance/length [F/m] L inductance/length [H/m] R resistance/length

More information

Antennas and Propagation. Chapter 2: Basic Electromagnetic Analysis

Antennas and Propagation. Chapter 2: Basic Electromagnetic Analysis Antennas and Propagation : Basic Electromagnetic Analysis Outline Vector Potentials, Wave Equation Far-field Radiation Duality/Reciprocity Transmission Lines Antennas and Propagation Slide 2 Antenna Theory

More information

ECE Spring Prof. David R. Jackson ECE Dept. Notes 15

ECE Spring Prof. David R. Jackson ECE Dept. Notes 15 ECE 6341 Spring 216 Prof. David R. Jackson ECE Dept. Notes 15 1 Arbitrary Line Current TM : A (, ) Introduce Fourier Transform: I I + ( k ) jk = I e d x y 1 I = I ( k ) jk e dk 2π 2 Arbitrary Line Current

More information

ECE 6340 Intermediate EM Waves. Fall 2016 Prof. David R. Jackson Dept. of ECE. Notes 15

ECE 6340 Intermediate EM Waves. Fall 2016 Prof. David R. Jackson Dept. of ECE. Notes 15 ECE 634 Intermediate EM Waves Fall 6 Prof. David R. Jackson Dept. of ECE Notes 5 Attenuation Formula Waveguiding system (WG or TL): S z Waveguiding system Exyz (,, ) = E( xye, ) = E( xye, ) e γz jβz αz

More information

Notes 24 Image Theory

Notes 24 Image Theory ECE 3318 Applied Electricity and Magnetism Spring 218 Prof. David R. Jackson Dept. of ECE Notes 24 Image Teory 1 Uniqueness Teorem S ρ v ( yz),, ( given) Given: Φ=ΦB 2 ρv Φ= ε Φ=Φ B on boundary Inside

More information

Electromagnetic Waves For fast-varying phenomena, the displacement current cannot be neglected, and the full set of Maxwell s equations must be used

Electromagnetic Waves For fast-varying phenomena, the displacement current cannot be neglected, and the full set of Maxwell s equations must be used Electromagnetic Waves For fast-varying phenomena, the displacement current cannot be neglected, and the full set of Maxwell s equations must be used B( t) E = dt D t H = J+ t D =ρ B = 0 D=εE B=µ H () F

More information

ELE 3310 Tutorial 10. Maxwell s Equations & Plane Waves

ELE 3310 Tutorial 10. Maxwell s Equations & Plane Waves ELE 3310 Tutorial 10 Mawell s Equations & Plane Waves Mawell s Equations Differential Form Integral Form Faraday s law Ampere s law Gauss s law No isolated magnetic charge E H D B B D J + ρ 0 C C E r dl

More information

ECE Spring Prof. David R. Jackson ECE Dept. Notes 16

ECE Spring Prof. David R. Jackson ECE Dept. Notes 16 ECE 6345 Spring 5 Prof. David R. Jackson ECE Dept. Notes 6 Overview In this set of notes we calculate the power radiated into space by the circular patch. This will lead to Q sp of the circular patch.

More information

Uniform Plane Waves Page 1. Uniform Plane Waves. 1 The Helmholtz Wave Equation

Uniform Plane Waves Page 1. Uniform Plane Waves. 1 The Helmholtz Wave Equation Uniform Plane Waves Page 1 Uniform Plane Waves 1 The Helmholtz Wave Equation Let s rewrite Maxwell s equations in terms of E and H exclusively. Let s assume the medium is lossless (σ = 0). Let s also assume

More information

ECE Spring Prof. David R. Jackson ECE Dept. Notes 9

ECE Spring Prof. David R. Jackson ECE Dept. Notes 9 ECE 6341 Spring 2016 Prof. David R. Jackson ECE Dept. Notes 9 1 Circular Waveguide The waveguide is homogeneously filled, so we have independent TE and TM modes. a ε r A TM mode: ψ ρφ,, ( ) Jυ( kρρ) sin(

More information

ECE 6340 Intermediate EM Waves. Fall Prof. David R. Jackson Dept. of ECE. Notes 17

ECE 6340 Intermediate EM Waves. Fall Prof. David R. Jackson Dept. of ECE. Notes 17 ECE 634 Intermediate EM Waves Fall 16 Prof. David R. Jacson Dept. of ECE Notes 17 1 General Plane Waves General form of plane wave: E( xz,, ) = Eψ ( xz,, ) where ψ ( xz,, ) = e j( xx+ + zz) The wavenumber

More information

Notes 3 Review of Vector Calculus

Notes 3 Review of Vector Calculus ECE 3317 Applied Electromagnetic Waves Prof. David R. Jackson Fall 2018 A ˆ Notes 3 Review of Vector Calculus y ya ˆ y x xa V = x y ˆ x Adapted from notes by Prof. Stuart A. Long 1 Overview Here we present

More information

ECE 6340 Intermediate EM Waves. Fall Prof. David R. Jackson Dept. of ECE. Notes 1

