A Low-Error Statistical Fixed-Width Multiplier and Its Applications

Size: px
Start display at page:

Download "A Low-Error Statistical Fixed-Width Multiplier and Its Applications"

Transcription

1 A Low-Error Statistical Fixed-Width Multiplier and Its Applications Yuan-Ho Chen 1, Chih-Wen Lu 1, Hsin-Chen Chiang, Tsin-Yuan Chang, and Chin Hsia 3 1 Department of Engineering and System Science, National Tsing Hua University, Taiwan. Department of Electrical Engineering, National Tsing Hua University, Taiwan. 3 Industrial Technology Research Institute, Taiwan. cwlu@mx.nthu.edu.tw (corresponding author Abstract In this paper, an error compensation method for fixed-width two s-complement multipliers is proposed. According to the statistical analysis for the truncation term, a general form for different word length compensation circuit is made up. For example, the proposed 8 8 fixed-width multiplier achieves 15.65% accuracy compared with direct-truncation multiplier. Also, the proposed multiplier has 41% savings compared with post-truncation multiplier when it is implemented in a 0.18-μm process. As the proposed multipliers applying to discrete cosine transform (DCT design to demonstrate the system performance, the results show the proposed core can save 15% area with 9. db peak signal-to-noise ratio (PSNR penalty. Therefore, the proposed multiplier has a low hardware cost achieving high accuracy designs. Index Terms Low-error, Fixed-width, Two s-complement Multipliers, Statistical compensation. Fig. 1. An 8 8 Modified Baugh-Wooley s-complement multiplier example. I. INTRODUCTION Multiplier is a widely used component in the application of digital signal processing (DSP systems, such as the discrete cosine transform (DCT and the fast Fourier transform (FFT. In general, we obtain a n-bit output with two n-bit input from the multiplication. However, it is desirable to remain the same bit-width for the basic arithmetic operations in many applications. For this reason and to reduce the area cost of the circuit, the least significant half part is truncated directly. A large error would be produced after truncating, therefore several compensation methods for fixed-width multipliers to alleviate the truncation error effects are presented [1]-[11]. On the other hand, there are some people working hard to raise the speed [1]-[13]. At first, the constant value compensation methods are proposed in [1]-[3]. In these methods, the compensation value is just obtained by some probabilistic computation and can not adjust to the different multiplier inputs. Afterwards, [4]-[11] present adaptive value compensation methods for adapting various multiplier inputs. In [4], the error compensation value is generated by the sum of the most significant column of the truncated part. Then, Van et al. [6] make a lot of exhaustive simulation to proof that the most significant column is important for the estimation of the truncated part and modify the compensation method of [4]. To compare with the constant compensation value, the adaptive compensation value decreases the error and achieves better performance. In this paper, we utilize the result proofed in [6] and propose a new low-error fixed-width multiplier. To achieve better performance, some mathematical analysis and simulation are made. We exclude the partial products which are not relevant to the estimation in our analysis. The error performance can be improved by the proposed method with the respect to the previous compensation method. By this way, we can acquire the compensation value in advance and make a truth table for the combinational circuit [8]. This paper is organized as follows. In Section II, the fixed-width two s compliment multiplier is briefly described. The derived compensation values and circuit implementation are showed in Section III. Section IV compares the error performance of the different compensation methods. Finally, we make a conclusion in Section V. II. FUNDAMENTAL FIXED-WIDTH TWO S-COMPLEMENT MULTIPLIERS The two n bits two s complement integer numbers can be represented as follows. A = a n 1 n 1 + a i i (1 i=0 B = b n 1 n 1 + b j j ( j=0

2 TABLE I THE MEAN AND VARIANCES OF δ BY SIMULATION n θ E {δ} Var{δ} E {δ} Var{δ} E {δ} Var{δ} E {δ} Var{δ} E {δ} Var{δ} where a i,b i follows. {0, 1}. The product P can be expressed as P = A B = y (n 1(n 1 + y ij i+j + n 1 i=0 j=0 n 1 + y (n 1j j +1 j=0 + ( n 1 n 1 + y i(n 1 i +1 i=0 where y ij = a i b j and y ij means the binary inversion of y ij. The partial products of the 8-point modified Baugh-Wooley multiplier are shown in Fig. 1. III. PROPOSED ERROR COMPENSATION CIRCUIT In Fig. 1, the product P can be divided into two parts: the main part (MP that includes n most significant bits (MSBs and the truncation part (TP that has n least significant bits (LSBs, where n =8for this example. The eqn. (3 can be rewritten as follows. (3 P = MP + TP (4 The product P can get the n-bit MSB using a rounding operation called post truncation (Post-T, which is used for high-accuracy applications. It truncates the least significant n bits after all of the calculation. However, hardware cost increases in the very-large-scale integration (VLSI design. In general, the TP is usually truncated to reduce hardware cost in multiplier design, known as the direct truncation (Direct-T method. It truncates the least significant n bits directly without any calculation. Thus, a large truncation error occurs due to the neglecting of carry propagation from the TP to MP. In the following subsection, a low-error compensation value and corresponding architecture are make up. A. Derivation of Compensation Value From Fig. 1, the product P can be approximated as P = P c = MP + σ n (5 Fig.. The diagram of θ and G(θ. where σ is the compensation value from the TP to the MP as listed in Eqs. (6-(8. ( TPmajor + TP minor (6 TP major = y (n 10 + y 0(n 1 + y i(n i 1 (7 TP minor = i=0 j=0 i (n i 1 y (i jj (8 where Round ( is rounded to the nearest integer. The product is effected by TP major much more then TP minor due to the weight of the position when contributing towards the σ. Therefore, the compensation value σ can be calculated by obtaining TP major and estimating TP minor. In this way, TP minor can be derived as the function of TP major in order to reduce the computation complexity. Therefore, TP minor is approximated to F 3 (TP major shown as follows. TP minor = F 1 (a i,b j i, j 0 (n = F ( y(n 10, y 0(n 1,y i(n i 1 i 0 (n

