2/18/2019. Position-versus-Time Graphs. Below is a motion diagram, made at 1 frame per minute, of a student walking to school.

Size: px
Start display at page:

Download "2/18/2019. Position-versus-Time Graphs. Below is a motion diagram, made at 1 frame per minute, of a student walking to school."

Transcription

1 Position-versus-Time Graphs Below is a motion diagram, made at 1 frame per minute, of a student walking to school. A motion diagram is one way to represent the student s motion. Another way is to make a graph of x versus t for the student: Slide 1-65 Which position-versus-time graph represents the motion shown in the motion diagram? Example 1 - Bob leaves home at 9:05 and runs at a constant speed to the lamppost. He reaches the lamppost at 9:07, immediately turns and runs to the tree. Bob arrives at the tree at 9:10. Lamppost Home Tree x (yards) Draw a position-time diagram. Find the average velocity for each part of the run and for the entire run. 1

2 Interpreting a Position Graph Slide 1-66 Here is a position graph of an object: At t = 1.5 s, the object s velocity is A. 40 m/s. B. 20 m/s. C. 10 m/s. D. 10 m/s. Slide 2-48 Here is a position graph of an object: At t = 3.0 s, the object s velocity is A. 40 m/s. B. 20 m/s. C. 10 m/s. D. 10 m/s. Slide

3 How would you interpret this position-time plot? A. An object heads in the positive x-direction with non-uniform speed for some time but then heads back in the negative x-direction with uniform speed. B. An object heads in the positive x-direction for the entire journey but with uniform speed that varies and stopping once for 4 seconds. C. This position-time is not physically possible for an object. Uniform Motion If you drive your car at a perfectly steady 60 mph, this means you change your position by 60 miles for every time interval of 1 hour. Uniform motion is when equal displacements occur during any successive equal-time intervals. Uniform motion is always along a straight line. Riding steadily over level ground is a good example of uniform motion. Slide

4 Uniform Motion An object s motion is uniform if and only if its position-versus-time graph is a straight line. The average velocity is the slope of the positionversus-time graph. The SI units of velocity are m/s. Slide 2-21 The Mathematics of Uniform Motion Consider an object in uniform motion along the s-axis, as shown in the graph. The object s initial position is s i at time t i. At a later time t f the object s final position is s f. The change in time is t t f t i. The final position can be found as: Slide 2-27 Instantaneous Velocity An object that is speeding up or slowing down is not in uniform motion. (i.e. the position-time graph is not a straight line) We can determine the average speed v avg between any two times separated by time interval t by finding the slope of the straight-line connection between the two points. The instantaneous velocity is the object s velocity at a single instant of time t. The average velocity v avg s/ t becomes a better and better approximation to the instantaneous velocity as t gets smaller and smaller. Slide

5 Instantaneous Velocity Motion diagrams and position graphs of an accelerating rocket. Slide 2-32 Instantaneous Velocity As t continues to get smaller, the average velocity v avg s/ t reaches a constant or limiting value. The instantaneous velocity at time t is the average velocity during a time interval t centered on t, as t approaches zero. In calculus, this is called the derivative of s with respect to t. Graphically, s/ t is the slope of a straight line. In the limit t 0, the straight line is tangent to the curve. The instantaneous velocity at time t is the slope of the line that is tangent to the position-versus-time graph at time t. Slide

6 Finding Velocity from Position Graphically Slide 2-36 Finding Velocity from Position Graphically Slide 2-37 Here is a motion diagram of a car moving along a straight road: Which position-versus-time graph matches this motion diagram? Slide

7 2.4 Here is a motion diagram of a car moving along a straight road: Which velocity-versus-time graph matches this motion diagram? E. None of the above. Slide 2-42 Which velocity-versus-time graph goes with this position graph? Slide 2-61 When do objects 1 and 2 have the same velocity? A. At some instant before time t 0. B. At time t 0. C. At some instant after time t 0. D. Both A and B. Slide

8 Example 2 Finding Position from Velocity Suppose we know an object s position to be s i at an initial time t i. We also know the velocity as a function of time between t i and some later time t f. Even if the velocity is not constant, we can divide the motion into N steps in which it is approximately constant, and compute the final position as: The curlicue symbol is called an integral. The expression on the right is read, the integral of v s dt from t i to t f. Slide 2-54 Finding Position From Velocity The integral may be interpreted graphically as the total area enclosed between the t-axis and the velocity curve. The total displacement s is called the area under the curve. Slide

9 Here is the velocity graph of an object that is at the origin (x 0 m) at t 0 s. At t 4.0 s, the object s position is A. 20 m. B. 16 m. C. 12 m. D. 8 m. Slide 2-56 Here is the velocity graph of an object that is at the origin (x 4 m) at t 0 s. At t 4.0 s, the object s position is A. 20 m. B. 16 m. C. 12 m. D. 8 m. Slide 2-56 Example 3 - The figure below shows the velocity graph for a particle having initial position x o = 10 m at t 0 = 0 s. Draw a position-time graph for the particle. At what time or times is the particle found at x = 45 m? Does the graph have a turning point? 9