ECE 6340 Intermediate EM Waves. Fall Prof. David R. Jackson Dept. of ECE. Notes 1 EE 6340 Intermediate EM Waves Fall 2016 Prof. David R. Jackson Dept. of EE Notes 1 1 Maxwell s Equations E D rt 2, V/m, rt, Wb/m T ( ) [ ] ( ) ( ) 2 rt, /m, H ( rt, ) [ A/m] B E = t (Faraday's Law) D H

More information

ECE 6340 Intermediate EM Waves. Fall Prof. David R. Jackson Dept. of ECE. Notes 3

ECE 6340 Intermediate EM Waves. Fall Prof. David R. Jackson Dept. of ECE. Notes 3 C 634 Intermedate M Waves Fall 216 Prof. Davd R. akson Dept. of C Notes 3 1 Types of Current ρ v Note: The free-harge densty ρ v refers to those harge arrers (ether postve or negatve) that are free to

More information

Notes 19 Gradient and Laplacian

Notes 19 Gradient and Laplacian ECE 3318 Applied Electricity and Magnetism Spring 218 Prof. David R. Jackson Dept. of ECE Notes 19 Gradient and Laplacian 1 Gradient Φ ( x, y, z) =scalar function Φ Φ Φ grad Φ xˆ + yˆ + zˆ x y z We can

More information

Notes 18 Faraday s Law

Notes 18 Faraday s Law EE 3318 Applied Electricity and Magnetism Spring 2018 Prof. David R. Jackson Dept. of EE Notes 18 Faraday s Law 1 Example (cont.) Find curl of E from a static point charge q y E q = rˆ 2 4πε0r x ( E sinθ

More information

ECE Spring Prof. David R. Jackson ECE Dept.

ECE Spring Prof. David R. Jackson ECE Dept. ECE 634 Spring 26 Prof. David R. Jacson ECE Dept. Notes Notes 42 43 Sommerfeld Problem In this set of notes we use SDI theory to solve the classical "Sommerfeld problem" of a vertical dipole over an semi-infinite

More information

ECE Spring Prof. David R. Jackson ECE Dept. Notes 26

ECE Spring Prof. David R. Jackson ECE Dept. Notes 26 ECE 6345 Spring 05 Prof. David R. Jackson ECE Dept. Notes 6 Overview In this set of notes we use the spectral-domain method to find the mutual impedance between two rectangular patch ennas. z Geometry

More information

ECE Spring Prof. David R. Jackson ECE Dept.

ECE Spring Prof. David R. Jackson ECE Dept. ECE 6341 Sprng 016 Prof. Da R. Jackon ECE Dept. Note Note 4 44 1 Oerew n th et of note we ere the SD formlaton ng a more mathematcal, bt more general, approach (we rectly Forer tranform Maxwell eqaton).

More information

EECS 117. Lecture 25: Field Theory of T-Lines and Waveguides. Prof. Niknejad. University of California, Berkeley

EECS 117. Lecture 25: Field Theory of T-Lines and Waveguides. Prof. Niknejad. University of California, Berkeley EECS 117 Lecture 25: Field Theory of T-Lines and Waveguides Prof. Niknejad University of California, Berkeley University of California, Berkeley EECS 117 Lecture 25 p. 1/2 Waveguides and Transmission Lines

More information

ECE Spring Prof. David R. Jackson ECE Dept. Notes 7

ECE Spring Prof. David R. Jackson ECE Dept. Notes 7 ECE 6341 Spring 216 Prof. David R. Jackson ECE Dept. Notes 7 1 Two-ayer Stripline Structure h 2 h 1 ε, µ r2 r2 ε, µ r1 r1 Goal: Derive a transcendental equation for the wavenumber k of the TM modes of

More information

ECE 6340 Intermediate EM Waves. Fall 2016 Prof. David R. Jackson Dept. of ECE. Notes 18

ECE 6340 Intermediate EM Waves. Fall 2016 Prof. David R. Jackson Dept. of ECE. Notes 18 C 6340 Intermediate M Waves Fall 206 Prof. David R. Jacson Dept. of C Notes 8 T - Plane Waves φˆ θˆ T φˆ θˆ A homogeneous plane wave is shown for simplicit (but the principle is general). 2 Arbitrar Polariation:

More information

Reflection/Refraction

Reflection/Refraction Reflection/Refraction Page Reflection/Refraction Boundary Conditions Interfaces between different media imposed special boundary conditions on Maxwell s equations. It is important to understand what restrictions

More information

EEL 4473 Spectral Domain Techniques and Diffraction Theory. Spectral Domain Techniques and Diffraction Theory - 2-D Fields 1

EEL 4473 Spectral Domain Techniques and Diffraction Theory. Spectral Domain Techniques and Diffraction Theory - 2-D Fields 1 EEL 4473 Spectral Domain Techniques and Diffraction Theory Spectral Domain Techniques and Diffraction Theory - 2-D Fields 1 References: 1. *R.H. Clark and J. Brown, Diffraction Theory and Antennas, Wiley,

