Seismology and Seismic Imaging

Size: px
Start display at page:

Download "Seismology and Seismic Imaging"

Transcription

1 Seismology and Seismic Imaging 4. Ray theory N. Rawlinson Research School of Earth Sciences, ANU Seismology lecture course p.1/23

2 The ray approximation Here, we consider the problem of how body waves (P and S) propagate through a medium in which the elastic parameters vary with spatial location. The elastic wave equation in a medium with spatially variable properties is ρü = λ( u) + µ [ u + ( u) T ] + (λ + 2µ) ( u) µ u The two terms containing λ and µ mean that P and S motions do not decouple in heterogeneous media. Seismology lecture course p.2/23

3 However, if the scale length of variations in λ and µ are large compared to the seismic wavelength, then P and S can be treated separately and the elastic wave equation is simplified. Even so, solving the elastic wave equation requires exhaustive computational effort. Ray theory is an alternative approach in which a point on the wavefront is tracked rather than the complete wavefield. Ray theory is extensively used due to its simplicity, speed and applicability to a wide range of problems. Seismology lecture course p.3/23

4 Ray theory is strictly valid for media whose length scale variation of λ and µ is much larger than the seismic wavelength (the high frequency assumption). At low frequencies, diffraction can be significant, and ray theory is not generally valid. Seismology lecture course p.4/23

5 The eikonal equation Consider the propagation of compressional waves in heterogeneous media. From before, we have: 2 Φ 1 α 2 2 Φ t 2 = 0 where Φ represents the scalar potential of a P-wave. Now assume a harmonic solution of the form: Φ = A(x)exp[ iω(t(x) + t)] where T(x) is a phase function which describes the arbitrary distribution in space of a surface of constant phase. Seismology lecture course p.5/23

6 Substitution of the above expression into the wave equation yields: T 2 1 α 2 = 2 A Aω 2 A similar expression can be obtained for S-waves (β instead of α). If we now make the high frequency approximation i.e. that ω is large enough that 1/ω 2 0, then T 2 = U 2 which is known as the eikonal equation. U = slowness = 1/velocity. Seismology lecture course p.6/23

7 T(x) = constant defines surfaces called wavefronts. T(x) defines raypaths. The function T(x) has units of time and simply represents the time required by the wavefront to reach x from some reference location x 0. Seismology lecture course p.7/23

8 The ray equation If we denote s as the arc length parameter along a ray and r as the position vector of the ray, then dr ds = T U dr s 1 s 0 r 0 r 1 0 Seismology lecture course p.8/23

9 Now let s examine how the surface of constant traveltime T varies along the ray: dt ds = T dr ds = T T U = U The above two equations may be combined to give: [ d U dr ] = U ds ds which is referred to as the ray equation and may be used to integrate the ray trajectory through an arbitrarily varying medium in 3-D space. Seismology lecture course p.9/23

10 Fermat s principle Fermat s principle states that the ray path between two points P and Q is a path of stationary time t PQ = t Q P Uds = extremum true path true path L Seismology lecture course p.10/23

11 To prove Fermat s principle, we need to show that when a ray path is perturbed, the effect on traveltime is second order δt PQ = δ Q P Uds = Q P δuds + Uδ(ds) r+dr + δr+d( δr) r+ δr δr dr+d( δr) perturbed ray path segment dr reference ray path segment δr +d( δr) r+dr r Seismology lecture course p.11/23

12 We can show that, ignoring higher order terms, this integral reduces to: δt PQ = Q P [ U d ds ( U dr )] ds δrds and the integrand equals zero by the ray equation. Hence, the first-order perturbation of traveltime due to a perturbation in the ray path is zero, and we have proven Fermat s principle. Seismology lecture course p.12/23

13 Snell s law We can use Fermat s principle to derive Snell s law, which describes the refraction of a ray path at an interface between media of different wavespeeds. B( x 2, z 2 ) v 2 v 1 i 2 t 2 O( X, 0) z=0 t 1 i 1 x 1 A(, z 1 ) x=x Seismology lecture course p.13/23

14 The total traveltime T between A and B is given by T = z (X x 1 ) 2 v 1 + z (X x 2 ) 2 v 2 Fermat s principle says that dt/dx = 0, so X x 1 v 1 z (X x 1 ) 2 + X x 2 v 2 z (X x 2 ) 2 = 0 This gives us Snell s law: sin i 1 v 1 = sin i 2 v 2 Seismology lecture course p.14/23

15 Rays in spherically symmetric media On a global scale, the structure of the Earth is, to a good approximation, spherically symmetric. In this case, slowness is a function of radius only: U(r). Let us start by looking at how the quantity ( r U dr ) ds varies along the raypath Seismology lecture course p.15/23

16 Ray parameter In other words, how does it vary with the arc length parameter s? [ ( d r U dr )] = dr ( ds ds ds U dr ) + r d ( U dr ) ds ds ds = 0 Thus, r ( U dr ) ds = constant so this quantity is preserved along the ray, and its direction is normal to the plane that contains dr/ds and r. Seismology lecture course p.16/23

17 The raypath therefore lies in a plane that contains the origin of the coordinate system. The magnitude of the preserved quantity p is referred to as the ray parameter: r U dr ds = ru sin i p is constant along the path for a particular ray. p = ru sin i is a general form of Snell s law for spherically symmetric media. The radius at which the ray bottoms out is given by r = p/u since this occurs when i = 90. Seismology lecture course p.17/23