Position-versus-Time Graphs

Position-versus-Time Graphs Position-versus-Time Graphs Below is a motion diagram, made at 1 frame per minute, of a student walking to school. A motion diagram is one way to represent the student s motion. Another way is to make

More information

QuickCheck. A cart slows down while moving away from the origin. What do the position and velocity graphs look like? Slide 2-65

QuickCheck. A cart slows down while moving away from the origin. What do the position and velocity graphs look like? Slide 2-65 QuickCheck A cart slows down while moving away from the origin. What do the position and velocity graphs look like? Slide 2-65 QuickCheck A cart speeds up toward the origin. What do the position and velocity

More information

Chapter 2. Motion along a straight line

Chapter 2. Motion along a straight line Chapter 2 Motion along a straight line 2.2 Motion We find moving objects all around us. The study of motion is called kinematics. Examples: The Earth orbits around the Sun A roadway moves with Earth s

More information

Chapter 2. Motion along a straight line

Chapter 2. Motion along a straight line Chapter 2 Motion along a straight line 2.2 Motion We find moving objects all around us. The study of motion is called kinematics. Specifically, the description of motion. Examples: The Earth orbits around

More information

Chapter 2: Motion a Straight Line

Chapter 2: Motion a Straight Line Formula Memorization: Displacement What is a vector? Average Velocity Average Speed Instanteous Velocity Average Acceleration Instantaneous Acceleration Constant Acceleration Equation (List all five of

More information

Chapter 2. Motion along a straight line. We find moving objects all around us. The study of motion is called kinematics.

Chapter 2. Motion along a straight line. We find moving objects all around us. The study of motion is called kinematics. Chapter 2 Motion along a straight line 2.2 Motion We find moving objects all around us. The study of motion is called kinematics. Examples: The Earth orbits around the Sun A roadway moves with Earth s

More information

Forces and Motion in One Dimension. Chapter 3

Forces and Motion in One Dimension. Chapter 3 Forces and Motion in One Dimension Chapter 3 Constant velocity on an x-versus-t graph Velocity and Position In general, the average velocity is the slope of the line segment that connects the positions

More information

A B C D. Unit 6 (1-Dimensional Motion) Practice Assessment

A B C D. Unit 6 (1-Dimensional Motion) Practice Assessment Unit 6 (1-Dimensional Motion) Practice Assessment Choose the best answer to the following questions. Indicate the confidence in your answer by writing C (Confident), S (So-so), or G (Guessed) next to the

More information

Displacement, Velocity, and Acceleration AP style

Displacement, Velocity, and Acceleration AP style Displacement, Velocity, and Acceleration AP style Linear Motion Position- the location of an object relative to a reference point. IF the position is one-dimension only, we often use the letter x to represent

More information

Motion in One Dimension

Motion in One Dimension Motion in One Dimension Chapter 2 Physics Table of Contents Position and Displacement Velocity Acceleration Motion with Constant Acceleration Falling Objects The Big Idea Displacement is a change of position

More information

Chapter 2. Motion along a straight line

Chapter 2. Motion along a straight line Chapter 2 Motion along a straight line 2.2 Motion We find moving objects all around us. The study of motion is called kinematics. Examples: The Earth orbits around the Sun A roadway moves with Earth s

More information

Speed how fast an object is moving (also, the magnitude of the velocity) scalar

Speed how fast an object is moving (also, the magnitude of the velocity) scalar Mechanics Recall Mechanics Kinematics Dynamics Kinematics The description of motion without reference to forces. Terminology Distance total length of a journey scalar Time instant when an event occurs

More information

Page 1 / 15. Motion Unit Test. Name: Motion ONLY, no forces. Question 1 (1 point) Examine the graphs below:

Page 1 / 15. Motion Unit Test. Name: Motion ONLY, no forces. Question 1 (1 point) Examine the graphs below: Motion Unit Test Motion ONLY, no forces Name: Question 1 (1 point) Examine the graphs below: Which of the four graphs shows the runner with the fastest speed? A. Graph A B. Graph B C. Graph C D. Graph

More information

Chapter 2. Preview. Objectives One Dimensional Motion Displacement Average Velocity Velocity and Speed Interpreting Velocity Graphically

Chapter 2. Preview. Objectives One Dimensional Motion Displacement Average Velocity Velocity and Speed Interpreting Velocity Graphically Section 1 Displacement and Velocity Preview Objectives One Dimensional Motion Displacement Average Velocity Velocity and Speed Interpreting Velocity Graphically Section 1 Displacement and Velocity Objectives