3 TABLE II THE COMPENSATION VALUES OF DIFFERENT LENGTH WIDTH AND θ n θ I D I D I D I D I D = F 3 (y (n 10 + y 0(n 1 + y i(n i 1 = F 3 (TP major (9 Furthermore, because y (n 10 and y 0(n 1, those consist of a n 1 and b n 1, are not relationship with TP minor exactly, TP minor can be simplified as function G (θ. ( TP minor = G y i(n i 1 = G (θ where θ = y i(n i 1, and the sum of TP major and TP minor is expressed in the following equation. TP major + TP minor = TPmajor + G (θ = y (n 10 + y 0(n 1 + K (θ (10 where function K (θ =θ+g (θ, and the compensation value σ is summarized in Eqn. (11. ( y(n 10 + y 0(n 1 + K (θ (11 B. Statistical Analysis for Compensation Value Define δ = 1 K (θ. The δ is computed with different θ. Round ( mean ( δ θ, y (n 10 + y 0(n 1 1 = Round (I.d=I + Round (d ( D = I + Round where I and d are the integer and fractional part of the mean of δ which is shown in Table I, respectively. D is a binary value (0 or 1 depending on if the value of d is greater than 0.5 or not. The values of I and D in different length are simulated and tabulated in Table II. The reason we keep the Round ( D to substitute equation (1 to equation (11 but not compute the rounding value directly is that the approximate value can be more accurate. In the other hand, we exclude the situation of y (n 10 + y 0(n 1 =1because D would be insignificant. ( y(n 10 + y 0(n 1 + K (θ ( y(n 10 + y 0(n 1 + D = Round + I (1 C. Architecture for 8 8 Two s Complement Multiplier The circuit is implemented by using full adders (FAs and combinational circuit as shown in Fig. 3. First, we execute a truth table between the value of different θ and σ. Then, we can utilize the table to implement a combinational circuit. After the computation of θ by the combinational circuit, I part can be added to the column of P 8 directly and D part for the P 7 column from the simulation result we shown in Table II. The 1 in the P 15 column can be easily implemented by an inverter. IV. DISCUSSION AND COMPARISONS A. Comparison with Other Multipliers To compare the performance of the accuracy, we introduce the formula of the absolute mean error and maximum absolute error to calculate as below: ε = Avg { P P q } (13 ε max = Max{ P P q } (14 where Avg {} and Max{} are the average and maximum operators, respectively. The comparison of ε in different methodologies are displayed in Table III, and the maximum absolute errors are shown in Table IV. Besides, the gate counts (G c are shown in Table V. The results show that the proposed statistical compensation circuit saves relatively much area for the Post-T and the accuracy is much better than Direct-T. To compare with the other two methods, the proposed method sacrifices a slightly area for the better performance of accuracy.

4 Fig. 3. Architecture for the proposed error compensation 8 8 multiplier. TABLE III COMPARISONS OF ABSOLUTE AVERAGE ERROR ε WITH OTHER METHODS Length n =8 n =10 n =1 n =14 n =16 Direct-T (576 (816 (1331 (61440 (7858 Post-T 11.06% 9.08% 7.69% 6.67% 5.88% J-K [4] 9.58% 6.16% 3.4% 0.84% 18.88% Van [6] 18.39% 16.0% 14.60% 13.38% 1.41% Proposed 15.65% 14.8% 1.54% 11.5% 11.68% TABLE IV COMPARISONS OF MAXIMUM ABSOLUTE ERROR ε max WITH OTHER METHODS Length n =8 n =10 n =1 n =14 n =16 Direct-T (1793 (917 (45057 (1993 ( Post-T 7.14% 5.55% 4.55% 3.85% 3.33% J-K [4] 8.7% 6.07% 4.37% 3.18%.31% Van [6] 4.60%.84% 1.7% 0.94% 0.37% Proposed 1.47% 18.46% 17.9% 16.56% 17.1% B. Application of DCT In order to verify the performance of the proposed multiplier in real application, the proposed multiplier is implemented in a two-dimensional (-D DCT [14]. Also, peak-to-noise TABLE V COMPARISONS OF GATE COUNTS G c WITH OTHER METHODS Length n =8 n =10 n =1 n =14 n =16 Post-T (506 (806 (1175 (1559 (10 Direct-T 44% 45% 46% 48% 47% J-K [4] 5% 5% 5% 53% 51% Van [6] 5% 5% 51% 53% 51% Proposed 59% 60% 58% 55% 53% ratio (PSNR is an important data for evaluating the accuracy performance of DCT core. We chose ten test images for the comparison. They are all comprised of pixels with 8-bit 56 gray level data in each pixel. Table VI shows the comparison results of the PSNR and the gate counts (G c. To compare with the Post-T multiplier, the proposed method saves 15% G c with 9. db penalty. Furthermore, there are only 14% G c overhead for the better performance of PSNR with 15.9 db larger than Direct-T multiplier. Furthermore, the -D DCT with four proposed 14-bit multipliers uses the Synopsys Design Compiler to synthesize the RTL design and the Cadence SOC Encounter is adopted for placement and routing (P&R. Implemented in a TSMC μm CMOS process, the -D DCT core operates in 55 MHz and consumes power 1.9 mw. The core layout and simulated characteristics are shown in Fig. 4. TABLE VI COMPARISONS OF ACCURACY AND GATE COUNTS G c IN DCT APPLICATIONS Post-T Direct-T Proposed Image Image Image Image Image PSNR Image Image Image Image Image Average K 16.4K 19.7K G c (100% (71% (85%

5 Fig. 4. μ μ μ The core layout and characteristics of -D DCT. V. CONCLUSION A low-error fixed-width array multiplier is proposed in this paper. The compensation value is derived by simulation in limit situation and filled into a truth table via different θ. Then we can achieve better performance of accuracy by implementing a combinational circuit with the truth table. The multiplier is implemented in a 0.18-μm process. The results have demonstrated that the proposed array multiplier can achieve higher accuracy comparison with Direct-T method and save areas with Post-T multiplier. Therefore, the proposed multiplier achieves not only higher accuracy but also lower area cost. [9] C. Y. Li, Y. H. Chen, T. Y. Chang, and J. N. Chen, A probabilistic estimation bias circuit for fixed-width Booth multiplier and its DCT applications, IEEE Trans. Circuits Syst. II, vol. 58, no. 4, pp , Apr [10] Y. H. Chen, C. Y. Li, and T. Y. Chang, Area-effective and powerefficient fixed-width Booth multipliers using generalized probabilistic estimation bias, IEEE J. Emerging Sel. Topics Circuits Syst., vol. 1, no. 3, pp , Sep [11] Y. H. Chen and T. Y. Chang, A high-accuracy adaptive conditionalprobability estimator for fixed-width Booth multipliers, IEEE Trans. Circuits Syst. I, vol. 59, no. 3, pp , Mar. 01. [1] A. G. M. Strollo, N. Petra, and D. DeCaro, Dual-tree error compensation for high performance fixed-width multipliers, IEEE Trans. Circuits Syst. II, vol. 5, no. 8, pp , Aug [13] J. Y. Kang and J. L. Gaudiot, A simple high-speed multiplier design, IEEE Trans. Comput., vol. 55, no. 10, pp , Oct [14] S. C. Hsia and S. H. Wang, Shift-register-based data transposition for cost-effective discrete cosine transform, IEEE Trans. VLSI Syst., vol. 15, no. 6, pp , Jun ACKNOWLEDGMENT The authors would like to thank the National Chip Implementation Center (CIC, Taiwan, for providing the electronic design automation tools. This work was supported in part by the National Science Council under project number NSC E and NSC E , and Industrial Technology Research Institute (ITRI, Taiwan, under project number B356AE110. REFERENCES [1] Y. C. Lim, Single-precision multiplier with reduced circuit complexity for signal processing applications, IEEE Trans. Comput., vol. 41, no. 10, pp , Oct [] M. J. Schulte and S. E. E. Jr., Truncated multiplication with correction constant, in Proc. IEEE Workshop VLSI Signal Process., Oct. 1993, pp [3] S. S. Kidambi, F. El-Guibaly, and A. Antoniou, Area-efficient multipliers for digital signal processing applications, IEEE Trans. Circuits Syst. II, vol. 43, no., pp , Feb [4] J. M. Jou, S. R. Kuang, and R. D. Chen, Design of low-error fixedwidth multipliers for DSP applications, IEEE Trans. Circuits Syst. II, vol. 46, no. 6, pp , Jun [5] S. E. E. Jr., Truncated multiplication with approximate rounding, in Proc. 33rd Asilomar Conf. Signals, Syst., and Computers, vol., 1999, pp [6] L. D. Van, S. S. Wang, and W. S. Feng, Design of the lower error fixed-width multiplier and its application, IEEE Trans. Circuits Syst. II, vol. 47, no. 10, pp , Oct [7] L. D. Van and C. C. Yang, Generalized low-error area-efficient fixedwidth multipliers, IEEE Trans. Circuits Syst. I, vol. 5, no. 8, pp , Aug [8] Y. H. Chen, T. Y. Chang, and R. Y. Jou, A statistical error-compensated Booth multiplier and its DCT applications, in Proc. IEEE Region 10 Conf., 010, pp