18 Traveltime determination The eikonal equation in spherical coordinates with U(r) is ( ) 2 T + 1 ( ) 2 T = [U(r)] 2 r r 2 θ To solve the eikonal equation, assume a separation of variables, i.e. T(r,θ) = f(θ) + g(r) Substitution into the eikonal equation yields: T(r,θ) = kθ ± r r S r2 U 2 k 2 dr r where k 2 is a separation constant. Seismology lecture course p.18/23

19 Since T is traveltime, it must be positive and increase with distance along the ray. Take +ve for ascending ray since dr > 0. Take ve for descending ray since dr < 0. Therefore, the integral needs to be split up if the ray turns. S R r S θ r R Seismology lecture course p.19/23

20 It can be shown that k = p, the ray parameter, so T(r,θ) = pθ ± r r S r2 U 2 p 2 dr r If we differentiate the above expression with respect to θ, we get: ( ) T = p θ which tells us that the ray parameter can be determined from data if the source separation is known. Seismology lecture course p.20/23

21 The ray parameter can be measured from the gradient of a traveltime curve. T θ θ Seismology lecture course p.21/23

22 If we now make use of Fermat s principle, which can be stated here as T/ p = 0, we can differentiate our integral expression with respect to p to give T = ± r ru 2 r S r2 U 2 p 2dr If the ray begins and ends at the surface, then the ascending and descending contributions are equal. S R T 1 T 2 r e r 0 r e Seismology lecture course p.22/23

23 The total traveltime is thus given by (c =wavespeed): T = 2 re ru 2 re r 0 r2 U 2 p 2dr = 2 r 0 r/c r2 c 2 p 2dr If is the total angular distance covered by the ray, then: re pc/r = 2 r2 c 2 p 2dr since from before: r 0 θ = ±p r r S dr r r 2 U 2 p 2 Seismology lecture course p.23/23

PEAT SEISMOLOGY Lecture 9: Anisotropy, attenuation and anelasticity

PEAT SEISMOLOGY Lecture 9: Anisotropy, attenuation and anelasticity PEAT8002 - SEISMOLOGY Lecture 9: Anisotropy, attenuation and anelasticity Nick Rawlinson Research School of Earth Sciences Australian National University Anisotropy Introduction Most of the theoretical

More information

PEAT SEISMOLOGY Lecture 3: The elastic wave equation

PEAT SEISMOLOGY Lecture 3: The elastic wave equation PEAT8002 - SEISMOLOGY Lecture 3: The elastic wave equation Nick Rawlinson Research School of Earth Sciences Australian National University Equation of motion The equation of motion can be derived by considering

More information

Edwin Soeryadjaya Problem Theoretical 3: Mirage

Edwin Soeryadjaya Problem Theoretical 3: Mirage The refractive index of the air varies with temperature. Cold air is denser than warm air and has therefore a greater refractive index. Thus a temperature gradient in the atmosphere is always associated

More information

Introduction to Seismology Spring 2008

Introduction to Seismology Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 1.510 Introduction to Seismology Spring 008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 1.510 Introduction to

More information

Basic Ray Tracing. Rick Aster and Sue Bilek. October 3, 2003

Basic Ray Tracing. Rick Aster and Sue Bilek. October 3, 2003 Basic Ray Tracing Rick Aster and Sue Bilek October 3, 3 A key observation that we can make about a seismic signal is its arrival time. From systematic observations of arrival times, we can deduce useful

More information

TODAY S LECTURE SNELL S LAW IN THE SPHERICAL MEDIA RAY EQUATION. sin i 1 = sin j. sin j = OQ sin i 2 = OQ OA OB. sin i 2 OA r 1. sin j = OB sin i 2

TODAY S LECTURE SNELL S LAW IN THE SPHERICAL MEDIA RAY EQUATION. sin i 1 = sin j. sin j = OQ sin i 2 = OQ OA OB. sin i 2 OA r 1. sin j = OB sin i 2 TODAY S LECTURE. Snell s law in spherial media 2. Ray equation 3. Radius of urvature 4. Amplitude Geometrial spreading 5. τ p SNELL S LAW IN THE SPHERICAL MEDIA i A i 2 j B 2 At eah interfae sin i = sin

More information

- 1 - θ 1. n 1. θ 2. mirror. object. image

- 1 - θ 1. n 1. θ 2. mirror. object. image TEST 5 (PHY 50) 1. a) How will the ray indicated in the figure on the following page be reflected by the mirror? (Be accurate!) b) Explain the symbols in the thin lens equation. c) Recall the laws governing

More information

Chapter 1. Ray Optics

Chapter 1. Ray Optics Chapter 1. Ray Optics Postulates of Ray Optics n c v A ds B Reflection and Refraction Fermat s Principle: Law of Reflection Fermat s principle: Light rays will travel from point A to point B in a medium

More information

Lecture 6, September 1, 2017

Lecture 6, September 1, 2017 Engineering Mathematics Fall 07 Lecture 6, September, 07 Escape Velocity Suppose we have a planet (or any large near to spherical heavenly body) of radius R and acceleration of gravity at the surface of