More information

Physics 1110: Mechanics

Physics 1110: Mechanics Physics 1110: Mechanics Announcements: CAPA set available in bins. Lectures can be found at the Course Calendar link. Written homework #1 (on website) due at beginning of recitation. The Moving Man simulation

More information

What is a Vector? A vector is a mathematical object which describes magnitude and direction

What is a Vector? A vector is a mathematical object which describes magnitude and direction What is a Vector? A vector is a mathematical object which describes magnitude and direction We frequently use vectors when solving problems in Physics Example: Change in position (displacement) Velocity

More information

Section 11.1 Distance and Displacement (pages )

Section 11.1 Distance and Displacement (pages ) Name Class Date Section 11.1 Distance and Displacement (pages 328 331) This section defines distance and displacement. Methods of describing motion are presented. Vector addition and subtraction are introduced.

More information

Experiment 3. d s = 3-2 t ANALYSIS OF ONE DIMENSIONAL MOTION

Experiment 3. d s = 3-2 t ANALYSIS OF ONE DIMENSIONAL MOTION Experiment 3 ANALYSIS OF ONE DIMENSIONAL MOTION Objectives 1. To establish a mathematical relationship between the position and the velocity of an object in motion. 2. To define the velocity as the change

More information

MOTION, DISTANCE, AND DISPLACEMENT Q: What is motion? A: Motion is any change in the position or place of an object. is the study of motion (without

MOTION, DISTANCE, AND DISPLACEMENT Q: What is motion? A: Motion is any change in the position or place of an object. is the study of motion (without MOTION, DISTANCE, AND DISPLACEMENT Q: What is motion? A: Motion is any change in the position or place of an object. is the study of motion (without considering the cause of the motion). Distance vs. Displacement

More information

Chapter 2. Motion along a Straight Line

Chapter 2. Motion along a Straight Line Chapter 2 Motion along a Straight Line 1 2.1 Motion Everything in the universe, from atoms to galaxies, is in motion. A first step to study motion is to consider simplified cases. In this chapter we study

More information

Acceleration. 3. Changing Direction occurs when the velocity and acceleration are neither parallel nor anti-parallel

Acceleration. 3. Changing Direction occurs when the velocity and acceleration are neither parallel nor anti-parallel Acceleration When the velocity of an object changes, we say that the object is accelerating. This acceleration can take one of three forms: 1. Speeding Up occurs when the object s velocity and acceleration

More information

Welcome Back to Physics 211!

Welcome Back to Physics 211! Welcome Back to Physics 211! (General Physics I) Thurs. Aug 30 th, 2012 Physics 211 -Fall 2014 Lecture01-2 1 Last time: Syllabus, mechanics survey Unit conversions Today: Using your clicker 1D displacement,

More information

Physics I Exam 1 Spring 2015 (version A)

Physics I Exam 1 Spring 2015 (version A) 95.141 Physics I Exam 1 Spring 015 (version A) Section Number Section instructor Last/First Name (PRINT) / Last 3 Digits of Student ID Number: Answer all questions, beginning each new question in the space

More information

Kinematics Motion in 1-Dimension

Kinematics Motion in 1-Dimension Kinematics Motion in 1-Dimension Lana Sheridan De Anza College Jan 16, 2018 Last time unit conversions (non-si units) order of magnitude calculations how to solve problems Overview 1-D kinematics quantities

More information

Chapter 2: Kinematics

Chapter 2: Kinematics Section 1 Chapter 2: Kinematics To simplify the concept of motion, we will first consider motion that takes place in one direction. To measure motion, you must choose a frame of reference. Frame of reference

More information

Unit 1 Parent Guide: Kinematics

Unit 1 Parent Guide: Kinematics Unit 1 Parent Guide: Kinematics Kinematics is the study of the motion of objects. Scientists can represent this information in the following ways: written and verbal descriptions, mathematically (with

More information

BELL RINGER: Define Displacement. Define Velocity. Define Speed. Define Acceleration. Give an example of constant acceleration.

BELL RINGER: Define Displacement. Define Velocity. Define Speed. Define Acceleration. Give an example of constant acceleration. BELL RINGER: Define Displacement. Define Velocity. Define Speed. Define Acceleration. Give an example of constant acceleration. What does the below equation tell us? v = d t NOTES 2.1: ONE-DIMENSIONAL

More information

Kinematics Motion in 1-Dimension

Kinematics Motion in 1-Dimension Kinematics Motion in 1-Dimension Lana Sheridan De Anza College Jan 15, 219 Last time how to solve problems 1-D kinematics Overview 1-D kinematics quantities of motion graphs of kinematic quantities vs

More information

Physical Science Chapter 11. Motion

Physical Science Chapter 11. Motion Physical Science Chapter 11 Motion Motion Definition An object is in motion when its distance from another object is changing. Relative Motion Relative motion is movement in relation to a REFERENCE POINT.

