Introduction to Seismology

Size: px
Start display at page:

Download "Introduction to Seismology"

Transcription

1 1.510 Introduction to Seismology Lecture 5 Feb., Introduction At previous lectures, we derived the equation of motion (λ + µ) ( u(x, t)) µ ( u(x, t)) = ρ u(x, t) (1) t This equation of motion can be expressed by a scalar potential, φ(x, t), and a vector potential, Ψ(x, t) which are Helmholtz potentials, based on the relations u(x, t) = φ(x, t)+ Ψ(x, t) and Ψ(x, t) = 0. The two potentials give us two wave equations. The scalar potential satisfies φ(x, t) = 1 φ(x, t) () α t with the velocity α = [(λ + µ)/ρ] 1/. Similarly, the vector potential satisfies Ψ(x, t) = 1 Ψ(x, t) β t (3) with velocity β = (µ/ρ) 1/. These two equations can be solved by the following three ways: d Alembert s solution, separation of variables and Fourier Transform. Although they are different methods to get solution, they give the same solution of equation of motion. This lecture explains not only the three ways to get plane wave solutions, but also the concepts of dispersion relation and slowness. In addition, this lecture introduces the nomenclature of body waves in Earth s interior. d Alembert s Solution We begin with the one dimensional function, f (±x ct). (4)

2 Feb., 005 The phase of this function is x ct, so if we only consider constant phase, we can get phase velocity, c = x/t. For convenience, if we consider slightly different form, x/c t, multiplied by angular frequency, ω,and using the relation of k = ω/c, we can get more convenient form, (kx ωt). In three dimensional case, the phase becomes k x x + k y y + k z z ωt = k x ωt for the following complex form wave functions: ˆ φ = Ae i(k x ωt) Ψ = B ke i(k x ωt) (5) Equation (5) represents the solutions of wave equation () and (3). 3 Separation of variables Separation of variables is a method of solving ordinary and partial differential equations. For a partial differential equation, we can use separation of variables to make a substitution of the form φ(x, y, z, t) = X(x)Y (y)z(z)t (t) (6) to equation (), and divide it by X Y ZT, then we have 1 d X 1 d Y 1 d Z 1 d T X dx + Y dy + Z dz c T dt = 0 (7) To satisfy this equation (7), each term has to be constant k x, k y, k z and ω /c, respectively. Each term makes four ODEs: d X + kx X = 0 e ±ikxx dx d Y dy + k y Y = 0 e ±iky Y d Z + kz Z = 0 e ±ikz Z dz d T + ω T = 0 e ±iωt dt From the equation (6), these equations produce desirable solution form, φ = e i(k x ωt). Now we can get the full solution to make use of superposition of plane waves. φ(k, x) = e i(k x ωt) (8) k,ω To make each term in equation (7) constant provides physically important phenomenon, what is called dispersion. ω k x + k y + k z = 0 (9) c

3 1.510 Introduction to Seismology 3 The dispersion relation means that waves with different frequencies travel with different velocities. Furthermore, if we know three of four parameters, one of them can be fixed from the relation (9). If we consider one dimensional solution form as φ = e i(kxx ωt), then dφ/dx = ik x φ, d φ/dx = k x φ. From equation (), Thus, we can get the dispersion relation, We can also get the Helmholtz equation. We will get back to the dispersion relation later. φ = α φ = α k x φ (10) φ φ = = ω φ (11) t k x = ( ω ) (1) α φ + k φ = 0 (13) 4 Fourier Transform Fourier transform lets us understand the relation between space time (x, t) domain and wave number frequency (k, ω) domain. The followings are Fourier transform and inverse Fourier transform in term of time frequency and space wave number, respectively. 1 π Φ(x, ω) = φ(x, t)e iωt dt φ(x, t) = Φ(x, ω)e iωt dω (14) π π 1 Φ(k, t) = φ(x, t)e ik r d 3 r φ(x, t) = Φ(k, t)e ik x dk (π) 3 x dk y dk z (15) V k We combine the two relation, i.e. double Fourier transform 1 π φ(x, t) = Φ(k (π) 3 x, k y, ω, z)e i(k x ωt) dk x dk y dω (16) π This is the solution that satisfies the wave equation (). It is also shown that this solution is similar to the solution (8) obtained by separation of variables. The integrand, Φ(k x, k y, ω, z), can be considered as amplitude or weight. There are two points to consider the equation (16) in detail. First, we do not need to put z component of wave number in the integration because of the dispersion relation (9). As mentioned before, one parameter can be fixed by dispersion relation if we know three of four parameters, i.e. k z = f (k x, k y, ω). Second, it is difficult in practice to integrate from to in terms of wave number and from

4 4 Feb., 005 Figure 1: This figure describe the ray and wavefront. The arrow is used for a ray and dash line for wavefront. The wave number k indicates direction of the ray. The angle i is take off angle or angle of incidence. ds, dx and dz are distance along the ray, horizon and vertical, respectively. We can get the slowness vector from this figure. π to π in frequency. However, it can be used to produce synthetic seismogram by limit: integration over directions k 0 ± dk and frequency ω 0 ± dω. 1 ω0 +dω k 0 +dk φ(x, t) = Φ(k (π) 3 x, k y, ω, z)e i(k x ωt) dk x dk y dω (17) ω 0 dω k 0 dk The full solution can be obtained by the superposition of plane wave like equation (8), and we find the displacement by u(x, t) = φ(x, t). 5 Slowness Now we define the slowness vector, so we can easily understand what the dispersion relation means. We define the ray speed, c = ds/dt, horizontal wave speed, c x = dx/dt, and vertical wave speed, c z = dz/dt. From [Figure 1], we can relate the angle of incidence with horizontal and vertical wave speed as below. ds dt c sin(i) = = c = cp dx dx c x (18) ds dt c cos(i) = = c = cη dz dz c z (19)