More information

c. Better work with components of slowness vector s (or wave + k z 2 = k 2 = (ωs) 2 = ω 2 /c 2. k=(kx,k z )

c. Better work with components of slowness vector s (or wave + k z 2 = k 2 = (ωs) 2 = ω 2 /c 2. k=(kx,k z ) .50 Introduction to seismology /3/05 sophie michelet Today s class: ) Eikonal equation (basis of ray theory) ) Boundary conditions (Stein s book.3.0) 3) Snell s law Some remarks on what we discussed last

More information

ROINN NA FISICE Department of Physics

ROINN NA FISICE Department of Physics ROINN NA FISICE Department of 1.1 Astrophysics Telescopes Profs Gabuzda & Callanan 1.2 Astrophysics Faraday Rotation Prof. Gabuzda 1.3 Laser Spectroscopy Cavity Enhanced Absorption Spectroscopy Prof. Ruth

More information

Physics 351, Spring 2017, Homework #4. Due at start of class, Friday, February 10, 2017

Physics 351, Spring 2017, Homework #4. Due at start of class, Friday, February 10, 2017 Physics 351, Spring 2017, Homework #4. Due at start of class, Friday, February 10, 2017 Course info is at positron.hep.upenn.edu/p351 When you finish this homework, remember to visit the feedback page

More information

Introduction to Seismology

Introduction to Seismology 1.510 Introduction to Seismology Lecture 5 Feb., 005 1 Introduction At previous lectures, we derived the equation of motion (λ + µ) ( u(x, t)) µ ( u(x, t)) = ρ u(x, t) (1) t This equation of motion can

More information

Speed of Light in Glass

Speed of Light in Glass Experiment (1) Speed of Light in Glass Objective:- This experiment is used to determine the speed of propagation of light waves in glass. Apparatus:- Prism, spectrometer, Halogen lamp source. Theory:-

More information

Chapter 6. Secondary source theories

Chapter 6. Secondary source theories Chapter 6 Secondary source theories So far we have concentrated on synthetic seismogram calculations for the case of one-dimensional Earth models in which the velocity varies only as a function of depth.

More information

Lecture 9: Introduction to Diffraction of Light

Lecture 9: Introduction to Diffraction of Light Lecture 9: Introduction to Diffraction of Light Lecture aims to explain: 1. Diffraction of waves in everyday life and applications 2. Interference of two one dimensional electromagnetic waves 3. Typical

More information

Introduction to Seismology Spring 2008

Introduction to Seismology Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 12.510 Introduction to Seismology Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 12.510 Introduction

More information

LECTURE 23: LIGHT. Propagation of Light Huygen s Principle

LECTURE 23: LIGHT. Propagation of Light Huygen s Principle LECTURE 23: LIGHT Propagation of Light Reflection & Refraction Internal Reflection Propagation of Light Huygen s Principle Each point on a primary wavefront serves as the source of spherical secondary

More information

Sound Propagation through Media. Nachiketa Tiwari Indian Institute of Technology Kanpur

Sound Propagation through Media. Nachiketa Tiwari Indian Institute of Technology Kanpur Sound Propagation through Media Nachiketa Tiwari Indian Institute of Technology Kanpur LECTURE-17 HARMONIC PLANE WAVES Introduction In this lecture, we discuss propagation of 1-D planar waves as they travel

More information

Lecture 11: Introduction to diffraction of light

Lecture 11: Introduction to diffraction of light Lecture 11: Introduction to diffraction of light Diffraction of waves in everyday life and applications Diffraction in everyday life Diffraction in applications Spectroscopy: physics, chemistry, medicine,

More information

LECTURE 23: LIGHT. Propagation of Light Huygen s Principle

LECTURE 23: LIGHT. Propagation of Light Huygen s Principle LECTURE 23: LIGHT Propagation of Light Reflection & Refraction Internal Reflection Propagation of Light Huygen s Principle Each point on a primary wavefront serves as the source of spherical secondary

More information

P137 Our Experiences of 3D Synthetic Seismic Modeling with Tip-wave Superposition Method and Effective Coefficients

P137 Our Experiences of 3D Synthetic Seismic Modeling with Tip-wave Superposition Method and Effective Coefficients P137 Our Experiences of 3D Synthetic Seismic Modeling with Tip-wave Superposition Method and Effective Coefficients M. Ayzenberg (StatoilHydro), A. Aizenberg (Institute of Petroleum Geology and Geophysics),

More information

Receiver. Johana Brokešová Charles University in Prague

Receiver. Johana Brokešová Charles University in Prague Propagation of seismic waves - theoretical background Receiver Johana Brokešová Charles University in Prague Seismic waves = waves in elastic continuum a model of the medium through which the waves propagate

More information

Traveltime sensitivity kernels: Banana-doughnuts or just plain bananas? a

Traveltime sensitivity kernels: Banana-doughnuts or just plain bananas? a Traveltime sensitivity kernels: Banana-doughnuts or just plain bananas? a a Published in SEP report, 103, 61-68 (2000) James Rickett 1 INTRODUCTION Estimating an accurate velocity function is one of the

More information

2.5 Sound waves in an inhomogeneous, timedependent

2.5 Sound waves in an inhomogeneous, timedependent .5. SOUND WAVES IN AN INHOMOGENEOUS, TIME-DEPENDENT MEDIUM49.5 Sound waves in an inhomogeneous, timedependent medium So far, we have only dealt with cases where c was constant. This, however, is usually