More information

Field and Wave Electromagnetic

Field and Wave Electromagnetic Field and Wave Electromagnetic Chapter7 The time varying fields and Maxwell s equation Introduction () Time static fields ) Electrostatic E =, id= ρ, D= εe ) Magnetostatic ib=, H = J, H = B μ note) E and

More information

ECE 6340 Intermediate EM Waves. Fall Prof. David R. Jackson Dept. of ECE. Notes 6

ECE 6340 Intermediate EM Waves. Fall Prof. David R. Jackson Dept. of ECE. Notes 6 ECE 6340 Intermediate EM Waves Fall 016 Prof. David R. Jackson Dept. of ECE Notes 6 1 Power Dissipated by Current Work given to a collection of electric charges movg an electric field: ( qe ) ( ρ S E )

More information

ECE Spring Prof. David R. Jackson ECE Dept. Notes 6

ECE Spring Prof. David R. Jackson ECE Dept. Notes 6 ECE 6341 Spring 2016 Prof. David R. Jackson ECE Dept. Notes 6 1 Leaky Modes v TM 1 Mode SW 1 v= utan u ε R 2 R kh 0 n1 r = ( ) 1 u Splitting point ISW f = f s f > f s We will examine the solutions as the

More information

ECE 604, Lecture 17. October 30, In this lecture, we will cover the following topics: Reflection and Transmission Single Interface Case

ECE 604, Lecture 17. October 30, In this lecture, we will cover the following topics: Reflection and Transmission Single Interface Case ECE 604, Lecture 17 October 30, 2018 In this lecture, we will cover the following topics: Duality Principle Reflection and Transmission Single Interface Case Interesting Physical Phenomena: Total Internal

More information

Basics of Wave Propagation

Basics of Wave Propagation Basics of Wave Propagation S. R. Zinka zinka@hyderabad.bits-pilani.ac.in Department of Electrical & Electronics Engineering BITS Pilani, Hyderbad Campus May 7, 2015 Outline 1 Time Harmonic Fields 2 Helmholtz

More information

ECE Spring Prof. David R. Jackson ECE Dept. Notes 37

ECE Spring Prof. David R. Jackson ECE Dept. Notes 37 ECE 6341 Spring 16 Prof. David R. Jacson ECE Dept. Notes 37 1 Line Source on a Grounded Slab y ε r E jω A z µ I 1 A 1 e e d y ( ) + TE j y j z 4 j +Γ y 1/ 1/ ( ) ( ) y y1 1 There are branch points only

More information

ECE Spring Prof. David R. Jackson ECE Dept. Notes 6

ECE Spring Prof. David R. Jackson ECE Dept. Notes 6 ECE 6345 Spring 2015 Prof. David R. Jackon ECE Dpt. Not 6 1 Ovrviw In thi t of not w look at two diffrnt modl for calculating th radiation pattrn of a microtrip antnna: Elctric currnt modl Magntic currnt

More information

ECE 3318 Applied Electricity and Magnetism. Spring Prof. David R. Jackson ECE Dept. Notes 28

ECE 3318 Applied Electricity and Magnetism. Spring Prof. David R. Jackson ECE Dept. Notes 28 EE 3318 Applied Electricit and Magnetism Spring 217 Prof. David R. Jackson EE Dept. Notes 28 1 Magnetic Field S ε r N v q S N Note: Flu lines come out of north poles! Lorent force Law: F = qv B This eperimental

More information

ECE Microwave Engineering

ECE Microwave Engineering ECE 5317-6351 Mirowave Engineering Aapte from notes by Prof. Jeffery T. Williams Fall 18 Prof. Davi R. Jakson Dept. of ECE Notes 7 Waveguiing Strutures Part : Attenuation ε, µσ, 1 Attenuation on Waveguiing

More information

Theory of Electromagnetic Nondestructive Evaluation

Theory of Electromagnetic Nondestructive Evaluation EE 6XX Theory of Electromagnetic NDE: Theoretical Methods for Electromagnetic Nondestructive Evaluation 1915 Scholl Road CNDE Ames IA 50011 Graduate Tutorial Notes 2004 Theory of Electromagnetic Nondestructive

More information

Electromagnetic Theorems

Electromagnetic Theorems Electromagnetic Theorems Daniel S. Weile Department of Electrical and Computer Engineering University of Delaware ELEG 648 Electromagnetic Theorems Outline Outline Duality The Main Idea Electric Sources

More information

Physics 4322 Spring Section Introduction to Classical Electrodynamics - Part 2

Physics 4322 Spring Section Introduction to Classical Electrodynamics - Part 2 Physics 4322 Spring 2018 - Section 13301 Introduction to Classical Electrodynamics - Part 2 Text - Introduction to Electrodynamics; - David Griffiths Publisher - Pretice-Hall Supplementary Material - Feynman

More information

Electromagnetic Waves Retarded potentials 2. Energy and the Poynting vector 3. Wave equations for E and B 4. Plane EM waves in free space