5 1.510 Introduction to Seismology 5 Figure : This figure describe the ray in terms of wave number. The arrow is used for a ray and dash line for wavefront. The wave number k which magnitude is ω/c, indicates direction of the ray. Here k x = ωp and k z = ωη Here p is horizontal slowness and η is vertical slowness.. p 1 = sin(i) η 1 = cos(i) (0) c x c cz c The slowness vector is composed of horizontal and vertical slowness, s = (p, η). Let us examine some properties of slowness vector. From equation (0), 1 1 s = p + η = p + η = (1) c c However, the addition of squares of horizontal wave speed and vertical wave speed does not equal to squares of wave speed, c x + c z = c. In addition, we will examine critical phenomenon in reflection and refraction with the relation (1), η = 1/c p. In terms of wave number, each component of wave number can be represented by horizontal and vertical slowness. Thus, wave number is related to slowness vector. ω ω k x = = ωp k z = = ωη () c x c z k = (k x, k y ) = (ωp, ωη) = ω(p, η) = ωs (3) As shown in [Figure ], if we know k x which is related to horizontal slowness and ω/c, then k z is fixed. This situation is based on dispersion relation.

6 6 Feb., Nomenclature of body waves in Earth s interior At this stage, it is useful to introduce the jargon used to describe the different types of body wave propagation in Earth s interior. There are a few simple basic rules, but there are also some inconsistencies. Capital letters are used to denote body wave propagation (transmission) through a medium 1. On the other hand, lower case letters are used to indicate either reflections or upward propagation of body waves before they are reflected at Earth s surface. Note that this is always used in combination of a transmitted wave. The followings are summary of nomenclature of body wave. P S K I J c i p s LR LQ a P wave in the mantle an S wave in the mantle a P wave through the outer core a P wave through the inner core an S wave through the inner core a reflection from the mantle outer core boundary a reflection from the outer core inner core boundary a up going P wave from the earthquake focus to the surface of the earth a up going S wave from the earthquake focus to the surface of the earth a Rayleigh wave a Love wave The [Figure 3] and [Figure 4] describe the ray paths in terms of various phases. Note that the phases are in combination of a wave described above. Notes: Kang Hyeun Ji (Feb., 005) 1 The phase J has no definitive observations of this seismic phase, although recent research has produced compelling evidence for its existence Adapted from B.L.N. Kennett (001), The Seismic Wavefield Volume 1: Introduction and Theoretical Development, pp , Cambridge University Press

7 1.510 Introduction to Seismology ScS PcP Inner Core Outer Core Mantle SS S ScP SKS PKP P PP P and S PP and SS PcP and ScS PKP and SKS PKiKP PKIKP PKiKP SKP 4000 PKIKP Figure by MIT OCW. Figure 3: The main seismic phase in the Earth.

8 1.510 Introduction to Seismology Inner Core Outer Core Mantle S P SKS PKP SKiKS SKIKS PKIKP PKiKP Figure by MIT OCW. Figure 4: Ray paths for major P and S phases for the AKI35 model of seismic wavespeeds.

Introduction to Seismology Spring 2008

Introduction to Seismology Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 12.510 Introduction to Seismology Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 12.510 Introduction

More information

Seismogram Interpretation. Seismogram Interpretation

Seismogram Interpretation. Seismogram Interpretation Travel times in the Earth Ray paths, phases and their name Wavefields in the Earth: SH waves, P-SV waves Seismic Tomography Receiver Functions Seismogram Example Long-period transverse displacement for

More information

c. Better work with components of slowness vector s (or wave + k z 2 = k 2 = (ωs) 2 = ω 2 /c 2. k=(kx,k z )

c. Better work with components of slowness vector s (or wave + k z 2 = k 2 = (ωs) 2 = ω 2 /c 2. k=(kx,k z ) .50 Introduction to seismology /3/05 sophie michelet Today s class: ) Eikonal equation (basis of ray theory) ) Boundary conditions (Stein s book.3.0) 3) Snell s law Some remarks on what we discussed last

More information

Introduction to Seismology Spring 2008

Introduction to Seismology Spring 2008 MIT OpenCourseWare http://ocw.mit.edu.50 Introduction to Seismology Spring 008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. .50 Introduction to Seismology

More information

LECTURE 4 WAVE PACKETS

LECTURE 4 WAVE PACKETS LECTURE 4 WAVE PACKETS. Comparison between QM and Classical Electrons Classical physics (particle) Quantum mechanics (wave) electron is a point particle electron is wavelike motion described by * * F ma

More information

Decoding seismograms, theoretical travel times. Simple velocity models of the Earth

Decoding seismograms, theoretical travel times. Simple velocity models of the Earth Decoding seismograms, theoretical travel times Once you think you have located an earthquake on your record you can find out what the details of the seismogram are showing you by finding out the predicted

More information

The Basic Properties of Surface Waves

The Basic Properties of Surface Waves The Basic Properties of Surface Waves Lapo Boschi lapo@erdw.ethz.ch April 24, 202 Love and Rayleigh Waves Whenever an elastic medium is bounded by a free surface, coherent waves arise that travel along

More information

Review of Fundamental Equations Supplementary notes on Section 1.2 and 1.3

Review of Fundamental Equations Supplementary notes on Section 1.2 and 1.3 Review of Fundamental Equations Supplementary notes on Section. and.3 Introduction of the velocity potential: irrotational motion: ω = u = identity in the vector analysis: ϕ u = ϕ Basic conservation principles:

More information

WAVES CP4 REVISION LECTURE ON. The wave equation. Traveling waves. Standing waves. Dispersion. Phase and group velocities.