More information

Electricity & Optics

Electricity & Optics Physics 24100 Electricity & Optics Lecture 26 Chapter 33 sec. 1-4 Fall 2017 Semester Professor Koltick Interference of Light Interference phenomena are a consequence of the wave-like nature of light Electric

More information

Seismic Wave Propagation: HW2 Due 13/5

Seismic Wave Propagation: HW2 Due 13/5 Reading: Scales Chapter 5.1-5.3, 6, 7, 9, Kallweit and Wood (198), Schneider (1978) Problems.1-.8 should be done on your own. You may work together to solve problems.9-.10, but you must hand in your own

More information

Basic principles of the seismic method

Basic principles of the seismic method Chapter 2 Basic principles of the seismic method In this chapter we introduce the basic notion of seismic waves. In the earth, seismic waves can propagate as longitudinal (P) or as shear (S) waves. For

More information

Introduction: Special Relativity

Introduction: Special Relativity Introduction: Special Relativity Observation: The speed c e.g., the speed of light is the same in all coordinate systems i.e. an object moving with c in S will be moving with c in S Therefore: If " r!

More information

PEAT SEISMOLOGY Lecture 12: Earthquake source mechanisms and radiation patterns II

PEAT SEISMOLOGY Lecture 12: Earthquake source mechanisms and radiation patterns II PEAT8002 - SEISMOLOGY Lecture 12: Earthquake source mechanisms and radiation patterns II Nick Rawlinson Research School of Earth Sciences Australian National University Waveform modelling P-wave first-motions

More information

Far-field radiation from seismic sources in 2D attenuative anisotropic media

Far-field radiation from seismic sources in 2D attenuative anisotropic media CWP-535 Far-field radiation from seismic sources in 2D attenuative anisotropic media Yaping Zhu and Ilya Tsvankin Center for Wave Phenomena, Department of Geophysics, Colorado School of Mines, Golden,

More information

Mapping the P-S Conversion Point in VTI Media. * Jianli Yang Don C. Lawton

Mapping the P-S Conversion Point in VTI Media. * Jianli Yang Don C. Lawton Mapping the P-S Conversion Point in VTI Media * Jianli Yang Don C. Lawton Outline! Introduction! Theory! Numerical modeling methodology and results! NORSARD anisotropy ray mapping! Discussion and conclusions!

More information

Computational High Frequency Wave Propagation

Computational High Frequency Wave Propagation Computational High Frequency Wave Propagation Olof Runborg CSC, KTH Isaac Newton Institute Cambridge, February 2007 Olof Runborg (KTH) High-Frequency Waves INI, 2007 1 / 52 Outline 1 Introduction, background

More information

Interference. Gambar: Museum Victoria Australia

Interference. Gambar: Museum Victoria Australia Interference Gambar: Museum Victoria Australia Formulation of Interference Intensity Superposition between two waves (point sources) Two separate point sources S 1 (x 1 ) and S 2 (x 2 ) generate EM waves

More information

Chap 11. Vibration and Waves. The impressed force on an object is proportional to its displacement from it equilibrium position.

Chap 11. Vibration and Waves. The impressed force on an object is proportional to its displacement from it equilibrium position. Chap 11. Vibration and Waves Sec. 11.1 - Simple Harmonic Motion The impressed force on an object is proportional to its displacement from it equilibrium position. F x This restoring force opposes the change

More information

The Principle of Least Action

The Principle of Least Action The Principle of Least Action In their never-ending search for general principles, from which various laws of Physics could be derived, physicists, and most notably theoretical physicists, have often made

More information

Finite-frequency tomography

Finite-frequency tomography Finite-frequency tomography Lapo Boschi (lapo@erdw.ethz.ch) October 14, 2009 Application of Born theory (scattering theory) to the ray-theory solution (the forward problem) In earlier lectures we have

More information

In a uniform 3D medium, we have seen that the acoustic Green s function (propagator) is

In a uniform 3D medium, we have seen that the acoustic Green s function (propagator) is Chapter Geometrical optics The material in this chapter is not needed for SAR or CT, but it is foundational for seismic imaging. For simplicity, in this chapter we study the variable-wave speed wave equation

More information

Introduction to Algebraic and Geometric Topology Week 14

Introduction to Algebraic and Geometric Topology Week 14 Introduction to Algebraic and Geometric Topology Week 14 Domingo Toledo University of Utah Fall 2016 Computations in coordinates I Recall smooth surface S = {f (x, y, z) =0} R 3, I rf 6= 0 on S, I Chart

More information

p(θ,φ,θ,φ) = we have: Thus:

p(θ,φ,θ,φ) = we have: Thus: 1. Scattering RT Calculations We come spinning out of nothingness, scattering stars like dust. - Jalal ad-din Rumi (Persian Poet, 1207-1273) We ve considered solutions to the radiative transfer equation

More information

Recap. The bigger the exhaust speed, ve, the higher the gain in velocity of the rocket.