FIXED WIDTH BOOTH MULTIPLIER BASED ON PEB CIRCUIT

FIXED WIDTH BOOTH MULTIPLIER BASED ON PEB CIRCUIT FIXED WIDTH BOOTH MULTIPLIER BASED ON PEB CIRCUIT Dr. V.Vidya Devi 1, GuruKumar.Lokku 2, A.Natarajan 3 1 Professor, Department of ECE, A. M.S. Engineering college, T.N., India vidyapeace@gmail.com 2 VLSI

More information

Reduced-Error Constant Correction Truncated Multiplier

Reduced-Error Constant Correction Truncated Multiplier This article has been accepted and published on J-STAGE in advance of copyediting. Content is final as presented. IEICE Electronics Express, Vol.*, No.*, 1 8 Reduced-Error Constant Correction Truncated

More information

Tree and Array Multipliers Ivor Page 1

Tree and Array Multipliers Ivor Page 1 Tree and Array Multipliers 1 Tree and Array Multipliers Ivor Page 1 11.1 Tree Multipliers In Figure 1 seven input operands are combined by a tree of CSAs. The final level of the tree is a carry-completion

More information

Low Power, High Speed Parallel Architecture For Cyclic Convolution Based On Fermat Number Transform (FNT)

Low Power, High Speed Parallel Architecture For Cyclic Convolution Based On Fermat Number Transform (FNT) RESEARCH ARTICLE OPEN ACCESS Low Power, High Speed Parallel Architecture For Cyclic Convolution Based On Fermat Number Transform (FNT) T.Jyothsna 1 M.Tech, M.Pradeep 2 M.Tech 1 E.C.E department, shri Vishnu

More information

Design and Implementation of Efficient Modulo 2 n +1 Adder

Design and Implementation of Efficient Modulo 2 n +1 Adder www..org 18 Design and Implementation of Efficient Modulo 2 n +1 Adder V. Jagadheesh 1, Y. Swetha 2 1,2 Research Scholar(INDIA) Abstract In this brief, we proposed an efficient weighted modulo (2 n +1)

More information

Design of Low Power, High Speed Parallel Architecture of Cyclic Convolution Based on Fermat Number Transform (FNT)

Design of Low Power, High Speed Parallel Architecture of Cyclic Convolution Based on Fermat Number Transform (FNT) Advance in Electronic and Electric Engineering. ISSN 2231-1297, Volume 3, Number 6 (2013), pp. 641-650 Research India Publications http://www.ripublication.com/aeee.htm Design of Low Power, High Speed

More information

Proposal to Improve Data Format Conversions for a Hybrid Number System Processor

Proposal to Improve Data Format Conversions for a Hybrid Number System Processor Proposal to Improve Data Format Conversions for a Hybrid Number System Processor LUCIAN JURCA, DANIEL-IOAN CURIAC, AUREL GONTEAN, FLORIN ALEXA Department of Applied Electronics, Department of Automation

More information

Proposal to Improve Data Format Conversions for a Hybrid Number System Processor

Proposal to Improve Data Format Conversions for a Hybrid Number System Processor Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 6-8, 007 653 Proposal to Improve Data Format Conversions for a Hybrid Number System Processor

More information

National Taiwan University Taipei, 106 Taiwan 2 Department of Computer Science and Information Engineering

National Taiwan University Taipei, 106 Taiwan 2 Department of Computer Science and Information Engineering JOURNAL OF INFORMATION SCIENCE AND ENGINEERING, 907-919 (007) Short Paper Improved Modulo ( n + 1) Multiplier for IDEA * YI-JUNG CHEN 1, DYI-RONG DUH AND YUNGHSIANG SAM HAN 1 Department of Computer Science

More information

AREA EFFICIENT MODULAR ADDER/SUBTRACTOR FOR RESIDUE MODULI

AREA EFFICIENT MODULAR ADDER/SUBTRACTOR FOR RESIDUE MODULI AREA EFFICIENT MODULAR ADDER/SUBTRACTOR FOR RESIDUE MODULI G.CHANDANA 1 (M.TECH),chandana.g89@gmail.com P.RAJINI 2 (M.TECH),paddam.rajani@gmail.com Abstract Efficient modular adders and subtractors for

More information

A COMBINED 16-BIT BINARY AND DUAL GALOIS FIELD MULTIPLIER. Jesus Garcia and Michael J. Schulte

A COMBINED 16-BIT BINARY AND DUAL GALOIS FIELD MULTIPLIER. Jesus Garcia and Michael J. Schulte A COMBINED 16-BIT BINARY AND DUAL GALOIS FIELD MULTIPLIER Jesus Garcia and Michael J. Schulte Lehigh University Department of Computer Science and Engineering Bethlehem, PA 15 ABSTRACT Galois field arithmetic

More information

UNIT V FINITE WORD LENGTH EFFECTS IN DIGITAL FILTERS PART A 1. Define 1 s complement form? In 1,s complement form the positive number is represented as in the sign magnitude form. To obtain the negative

More information

Design and Analysis of Comparator Using Different Logic Style of Full Adder

Design and Analysis of Comparator Using Different Logic Style of Full Adder RESEARCH ARTICLE OPEN ACCESS Design and Analysis of Comparator Using Different Logic Style of Full Adder K. Rajasekhar**, P. Sowjanya*, V. Umakiranmai*, R. Harish*, M. Krishna* (** Assistant Professor,

More information

A HIGH-SPEED PROCESSOR FOR RECTANGULAR-TO-POLAR CONVERSION WITH APPLICATIONS IN DIGITAL COMMUNICATIONS *

A HIGH-SPEED PROCESSOR FOR RECTANGULAR-TO-POLAR CONVERSION WITH APPLICATIONS IN DIGITAL COMMUNICATIONS * Copyright IEEE 999: Published in the Proceedings of Globecom 999, Rio de Janeiro, Dec 5-9, 999 A HIGH-SPEED PROCESSOR FOR RECTAGULAR-TO-POLAR COVERSIO WITH APPLICATIOS I DIGITAL COMMUICATIOS * Dengwei