More information

Mechanics 1. Motion MEI, 20/10/08 1/5. Chapter Assessment

Mechanics 1. Motion MEI, 20/10/08 1/5. Chapter Assessment Chapter Assessment Motion. A snail moving across the lawn for her evening constitutional crawl is attracted to a live wire. On reaching the wire her speed increases at a constant rate and it doubles from.

More information

Solving Problems In Physics

Solving Problems In Physics Solving Problems In Physics 1. Read the problem carefully. 2. Identify what is given. 3. Identify the unknown. 4. Find a useable equation and solve for the unknown quantity. 5. Substitute the given quantities.

More information

Chapter 2. Motion along a straight line

Chapter 2. Motion along a straight line Chapter 2 Motion along a straight line Introduction: Study of the motion of objects Physics studies: Properties of matter and energy: solid state physics, thermal physics/ thermodynamics, atomic physics,

More information

One Dimensional Motion (Motion in a Straight Line)

One Dimensional Motion (Motion in a Straight Line) One Dimensional Motion (Motion in a Straight Line) Chapter MOTION QUANTITIES 1 Kinematics - Intro Mechanics generally consists of two parts: Kinematics and Dynamics. Mechanics Kinematics Description of

More information

State the condition under which the distance covered and displacement of moving object will have the same magnitude.

State the condition under which the distance covered and displacement of moving object will have the same magnitude. Exercise CBSE-Class IX Science Motion General Instructions: (i) (ii) (iii) (iv) Question no. 1-15 are very short answer questions. These are required to be answered in one sentence each. Questions no.

More information

MOTION. Chapter 2: Sections 1 and 2

MOTION. Chapter 2: Sections 1 and 2 MOTION Chapter 2: Sections 1 and 2 Vocab: Ch 2.1-2.2 Distance Displacement Speed Average speed Instantaneous speed Velocity Acceleration Describing Motion Motion is an object s change in position relative

More information

Physics of Everyday Phenomena. Chapter 2

Physics of Everyday Phenomena. Chapter 2 Physics of Everyday Phenomena W. Thomas Griffith Juliet W. Brosing Chapter 2 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Question 2.1 Ben leaves his home

More information

Worksheet 3. Sketch velocity vs time graphs corresponding to the following descriptions of the motion of an object.

Worksheet 3. Sketch velocity vs time graphs corresponding to the following descriptions of the motion of an object. Worksheet 3 Sketch velocity vs time graphs corresponding to the following descriptions of the motion of an object. 1. The object is moving away from the origin at a constant (steady) speed. 2. The object

More information

Section Distance and displacment

Section Distance and displacment Chapter 11 Motion Section 11.1 Distance and displacment Choosing a Frame of Reference What is needed to describe motion completely? A frame of reference is a system of objects that are not moving with

More information

Kinematics and One Dimensional Motion

Kinematics and One Dimensional Motion Kinematics and One Dimensional Motion Kinematics Vocabulary Kinema means movement Mathematical description of motion Position Time Interval Displacement Velocity; absolute value: speed Acceleration Averages

More information

RECAP!! Paul is a safe driver who always drives the speed limit. Here is a record of his driving on a straight road. Time (s)

RECAP!! Paul is a safe driver who always drives the speed limit. Here is a record of his driving on a straight road. Time (s) RECAP!! What is uniform motion? > Motion in a straight line > Moving at a constant speed Yes or No? Yes or No? Paul is a safe driver who always drives the speed limit. Here is a record of his driving on

More information

DESCRIBING MOTION: KINEMATICS IN ONE DIMENSION. AP Physics Section 2-1 Reference Frames and Displacement

DESCRIBING MOTION: KINEMATICS IN ONE DIMENSION. AP Physics Section 2-1 Reference Frames and Displacement DESCRIBING MOTION: KINEMATICS IN ONE DIMENSION AP Physics Section 2-1 Reference Frames and Displacement Model the velocity of the ball from the time it leaves my hand till the time it hits the ground?

More information

Introduction to 1-D Motion Distance versus Displacement

Introduction to 1-D Motion Distance versus Displacement Introduction to 1-D Motion Distance versus Displacement Kinematics! Kinematics is the branch of mechanics that describes the motion of objects without necessarily discussing what causes the motion.! 1-Dimensional

More information

Car Lab: Results. Were you able to plot: Position versus Time? Velocity versus Time? Copyright 2010 Pearson Education, Inc.

Car Lab: Results. Were you able to plot: Position versus Time? Velocity versus Time? Copyright 2010 Pearson Education, Inc. Car Lab: Results Were you able to plot: Position versus Time? Velocity versus Time? Chapter 2.2: Acceleration Acceleration Acceleration is the rate at which velocity changes with time. Average acceleration:

More information

Welcome Back to Physics 215!