Recap. The bigger the exhaust speed, ve, the higher the gain in velocity of the rocket. Recap Classical rocket propulsion works because of momentum conservation. Exhaust gas ejected from a rocket pushes the rocket forwards, i.e. accelerates it. The bigger the exhaust speed, ve, the higher

More information

Physics 106a, Caltech 13 November, Lecture 13: Action, Hamilton-Jacobi Theory. Action-Angle Variables

Physics 106a, Caltech 13 November, Lecture 13: Action, Hamilton-Jacobi Theory. Action-Angle Variables Physics 06a, Caltech 3 November, 08 Lecture 3: Action, Hamilton-Jacobi Theory Starred sections are advanced topics for interest and future reference. The unstarred material will not be tested on the final

More information

Physics and Chemistry of the Earth and Terrestrial Planets

Physics and Chemistry of the Earth and Terrestrial Planets MIT OpenCourseWare http://ocw.mit.edu 12.002 Physics and Chemistry of the Earth and Terrestrial Planets Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Two Methods for Determining the Moment of a Magnet Inside a Cue Ball

Two Methods for Determining the Moment of a Magnet Inside a Cue Ball WJP X, XXXX.XX Wabash (20XX) Journal of Physics 1 Two Methods for Determining the Moment of a Magnet Inside a Cue Ball Adam L. Fritsch and Thomas F. Pizarek Department of Physics, Wabash College, Crawfordsville,

More information

General Relativity. on the frame of reference!

General Relativity. on the frame of reference! General Relativity Problems with special relativity What makes inertial frames special? How do you determine whether a frame is inertial? Inertial to what? Problems with gravity: In equation F = GM 1M

More information

Lecture notes 5: Diffraction

Lecture notes 5: Diffraction Lecture notes 5: Diffraction Let us now consider how light reacts to being confined to a given aperture. The resolution of an aperture is restricted due to the wave nature of light: as light passes through

More information

Wave Propagation in Uniaxial Media. Reflection and Transmission at Interfaces

Wave Propagation in Uniaxial Media. Reflection and Transmission at Interfaces Lecture 5: Crystal Optics Outline 1 Homogeneous, Anisotropic Media 2 Crystals 3 Plane Waves in Anisotropic Media 4 Wave Propagation in Uniaxial Media 5 Reflection and Transmission at Interfaces Christoph

More information

Lecture 19 Optical MEMS (1)

Lecture 19 Optical MEMS (1) EEL6935 Advanced MEMS (Spring 5) Instructor: Dr. Huikai Xie Lecture 19 Optical MEMS (1) Agenda: Optics Review EEL6935 Advanced MEMS 5 H. Xie 3/8/5 1 Optics Review Nature of Light Reflection and Refraction

More information

Corso di Laurea in Fisica - UNITS ISTITUZIONI DI FISICA PER IL SISTEMA TERRA. Wave propagation FABIO ROMANELLI

Corso di Laurea in Fisica - UNITS ISTITUZIONI DI FISICA PER IL SISTEMA TERRA. Wave propagation FABIO ROMANELLI Corso di Laurea in Fisica - UNITS ISTITUZIONI DI FISICA PER IL SISTEMA TERRA Wave propagation FABIO ROMANELLI Department of Mathematics & Geosciences University of Trieste romanel@units.it http://moodle2.units.it/course/view.php?id=887

More information

Mapping the conversion point in vertical transversely isotropic (VTI) media

Mapping the conversion point in vertical transversely isotropic (VTI) media Mapping the conversion point in vertical transversely isotropic (VTI) media Jianli Yang and Don. C. Lawton Conversion-point mapping ABSTRACT The important aspect of converted-wave (P-S) seismology is that

More information

Single Particle Motion

Single Particle Motion Single Particle Motion C ontents Uniform E and B E = - guiding centers Definition of guiding center E gravitation Non Uniform B 'grad B' drift, B B Curvature drift Grad -B drift, B B invariance of µ. Magnetic

More information

We G Elastic One-Return Boundary Element Method and Hybrid Elastic Thin-Slab Propagator

We G Elastic One-Return Boundary Element Method and Hybrid Elastic Thin-Slab Propagator We G05 0 Elastic One-Return Boundary Element Method and Hybrid Elastic Thin-lab Propagator R.. Wu* (University of California) & Z. Ge (Beijing University, China) UMMARY We developed the theory and algorithm

More information

Reflection of SV- Waves from the Free Surface of a. Magneto-Thermoelastic Isotropic Elastic. Half-Space under Initial Stress

Reflection of SV- Waves from the Free Surface of a. Magneto-Thermoelastic Isotropic Elastic. Half-Space under Initial Stress Mathematica Aeterna, Vol. 4, 4, no. 8, 877-93 Reflection of SV- Waves from the Free Surface of a Magneto-Thermoelastic Isotropic Elastic Half-Space under Initial Stress Rajneesh Kakar Faculty of Engineering

More information

Surface Waves and Free Oscillations. Surface Waves and Free Oscillations

Surface Waves and Free Oscillations. Surface Waves and Free Oscillations Surface waves in in an an elastic half spaces: Rayleigh waves -Potentials - Free surface boundary conditions - Solutions propagating along the surface, decaying with depth - Lamb s problem Surface waves

More information

Overview - Previous lecture 1/2

Overview - Previous lecture 1/2 Overview - Previous lecture 1/2 Derived the wave equation with solutions of the form We found that the polarization of the material affects wave propagation, and found the dispersion relation ω(k) with