Electromagnetic Waves Retarded potentials 2. Energy and the Poynting vector 3. Wave equations for E and B 4. Plane EM waves in free space Electromagnetic Waves 1 1. Retarded potentials 2. Energy and the Poynting vector 3. Wave equations for E and B 4. Plane EM waves in free space 1 Retarded Potentials For volume charge & current = 1 4πε

More information

Chapter 7. Time-Varying Fields and Maxwell s Equations

Chapter 7. Time-Varying Fields and Maxwell s Equations Chapter 7. Time-arying Fields and Maxwell s Equations Electrostatic & Time arying Fields Electrostatic fields E, D B, H =J D H 1 E B In the electrostatic model, electric field and magnetic fields are not

More information

22 Phasor form of Maxwell s equations and damped waves in conducting media

22 Phasor form of Maxwell s equations and damped waves in conducting media 22 Phasor form of Maxwell s equations and damped waves in conducting media When the fields and the sources in Maxwell s equations are all monochromatic functions of time expressed in terms of their phasors,

More information

Resonances and dipole moments in dielectric, magnetic, and magnetodielectric cylinders an overview

Resonances and dipole moments in dielectric, magnetic, and magnetodielectric cylinders an overview Appl Phys A (2011) 103: 789 793 DOI 10.1007/s00339-010-6219-6 Resonances and dipole moments in dielectric, magnetic, and magnetodielectric cylinders an overview A. Dirksen S. Arslanagic O. Breinbjerg Received:

More information

( z) ( ) ( )( ) ω ω. Wave equation. Transmission line formulas. = v. Helmholtz equation. Exponential Equation. Trig Formulas = Γ. cos sin 1 1+Γ = VSWR

( z) ( ) ( )( ) ω ω. Wave equation. Transmission line formulas. = v. Helmholtz equation. Exponential Equation. Trig Formulas = Γ. cos sin 1 1+Γ = VSWR Wave equation 1 u tu v u(, t f ( vt + g( + vt Helmholt equation U + ku jk U Ae + Be + jk Eponential Equation γ e + e + γ + γ Trig Formulas sin( + y sin cos y+ sin y cos cos( + y cos cos y sin sin y + cos

More information

1 Fundamentals. 1.1 Overview. 1.2 Units: Physics 704 Spring 2018

1 Fundamentals. 1.1 Overview. 1.2 Units: Physics 704 Spring 2018 Physics 704 Spring 2018 1 Fundamentals 1.1 Overview The objective of this course is: to determine and fields in various physical systems and the forces and/or torques resulting from them. The domain of

More information

ECE Spring Prof. David R. Jackson ECE Dept. Notes 10

ECE Spring Prof. David R. Jackson ECE Dept. Notes 10 ECE 6345 Spring 215 Prof. David R. Jackson ECE Dept. Notes 1 1 Overview In this set of notes we derive the far-field pattern of a circular patch operating in the dominant TM 11 mode. We use the magnetic

More information

Course Updates. 2) This week: Electromagnetic Waves +

Course Updates.  2) This week: Electromagnetic Waves + Course Updates http://www.phys.hawaii.edu/~varner/phys272-spr1/physics272.html Reminders: 1) Assignment #11 due Wednesday 2) This week: Electromagnetic Waves + 3) In the home stretch [review schedule]

More information

Chapter 7. Time-Varying Fields and Maxwell s Equation

Chapter 7. Time-Varying Fields and Maxwell s Equation Chapter 7. Time-Varying Fields and Maxwell s Equation Electrostatic & Time Varying Fields Electrostatic fields E, D B, H =J D H 1 E B In the electrostatic model, electric field and magnetic fields are

More information

Lecture 2 Review of Maxwell s Equations and the EM Constitutive Parameters

Lecture 2 Review of Maxwell s Equations and the EM Constitutive Parameters Lecture 2 Review of Maxwell s Equations and the EM Constitutive Parameters Optional Reading: Steer Appendix D, or Pozar Section 1.2,1.6, or any text on Engineering Electromagnetics (e.g., Hayt/Buck) Time-domain

More information

1 Fundamentals of laser energy absorption

1 Fundamentals of laser energy absorption 1 Fundamentals of laser energy absorption 1.1 Classical electromagnetic-theory concepts 1.1.1 Electric and magnetic properties of materials Electric and magnetic fields can exert forces directly on atoms

More information

Notes 32 Magnetic Force and Torque

Notes 32 Magnetic Force and Torque ECE 3318 Appied Eectricity and Magnetism Spring 18 Prof. David R. Jackson Dept. of ECE Notes 3 Magnetic orce and Torque 1 orce on Wire q Singe charge: = q( v ) v (derivation omitted) Wire: = d C d orce

More information

ECE Spring Prof. David R. Jackson ECE Dept. Notes 24

ECE Spring Prof. David R. Jackson ECE Dept. Notes 24 ECE 6345 Sprng 015 Prof. Dav R. Jackon ECE Dept. Note 4 1 Overvew In th et of note we erve the SDI formlaton ng a more mathematcal, bt general, approach (we rectly Forer tranform Maxwell eqaton). Th allow