Welcome Back to Physics 215! Welcome Back to Physics 215! (General Physics I) Thurs. Jan 18 th, 2018 Lecture01-2 1 Last time: Syllabus Units and dimensional analysis Today: Displacement, velocity, acceleration graphs Next time: More

More information

8.1 THE LANGUAGE OF MOTION

8.1 THE LANGUAGE OF MOTION Unit 3 Motion 8.1 THE LANGUAGE OF MOTION 8.1 LEARNING OUTCOMES Vector quantities, such as displacement and velocity, have both a magnitude and a direction. An object in uniform motion will travel equal

More information

Worksheet 1. What You Need to Know About Motion Along the x-axis (Part 1)

Worksheet 1. What You Need to Know About Motion Along the x-axis (Part 1) Curriculum Module: Calculus: Motion Worksheet 1. What You Need to Know About Motion Along the x-axis (Part 1) In discussing motion, there are three closely related concepts that you need to keep straight.

More information

2/27/2018. Relative Motion. Reference Frames. Reference Frames

2/27/2018. Relative Motion. Reference Frames. Reference Frames Relative Motion The figure below shows Amy and Bill watching Carlos on his bicycle. According to Amy, Carlos s velocity is (v x ) CA 5 m/s. The CA subscript means C relative to A. According to Bill, Carlos

More information

Which car/s is/are undergoing an acceleration?

Which car/s is/are undergoing an acceleration? Which car/s is/are undergoing an acceleration? Which car experiences the greatest acceleration? Match a Graph Consider the position-time graphs below. Each one of the 3 lines on the position-time graph

More information

Matthew W. Milligan. Kinematics. What do you remember?

Matthew W. Milligan. Kinematics. What do you remember? Kinematics What do you remember? Kinematics Unit Outline I. Six Definitions: Distance, Position, Displacement, Speed, Velocity, Acceleration II. Graphical Interpretations III. Constant acceleration model

More information

DESCRIBING MOTION: KINEMATICS IN ONE DIMENSION. AP Physics Section 2-1 Reference Frames and Displacement

DESCRIBING MOTION: KINEMATICS IN ONE DIMENSION. AP Physics Section 2-1 Reference Frames and Displacement DESCRIBING MOTION: KINEMATICS IN ONE DIMENSION AP Physics Section 2-1 Reference Frames and Displacement Model the velocity of the ball from the time it leaves my hand till the time it hits the ground?

More information

Unit 2 - Linear Motion and Graphical Analysis

Unit 2 - Linear Motion and Graphical Analysis Unit 2 - Linear Motion and Graphical Analysis Motion in one dimension is particularly easy to deal with because all the information about it can be encapsulated in two variables: x, the position of the

More information

12 Rates of Change Average Rates of Change. Concepts: Average Rates of Change

12 Rates of Change Average Rates of Change. Concepts: Average Rates of Change 12 Rates of Change Concepts: Average Rates of Change Calculating the Average Rate of Change of a Function on an Interval Secant Lines Difference Quotients Approximating Instantaneous Rates of Change (Section

More information

( ) for t 0. Rectilinear motion CW. ( ) = t sin t ( Calculator)

( ) for t 0. Rectilinear motion CW. ( ) = t sin t ( Calculator) Rectilinear motion CW 1997 ( Calculator) 1) A particle moves along the x-axis so that its velocity at any time t is given by v(t) = 3t 2 2t 1. The position x(t) is 5 for t = 2. a) Write a polynomial expression

More information

PHYSICS Kinematics in One Dimension

PHYSICS Kinematics in One Dimension PHYSICS Kinematics in One Dimension August 13, 2012 www.njctl.org 1 Motion in One Dimension Return to Table of Contents 2 Distance We all know what the distance between two objects is... So what is it?

More information

Each dot represents an object moving, between constant intervals of time. Describe the motion that you see. equation symbol: units: Velocity

Each dot represents an object moving, between constant intervals of time. Describe the motion that you see. equation symbol: units: Velocity What is displacement, velocity and acceleration? what units do they have? vector vs scalar? One dimensional motion, and graphing Moving man worksheet moving man doc - todo Introduction to simple graphing

More information

Motion and Forces study Guide

Motion and Forces study Guide Motion and Forces study Guide Completion Complete each statement. 1. The motion of an object looks different to observers in different. 2. The SI unit for measuring is the meter. 3. The direction and length

More information

Representing Motion Chapter 2

Representing Motion Chapter 2 Phenomena Representing Motion Chapter 2 Pop Quiz! How fast are you moving at this moment? o A.) 0m/s o B.) 783 mi/h o C.) 350m/s o D.) 30 km/s Pop Quiz! How fast are you moving? oa.) 0m/s ob.) 783 mi/h

More information

Motion Unit Review 1. To create real-time graphs of an object s displacement versus time and velocity versus time, a student would need to use a