More information

Theory - SBRC fundamentals

Theory - SBRC fundamentals Chapter 2 Theory - SBRC fundamentals The approach proposed to estimate hydraulic properties of rocks using microseismicity is called Seismicity Based Reservoir Characterization (SBRC). It uses a spatio-temporal

More information

The Earth s Structure from Travel Times

The Earth s Structure from Travel Times from Travel Times Spherically symmetric structure: PREM - Crustal Structure - Upper Mantle structure Phase transitions Anisotropy - Lower Mantle Structure D D - Structure of of the Outer and Inner Core

More information

Lecture 3: Asymptotic Methods for the Reduced Wave Equation

Lecture 3: Asymptotic Methods for the Reduced Wave Equation Lecture 3: Asymptotic Methods for the Reduced Wave Equation Joseph B. Keller 1 The Reduced Wave Equation Let v (t,) satisfy the wave equation v 1 2 v c 2 = 0, (1) (X) t2 where c(x) is the propagation speed

More information

The exact eikonals (Hamiltonians) of the coupled quasi-compressional ( qp ) and quasi-shear ( qs

The exact eikonals (Hamiltonians) of the coupled quasi-compressional ( qp ) and quasi-shear ( qs Snell s law in transversely isotropic media P.F. aley Snell s law in transversely isotropic media ABSTRACT The problem of reflection and transmission of waves at a plane boundary separating two transversely

More information

Th Guided Waves - Inversion and Attenuation

Th Guided Waves - Inversion and Attenuation Th-01-08 Guided Waves - Inversion and Attenuation D. Boiero* (WesternGeco), C. Strobbia (WesternGeco), L. Velasco (WesternGeco) & P. Vermeer (WesternGeco) SUMMARY Guided waves contain significant information

More information

Lecture: Wave-induced Momentum Fluxes: Radiation Stresses

Lecture: Wave-induced Momentum Fluxes: Radiation Stresses Chapter 4 Lecture: Wave-induced Momentum Fluxes: Radiation Stresses Here we derive the wave-induced depth-integrated momentum fluxes, otherwise known as the radiation stress tensor S. These are the 2nd-order

More information

ELE 3310 Tutorial 10. Maxwell s Equations & Plane Waves

ELE 3310 Tutorial 10. Maxwell s Equations & Plane Waves ELE 3310 Tutorial 10 Mawell s Equations & Plane Waves Mawell s Equations Differential Form Integral Form Faraday s law Ampere s law Gauss s law No isolated magnetic charge E H D B B D J + ρ 0 C C E r dl

More information

Electromagnetic Waves Across Interfaces

Electromagnetic Waves Across Interfaces Lecture 1: Foundations of Optics Outline 1 Electromagnetic Waves 2 Material Properties 3 Electromagnetic Waves Across Interfaces 4 Fresnel Equations 5 Brewster Angle 6 Total Internal Reflection Christoph

More information

Fundamentals of Modern Optics

Fundamentals of Modern Optics Script Fundamentals of Modern Optics, FSU Jena, Prof. T. Pertsch, FoMO_Script_2014-10-19s.docx 1 Fundamentals of Modern Optics Winter Term 2014/2015 Prof. Thomas Pertsch Abbe School of Photonics Friedrich-Schiller-Universität

More information

Kinematics

Kinematics Classical Mechanics Kinematics Velocities Idea 1 Choose the appropriate frame of reference. Useful frames: - Bodies are at rest - Projections of velocities vanish - Symmetric motion Change back to the

More information

The Seismic Wave Equation

The Seismic Wave Equation Chapter 3 The Seismic Wave Equation Using the stress and strain theory developed in the previous chapter, we now construct and solve the seismic wave equation for elastic wave propagation in a uniform

More information

Prevailing-frequency approximation of the coupling ray theory for S waves

Prevailing-frequency approximation of the coupling ray theory for S waves Prevailing-frequency approximation of the coupling ray theory for S waves Petr Bulant & Luděk Klimeš Department of Geophysics Faculty of Mathematics and Physics Charles University in Prague S EI S MIC

More information

TTI Anisotropic Depth Migration: Which Tilt Estimate Should We Use?

TTI Anisotropic Depth Migration: Which Tilt Estimate Should We Use? TTI Anisotropic Depth Migration: Which Tilt Estimate Should We Use? Francois Audebert* CGG Americas, Calgary, Alberta, Canada faudebert@cgg.com and Volker Dirks CGG Americas, Calgary, Alberta, Canada Abstract

More information

EITN90 Radar and Remote Sensing Lecture 5: Target Reflectivity

EITN90 Radar and Remote Sensing Lecture 5: Target Reflectivity EITN90 Radar and Remote Sensing Lecture 5: Target Reflectivity Daniel Sjöberg Department of Electrical and Information Technology Spring 2018 Outline 1 Basic reflection physics 2 Radar cross section definition

More information

Rigid Object. Chapter 10. Angular Position. Angular Position. A rigid object is one that is nondeformable

Rigid Object. Chapter 10. Angular Position. Angular Position. A rigid object is one that is nondeformable Rigid Object Chapter 10 Rotation of a Rigid Object about a Fixed Axis A rigid object is one that is nondeformable The relative locations of all particles making up the object remain constant All real objects

More information

Seismic Waves Propagation in Complex Media

Seismic Waves Propagation in Complex Media H4.SMR/1586-1 "7th Workshop on Three-Dimensional Modelling of Seismic Waves Generation and their Propagation" 5 October - 5 November 004 Seismic Waves Propagation in Comple Media Fabio ROMANELLI Dept.