More information

Complex Logarithmic Number System Arithmetic Using High-Radix Redundant CORDIC Algorithms

Complex Logarithmic Number System Arithmetic Using High-Radix Redundant CORDIC Algorithms Complex Logarithmic Number System Arithmetic Using High-Radix Redundant CORDIC Algorithms David Lewis Department of Electrical and Computer Engineering, University of Toronto Toronto, Ontario, Canada M5S

More information

Analysis and Synthesis of Weighted-Sum Functions

Analysis and Synthesis of Weighted-Sum Functions Analysis and Synthesis of Weighted-Sum Functions Tsutomu Sasao Department of Computer Science and Electronics, Kyushu Institute of Technology, Iizuka 820-8502, Japan April 28, 2005 Abstract A weighted-sum

More information

The equivalence of twos-complement addition and the conversion of redundant-binary to twos-complement numbers

The equivalence of twos-complement addition and the conversion of redundant-binary to twos-complement numbers The equivalence of twos-complement addition and the conversion of redundant-binary to twos-complement numbers Gerard MBlair The Department of Electrical Engineering The University of Edinburgh The King

More information

What s the Deal? MULTIPLICATION. Time to multiply

What s the Deal? MULTIPLICATION. Time to multiply What s the Deal? MULTIPLICATION Time to multiply Multiplying two numbers requires a multiply Luckily, in binary that s just an AND gate! 0*0=0, 0*1=0, 1*0=0, 1*1=1 Generate a bunch of partial products

More information

A High-Speed Realization of Chinese Remainder Theorem

A High-Speed Realization of Chinese Remainder Theorem Proceedings of the 2007 WSEAS Int. Conference on Circuits, Systems, Signal and Telecommunications, Gold Coast, Australia, January 17-19, 2007 97 A High-Speed Realization of Chinese Remainder Theorem Shuangching

More information

HARDWARE IMPLEMENTATION OF FIR/IIR DIGITAL FILTERS USING INTEGRAL STOCHASTIC COMPUTATION. Arash Ardakani, François Leduc-Primeau and Warren J.

HARDWARE IMPLEMENTATION OF FIR/IIR DIGITAL FILTERS USING INTEGRAL STOCHASTIC COMPUTATION. Arash Ardakani, François Leduc-Primeau and Warren J. HARWARE IMPLEMENTATION OF FIR/IIR IGITAL FILTERS USING INTEGRAL STOCHASTIC COMPUTATION Arash Ardakani, François Leduc-Primeau and Warren J. Gross epartment of Electrical and Computer Engineering McGill

More information

Design of Arithmetic Logic Unit (ALU) using Modified QCA Adder

Design of Arithmetic Logic Unit (ALU) using Modified QCA Adder Design of Arithmetic Logic Unit (ALU) using Modified QCA Adder M.S.Navya Deepthi M.Tech (VLSI), Department of ECE, BVC College of Engineering, Rajahmundry. Abstract: Quantum cellular automata (QCA) is

More information

Comparative analysis of QCA adders

Comparative analysis of QCA adders International Journal of Electrical Electronics Computers & Mechanical Engineering (IJEECM) ISSN: 2278-2808 Volume 5 Issue 12 ǁ December. 2017 IJEECM journal of Electronics and Communication Engineering

More information

Novel Bit Adder Using Arithmetic Logic Unit of QCA Technology

Novel Bit Adder Using Arithmetic Logic Unit of QCA Technology Novel Bit Adder Using Arithmetic Logic Unit of QCA Technology Uppoju Shiva Jyothi M.Tech (ES & VLSI Design), Malla Reddy Engineering College For Women, Secunderabad. Abstract: Quantum cellular automata

More information

Lecture 8: Sequential Multipliers

Lecture 8: Sequential Multipliers Lecture 8: Sequential Multipliers ECE 645 Computer Arithmetic 3/25/08 ECE 645 Computer Arithmetic Lecture Roadmap Sequential Multipliers Unsigned Signed Radix-2 Booth Recoding High-Radix Multiplication

More information

An Effective New CRT Based Reverse Converter for a Novel Moduli Set { 2 2n+1 1, 2 2n+1, 2 2n 1 }

An Effective New CRT Based Reverse Converter for a Novel Moduli Set { 2 2n+1 1, 2 2n+1, 2 2n 1 } An Effective New CRT Based Reverse Converter for a Novel Moduli Set +1 1, +1, 1 } Edem Kwedzo Bankas, Kazeem Alagbe Gbolagade Department of Computer Science, Faculty of Mathematical Sciences, University

More information

Design and Comparison of Wallace Multiplier Based on Symmetric Stacking and High speed counters

Design and Comparison of Wallace Multiplier Based on Symmetric Stacking and High speed counters International Journal of Engineering Research and Advanced Technology (IJERAT) DOI:http://dx.doi.org/10.31695/IJERAT.2018.3271 E-ISSN : 2454-6135 Volume.4, Issue 6 June -2018 Design and Comparison of Wallace

More information

Vectorized 128-bit Input FP16/FP32/ FP64 Floating-Point Multiplier

Vectorized 128-bit Input FP16/FP32/ FP64 Floating-Point Multiplier Vectorized 128-bit Input FP16/FP32/ FP64 Floating-Point Multiplier Espen Stenersen Master of Science in Electronics Submission date: June 2008 Supervisor: Per Gunnar Kjeldsberg, IET Co-supervisor: Torstein

More information

Implementation Of Digital Fir Filter Using Improved Table Look Up Scheme For Residue Number System

Implementation Of Digital Fir Filter Using Improved Table Look Up Scheme For Residue Number System Implementation Of Digital Fir Filter Using Improved Table Look Up Scheme For Residue Number System G.Suresh, G.Indira Devi, P.Pavankumar Abstract The use of the improved table look up Residue Number System

More information

Performance Evaluation of Signed-Digit Architecture for Weighted-to-Residue and Residue-to-Weighted Number Converters with Moduli Set (2 n 1, 2 n,

Performance Evaluation of Signed-Digit Architecture for Weighted-to-Residue and Residue-to-Weighted Number Converters with Moduli Set (2 n 1, 2 n, Regular Paper Performance Evaluation of Signed-Digit Architecture for Weighted-to-Residue and Residue-to-Weighted Number Converters with Moduli Set (2 n 1, 2 n, 2 n +1) Shuangching Chen and Shugang Wei

More information

An Area Efficient Enhanced Carry Select Adder

An Area Efficient Enhanced Carry Select Adder International Journal of Engineering Science Invention ISSN (Online): 2319 6734, ISSN (Print): 2319 6726 PP.06-12 An Area Efficient Enhanced Carry Select Adder 1, Gaandla.Anusha, 2, B.ShivaKumar 1, PG

More information

A Bit-Plane Decomposition Matrix-Based VLSI Integer Transform Architecture for HEVC

A Bit-Plane Decomposition Matrix-Based VLSI Integer Transform Architecture for HEVC IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 64, NO. 3, MARCH 2017 349 A Bit-Plane Decomposition Matrix-Based VLSI Integer Transform Architecture for HEVC Honggang Qi, Member, IEEE,

More information

International Association of Scientific Innovation and Research (IASIR) (An Association Unifying the Sciences, Engineering, and Applied Research)

International Association of Scientific Innovation and Research (IASIR) (An Association Unifying the Sciences, Engineering, and Applied Research) International Association of Scientific Innovation and Research (IASIR) (An Association Unifying the Sciences, Engineering, and Applied Research) International Journal of Emerging Technologies in Computational

More information

KEYWORDS: Multiple Valued Logic (MVL), Residue Number System (RNS), Quinary Logic (Q uin), Quinary Full Adder, QFA, Quinary Half Adder, QHA.