Motion Unit Review 1. To create real-time graphs of an object s displacement versus time and velocity versus time, a student would need to use a Motion Unit Review 1. To create real-time graphs of an object s displacement versus time and velocity versus time, a student would need to use a A motion sensor.b low- g accelerometer. C potential difference

More information

CEE 271: Applied Mechanics II, Dynamics Lecture 1: Ch.12, Sec.1-3h

CEE 271: Applied Mechanics II, Dynamics Lecture 1: Ch.12, Sec.1-3h 1 / 30 CEE 271: Applied Mechanics II, Dynamics Lecture 1: Ch.12, Sec.1-3h Prof. Albert S. Kim Civil and Environmental Engineering, University of Hawaii at Manoa Tuesday, August 21, 2012 2 / 30 INTRODUCTION

More information

INTRODUCTION. 1. One-Dimensional Kinematics

INTRODUCTION. 1. One-Dimensional Kinematics INTRODUCTION Mechanics is the area of physics most apparent to us in our everyday lives Raising an arm, standing up, sitting down, throwing a ball, opening a door etc all governed by laws of mechanics

More information

Welcome Back to Physics 211!

Welcome Back to Physics 211! Welcome Back to Physics 211! (General Physics I) Thurs. Aug 30 th, 2012 Physics 211 -Fall 2012 Lecture01-2 1 Last time: Syllabus, mechanics survey Particle model Today: Using your clicker 1D displacement,

More information

Measuring Motion. Day 1

Measuring Motion. Day 1 Measuring Motion Day 1 Objectives I will identify the relationship between motion and a reference point I will identify the two factors that speed depends on I will determine the difference between speed

More information

1.1 Motion and Motion Graphs

1.1 Motion and Motion Graphs Figure 1 A highway is a good example of the physics of motion in action. kinematics the study of motion without considering the forces that produce the motion dynamics the study of the causes of motion

More information

5) A stone is thrown straight up. What is its acceleration on the way up? 6) A stone is thrown straight up. What is its acceleration on the way down?

5) A stone is thrown straight up. What is its acceleration on the way up? 6) A stone is thrown straight up. What is its acceleration on the way down? 5) A stone is thrown straight up. What is its acceleration on the way up? Answer: 9.8 m/s 2 downward 6) A stone is thrown straight up. What is its acceleration on the way down? Answer: 9.8 m/ s 2 downward

More information

Ch 2 Homework. Follow the instructions on the problems and show your work clearly.

Ch 2 Homework. Follow the instructions on the problems and show your work clearly. Ch 2 Homework Name: Follow the instructions on the problems and show your work clearly. 1. (Problem 3) A person travels by car from one city to another with different constant speeds between pairs of cities.

More information

Created by T. Madas CALCULUS KINEMATICS. Created by T. Madas

Created by T. Madas CALCULUS KINEMATICS. Created by T. Madas CALCULUS KINEMATICS CALCULUS KINEMATICS IN SCALAR FORM Question (**) A particle P is moving on the x axis and its acceleration a ms, t seconds after a given instant, is given by a = 6t 8, t 0. The particle

More information

Conceptual Physics 11 th Edition

Conceptual Physics 11 th Edition Conceptual Physics 11 th Edition Chapter 3: LINEAR MOTION This lecture will help you understand: Motion Is Relative Speed : Average and Instantaneous Velocity Acceleration Free Fall Motion Is Relative

More information

KINEMATICS IN ONE DIMENSION p. 1

KINEMATICS IN ONE DIMENSION p. 1 KINEMATICS IN ONE DIMENSION p. 1 Motion involves a change in position. Position can be indicated by an x-coordinate on a number line. ex/ A bumblebee flies along a number line... x = 2 when t = 1 sec 2

More information

Four Basic Types of Motion Pearson Education, Inc.

Four Basic Types of Motion Pearson Education, Inc. Four Basic Types of Motion Making a Motion Diagram An easy way to study motion is to make a video of a moving object. A video camera takes images at a fixed rate, typically 30 every second. Each separate

More information

Physics 30S Unit 2 Motion Graphs. Mrs. Kornelsen Teulon Collegiate Institute

Physics 30S Unit 2 Motion Graphs. Mrs. Kornelsen Teulon Collegiate Institute Physics 30S Unit 2 Motion Graphs Mrs. Kornelsen Teulon Collegiate Institute 1 Grade 11 Physics Graphing Properties Property d-t Graph v-t Graph a-t Graph Not Moving Does Not Apply Constant Velocity Change

More information

Final Review Topics, Terms, Labs, and Relationships Definitions Independent Variable:

Final Review Topics, Terms, Labs, and Relationships Definitions Independent Variable: Final Review Topics, Terms, Labs, and Relationships Definitions Independent Variable: Dependent Variable: Controlled Variable: Sample Data Table: Sample Graph: Graph shapes and Variable Relationships (written