More information

Wave Phenomena Physics 15c. Lecture 15 Reflection and Refraction

Wave Phenomena Physics 15c. Lecture 15 Reflection and Refraction Wave Phenomena Physics 15c Lecture 15 Reflection and Refraction What We (OK, Brian) Did Last Time Discussed EM waves in vacuum and in matter Maxwell s equations Wave equation Plane waves E t = c E B t

More information

P185 TTI Anisotropic Depth Migration - Which Tilt Estimate Should We Use?

P185 TTI Anisotropic Depth Migration - Which Tilt Estimate Should We Use? P18 TTI Anisotropic Depth Migration - Which Tilt Estimate Should We Use? F.S. Audebert* (CGG Americas Inc.), A. Pettenati (Ecole Supérieure d' Electricité) & V. Dirks (CGG Americas Inc) SUMMARY We perform

More information

Ray Optics. 30 teaching hours (every wednesday 9-12am) labs as possible, tutoring (see NW s homepage on atomoptic.

Ray Optics. 30 teaching hours (every wednesday 9-12am) labs as possible, tutoring (see NW s homepage on  atomoptic. Erasmus Mundus Mundus OptSciTech Nathalie Westbrook Ray Optics 30 teaching hours (every wednesday 9-12am) including lectures, problems in class and regular assignments,, as many labs as possible, tutoring

More information

Elastic wave-equation migration for laterally varying isotropic and HTI media. Richard A. Bale and Gary F. Margrave

Elastic wave-equation migration for laterally varying isotropic and HTI media. Richard A. Bale and Gary F. Margrave Elastic wave-equation migration for laterally varying isotropic and HTI media Richard A. Bale and Gary F. Margrave a Outline Introduction Theory Elastic wavefield extrapolation Extension to laterally heterogeneous

More information

Geometrized units. Specific energy and specific angular momentum

Geometrized units. Specific energy and specific angular momentum In this lecture we will continue our discussion of general relativity. We first introduce a convention that allows us to drop the many factors of G and c that appear in formulae, then talk in more detail

More information

Snell s law in transversely isotropic media using linearized group velocities and related quantities

Snell s law in transversely isotropic media using linearized group velocities and related quantities Snell's law using group angles and velocities Snell s law in transversely isotropic media using linearized group velocities and related quantities P.F. Daley ABSTRACT Using a linearized approximation for

More information

7.2.1 Seismic waves. Waves in a mass- spring system

7.2.1 Seismic waves. Waves in a mass- spring system 7..1 Seismic waves Waves in a mass- spring system Acoustic waves in a liquid or gas Seismic waves in a solid Surface waves Wavefronts, rays and geometrical attenuation Amplitude and energy Waves in a mass-

More information

CS6640 Computational Photography. 8. Gaussian optics Steve Marschner

CS6640 Computational Photography. 8. Gaussian optics Steve Marschner S6640 omputational Photography 8. Gaussian optics 2012 Steve Marschner 1 First order optics Lenses are complicated it s all about correcting aberrations If we re not interested in aberrations, it s all

More information

Solutions to Problems in Chapter 2: Waves

Solutions to Problems in Chapter 2: Waves Solutions to Problems in Chapter 2: Waves [Figure and equation numbers in the answers are preceded by ii so as to avoid confusion with figure and equation numbers in the text.] 2.1 A chain of masses m

More information

Offset Spheroidal Mirrors for Gaussian Beam Optics in ZEMAX

Offset Spheroidal Mirrors for Gaussian Beam Optics in ZEMAX Offset Spheroidal Mirrors for Gaussian Beam Optics in ZEMAX Antony A. Stark and Urs Graf Smithsonian Astrophysical Observatory, University of Cologne aas@cfa.harvard.edu 1 October 2013 This memorandum

More information

P321(b), Assignement 1

P321(b), Assignement 1 P31(b), Assignement 1 1 Exercise 3.1 (Fetter and Walecka) a) The problem is that of a point mass rotating along a circle of radius a, rotating with a constant angular velocity Ω. Generally, 3 coordinates

More information

Typical anisotropies introduced by geometry (not everything is spherically symmetric) temperature gradients magnetic fields electrical fields

Typical anisotropies introduced by geometry (not everything is spherically symmetric) temperature gradients magnetic fields electrical fields Lecture 6: Polarimetry 1 Outline 1 Polarized Light in the Universe 2 Fundamentals of Polarized Light 3 Descriptions of Polarized Light Polarized Light in the Universe Polarization indicates anisotropy

More information

Mathematical Tripos Part IA Lent Term Example Sheet 1. Calculate its tangent vector dr/du at each point and hence find its total length.