KEYWORDS: Multiple Valued Logic (MVL), Residue Number System (RNS), Quinary Logic (Q uin), Quinary Full Adder, QFA, Quinary Half Adder, QHA. GLOBAL JOURNAL OF ADVANCED ENGINEERING TECHNOLOGIES AND SCIENCES DESIGN OF A QUINARY TO RESIDUE NUMBER SYSTEM CONVERTER USING MULTI-LEVELS OF CONVERSION Hassan Amin Osseily Electrical and Electronics Department,

More information

Novel Modulo 2 n +1Multipliers

Novel Modulo 2 n +1Multipliers Novel Modulo Multipliers H. T. Vergos Computer Engineering and Informatics Dept., University of Patras, 26500 Patras, Greece. vergos@ceid.upatras.gr C. Efstathiou Informatics Dept.,TEI of Athens, 12210

More information

Design and Implementation of Carry Tree Adders using Low Power FPGAs

Design and Implementation of Carry Tree Adders using Low Power FPGAs 1 Design and Implementation of Carry Tree Adders using Low Power FPGAs Sivannarayana G 1, Raveendra babu Maddasani 2 and Padmasri Ch 3. Department of Electronics & Communication Engineering 1,2&3, Al-Ameer

More information

AN IMPROVED LOW LATENCY SYSTOLIC STRUCTURED GALOIS FIELD MULTIPLIER

AN IMPROVED LOW LATENCY SYSTOLIC STRUCTURED GALOIS FIELD MULTIPLIER Indian Journal of Electronics and Electrical Engineering (IJEEE) Vol.2.No.1 2014pp1-6 available at: www.goniv.com Paper Received :05-03-2014 Paper Published:28-03-2014 Paper Reviewed by: 1. John Arhter

More information

arxiv: v1 [cs.mm] 2 Feb 2017 Abstract

arxiv: v1 [cs.mm] 2 Feb 2017 Abstract DCT-like Transform for Image Compression Requires 14 Additions Only F. M. Bayer R. J. Cintra arxiv:1702.00817v1 [cs.mm] 2 Feb 2017 Abstract A low-complexity 8-point orthogonal approximate DCT is introduced.

More information

9. Datapath Design. Jacob Abraham. Department of Electrical and Computer Engineering The University of Texas at Austin VLSI Design Fall 2017

9. Datapath Design. Jacob Abraham. Department of Electrical and Computer Engineering The University of Texas at Austin VLSI Design Fall 2017 9. Datapath Design Jacob Abraham Department of Electrical and Computer Engineering The University of Texas at Austin VLSI Design Fall 2017 October 2, 2017 ECE Department, University of Texas at Austin

More information

GENERALIZED ARYABHATA REMAINDER THEOREM

GENERALIZED ARYABHATA REMAINDER THEOREM International Journal of Innovative Computing, Information and Control ICIC International c 2010 ISSN 1349-4198 Volume 6, Number 4, April 2010 pp. 1865 1871 GENERALIZED ARYABHATA REMAINDER THEOREM Chin-Chen

More information

DIGITAL TECHNICS. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute

DIGITAL TECHNICS. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute DIGITAL TECHNICS Dr. Bálint Pődör Óbuda University, Microelectronics and Technology Institute 4. LECTURE: COMBINATIONAL LOGIC DESIGN: ARITHMETICS (THROUGH EXAMPLES) 2016/2017 COMBINATIONAL LOGIC DESIGN:

More information

DSP Design Lecture 2. Fredrik Edman.

DSP Design Lecture 2. Fredrik Edman. DSP Design Lecture Number representation, scaling, quantization and round-off Noise Fredrik Edman fredrik.edman@eit.lth.se Representation of Numbers Numbers is a way to use symbols to describe and model

More information

GALOP : A Generalized VLSI Architecture for Ultrafast Carry Originate-Propagate adders

GALOP : A Generalized VLSI Architecture for Ultrafast Carry Originate-Propagate adders GALOP : A Generalized VLSI Architecture for Ultrafast Carry Originate-Propagate adders Dhananjay S. Phatak Electrical Engineering Department State University of New York, Binghamton, NY 13902-6000 Israel

More information

DESIGN OF LOW POWER-DELAY PRODUCT CARRY LOOK AHEAD ADDER USING MANCHESTER CARRY CHAIN

DESIGN OF LOW POWER-DELAY PRODUCT CARRY LOOK AHEAD ADDER USING MANCHESTER CARRY CHAIN International Conference on Systems, Science, Control, Communication, Engineering and Technology 64 International Conference on Systems, Science, Control, Communication, Engineering and Technology 2015

More information

THE newest video coding standard is known as H.264/AVC

THE newest video coding standard is known as H.264/AVC IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 17, NO. 6, JUNE 2007 765 Transform-Domain Fast Sum of the Squared Difference Computation for H.264/AVC Rate-Distortion Optimization

More information

Hakim Weatherspoon CS 3410 Computer Science Cornell University

Hakim Weatherspoon CS 3410 Computer Science Cornell University Hakim Weatherspoon CS 3410 Computer Science Cornell University The slides are the product of many rounds of teaching CS 3410 by Professors Weatherspoon, Bala, Bracy, and Sirer. memory inst 32 register

More information

Tunable Floating-Point for Energy Efficient Accelerators

Tunable Floating-Point for Energy Efficient Accelerators Tunable Floating-Point for Energy Efficient Accelerators Alberto Nannarelli DTU Compute, Technical University of Denmark 25 th IEEE Symposium on Computer Arithmetic A. Nannarelli (DTU Compute) Tunable

More information

Global Optimization of Common Subexpressions for Multiplierless Synthesis of Multiple Constant Multiplications

Global Optimization of Common Subexpressions for Multiplierless Synthesis of Multiple Constant Multiplications Global Optimization of Common Subexpressions for Multiplierless Synthesis of Multiple Constant Multiplications Yuen-Hong Alvin Ho, Chi-Un Lei, Hing-Kit Kwan and Ngai Wong Department of Electrical and Electronic

More information

Volume 3, No. 1, January 2012 Journal of Global Research in Computer Science RESEARCH PAPER Available Online at