More information

Distance vs. Displacement, Speed vs. Velocity, Acceleration, Free-fall, Average vs. Instantaneous quantities, Motion diagrams, Motion graphs,

Distance vs. Displacement, Speed vs. Velocity, Acceleration, Free-fall, Average vs. Instantaneous quantities, Motion diagrams, Motion graphs, Distance vs. Displacement, Speed vs. Velocity, Acceleration, Free-fall, Average vs. Instantaneous quantities, Motion diagrams, Motion graphs, Kinematic formulas. A Distance Tells how far an object is from

More information

AP Physics C: Mechanics Ch. 2 Motion. SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

AP Physics C: Mechanics Ch. 2 Motion. SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Name: Period: Date: AP Physics C: Mechanics Ch. Motion SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. ) Car A is traveling at twice the speed of car

More information

Remember... Average rate of change slope of a secant (between two points)

Remember... Average rate of change slope of a secant (between two points) 3.7 Rates of Change in the Natural and Social Sciences Remember... Average rate of change slope of a secant (between two points) Instantaneous rate of change slope of a tangent derivative We will assume

More information

Answers to SNC 2DI Exam Review: Motion Unit 1. Understand the meaning of the following terms. Be able to recognize their definitions:

Answers to SNC 2DI Exam Review: Motion Unit 1. Understand the meaning of the following terms. Be able to recognize their definitions: Answers to SNC 2DI Exam Review: Motion Unit 1. Understand the meaning of the following terms. Be able to recognize their definitions: Physics Time Acceleration Kinetic energy Average speed Negative acceleration

More information

Motion Along a Straight Line

Motion Along a Straight Line Chapter 2 Motion Along a Straight Line PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman Lectures by James Pazun Goals for Chapter 2 To study motion along

More information

Chapter 3 Acceleration

Chapter 3 Acceleration Chapter 3 Acceleration Slide 3-1 Chapter 3: Acceleration Chapter Goal: To extend the description of motion in one dimension to include changes in velocity. This type of motion is called acceleration. Slide

More information

Chapter 3 Acceleration

Chapter 3 Acceleration Chapter 3 Acceleration Slide 3-1 Chapter 3: Acceleration Chapter Goal: To extend the description of motion in one dimension to include changes in velocity. This type of motion is called acceleration. Slide

More information

Chapter 2 Describing Motion

Chapter 2 Describing Motion Chapter 2 Describing Motion Chapter 2 Overview In chapter 2, we will try to accomplish two primary goals. 1. Understand and describe the motion of objects. Define concepts like speed, velocity, acceleration,

More information

Chapter 2 Describing Motion: Kinematics in One Dimension

Chapter 2 Describing Motion: Kinematics in One Dimension Chapter 2 Describing Motion: Kinematics in One Dimension Units of Chapter 2 Reference Frames and Displacement Average Velocity Instantaneous Velocity Acceleration Motion at Constant Acceleration Solving

More information

Physics 11 Kinematics Review: Vectors, Displacement, Velocity, Acceleration, & Kinematics Equations

Physics 11 Kinematics Review: Vectors, Displacement, Velocity, Acceleration, & Kinematics Equations Physics 11 Kinematics Review: Vectors, Displacement, Velocity, Acceleration, & Kinematics Equations Review of Kinematics in 1 Dimension: True or False? Mark each statement as T (true) or F (false). If

More information

Using Units in Science

Using Units in Science Using Units in Science 5 cm x 2 cm=?10 cm 2 2 cm 2 1 How much is 150 miles divided by 3 hours? 150 miles/hr 50 miles 50 hrs 50 hrs/mile E 50 miles/hr 3 pears per orange 2 You buy 10 gallons of gas and

More information

1 D motion: know your variables, position, displacement, velocity, speed acceleration, average and instantaneous.

1 D motion: know your variables, position, displacement, velocity, speed acceleration, average and instantaneous. General: Typically, there will be multiple choice, short answer, and big problems. Multiple Choice and Short Answer On the multiple choice and short answer, explanations are typically not required (only

More information

Physics I Exam 1 Fall 2014 (version A)

Physics I Exam 1 Fall 2014 (version A) 95.141 Physics I Exam 1 Fall 014 (version A) Section Number Section instructor Last/First Name (print) / Last 3 Digits of Student ID Number: Answer all questions, beginning each new question in the space

More information

Position, Velocity, Acceleration

Position, Velocity, Acceleration 191 CHAPTER 7 Position, Velocity, Acceleration When we talk of acceleration we think of how quickly the velocity is changing. For example, when a stone is dropped its acceleration (due to gravity) is approximately

More information

Unit 1 Physics and Chemistry Kinematics

Unit 1 Physics and Chemistry Kinematics 4 th ESO. UNIT 1: KINEMATICS Kinematics is a branch of Physics which describes the motion of bodies without regard to its causes. A reference frame is a set of coordinate axis in terms of which the position

More information

Motion along a straight line

Motion along a straight line 1 Motion along a straight line Relativeness of motion Activity: Observations from inside and outside of a moving bus. When you look outside a moving bus, do the trees and houses appear to move backwards?