WAVES CP4 REVISION LECTURE ON. The wave equation. Traveling waves. Standing waves. Dispersion. Phase and group velocities. CP4 REVISION LECTURE ON WAVES The wave equation. Traveling waves. Standing waves. Dispersion. Phase and group velocities. Boundary effects. Reflection and transmission of waves. !"#$%&''(%)*%+,-.%/%+,01%

More information

SURFACE WAVE DISPERSION PRACTICAL (Keith Priestley)

SURFACE WAVE DISPERSION PRACTICAL (Keith Priestley) SURFACE WAVE DISPERSION PRACTICAL (Keith Priestley) This practical deals with surface waves, which are usually the largest amplitude arrivals on the seismogram. The velocity at which surface waves propagate

More information

Basic Ray Tracing. Rick Aster and Sue Bilek. October 3, 2003

Basic Ray Tracing. Rick Aster and Sue Bilek. October 3, 2003 Basic Ray Tracing Rick Aster and Sue Bilek October 3, 3 A key observation that we can make about a seismic signal is its arrival time. From systematic observations of arrival times, we can deduce useful

More information

PEAT SEISMOLOGY Lecture 9: Anisotropy, attenuation and anelasticity

PEAT SEISMOLOGY Lecture 9: Anisotropy, attenuation and anelasticity PEAT8002 - SEISMOLOGY Lecture 9: Anisotropy, attenuation and anelasticity Nick Rawlinson Research School of Earth Sciences Australian National University Anisotropy Introduction Most of the theoretical

More information

BASIC WAVE CONCEPTS. Reading: Main 9.0, 9.1, 9.3 GEM 9.1.1, Giancoli?

BASIC WAVE CONCEPTS. Reading: Main 9.0, 9.1, 9.3 GEM 9.1.1, Giancoli? 1 BASIC WAVE CONCEPTS Reading: Main 9.0, 9.1, 9.3 GEM 9.1.1, 9.1.2 Giancoli? REVIEW SINGLE OSCILLATOR: The oscillation functions you re used to describe how one quantity (position, charge, electric field,

More information

kg meter ii) Note the dimensions of ρ τ are kg 2 velocity 2 meter = 1 sec 2 We will interpret this velocity in upcoming slides.

kg meter ii) Note the dimensions of ρ τ are kg 2 velocity 2 meter = 1 sec 2 We will interpret this velocity in upcoming slides. II. Generalizing the 1-dimensional wave equation First generalize the notation. i) "q" has meant transverse deflection of the string. Replace q Ψ, where Ψ may indicate other properties of the medium that

More information

Figure 1: Surface waves

Figure 1: Surface waves 4 Surface Waves on Liquids 1 4 Surface Waves on Liquids 4.1 Introduction We consider waves on the surface of liquids, e.g. waves on the sea or a lake or a river. These can be generated by the wind, by

More information

Superposition of electromagnetic waves

Superposition of electromagnetic waves Superposition of electromagnetic waves February 9, So far we have looked at properties of monochromatic plane waves. A more complete picture is found by looking at superpositions of many frequencies. Many

More information

Introduction to Seismology Spring 2008

Introduction to Seismology Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 1.510 Introduction to Seismology Spring 008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 1.510 Introduction to

More information

Seismology. Chapter Historical perspective

Seismology. Chapter Historical perspective Chapter 4 Seismology 4.1 Historical perspective 1678 Hooke Hooke s Law F = c u (or σ = Eɛ) 1760 Mitchell Recognition that ground motion due to earthquakes is related to wave propagation 1821 Navier Equation

More information

Waves in Linear Optical Media

Waves in Linear Optical Media 1/53 Waves in Linear Optical Media Sergey A. Ponomarenko Dalhousie University c 2009 S. A. Ponomarenko Outline Plane waves in free space. Polarization. Plane waves in linear lossy media. Dispersion relations

More information

Lecture 4. 1 de Broglie wavelength and Galilean transformations 1. 2 Phase and Group Velocities 4. 3 Choosing the wavefunction for a free particle 6

Lecture 4. 1 de Broglie wavelength and Galilean transformations 1. 2 Phase and Group Velocities 4. 3 Choosing the wavefunction for a free particle 6 Lecture 4 B. Zwiebach February 18, 2016 Contents 1 de Broglie wavelength and Galilean transformations 1 2 Phase and Group Velocities 4 3 Choosing the wavefunction for a free particle 6 1 de Broglie wavelength

More information

Physics and Chemistry of the Earth and Terrestrial Planets

Physics and Chemistry of the Earth and Terrestrial Planets MIT OpenCourseWare http://ocw.mit.edu 12.002 Physics and Chemistry of the Earth and Terrestrial Planets Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Lecture 4 Notes: 06 / 30. Energy carried by a wave

Lecture 4 Notes: 06 / 30. Energy carried by a wave Lecture 4 Notes: 06 / 30 Energy carried by a wave We want to find the total energy (kinetic and potential) in a sine wave on a string. A small segment of a string at a fixed point x 0 behaves as a harmonic

More information

Exploring Inside the Earth. What Seismic Waves Tell Us About Earth s Interior

Exploring Inside the Earth. What Seismic Waves Tell Us About Earth s Interior Exploring Inside the Earth What Seismic Waves Tell Us About Earth s Interior Sir Isaac Newton In Ancient times, the center of the Earth was pictured as a mysterious underworld of fiery furnaces and volcanic