Volume 3, No. 1, January 2012 Journal of Global Research in Computer Science RESEARCH PAPER Available Online at Volume 3, No 1, January 2012 Journal of Global Research in Computer Science RESEARCH PAPER Available Online at wwwjgrcsinfo A NOVEL HIGH DYNAMIC RANGE 5-MODULUS SET WHIT EFFICIENT REVERSE CONVERTER AND

More information

UNSIGNED BINARY NUMBERS DIGITAL ELECTRONICS SYSTEM DESIGN WHAT ABOUT NEGATIVE NUMBERS? BINARY ADDITION 11/9/2018

UNSIGNED BINARY NUMBERS DIGITAL ELECTRONICS SYSTEM DESIGN WHAT ABOUT NEGATIVE NUMBERS? BINARY ADDITION 11/9/2018 DIGITAL ELECTRONICS SYSTEM DESIGN LL 2018 PROFS. IRIS BAHAR & ROD BERESFORD NOVEMBER 9, 2018 LECTURE 19: BINARY ADDITION, UNSIGNED BINARY NUMBERS For the binary number b n-1 b n-2 b 1 b 0. b -1 b -2 b

More information

FAST FIR ALGORITHM BASED AREA-EFFICIENT PARALLEL FIR DIGITAL FILTER STRUCTURES

FAST FIR ALGORITHM BASED AREA-EFFICIENT PARALLEL FIR DIGITAL FILTER STRUCTURES FAST FIR ALGORITHM BASED AREA-EFFICIENT PARALLEL FIR DIGITAL FILTER STRUCTURES R.P.MEENAAKSHI SUNDHARI 1, Dr.R.ANITA 2 1 Department of ECE, Sasurie College of Engineering, Vijayamangalam, Tamilnadu, India.

More information

High Speed Time Efficient Reversible ALU Based Logic Gate Structure on Vertex Family

High Speed Time Efficient Reversible ALU Based Logic Gate Structure on Vertex Family International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 11, Issue 04 (April 2015), PP.72-77 High Speed Time Efficient Reversible ALU Based

More information

Efficient Function Approximation Using Truncated Multipliers and Squarers

Efficient Function Approximation Using Truncated Multipliers and Squarers Efficient Function Approximation Using Truncated Multipliers and Squarers E. George Walters III Lehigh University Bethlehem, PA, USA waltersg@ieee.org Michael J. Schulte University of Wisconsin Madison

More information

Design and FPGA Implementation of Radix-10 Algorithm for Division with Limited Precision Primitives

Design and FPGA Implementation of Radix-10 Algorithm for Division with Limited Precision Primitives Design and FPGA Implementation of Radix-10 Algorithm for Division with Limited Precision Primitives Miloš D. Ercegovac Computer Science Department Univ. of California at Los Angeles California Robert McIlhenny

More information

Low Latency Architectures of a Comparator for Binary Signed Digits in a 28-nm CMOS Technology

Low Latency Architectures of a Comparator for Binary Signed Digits in a 28-nm CMOS Technology Low Latency Architectures of a Comparator for Binary Signed Digits in a 28-nm CMOS Technology Martin Schmidt, Thomas Veigel, Sebastian Haug, Markus Grözing, Manfred Berroth Stuttgart, Germany 1 Outline

More information

Numbering Systems. Computational Platforms. Scaling and Round-off Noise. Special Purpose. here that is dedicated architecture

Numbering Systems. Computational Platforms. Scaling and Round-off Noise. Special Purpose. here that is dedicated architecture Computational Platforms Numbering Systems Basic Building Blocks Scaling and Round-off Noise Computational Platforms Viktor Öwall viktor.owall@eit.lth.seowall@eit lth Standard Processors or Special Purpose

More information

Dual-Field Arithmetic Unit for GF(p) and GF(2 m ) *

Dual-Field Arithmetic Unit for GF(p) and GF(2 m ) * Institute for Applied Information Processing and Communications Graz University of Technology Dual-Field Arithmetic Unit for GF(p) and GF(2 m ) * CHES 2002 Workshop on Cryptographic Hardware and Embedded

More information

Reduced-Area Constant-Coefficient and Multiple-Constant Multipliers for Xilinx FPGAs with 6-Input LUTs

Reduced-Area Constant-Coefficient and Multiple-Constant Multipliers for Xilinx FPGAs with 6-Input LUTs Article Reduced-Area Constant-Coefficient and Multiple-Constant Multipliers for Xilinx FPGAs with 6-Input LUTs E. George Walters III Department of Electrical and Computer Engineering, Penn State Erie,

More information

ISSN (PRINT): , (ONLINE): , VOLUME-4, ISSUE-10,

ISSN (PRINT): , (ONLINE): , VOLUME-4, ISSUE-10, A NOVEL DOMINO LOGIC DESIGN FOR EMBEDDED APPLICATION Dr.K.Sujatha Associate Professor, Department of Computer science and Engineering, Sri Krishna College of Engineering and Technology, Coimbatore, Tamilnadu,

More information

Mark Redekopp, All rights reserved. Lecture 1 Slides. Intro Number Systems Logic Functions

Mark Redekopp, All rights reserved. Lecture 1 Slides. Intro Number Systems Logic Functions Lecture Slides Intro Number Systems Logic Functions EE 0 in Context EE 0 EE 20L Logic Design Fundamentals Logic Design, CAD Tools, Lab tools, Project EE 357 EE 457 Computer Architecture Using the logic

More information

CHEBYSHEV polynomials have been an essential mathematical

CHEBYSHEV polynomials have been an essential mathematical IEEE TRANSACTIONS ON COMPUTERS, VOL X, NO X, MONTH YYYY 1 A Karatsuba-based Algorithm for Polynomial Multiplication in Chebyshev Form Juliano B Lima, Student Member, IEEE, Daniel Panario, Member, IEEE,

More information

Design of A Efficient Hybrid Adder Using Qca

Design of A Efficient Hybrid Adder Using Qca International Journal of Engineering Science Invention ISSN (Online): 2319 6734, ISSN (Print): 2319 6726 PP30-34 Design of A Efficient Hybrid Adder Using Qca 1, Ravi chander, 2, PMurali Krishna 1, PG Scholar,

More information

Design for Manufacturability and Power Estimation. Physical issues verification (DSM)

Design for Manufacturability and Power Estimation. Physical issues verification (DSM) Design for Manufacturability and Power Estimation Lecture 25 Alessandra Nardi Thanks to Prof. Jan Rabaey and Prof. K. Keutzer Physical issues verification (DSM) Interconnects Signal Integrity P/G integrity

More information

I. INTRODUCTION. CMOS Technology: An Introduction to QCA Technology As an. T. Srinivasa Padmaja, C. M. Sri Priya

I. INTRODUCTION. CMOS Technology: An Introduction to QCA Technology As an. T. Srinivasa Padmaja, C. M. Sri Priya International Journal of Scientific Research in Computer Science, Engineering and Information Technology 2018 IJSRCSEIT Volume 3 Issue 5 ISSN : 2456-3307 Design and Implementation of Carry Look Ahead Adder