Mathematical Tripos Part IA Lent Term Example Sheet 1. Calculate its tangent vector dr/du at each point and hence find its total length. Mathematical Tripos Part IA Lent Term 205 ector Calculus Prof B C Allanach Example Sheet Sketch the curve in the plane given parametrically by r(u) = ( x(u), y(u) ) = ( a cos 3 u, a sin 3 u ) with 0 u

More information

Global surface-wave tomography

Global surface-wave tomography Global surface-wave tomography Lapo Boschi (lapo@erdw.ethz.ch) October 7, 2009 Love and Rayleigh waves, radial anisotropy Whenever an elastic medium is bounded by a free surface, coherent waves arise that

More information

Linear Systems. : object : image. Describes the output of a linear system. input. output. Impulse response function

Linear Systems. : object : image. Describes the output of a linear system. input. output. Impulse response function Linear Systems Describes the output of a linear system Gx FxHx- xdx FxHx F x G x x output input Impulse response function H x xhx- xdx x If the microscope is a linear system: : object : image G x S F x

More information

An acoustic wave equation for orthorhombic anisotropy

An acoustic wave equation for orthorhombic anisotropy Stanford Exploration Project, Report 98, August 1, 1998, pages 6?? An acoustic wave equation for orthorhombic anisotropy Tariq Alkhalifah 1 keywords: Anisotropy, finite difference, modeling ABSTRACT Using

More information

Electromagnetic fields and waves

Electromagnetic fields and waves Electromagnetic fields and waves Maxwell s rainbow Outline Maxwell s equations Plane waves Pulses and group velocity Polarization of light Transmission and reflection at an interface Macroscopic Maxwell

More information

General Physics (PHY 2130)

General Physics (PHY 2130) General Physics (PHY 2130) Lecture 25 Oscillations simple harmonic motion pendulum driven and damped oscillations http://www.physics.wayne.edu/~apetrov/phy2130/ Lightning Review Last lecture: 1. Oscillations

More information

Session 6: Analytical Approximations for Low Thrust Maneuvers

Session 6: Analytical Approximations for Low Thrust Maneuvers Session 6: Analytical Approximations for Low Thrust Maneuvers As mentioned in the previous lecture, solving non-keplerian problems in general requires the use of perturbation methods and many are only

More information

SEG/New Orleans 2006 Annual Meeting. Non-orthogonal Riemannian wavefield extrapolation Jeff Shragge, Stanford University

SEG/New Orleans 2006 Annual Meeting. Non-orthogonal Riemannian wavefield extrapolation Jeff Shragge, Stanford University Non-orthogonal Riemannian wavefield extrapolation Jeff Shragge, Stanford University SUMMARY Wavefield extrapolation is implemented in non-orthogonal Riemannian spaces. The key component is the development

More information

Consider a particle in 1D at position x(t), subject to a force F (x), so that mẍ = F (x). Define the kinetic energy to be.

Consider a particle in 1D at position x(t), subject to a force F (x), so that mẍ = F (x). Define the kinetic energy to be. Chapter 4 Energy and Stability 4.1 Energy in 1D Consider a particle in 1D at position x(t), subject to a force F (x), so that mẍ = F (x). Define the kinetic energy to be T = 1 2 mẋ2 and the potential energy

More information

2 Canonical quantization

2 Canonical quantization Phys540.nb 7 Canonical quantization.1. Lagrangian mechanics and canonical quantization Q: How do we quantize a general system?.1.1.lagrangian Lagrangian mechanics is a reformulation of classical mechanics.

More information

Seismogram Interpretation. Seismogram Interpretation

Seismogram Interpretation. Seismogram Interpretation Travel times in the Earth Ray paths, phases and their name Wavefields in the Earth: SH waves, P-SV waves Seismic Tomography Receiver Functions Seismogram Example Long-period transverse displacement for

More information

36. Nonlinear optics: χ(2) processes

36. Nonlinear optics: χ(2) processes 36. Nonlinear optics: χ() processes The wave equation with nonlinearity Second-harmonic generation: making blue light from red light approximations: SVEA, zero pump depletion phase matching quasi-phase

More information

The science of light. P. Ewart

The science of light. P. Ewart The science of light P. Ewart Lecture notes: On web site NB outline notes! Textbooks: Hecht, Klein and Furtak, Lipson, Lipson and Lipson, Optical Physics Brooker, Modern Classical Problems: Material for

More information

Path Integrals in Quantum Mechanics

Path Integrals in Quantum Mechanics Path Integrals in Quantum Mechanics Michael Fowler 10/4/07 Huygen s Picture of Wave Propagation If a point source of light is switched on, the wavefront is an expanding sphere centered at the source. Huygens

More information

LAB 3: GLOBAL SEISMOLOGY

LAB 3: GLOBAL SEISMOLOGY NAME: LAB TIME: LAB 3: GLOBAL SEISMOLOGY This lab will introduce you to the basic concepts of global seismology and the Earth s interior structure. This is a hybrid assignment: some aspects can be done

More information

Plasma Processes. m v = ee. (2)

Plasma Processes. m v = ee. (2) Plasma Processes In the preceding few lectures, we ve focused on specific microphysical processes. In doing so, we have ignored the effect of other matter. In fact, we ve implicitly or explicitly assumed

More information

Computational Seismology: A Practical Introduction. Heiner Igel Computational Seismology 1 / 18

Computational Seismology: A Practical Introduction. Heiner Igel Computational Seismology 1 / 18 Computational Seismology: A Practical Introduction Heiner Igel Computational Seismology 1 / 18 Introduction Heiner Igel Computational Seismology 2 / 18 Goals of the course Introduction Understand methods

More information