More information

VELOCITY. If you have a graph of position and you take the derivative, what would the derivative represent? Position. Time

VELOCITY. If you have a graph of position and you take the derivative, what would the derivative represent? Position. Time VELOCITY If you have a graph of position and you take the derivative, what would the derivative represent? Position Time Average rate of Change What is the average rate of change of temperature over the

More information

acceleration versus time. LO Determine a particle s change in position by graphical integration on a graph of velocity versus time.

acceleration versus time. LO Determine a particle s change in position by graphical integration on a graph of velocity versus time. Chapter: Chapter 2 Learning Objectives LO 2.1.0 Solve problems related to position, displacement, and average velocity to solve problems. LO 2.1.1 Identify that if all parts of an object move in the same

More information

Section 2-2: Constant velocity means moving at a steady speed in the same direction

Section 2-2: Constant velocity means moving at a steady speed in the same direction Section 2-2: Constant velocity means moving at a steady speed in the same direction 1. A particle moves from x 1 = 30 cm to x 2 = 40 cm. The displacement of this particle is A. 30 cm B. 40 cm C. 70 cm

More information

General Physics (PHY 170) Chap 2. Acceleration motion with constant acceleration. Tuesday, January 15, 13

General Physics (PHY 170) Chap 2. Acceleration motion with constant acceleration. Tuesday, January 15, 13 General Physics (PHY 170) Chap 2 Acceleration motion with constant acceleration 1 Average Acceleration Changing velocity (non-uniform) means an acceleration is present Average acceleration is the rate

More information

SECTION 2 - VELOCITY

SECTION 2 - VELOCITY MOTION SECTION 2 - VELOCITY How fast do you think we are traveling (orbiting) around the sun? 67,0672 mph How fast do you think we are spinning around our axis as we move around the sun? 1,041.67 mph Why

More information

Name: Total Points: Physics 201. Midterm 1

Name: Total Points: Physics 201. Midterm 1 Physics 201 Midterm 1 QUESTION 1 [25 points] An object moves in 1 dimension It starts at rest and uniformly accelerates at 5m/s 2 for 2s It then moves with constant velocity for 4s It then uniformly accelerates

More information

Vectors in Physics. Topics to review:

Vectors in Physics. Topics to review: Vectors in Physics Topics to review: Scalars Versus Vectors The Components of a Vector Adding and Subtracting Vectors Unit Vectors Position, Displacement, Velocity, and Acceleration Vectors Relative Motion

More information

Lecture 2- Linear Motion Chapter 10

Lecture 2- Linear Motion Chapter 10 1 / 37 Lecture 2- Linear Motion Chapter 10 Instructor: Prof. Noronha-Hostler Course Administrator: Prof. Roy Montalvo PHY-123 ANALYTICAL PHYSICS IA Phys- 123 Sep. 12 th, 2018 Contact Already read the syllabus

More information

Remember... Average rate of change slope of a secant (between two points)

Remember... Average rate of change slope of a secant (between two points) 3.7 Rates of Change in the Natural and Social Sciences Remember... Average rate of change slope of a secant (between two points) Instantaneous rate of change slope of a tangent derivative We will assume

More information

Kinematics. 1. Introduction to Kinematics. 2. Position and displacement

Kinematics. 1. Introduction to Kinematics. 2. Position and displacement Kinematics 1. Introduction to Kinematics. Scalars & vectors 2. Position & displacement 3. Velocity 4. Acceleration 5. Uniform linear motion 6. Uniformly accelerated motion 7. Uniform circular motion 1.

More information

Acceleration Worksheet Definitions: velocity: speed in a given direction acceleration: the rate at which the velocity is changing

Acceleration Worksheet Definitions: velocity: speed in a given direction acceleration: the rate at which the velocity is changing Name: Period: Date: / / Acceleration Worksheet Definitions: velocity: speed in a given direction acceleration: the rate at which the velocity is changing Acceleration Notes: 1. What are the three things

More information

Motion Graphs Refer to the following information for the next four questions.

Motion Graphs Refer to the following information for the next four questions. Motion Graphs Refer to the following information for the next four questions. 1. Match the description provided about the behavior of a cart along a linear track to its best graphical representation. Remember

More information

SCIENCE 1206 Unit 3. Physical Science Motion

SCIENCE 1206 Unit 3. Physical Science Motion SCIENCE 1206 Unit 3 Physical Science Motion Section 1: Units, Measurements and Error What is Physics? Physics is the study of motion, matter, energy, and force. Qualitative and Quantitative Descriptions

More information