More information

x(t) = R cos (ω 0 t + θ) + x s (t)

x(t) = R cos (ω 0 t + θ) + x s (t) Formula Sheet Final Exam Springs and masses: dt x(t + b d x(t + kx(t = F (t dt More general differential equation with harmonic driving force: m d Steady state solutions: where d dt x(t + Γ d dt x(t +

More information

Physics 506 Winter 2004

Physics 506 Winter 2004 Physics 506 Winter 004 G. Raithel January 6, 004 Disclaimer: The purpose of these notes is to provide you with a general list of topics that were covered in class. The notes are not a substitute for reading

More information

Lecture 3: Asymptotic Methods for the Reduced Wave Equation

Lecture 3: Asymptotic Methods for the Reduced Wave Equation Lecture 3: Asymptotic Methods for the Reduced Wave Equation Joseph B. Keller 1 The Reduced Wave Equation Let v (t,) satisfy the wave equation v 1 2 v c 2 = 0, (1) (X) t2 where c(x) is the propagation speed

More information

7.2.1 Seismic waves. Waves in a mass- spring system

7.2.1 Seismic waves. Waves in a mass- spring system 7..1 Seismic waves Waves in a mass- spring system Acoustic waves in a liquid or gas Seismic waves in a solid Surface waves Wavefronts, rays and geometrical attenuation Amplitude and energy Waves in a mass-

More information

Theoretical Seismology. Astrophysics and Cosmology and Earth and Environmental Physics. FTAN Analysis. Fabio ROMANELLI

Theoretical Seismology. Astrophysics and Cosmology and Earth and Environmental Physics. FTAN Analysis. Fabio ROMANELLI Theoretical Seismology Astrophysics and Cosmology and Earth and Environmental Physics FTAN Analysis Fabio ROMANELLI Department of Mathematics & Geosciences University of Trieste romanel@units.it 1 FTAN

More information

Summary of Beam Optics

Summary of Beam Optics Summary of Beam Optics Gaussian beams, waves with limited spatial extension perpendicular to propagation direction, Gaussian beam is solution of paraxial Helmholtz equation, Gaussian beam has parabolic

More information

Introduction to Condensed Matter Physics

Introduction to Condensed Matter Physics Introduction to Condensed Matter Physics Diffraction I Basic Physics M.P. Vaughan Diffraction Electromagnetic waves Geometric wavefront The Principle of Linear Superposition Diffraction regimes Single

More information

Wave Propagation in Heterogeneous Media: Born and Rytov Approximations. Chris Sherman

Wave Propagation in Heterogeneous Media: Born and Rytov Approximations. Chris Sherman Wave Propagation in Heterogeneous Media: Born and Rytov Approximations Chris Sherman Stochastic Scalar Wave Equation Wave Equation: &! " %& 1 # t V x ' ) () u(x,t) = 0 (*) Velocity Perturbation: = V o

More information

Fourier transforms, Generalised functions and Greens functions

Fourier transforms, Generalised functions and Greens functions Fourier transforms, Generalised functions and Greens functions T. Johnson 2015-01-23 Electromagnetic Processes In Dispersive Media, Lecture 2 - T. Johnson 1 Motivation A big part of this course concerns

More information

Lucio Demeio Dipartimento di Ingegneria Industriale e delle Scienze Matematiche

Lucio Demeio Dipartimento di Ingegneria Industriale e delle Scienze Matematiche Scuola di Dottorato THE WAVE EQUATION Lucio Demeio Dipartimento di Ingegneria Industriale e delle Scienze Matematiche Lucio Demeio - DIISM wave equation 1 / 44 1 The Vibrating String Equation 2 Second

More information

Wave Phenomena Physics 15c. Lecture 11 Dispersion

Wave Phenomena Physics 15c. Lecture 11 Dispersion Wave Phenomena Physics 15c Lecture 11 Dispersion What We Did Last Time Defined Fourier transform f (t) = F(ω)e iωt dω F(ω) = 1 2π f(t) and F(w) represent a function in time and frequency domains Analyzed

More information

Green s functions for planarly layered media

Green s functions for planarly layered media Green s functions for planarly layered media Massachusetts Institute of Technology 6.635 lecture notes Introduction: Green s functions The Green s functions is the solution of the wave equation for a point

More information

EM waves: energy, resonators. Scalar wave equation Maxwell equations to the EM wave equation A simple linear resonator Energy in EM waves 3D waves

EM waves: energy, resonators. Scalar wave equation Maxwell equations to the EM wave equation A simple linear resonator Energy in EM waves 3D waves EM waves: energy, resonators Scalar wave equation Maxwell equations to the EM wave equation A simple linear resonator Energy in EM waves 3D waves Simple scalar wave equation 2 nd order PDE 2 z 2 ψ (z,t)

More information

SURFACE WAVES & DISPERSION

SURFACE WAVES & DISPERSION SEISMOLOGY Master Degree Programme in Physics - UNITS Physics of the Earth and of the Environment SURFACE WAVES & DISPERSION FABIO ROMANELLI Department of Mathematics & Geosciences University of Trieste

More information

Seismology and Seismic Imaging

Seismology and Seismic Imaging Seismology and Seismic Imaging 4. Ray theory N. Rawlinson Research School of Earth Sciences, ANU Seismology lecture course p.1/23 The ray approximation Here, we consider the problem of how body waves (P

More information

Wavepackets. Outline. - Review: Reflection & Refraction - Superposition of Plane Waves - Wavepackets - ΔΔk Δx Relations

Wavepackets. Outline. - Review: Reflection & Refraction - Superposition of Plane Waves - Wavepackets - ΔΔk Δx Relations Wavepackets Outline - Review: Reflection & Refraction - Superposition of Plane Waves - Wavepackets - ΔΔk Δx Relations 1 Sample Midterm (one of these would be Student X s Problem) Q1: Midterm 1 re-mix (Ex:

More information

Linear Elastic Waves. JOHN G. HARRIS University of Illinois at Urbana-Champaign

Linear Elastic Waves. JOHN G. HARRIS University of Illinois at Urbana-Champaign Linear Elastic Waves JOHN G. HARRIS University of Illinois at Urbana-Champaign PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building, Trumpington Street, Cambridge, United Kingdom

More information

Global geophysics and wave propagation

Global geophysics and wave propagation Global geophysics and wave propagation Reading: Fowler p76 83 Remote sensing Geophysical methods Seismology Gravity and bathymetry Magnetics Heat flow Seismology: Directly samples the physical properties

More information

Surface Waves and Free Oscillations. Surface Waves and Free Oscillations

Surface Waves and Free Oscillations. Surface Waves and Free Oscillations Surface waves in in an an elastic half spaces: Rayleigh waves -Potentials - Free surface boundary conditions - Solutions propagating along the surface, decaying with depth - Lamb s problem Surface waves

More information

MYRES Seismic Constraints on Boundary Layers. Christine Thomas

MYRES Seismic Constraints on Boundary Layers. Christine Thomas MYRES 2004 Seismic Constraints on Boundary Layers Christine Thomas Outline Seismic constraints: what can we resolve? how can we detect seismic structures? how well can we resolve these structures? (resolution

More information

Introduction to Engineering Seismology Lecture 6

Introduction to Engineering Seismology Lecture 6 Lecture 6: Theory of wave propagation; Seismic waves, body and surface waves. Topics How seismic waves are produced? Wave and its Properties Wave Propagation Types of Seismic Waves Compressional or P-Waves

More information

A comparison of the imaging conditions and principles in depth migration algorithms

A comparison of the imaging conditions and principles in depth migration algorithms International Journal of Tomography & Statistics (IJTS), Fall 2006, Vol. 4, No. F06; Int. J. Tomogr. Stat.; 5-16 ISSN 0972-9976; Copyright 2006 by IJTS, ISDER A comparison of the imaging conditions and

More information

Lecture 1: Introduction to Linear and Non-Linear Waves

Lecture 1: Introduction to Linear and Non-Linear Waves Lecture 1: Introduction to Linear and Non-Linear Waves Lecturer: Harvey Segur. Write-up: Michael Bates June 15, 2009 1 Introduction to Water Waves 1.1 Motivation and Basic Properties There are many types

More information

LAB 3: GLOBAL SEISMOLOGY

LAB 3: GLOBAL SEISMOLOGY NAME: LAB TIME: LAB 3: GLOBAL SEISMOLOGY This lab will introduce you to the basic concepts of global seismology and the Earth s interior structure. This is a hybrid assignment: some aspects can be done

More information

Magnetohydrodynamic Waves

Magnetohydrodynamic Waves Magnetohydrodynamic Waves Nick Murphy Harvard-Smithsonian Center for Astrophysics Astronomy 253: Plasma Astrophysics February 17, 2016 These slides are largely based off of 4.5 and 4.8 of The Physics of

More information

2 u 1-D: 3-D: x + 2 u

2 u 1-D: 3-D: x + 2 u c 2013 C.S. Casari - Politecnico di Milano - Introduction to Nanoscience 2013-14 Onde 1 1 Waves 1.1 wave propagation 1.1.1 field Field: a physical quantity (measurable, at least in principle) function

More information

Physics 443, Solutions to PS 1 1

Physics 443, Solutions to PS 1 1 Physics 443, Solutions to PS. Griffiths.9 For Φ(x, t A exp[ a( mx + it], we need that + h Φ(x, t dx. Using the known result of a Gaussian intergral + exp[ ax ]dx /a, we find that: am A h. ( The Schrödinger

More information

Formula Sheet. ( γ. 0 : X(t) = (A 1 + A 2 t) e 2 )t. + X p (t) (3) 2 γ Γ +t Γ 0 : X(t) = A 1 e + A 2 e + X p (t) (4) 2

Formula Sheet. ( γ. 0 : X(t) = (A 1 + A 2 t) e 2 )t. + X p (t) (3) 2 γ Γ +t Γ 0 : X(t) = A 1 e + A 2 e + X p (t) (4) 2 Formula Sheet The differential equation Has the general solutions; with ẍ + γẋ + ω 0 x = f cos(ωt + φ) (1) γ ( γ )t < ω 0 : X(t) = A 1 e cos(ω 0 t + β) + X p (t) () γ = ω ( γ 0 : X(t) = (A 1 + A t) e )t

More information

Global surface-wave tomography

Global surface-wave tomography Global surface-wave tomography Lapo Boschi (lapo@erdw.ethz.ch) October 7, 2009 Love and Rayleigh waves, radial anisotropy Whenever an elastic medium is bounded by a free surface, coherent waves arise that

More information

BRIEF ARTICLE THE AUTHOR

BRIEF ARTICLE THE AUTHOR BRIEF ARTICLE THE AUTHOR 1 2 THE AUTHOR S Pd K Pd S mantle OC IC CMB Figure 1 Figure 1. Illustration of the SPdKS / SKPdS ray-paths with sub-segments labeled. SPdKS is an SKS that intersects the source-side

More information

XI. INTRODUCTION TO QUANTUM MECHANICS. C. Cohen-Tannoudji et al., Quantum Mechanics I, Wiley. Outline: Electromagnetic waves and photons

XI. INTRODUCTION TO QUANTUM MECHANICS. C. Cohen-Tannoudji et al., Quantum Mechanics I, Wiley. Outline: Electromagnetic waves and photons XI. INTRODUCTION TO QUANTUM MECHANICS C. Cohen-Tannoudji et al., Quantum Mechanics I, Wiley. Outline: Electromagnetic waves and photons Material particles and matter waves Quantum description of a particle:

More information

PEAT SEISMOLOGY Lecture 3: The elastic wave equation

PEAT SEISMOLOGY Lecture 3: The elastic wave equation PEAT8002 - SEISMOLOGY Lecture 3: The elastic wave equation Nick Rawlinson Research School of Earth Sciences Australian National University Equation of motion The equation of motion can be derived by considering

More information

Fourier Approach to Wave Propagation

Fourier Approach to Wave Propagation Phys 531 Lecture 15 13 October 005 Fourier Approach to Wave Propagation Last time, reviewed Fourier transform Write any function of space/time = sum of harmonic functions e i(k r ωt) Actual waves: harmonic

More information

Propagation of EM Waves in material media

Propagation of EM Waves in material media Propagation of EM Waves in material media S.M.Lea 09 Wave propagation As usual, we start with Maxwell s equations with no free charges: D =0 B =0 E = B t H = D t + j If we now assume that each field has

More information

Surface Wave Tomography

Surface Wave Tomography Surface Wave Tomography Alexandra Mauerberger gassner@gfz-potsdam.de GEO-DEEP9300 course at CEED, University of Oslo Nov. 6 - Nov. 10 2017 Outline Recap General Methods Techniques to Derive Tomography

More information

The Seismic Wave Equation

The Seismic Wave Equation Chapter 3 The Seismic Wave Equation Using the stress and strain theory developed in the previous chapter, we now construct and solve the seismic wave equation for elastic wave propagation in a uniform

More information

CURVILINEAR MOTION: GENERAL & RECTANGULAR COMPONENTS

CURVILINEAR MOTION: GENERAL & RECTANGULAR COMPONENTS CURVILINEAR MOTION: GENERAL & RECTANGULAR COMPONENTS Today s Objectives: Students will be able to: 1. Describe the motion of a particle traveling along a curved path. 2. Relate kinematic quantities in

More information

ERTH2020 Introduction to Geophysics The Seismic Method. 1. Basic Concepts in Seismology. 1.1 Seismic Wave Types

ERTH2020 Introduction to Geophysics The Seismic Method. 1. Basic Concepts in Seismology. 1.1 Seismic Wave Types ERTH2020 Introduction to Geophysics The Seismic Method 1. Basic Concepts in Seismology 1.1 Seismic Wave Types Existence of different wave types The existence of different seismic wave types can be understood

More information

MA 201: Partial Differential Equations D Alembert s Solution Lecture - 7 MA 201 (2016), PDE 1 / 20

MA 201: Partial Differential Equations D Alembert s Solution Lecture - 7 MA 201 (2016), PDE 1 / 20 MA 201: Partial Differential Equations D Alembert s Solution Lecture - 7 MA 201 (2016), PDE 1 / 20 MA 201 (2016), PDE 2 / 20 Vibrating string and the wave equation Consider a stretched string of length

More information

Displacement at very low frequencies produces very low accelerations since:

Displacement at very low frequencies produces very low accelerations since: SEISMOLOGY The ability to do earthquake location and calculate magnitude immediately brings us into two basic requirement of instrumentation: Keeping accurate time and determining the frequency dependent

More information

Uniform Plane Waves Page 1. Uniform Plane Waves. 1 The Helmholtz Wave Equation

Uniform Plane Waves Page 1. Uniform Plane Waves. 1 The Helmholtz Wave Equation Uniform Plane Waves Page 1 Uniform Plane Waves 1 The Helmholtz Wave Equation Let s rewrite Maxwell s equations in terms of E and H exclusively. Let s assume the medium is lossless (σ = 0). Let s also assume

More information

Wave propagation in an inhomogeneous plasma

Wave propagation in an inhomogeneous plasma DRAFT Wave propagation in an inhomogeneous plasma Felix I. Parra Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX NP, UK This version is of 7 February 208. Introduction In

More information

Topic 5.1: Line Element and Scalar Line Integrals

Topic 5.1: Line Element and Scalar Line Integrals Math 275 Notes Topic 5.1: Line Element and Scalar Line Integrals Textbook Section: 16.2 More Details on Line Elements (vector dr, and scalar ds): http://www.math.oregonstate.edu/bridgebook/book/math/drvec

More information

An acoustic wave equation for orthorhombic anisotropy

An acoustic wave equation for orthorhombic anisotropy Stanford Exploration Project, Report 98, August 1, 1998, pages 6?? An acoustic wave equation for orthorhombic anisotropy Tariq Alkhalifah 1 keywords: Anisotropy, finite difference, modeling ABSTRACT Using

More information

ANALYSIS OF GROUND MOTION AMPLIFICATION OF SEDIMENTARY BASINS: STUDY ON THE HEAVILY DAMAGED BELT ZONE DURING 1995 KOBE EARTHQUAKE

ANALYSIS OF GROUND MOTION AMPLIFICATION OF SEDIMENTARY BASINS: STUDY ON THE HEAVILY DAMAGED BELT ZONE DURING 1995 KOBE EARTHQUAKE ANALYSIS OF GROUND MOTION AMPLIFICATION OF SEDIMENTARY BASINS: STUDY ON THE HEAVILY DAMAGED BELT ZONE DURING 995 KOBE EARTHQUAKE 256 Yuzo SHINOZAKI And Kazuhiro YOSHIDA 2 SUMMARY A direct three-dimensional(3-d)

More information

The second-order 1D wave equation

The second-order 1D wave equation C The second-order D wave equation C. Homogeneous wave equation with constant speed The simplest form of the second-order wave equation is given by: x 2 = Like the first-order wave equation, it responds