More information

D. S. Weile Radiation

D. S. Weile Radiation Radiation Daniel S. Weile Department of Electrical and Computer Engineering University of Delaware ELEG 648 Radiation Outline Outline Maxwell Redux Maxwell s Equation s are: 1 E = jωb = jωµh 2 H = J +

More information

Chapter 4 Reflection and Transmission of Waves

Chapter 4 Reflection and Transmission of Waves 4-1 Chapter 4 Reflection and Transmission of Waves ECE 3317 Dr. Stuart Long www.bridgat.com www.ranamok.com Boundary Conditions 4- -The convention is that is the outward pointing normal at the boundary

More information

The Cooper Union Department of Electrical Engineering ECE135 Engineering Electromagnetics Exam II April 12, Z T E = η/ cos θ, Z T M = η cos θ

The Cooper Union Department of Electrical Engineering ECE135 Engineering Electromagnetics Exam II April 12, Z T E = η/ cos θ, Z T M = η cos θ The Cooper Union Department of Electrical Engineering ECE135 Engineering Electromagnetics Exam II April 12, 2012 Time: 2 hours. Closed book, closed notes. Calculator provided. For oblique incidence of

More information

Class 30: Outline. Hour 1: Traveling & Standing Waves. Hour 2: Electromagnetic (EM) Waves P30-

Class 30: Outline. Hour 1: Traveling & Standing Waves. Hour 2: Electromagnetic (EM) Waves P30- Class 30: Outline Hour 1: Traveling & Standing Waves Hour : Electromagnetic (EM) Waves P30-1 Last Time: Traveling Waves P30- Amplitude (y 0 ) Traveling Sine Wave Now consider f(x) = y = y 0 sin(kx): π

More information

Chap. 1 Fundamental Concepts

Chap. 1 Fundamental Concepts NE 2 Chap. 1 Fundamental Concepts Important Laws in Electromagnetics Coulomb s Law (1785) Gauss s Law (1839) Ampere s Law (1827) Ohm s Law (1827) Kirchhoff s Law (1845) Biot-Savart Law (1820) Faradays

More information

Spherical Waves. Daniel S. Weile. Department of Electrical and Computer Engineering University of Delaware. ELEG 648 Spherical Coordinates

Spherical Waves. Daniel S. Weile. Department of Electrical and Computer Engineering University of Delaware. ELEG 648 Spherical Coordinates Spherical Waves Daniel S. Weile Department of Electrical and Computer Engineering University of Delaware ELEG 648 Spherical Coordinates Outline Wave Functions 1 Wave Functions Outline Wave Functions 1

More information

toroidal iron core compass switch battery secondary coil primary coil

toroidal iron core compass switch battery secondary coil primary coil Fundamental Laws of Electrostatics Integral form Differential form d l C S E 0 E 0 D d s V q ev dv D ε E D qev 1 Fundamental Laws of Magnetostatics Integral form Differential form C S dl S J d s B d s

More information

Perfectly Matched Layer (PML) for Computational Electromagnetics

Perfectly Matched Layer (PML) for Computational Electromagnetics Perfectly Matched Layer (PML) for Computational Electromagnetics Copyright 2007 by Morgan & Claypool All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or

More information

Uniform Plane Waves. Ranga Rodrigo. University of Moratuwa. November 7, 2008

Uniform Plane Waves. Ranga Rodrigo. University of Moratuwa. November 7, 2008 Uniform Plane Waves Ranga Rodrigo University of Moratuwa November 7, 2008 Ranga Rodrigo (University of Moratuwa) Uniform Plane Waves November 7, 2008 1 / 51 Summary of Last Week s Lecture Basic Relations

More information

AZIMUTHALLY PROPAGATING MODES IN AN AXIALLY-TRUNCATED, CIRCULAR, COAXIAL WAVEGUIDE

AZIMUTHALLY PROPAGATING MODES IN AN AXIALLY-TRUNCATED, CIRCULAR, COAXIAL WAVEGUIDE AFRL-DE-TR-003-35 AFRL-DE-TR- 003-35 AZIMUTHALLY PROPAGATING MODES IN AN AXIALLY-TRUNCATED, CIRCULAR, COAXIAL WAVEGUIDE Clifton C. Courtney Voss Scientific 48 Washington St SE Albuuerue, NM 8708 September

More information

ECE 6340 Fall Homework 2. Please do the following problems (you may do the others for practice if you wish): Probs. 1, 2, 3, 4, 5, 6, 7, 10, 12

ECE 6340 Fall Homework 2. Please do the following problems (you may do the others for practice if you wish): Probs. 1, 2, 3, 4, 5, 6, 7, 10, 12 ECE 634 Fall 16 Homework Please do the following problems (you may do the others for practice if you wish: Probs. 1,, 3, 4, 5, 6, 7, 1, 1 1 Consider two parallel infinite wires in free space each carrying