More information

Svoboda-Tung Division With No Compensation

Svoboda-Tung Division With No Compensation Svoboda-Tung Division With No Compensation Luis MONTALVO (IEEE Student Member), Alain GUYOT Integrated Systems Design Group, TIMA/INPG 46, Av. Félix Viallet, 38031 Grenoble Cedex, France. E-mail: montalvo@archi.imag.fr

More information

Logic and Computer Design Fundamentals. Chapter 5 Arithmetic Functions and Circuits

Logic and Computer Design Fundamentals. Chapter 5 Arithmetic Functions and Circuits Logic and Computer Design Fundamentals Chapter 5 Arithmetic Functions and Circuits Arithmetic functions Operate on binary vectors Use the same subfunction in each bit position Can design functional block

More information

doi: /TCAD

doi: /TCAD doi: 10.1109/TCAD.2006.870407 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 5, MAY 2006 789 Short Papers Analysis and Synthesis of Weighted-Sum Functions Tsutomu

More information

ECE260: Fundamentals of Computer Engineering

ECE260: Fundamentals of Computer Engineering Data Representation & 2 s Complement James Moscola Dept. of Engineering & Computer Science York College of Pennsylvania Based on Computer Organization and Design, 5th Edition by Patterson & Hennessy Data

More information

Residue Number Systems Ivor Page 1

Residue Number Systems Ivor Page 1 Residue Number Systems 1 Residue Number Systems Ivor Page 1 7.1 Arithmetic in a modulus system The great speed of arithmetic in Residue Number Systems (RNS) comes from a simple theorem from number theory:

More information

A Suggestion for a Fast Residue Multiplier for a Family of Moduli of the Form (2 n (2 p ± 1))

A Suggestion for a Fast Residue Multiplier for a Family of Moduli of the Form (2 n (2 p ± 1)) The Computer Journal, 47(1), The British Computer Society; all rights reserved A Suggestion for a Fast Residue Multiplier for a Family of Moduli of the Form ( n ( p ± 1)) Ahmad A. Hiasat Electronics Engineering

More information

An Efficient Bottom-Up Extraction Approach to Build the Behavioral Model of Switched-Capacitor. ΔΣ Modulator. Electronic Design Automation Laboratory

An Efficient Bottom-Up Extraction Approach to Build the Behavioral Model of Switched-Capacitor. ΔΣ Modulator. Electronic Design Automation Laboratory Electronic Design Automation Laboratory National Central University Department of Electrical Engineering, Taiwan ( R.O.C) An Efficient Bottom-Up Extraction Approach to Build the Behavioral Model of Switched-Capacitor

More information

Low-Power Twiddle Factor Unit for FFT Computation

Low-Power Twiddle Factor Unit for FFT Computation Low-Power Twiddle Factor Unit for FFT Computation Teemu Pitkänen, Tero Partanen, and Jarmo Takala Tampere University of Technology, P.O. Box, FIN- Tampere, Finland {teemu.pitkanen, tero.partanen, jarmo.takala}@tut.fi

More information

Combinational Logic. By : Ali Mustafa

Combinational Logic. By : Ali Mustafa Combinational Logic By : Ali Mustafa Contents Adder Subtractor Multiplier Comparator Decoder Encoder Multiplexer How to Analyze any combinational circuit like this? Analysis Procedure To obtain the output

More information

Performance Enhancement of Reversible Binary to Gray Code Converter Circuit using Feynman gate

Performance Enhancement of Reversible Binary to Gray Code Converter Circuit using Feynman gate Performance Enhancement of Reversible Binary to Gray Code Converter Circuit using Feynman gate Kamal Prakash Pandey 1, Pradumn Kumar 2, Rakesh Kumar Singh 3 1, 2, 3 Department of Electronics and Communication

More information

Serial Parallel Multiplier Design in Quantum-dot Cellular Automata

Serial Parallel Multiplier Design in Quantum-dot Cellular Automata Serial Parallel Multiplier Design in Quantum-dot Cellular Automata Heumpil Cho and Earl E. Swartzlander, Jr. Application Specific Processor Group Department of Electrical and Computer Engineering The University

More information

An Approximate Parallel Multiplier with Deterministic Errors for Ultra-High Speed Integrated Optical Circuits

An Approximate Parallel Multiplier with Deterministic Errors for Ultra-High Speed Integrated Optical Circuits An Approximate Parallel Multiplier with Deterministic Errors for Ultra-High Speed Integrated Optical Circuits Jun Shiomi 1, Tohru Ishihara 1, Hidetoshi Onodera 1, Akihiko Shinya 2, Masaya Notomi 2 1 Graduate

More information

CHAPTER 2 NUMBER SYSTEMS

CHAPTER 2 NUMBER SYSTEMS CHAPTER 2 NUMBER SYSTEMS The Decimal Number System : We begin our study of the number systems with the familiar decimal number system. The decimal system contains ten unique symbol 0, 1, 2, 3, 4, 5, 6,

More information

Chapter 5. Digital Design and Computer Architecture, 2 nd Edition. David Money Harris and Sarah L. Harris. Chapter 5 <1>

Chapter 5. Digital Design and Computer Architecture, 2 nd Edition. David Money Harris and Sarah L. Harris. Chapter 5 <1> Chapter 5 Digital Design and Computer Architecture, 2 nd Edition David Money Harris and Sarah L. Harris Chapter 5 Chapter 5 :: Topics Introduction Arithmetic Circuits umber Systems Sequential Building

More information

Stack Sizing for Optimal Current Drivability in Subthreshold Circuits REFERENCES

Stack Sizing for Optimal Current Drivability in Subthreshold Circuits REFERENCES 598 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL 16, NO 5, MAY 2008 design can be easily expanded to a hierarchical 64-bit adder such that the result will be attained in four cycles

More information

Seminar: D. Jeon, Energy-efficient Digital Signal Processing Hardware Design Mon Sept 22, 9:30-11:30am in 3316 EECS

Seminar: D. Jeon, Energy-efficient Digital Signal Processing Hardware Design Mon Sept 22, 9:30-11:30am in 3316 EECS EECS 452 Lecture 6 Today: Announcements: Rounding and quantization Analog to digital conversion Lab 3 starts next week Hw3 due on tuesday Project teaming meeting: today 7-9PM, Dow 3150 My new office hours:

More information

Cost/Performance Tradeoffs:

Cost/Performance Tradeoffs: Cost/Performance Tradeoffs: a case study Digital Systems Architecture I. L10 - Multipliers 1 Binary Multiplication x a b n bits n bits EASY PROBLEM: design combinational circuit to multiply tiny (1-, 2-,

More information

Enhanced Stochastic Bit Reshuffling for Fine Granular Scalable Video Coding

Enhanced Stochastic Bit Reshuffling for Fine Granular Scalable Video Coding Enhanced Stochastic Bit Reshuffling for Fine Granular Scalable Video Coding Wen-Hsiao Peng, Tihao Chiang, Hsueh-Ming Hang, and Chen-Yi Lee National Chiao-Tung University 1001 Ta-Hsueh Rd., HsinChu 30010,