More information

Radio Propagation Channels Exercise 2 with solutions. Polarization / Wave Vector

Radio Propagation Channels Exercise 2 with solutions. Polarization / Wave Vector /8 Polarization / Wave Vector Assume the following three magnetic fields of homogeneous, plane waves H (t) H A cos (ωt kz) e x H A sin (ωt kz) e y () H 2 (t) H A cos (ωt kz) e x + H A sin (ωt kz) e y (2)

More information

Chapter 2 Basic Optics

Chapter 2 Basic Optics Chapter Basic Optics.1 Introduction In this chapter we will discuss the basic concepts associated with polarization, diffraction, and interference of a light wave. The concepts developed in this chapter

More information

SAMPLE CHAPTERS UNESCO EOLSS WAVES IN THE OCEANS. Wolfgang Fennel Institut für Ostseeforschung Warnemünde (IOW) an der Universität Rostock,Germany

SAMPLE CHAPTERS UNESCO EOLSS WAVES IN THE OCEANS. Wolfgang Fennel Institut für Ostseeforschung Warnemünde (IOW) an der Universität Rostock,Germany WAVES IN THE OCEANS Wolfgang Fennel Institut für Ostseeforschung Warnemünde (IOW) an der Universität Rostock,Germany Keywords: Wind waves, dispersion, internal waves, inertial oscillations, inertial waves,

More information

SOLUTIONS for Homework #2. 1. The given wave function can be normalized to the total probability equal to 1, ψ(x) = Ne λ x.

SOLUTIONS for Homework #2. 1. The given wave function can be normalized to the total probability equal to 1, ψ(x) = Ne λ x. SOLUTIONS for Homework #. The given wave function can be normalized to the total probability equal to, ψ(x) = Ne λ x. () To get we choose dx ψ(x) = N dx e λx =, () 0 N = λ. (3) This state corresponds to

More information

13.42 LECTURE 2: REVIEW OF LINEAR WAVES

13.42 LECTURE 2: REVIEW OF LINEAR WAVES 13.42 LECTURE 2: REVIEW OF LINEAR WAVES SPRING 2003 c A.H. TECHET & M.S. TRIANTAFYLLOU 1. Basic Water Waves Laplace Equation 2 φ = 0 Free surface elevation: z = η(x, t) No vertical velocity at the bottom

More information

Representation of the quantum and classical states of light carrying orbital angular momentum

Representation of the quantum and classical states of light carrying orbital angular momentum Representation of the quantum and classical states of light carrying orbital angular momentum Humairah Bassa and Thomas Konrad Quantum Research Group, University of KwaZulu-Natal, Durban 4001, South Africa

More information

Earthscope Imaging Science & CIG Seismology Workshop

Earthscope Imaging Science & CIG Seismology Workshop Earthscope Imaging Science & CIG Seismology Introduction to Direct Imaging Methods Alan Levander Department of Earth Science Rice University 1 Two classes of scattered wave imaging systems 1. Incoherent

More information

LINEAR DISPERSIVE WAVES

LINEAR DISPERSIVE WAVES LINEAR DISPERSIVE WAVES Nathaniel Egwu December 16, 2009 Outline 1 INTRODUCTION Dispersion Relations Definition of Dispersive Waves 2 SOLUTION AND ASYMPTOTIC ANALYSIS The Beam Equation General Solution

More information

A Motivation for Fourier Analysis in Physics

A Motivation for Fourier Analysis in Physics A Motivation for Fourier Analysis in Physics PHYS 500 - Southern Illinois University November 8, 2016 PHYS 500 - Southern Illinois University A Motivation for Fourier Analysis in Physics November 8, 2016

More information

In a uniform 3D medium, we have seen that the acoustic Green s function (propagator) is

In a uniform 3D medium, we have seen that the acoustic Green s function (propagator) is Chapter Geometrical optics The material in this chapter is not needed for SAR or CT, but it is foundational for seismic imaging. For simplicity, in this chapter we study the variable-wave speed wave equation

More information

1. Statement of the problem.

1. Statement of the problem. 218 Нелинейные граничные задачи 18, 218-229 (2008 c 2008. M. A. Borodin THE STEFAN PROBLEM The Stefan problem in its classical statement is a mathematical model of the process of propagation of heat in

More information

ELE3310: Basic ElectroMagnetic Theory

ELE3310: Basic ElectroMagnetic Theory A summary for the final examination EE Department The Chinese University of Hong Kong November 2008 Outline Mathematics 1 Mathematics Vectors and products Differential operators Integrals 2 Integral expressions

More information

Lecture notes 5: Diffraction

Lecture notes 5: Diffraction Lecture notes 5: Diffraction Let us now consider how light reacts to being confined to a given aperture. The resolution of an aperture is restricted due to the wave nature of light: as light passes through

More information

Kirchhoff, Fresnel, Fraunhofer, Born approximation and more

Kirchhoff, Fresnel, Fraunhofer, Born approximation and more Kirchhoff, Fresnel, Fraunhofer, Born approximation and more Oberseminar, May 2008 Maxwell equations Or: X-ray wave fields X-rays are electromagnetic waves with wave length from 10 nm to 1 pm, i.e., 10

More information

Nondiffracting Waves in 2D and 3D

Nondiffracting Waves in 2D and 3D Nondiffracting Waves in 2D and 3D A thesis submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Physics from the College of William and Mary by Matthew Stephen

More information

Electromagnetic Waves Across Interfaces

Electromagnetic Waves Across Interfaces Lecture 1: Foundations of Optics Outline 1 Electromagnetic Waves 2 Material Properties 3 Electromagnetic Waves Across Interfaces 4 Fresnel Equations 5 Brewster Angle 6 Total Internal Reflection Christoph