More information

Physics 322 Midterm 2

Physics 322 Midterm 2 Physics 3 Midterm Nov 30, 015 name: Box your final answer. 1 (15 pt) (50 pt) 3 (0 pt) 4 (15 pt) total (100 pt) 1 1. (15 pt) An infinitely long cylinder of radius R whose axis is parallel to the ẑ axis

More information

ECE 3318 Applied Electricity and Magnetism. Spring Prof. David R. Jackson Dept. of ECE. Notes 25 Capacitance

ECE 3318 Applied Electricity and Magnetism. Spring Prof. David R. Jackson Dept. of ECE. Notes 25 Capacitance EE 3318 pplied Electricity and Magnetism Spring 218 Prof. David R. Jackson Dept. of EE Notes 25 apacitance 1 apacitance apacitor [F] + V - +Q ++++++++++++++++++ - - - - - - - - - - - - - - - - - Q ε r

More information

ECE 222b Applied Electromagnetics Notes Set 4b

ECE 222b Applied Electromagnetics Notes Set 4b ECE b Applied Electromagnetics Notes Set 4b Instructor: Prof. Vitali Lomain Department of Electrical and Computer Engineering Universit of California, San Diego 1 Uniform Waveguide (1) Wave propagation

More information

Exercises in field theory

Exercises in field theory Exercises in field theory Wolfgang Kastaun April 30, 2008 Faraday s law for a moving circuit Faradays law: S E d l = k d B d a dt S If St) is moving with constant velocity v, it can be written as St) E

More information

Theory of Electromagnetic Fields

Theory of Electromagnetic Fields Theory of Electromagnetic Fields Andrzej Wolski University of Liverpool, and the Cockcroft Institute, UK Abstract We discuss the theory of electromagnetic fields, with an emphasis on aspects relevant to

More information

Electromagnetic Waves

Electromagnetic Waves Electromagnetic Waves Our discussion on dynamic electromagnetic field is incomplete. I H E An AC current induces a magnetic field, which is also AC and thus induces an AC electric field. H dl Edl J ds

More information

Finite Element Method (FEM)

Finite Element Method (FEM) Finite Element Method (FEM) The finite element method (FEM) is the oldest numerical technique applied to engineering problems. FEM itself is not rigorous, but when combined with integral equation techniques

More information

EECS 117. Lecture 23: Oblique Incidence and Reflection. Prof. Niknejad. University of California, Berkeley

EECS 117. Lecture 23: Oblique Incidence and Reflection. Prof. Niknejad. University of California, Berkeley University of California, Berkeley EECS 117 Lecture 23 p. 1/2 EECS 117 Lecture 23: Oblique Incidence and Reflection Prof. Niknejad University of California, Berkeley University of California, Berkeley

More information

Math 142-2, Homework 1

Math 142-2, Homework 1 Math 142-2, Homework 1 Your name here Problem 5.8 (a) Show that x = c 1 cosωt+c 2 sinωt is the general solution of mx = kx. What is the value of ω? (b) Show that an equivalent expression for the general

More information

Lecture Outline. Maxwell s Equations Predict Waves Derivation of the Wave Equation Solution to the Wave Equation 8/7/2018

Lecture Outline. Maxwell s Equations Predict Waves Derivation of the Wave Equation Solution to the Wave Equation 8/7/2018 Course Instructor Dr. Raymond C. Rumpf Office: A 337 Phone: (915) 747 6958 E Mail: rcrumpf@utep.edu EE 4347 Applied Electromagnetics Topic 3a Electromagnetic Waves Electromagnetic These notes Waves may

More information

FDFD. The Finite-Difference Frequency-Domain Method. Hans-Dieter Lang

FDFD. The Finite-Difference Frequency-Domain Method. Hans-Dieter Lang FDFD The Finite-Difference Frequency-Domain Method Hans-Dieter Lang Friday, December 14, 212 ECE 1252 Computational Electrodynamics Course Project Presentation University of Toronto H.-D. Lang FDFD 1/18

More information

A survey of various frequency domain integral equations for the analysis of scattering from threedimensional

A survey of various frequency domain integral equations for the analysis of scattering from threedimensional yracuse University URFACE Electrical Engineering and Computer cience College of Engineering and Computer cience 2002 A survey of various frequency domain integral equations for the analysis of scattering

More information

FDTD for 1D wave equation. Equation: 2 H Notations: o o. discretization. ( t) ( x) i i i i i

FDTD for 1D wave equation. Equation: 2 H Notations: o o. discretization. ( t) ( x) i i i i i FDTD for 1D wave equation Equation: 2 H = t 2 c2 2 H x 2 Notations: o t = nδδ, x = iδx o n H nδδ, iδx = H i o n E nδδ, iδx = E i discretization H 2H + H H 2H + H n+ 1 n n 1 n n n i i i 2 i+ 1 i i 1 = c

More information

EECS 117 Lecture 26: TE and TM Waves

EECS 117 Lecture 26: TE and TM Waves EECS 117 Lecture 26: TE and TM Waves Prof. Niknejad University of California, Berkeley University of California, Berkeley EECS 117 Lecture 26 p. 1/2 TE Waves TE means that e z = 0 but h z 0. If k c 0,