More information

CHAPTER 7. Solutions for Exercises

CHAPTER 7. Solutions for Exercises CHAPTER 7 Solutions for Exercises E7.1 (a) For the whole part we have: Quotient Remainders 23/2 11 1 11/2 5 1 5/2 2 1 2/2 1 0 1/2 0 1 Reading the remainders in reverse order we obtain: 23 10 = 10111 2

More information

Behavioral Model of Split Capacitor Array DAC for Use in SAR ADC Design

Behavioral Model of Split Capacitor Array DAC for Use in SAR ADC Design Behavioral Model of Split Capacitor Array DAC for Use in SAR ADC Design PC.SHILPA 1, M.H PRADEEP 2 P.G. Scholar (M. Tech), Dept. of ECE, BITIT College of Engineering, Anantapur Asst Professor, Dept. of

More information

Test Pattern Generator for Built-in Self-Test using Spectral Methods

Test Pattern Generator for Built-in Self-Test using Spectral Methods Test Pattern Generator for Built-in Self-Test using Spectral Methods Alok S. Doshi and Anand S. Mudlapur Auburn University 2 Dept. of Electrical and Computer Engineering, Auburn, AL, USA doshias,anand@auburn.edu

More information

Resource Efficient Design of Quantum Circuits for Quantum Algorithms

Resource Efficient Design of Quantum Circuits for Quantum Algorithms Resource Efficient Design of Quantum Circuits for Quantum Algorithms Himanshu Thapliyal Department of Electrical and Computer Engineering University of Kentucky, Lexington, KY hthapliyal@uky.edu Quantum

More information

Hardware Design I Chap. 4 Representative combinational logic

Hardware Design I Chap. 4 Representative combinational logic Hardware Design I Chap. 4 Representative combinational logic E-mail: shimada@is.naist.jp Already optimized circuits There are many optimized circuits which are well used You can reduce your design workload

More information

Area-Time Optimal Adder with Relative Placement Generator

Area-Time Optimal Adder with Relative Placement Generator Area-Time Optimal Adder with Relative Placement Generator Abstract: This paper presents the design of a generator, for the production of area-time-optimal adders. A unique feature of this generator is

More information

Synthesis of Saturating Counters Using Traditional and Non-traditional Basic Counters

Synthesis of Saturating Counters Using Traditional and Non-traditional Basic Counters Synthesis of Saturating Counters Using Traditional and Non-traditional Basic Counters Zhaojun Wo and Israel Koren Department of Electrical and Computer Engineering University of Massachusetts, Amherst,

More information

BEHAVIORAL MODEL OF SPLIT CAPACITOR ARRAY DAC FOR USE IN SAR ADC DESIGN

BEHAVIORAL MODEL OF SPLIT CAPACITOR ARRAY DAC FOR USE IN SAR ADC DESIGN BEHAVIORAL MODEL OF SPLIT CAPACITOR ARRAY DAC FOR USE IN SAR ADC DESIGN 1 P C.SHILPA, 2 M.H PRADEEP 1 P.G. Scholar (M. Tech), Dept. of ECE, BITIT College of Engineering, Anantapur 2 Asst Professor, Dept.

More information

Chapter 5 Arithmetic Circuits

Chapter 5 Arithmetic Circuits Chapter 5 Arithmetic Circuits SKEE2263 Digital Systems Mun im/ismahani/izam {munim@utm.my,e-izam@utm.my,ismahani@fke.utm.my} February 11, 2016 Table of Contents 1 Iterative Designs 2 Adders 3 High-Speed

More information

BCD Adder Design using New Reversible Logic for Low Power Applications

BCD Adder Design using New Reversible Logic for Low Power Applications Indian Journal of Science and Technology, Vol 10(30), DOI: 10.17485/ijst/2017/v10i30/115514, August 2017 ISSN (Print) : 0974-6846 ISSN (Online) : 0974-5645 BCD Adder Design using New Reversible Logic for

More information

NEW SELF-CHECKING BOOTH MULTIPLIERS

NEW SELF-CHECKING BOOTH MULTIPLIERS Int. J. Appl. Math. Comput. Sci., 2008, Vol. 18, No. 3, 319 328 DOI: 10.2478/v10006-008-0029-4 NEW SELF-CHECKING BOOTH MULTIPLIERS MARC HUNGER, DANIEL MARIENFELD Department of Electrical Engineering and

More information

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK SUBJECT CODE: EC 1354 SUB.NAME : VLSI DESIGN YEAR / SEMESTER: III / VI UNIT I MOS TRANSISTOR THEORY AND

More information

DSP Configurations. responded with: thus the system function for this filter would be

DSP Configurations. responded with: thus the system function for this filter would be DSP Configurations In this lecture we discuss the different physical (or software) configurations that can be used to actually realize or implement DSP functions. Recall that the general form of a DSP

More information

MODERN video coding standards, such as H.263, H.264,

MODERN video coding standards, such as H.263, H.264, 146 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 16, NO. 1, JANUARY 2006 Analysis of Multihypothesis Motion Compensated Prediction (MHMCP) for Robust Visual Communication Wei-Ying

More information

Cost/Performance Tradeoff of n-select Square Root Implementations

Cost/Performance Tradeoff of n-select Square Root Implementations Australian Computer Science Communications, Vol.22, No.4, 2, pp.9 6, IEEE Comp. Society Press Cost/Performance Tradeoff of n-select Square Root Implementations Wanming Chu and Yamin Li Computer Architecture

More information

Successive approximation time-to-digital converter based on vernier charging method

Successive approximation time-to-digital converter based on vernier charging method LETTER Successive approximation time-to-digital converter based on vernier charging method Xin-Gang Wang 1, 2, Hai-Gang Yang 1a), Fei Wang 1, and Hui-He 2 1 Institute of Electronics, Chinese Academy of

More information

Enhanced SATD-based cost function for mode selection of H.264/AVC intra coding

Enhanced SATD-based cost function for mode selection of H.264/AVC intra coding SIViP (013) 7:777 786 DOI 10.1007/s11760-011-067-z ORIGINAL PAPER Enhanced SATD-based cost function for mode selection of H.6/AVC intra coding Mohammed Golam Sarwer Q. M. Jonathan Wu Xiao-Ping Zhang Received:

More information

EECS150 - Digital Design Lecture 24 - Arithmetic Blocks, Part 2 + Shifters

EECS150 - Digital Design Lecture 24 - Arithmetic Blocks, Part 2 + Shifters EECS150 - Digital Design Lecture 24 - Arithmetic Blocks, Part 2 + Shifters April 15, 2010 John Wawrzynek 1 Multiplication a 3 a 2 a 1 a 0 Multiplicand b 3 b 2 b 1 b 0 Multiplier X a 3 b 0 a 2 b 0 a 1 b

More information

1686 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 16, NO. 6, JUNE : : : : : : : : :59063

1686 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 16, NO. 6, JUNE : : : : : : : : :59063 1686 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 16, NO. 6, JUNE 2007 Correspondence Reversible Integer Color Transform Soo-Chang Pei and Jian-Jiun Ding TABLE I PARAMETERS OF THE REVERSIBLE INTEGER COLOR

More information