More information

Fiber Optics. Equivalently θ < θ max = cos 1 (n 0 /n 1 ). This is geometrical optics. Needs λ a. Two kinds of fibers:

Fiber Optics. Equivalently θ < θ max = cos 1 (n 0 /n 1 ). This is geometrical optics. Needs λ a. Two kinds of fibers: Waves can be guided not only by conductors, but by dielectrics. Fiber optics cable of silica has nr varying with radius. Simplest: core radius a with n = n 1, surrounded radius b with n = n 0 < n 1. Total

More information

The above dispersion relation results when a plane wave Ψ ( r,t

The above dispersion relation results when a plane wave Ψ ( r,t Lecture 31: Introduction to Klein-Gordon Equation Physics 452 Justin Peatross 31.1 Review of De Broglie - Schrödinger From the de Broglie relation, it is possible to derive the Schrödinger equation, at

More information

THE PHYSICS OF WAVES CHAPTER 1. Problem 1.1 Show that Ψ(x, t) = (x vt) 2. is a traveling wave.

THE PHYSICS OF WAVES CHAPTER 1. Problem 1.1 Show that Ψ(x, t) = (x vt) 2. is a traveling wave. CHAPTER 1 THE PHYSICS OF WAVES Problem 1.1 Show that Ψ(x, t) = (x vt) is a traveling wave. Show thatψ(x, t) is a wave by substitutioninto Equation 1.1. Proceed as in Example 1.1. On line version uses Ψ(x,

More information

Main Menu SUMMARY INTRODUCTION

Main Menu SUMMARY INTRODUCTION - a new method of solution Lasse Amundsen, Børge Arntsen, Arne Reitan, Eirik Ø Dischler, and Bjørn Ursin StatoilHydro Reseach Center, and NTNU SUMMARY We present a wave propagation method rigorous in one-way

More information

9 The conservation theorems: Lecture 23

9 The conservation theorems: Lecture 23 9 The conservation theorems: Lecture 23 9.1 Energy Conservation (a) For energy to be conserved we expect that the total energy density (energy per volume ) u tot to obey a conservation law t u tot + i

More information

Corso di Laurea in Fisica - UNITS ISTITUZIONI DI FISICA PER IL SISTEMA TERRA SURFACE WAVES FABIO ROMANELLI

Corso di Laurea in Fisica - UNITS ISTITUZIONI DI FISICA PER IL SISTEMA TERRA SURFACE WAVES FABIO ROMANELLI Corso di Laurea in Fisica - UNITS ISTITUZIONI DI FISICA PER IL SISTEMA TERRA SURFACE WAVES FABIO ROMANELLI Department of Mathematics & Geosciences University of Trieste romanel@units.it http://moodle.units.it/course/view.php?id=887

More information

MATH 173: PRACTICE MIDTERM SOLUTIONS

MATH 173: PRACTICE MIDTERM SOLUTIONS MATH 73: PACTICE MIDTEM SOLUTIONS This is a closed book, closed notes, no electronic devices exam. There are 5 problems. Solve all of them. Write your solutions to problems and in blue book #, and your

More information

SIO 227C Body wave seismology

SIO 227C Body wave seismology SIO 227C Body wave seismology Peter M. Shearer Institute of Geophysics and Planetary Physics Scripps Institution of Oceanography University of California, San Diego La Jolla, CA 92093-0225 September 30,

More information

Seismic Waves and Earthquakes A Mathematical Overview

Seismic Waves and Earthquakes A Mathematical Overview Seismic Waves and Earthquakes A Mathematical Overview The destruction caused by earthquakes is caused by the seismic waves propagating inside and in particular, near the surface of earth. We describe the

More information

Coupled Heave-Pitch Motions and Froude Krylov Excitation Forces

Coupled Heave-Pitch Motions and Froude Krylov Excitation Forces Coupled Heave-Pitch Motions and Froude Krylov Excitation Forces 13.42 Lecture Notes; Spring 2004; c A.H. Techet 1. Coupled Equation of Motion in Heave and Pitch Once we have set up the simple equation

More information

Basic principles of the seismic method

Basic principles of the seismic method Chapter 2 Basic principles of the seismic method In this chapter we introduce the basic notion of seismic waves. In the earth, seismic waves can propagate as longitudinal (P) or as shear (S) waves. For

More information

1.1 Stress, strain, and displacement! wave equation

1.1 Stress, strain, and displacement! wave equation 32 geophysics 3: introduction to seismology. Stress, strain, and displacement wave equation From the relationship between stress, strain, and displacement, we can derive a 3D elastic wave equation. Figure.

More information

Fundamentals of Fluid Dynamics: Waves in Fluids

Fundamentals of Fluid Dynamics: Waves in Fluids Fundamentals of Fluid Dynamics: Waves in Fluids Introductory Course on Multiphysics Modelling TOMASZ G. ZIELIŃSKI (after: D.J. ACHESON s Elementary Fluid Dynamics ) bluebox.ippt.pan.pl/ tzielins/ Institute

More information

Unphysical negative values of the anelastic SH plane wave energybased transmission coefficient

Unphysical negative values of the anelastic SH plane wave energybased transmission coefficient Shahin Moradi and Edward S. Krebes Anelastic energy-based transmission coefficient Unphysical negative values of the anelastic SH plane wave energybased transmission coefficient ABSTRACT Computing reflection

More information

Solutions: Homework 7

Solutions: Homework 7 Solutions: Homework 7 Ex. 7.1: Frustrated Total Internal Reflection a) Consider light propagating from a prism, with refraction index n, into air, with refraction index 1. We fix the angle of incidence

More information