More information

8.03 Lecture 12. Systems we have learned: Wave equation: (1) String with constant tension and mass per unit length ρ L T v p = ρ L

8.03 Lecture 12. Systems we have learned: Wave equation: (1) String with constant tension and mass per unit length ρ L T v p = ρ L 8.03 Lecture 1 Systems we have learned: Wave equation: ψ = ψ v p x There are three different kinds of systems discussed in the lecture: (1) String with constant tension and mass per unit length ρ L T v

More information

So far we have derived two electrostatic equations E = 0 (6.2) B = 0 (6.3) which are to be modified due to Faraday s observation,

So far we have derived two electrostatic equations E = 0 (6.2) B = 0 (6.3) which are to be modified due to Faraday s observation, Chapter 6 Maxwell Equations 6.1 Maxwell equations So far we have derived two electrostatic equations and two magnetostatics equations E = ρ ɛ 0 (6.1) E = 0 (6.2) B = 0 (6.3) B = µ 0 J (6.4) which are to

More information

EECS 117. Lecture 17: Magnetic Forces/Torque, Faraday s Law. Prof. Niknejad. University of California, Berkeley

EECS 117. Lecture 17: Magnetic Forces/Torque, Faraday s Law. Prof. Niknejad. University of California, Berkeley University of California, Berkeley EECS 117 Lecture 17 p. 1/? EECS 117 Lecture 17: Magnetic Forces/Torque, Faraday s Law Prof. Niknejad University of California, Berkeley University of California, Berkeley

More information

EECS 117 Lecture 19: Faraday s Law and Maxwell s Eq.

EECS 117 Lecture 19: Faraday s Law and Maxwell s Eq. University of California, Berkeley EECS 117 Lecture 19 p. 1/2 EECS 117 Lecture 19: Faraday s Law and Maxwell s Eq. Prof. Niknejad University of California, Berkeley University of California, Berkeley EECS

More information

Electromagnetic Scattering from a PEC Wedge Capped with Cylindrical Layers with Dielectric and Conductive Properties

Electromagnetic Scattering from a PEC Wedge Capped with Cylindrical Layers with Dielectric and Conductive Properties 0. OZTURK, ET AL., ELECTROMAGNETIC SCATTERING FROM A PEC WEDGE CAPPED WIT CYLINDRICAL LAYERS... Electromagnetic Scattering from a PEC Wedge Capped with Cylindrical Layers with Dielectric and Conductive

More information

Antenna Theory (Engineering 9816) Course Notes. Winter 2016

Antenna Theory (Engineering 9816) Course Notes. Winter 2016 Antenna Theory (Engineering 9816) Course Notes Winter 2016 by E.W. Gill, Ph.D., P.Eng. Unit 1 Electromagnetics Review (Mostly) 1.1 Introduction Antennas act as transducers associated with the region of

More information

Electromagnetic (EM) Waves

Electromagnetic (EM) Waves Electromagnetic (EM) Waves Short review on calculus vector Outline A. Various formulations of the Maxwell equation: 1. In a vacuum 2. In a vacuum without source charge 3. In a medium 4. In a dielectric

More information

Cylindrical Dielectric Waveguides

Cylindrical Dielectric Waveguides 03/02/2017 Cylindrical Dielectric Waveguides Integrated Optics Prof. Elias N. Glytsis School of Electrical & Computer Engineering National Technical University of Athens Geometry of a Single Core Layer

More information

Notes 4 Electric Field and Voltage

Notes 4 Electric Field and Voltage ECE 3318 pplied Electricity and Magnetism Spring 2018 Prof. David R. Jackson Dept. of ECE Notes 4 Electric Field and Voltage Notes prepared by the EM Group University of Houston 1 Electric Field V 0 [

More information

Maxwell s equations in Carnot groups

Maxwell s equations in Carnot groups Maxwell s equations in Carnot groups B. Franchi (U. Bologna) INDAM Meeting on Geometric Control and sub-riemannian Geometry Cortona, May 21-25, 2012 in honor of Andrey Agrachev s 60th birthday Researches

More information

Maxwell Equations Waves Helmholtz Wave Equation Dirac Delta Sources Power Matrices Complex Analysis Optimization. EM & Math - Basics

Maxwell Equations Waves Helmholtz Wave Equation Dirac Delta Sources Power Matrices Complex Analysis Optimization. EM & Math - Basics EM & Math - S. R. Zinka srinivasa_zinka@daiict.ac.in October 16, 2014 Outline 1 Maxwell Equations 2 Waves 3 Helmholtz Wave Equation 4 Dirac Delta Sources 5 Power 6 Matrices 7 Complex Analysis 8 Optimization

More information

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad Electronics and Communicaton Engineering

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad Electronics and Communicaton Engineering INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad - 00 04 Electronics and Communicaton Engineering Question Bank Course Name : Electromagnetic Theory and Transmission Lines (EMTL) Course Code :

More information

ECE Spring Prof. David R. Jackson ECE Dept. Notes 8

ECE Spring Prof. David R. Jackson ECE Dept. Notes 8 ECE 6341 Sprig 16 Prof. David R. Jackso ECE Dept. Notes 8 1 Cylidrical Wave Fuctios Helmholtz equatio: ψ + k ψ = ψ ρφ,, z = A or F ( ) z z ψ 1 ψ 1 ψ ψ ρ ρ ρ ρ φ z + + + + k ψ = Separatio of variables:

More information

Introduction to Electromagnetic Theory

Introduction to Electromagnetic Theory Introduction to Electromagnetic Theory Lecture topics Laws of magnetism and electricity Meaning of Maxwell s equations Solution of Maxwell s equations Electromagnetic radiation: wave model James Clerk

More information

) 12 = 1+ j. = ε 2. = n 2 n 1. sinθ ic. mπ a. = 1+ j. cos mπ a x. H z. =±j ε 2. sin 2 θ i. cosθ t 1 [3.31] ε 2ε1. θ i. ε =1e jφ. tan φ sin 2.

) 12 = 1+ j. = ε 2. = n 2 n 1. sinθ ic. mπ a. = 1+ j. cos mπ a x. H z. =±j ε 2. sin 2 θ i. cosθ t 1 [3.31] ε 2ε1. θ i. ε =1e jφ. tan φ sin 2. Mawell s Equatos (geeral deretal E B D ρ H J + D B 0 Mawell s Equatos (tme harmoc E jωb D ρ [.a] [.b] [.c] [.d] [.a] [.b] H J + D [.c] B 0 [.d] Mawell s Equatos (tegral E dl B ds [.] D ds ρdv V [.] D H

More information

Maxwell Equations: Electromagnetic Waves

Maxwell Equations: Electromagnetic Waves Maxwell Equations: Electromagnetic Waves Maxwell s Equations contain the wave equation The velocity of electromagnetic waves: c = 2.99792458 x 10 8 m/s The relationship between E and B in an EM wave Energy

More information

On the existence of magnetic monopoles

On the existence of magnetic monopoles On the existence of magnetic monopoles Ali R. Hadjesfandiari Department of Mechanical and Aerospace Engineering State University of New York at Buffalo Buffalo, NY 146 USA ah@buffalo.edu September 4, 13

More information

Electric and Magnetic Forces in Lagrangian and Hamiltonian Formalism

Electric and Magnetic Forces in Lagrangian and Hamiltonian Formalism Electric and Magnetic Forces in Lagrangian and Hamiltonian Formalism Benjamin Hornberger 1/26/1 Phy 55, Classical Electrodynamics, Prof. Goldhaber Lecture notes from Oct. 26, 21 Lecture held by Prof. Weisberger

More information

ECE 6340 Intermediate EM Waves. Fall Prof. David R. Jackson Dept. of ECE. Notes 22

ECE 6340 Intermediate EM Waves. Fall Prof. David R. Jackson Dept. of ECE. Notes 22 ECE 634 Intemediate EM Waves Fall 6 Pof. David R. Jackson Dept. of ECE Notes Radiation z Infinitesimal dipole: I l y kl

More information

Chapter 6. Maxwell s Equations, Macroscopic Electromagnetism, Conservation Laws

Chapter 6. Maxwell s Equations, Macroscopic Electromagnetism, Conservation Laws PHYS 532 Lecture 7 Page 1 Chapter 6. Maxwell s Equations, Macroscopic Electromagnetism, Conservation Laws 6.1 Maxwell Displacement Current and Maxwell Equations Differential equations for calculating fields

More information

(a) Write down the total Hamiltonian of this system, including the spin degree of freedom of the electron, but neglecting spin-orbit interactions.

(a) Write down the total Hamiltonian of this system, including the spin degree of freedom of the electron, but neglecting spin-orbit interactions. 1. Quantum Mechanics (Spring 2007) Consider a hydrogen atom in a weak uniform magnetic field B = Bê z. (a) Write down the total Hamiltonian of this system, including the spin degree of freedom of the electron,

More information

Aperture Antennas 1 Introduction

Aperture Antennas 1 Introduction 1 Introduction Very often, we have antennas in aperture forms, for example, the antennas shown below: Pyramidal horn antenna Conical horn antenna 1 Paraboloidal antenna Slot antenna Analysis Method for.1

More information

Notes 7 Analytic Continuation

Notes 7 Analytic Continuation ECE 6382 Fall 27 David R. Jackson Notes 7 Analtic Continuation Notes are from D. R. Wilton, Dept. of ECE Analtic Continuation of Functions We define analtic continuation as the process of continuing a

More information

Electromagnetic Waves & Polarization

Electromagnetic Waves & Polarization Course Instructor Dr. Raymond C. Rumpf Office: A 337 Phone: (915) 747 6958 E Mail: rcrumpf@utep.edu EE 4347 Applied Electromagnetics Topic 3a Electromagnetic Waves & Polarization Electromagnetic These

More information