Prim ary I onization Track (Gases)

Size: px
Start display at page:

Download "Prim ary I onization Track (Gases)"

Transcription

1

2 Prim ary I onization Track (Gases) incoming particle ionization track Minimum- ionizing particles ( Sauli. IEEE+NSS ) ion/e - pairs Helium Argon Xenon DME GAS (STP) CH 4 de/dx (kev /cm ) n (ion pairs/ cm ) Oct 1 e - I + E n Linear Statistical ionization process: Poisson statistics Detection efficiency depends on average num ber < n> of ion pairs 1 e n GAS (STP) Helium Argon thickness 1 mm 45 mm 7 1 mm 91.8 mm 99.3 Higher for slower part icles

3 Free Charge Transport in Gases P( x) P( x) t x 1D Diffusion equation P(x)= (1/ N )dn/ dx dn dx 4Dt exp x 4D t x : x Dt rms N x Oct 1 3 t 1 > t x P( x) t > t 1 x v D 1 3 v Therm al velocities : 8kT 8 m 3 D( ion) D( e ) v D diffusion coefficient, < v> m ean speed m ean free path Maxwell+ Bolt zm ann velocity distribution Sm all ion m obility

4 Driven Charge Transport in Gases P( x) Electric field E = U/ x separates + / - charges 4 Oct 1 t x P( x) E t 1 > t x P( x) t > t 1 x dn N ( x w t ) exp dx 4Dt 4D t e w E drift v elocit y m v m ean collision tim e D kt e : w E m obility Cycle: accelerat ion scat t ering Drift and diffusion depend on field strength and gas pressure p (or ). x w w( E p); D D( E p)

5 I on Mobility GAS ION µ + (cm V -1 s +1 Ar Ar CH 4 CH Ar+CH 4 8+ CH I on m obility = w + / E I ndependent of field, for given gas at p,t= const. 5 Oct 1 Typical ion drift velocit ies (Ar+ CH 4 counters): w + ~ ( ) cm / s slow! E. McDaniel and E. Mason The mobility and diffusion of ions in gases (Wiley 1973)

6 Elect ron Transport Multiple scattering/ acceleration produces effective spectrum P( ) calculate effective and : e P 1 w E d D v P d 3 m v 3 Sim ulat ions v m Oct 1 6 w - ~ 1 3 w + Electron Transport: Frost et al., PR 17(196)161 V. Palladino et al., NIM 18(1975)33 G. Shultz et al., NIM 151(1978)413 S. Biagi, NIM A83(1989)716

7 Stability and Resolution Anisotropic diffusion in electric field (D perp > D par ). Electron capture by electro+negative gases, reduces energy resolution T dependence of drift: w/ w T/ T ~ 1-3 p dependence of drift: w/ w p/ p ~ Oct 1 Increasing E fields charge m ultiplication/ secondary+ ionization loss of resolution and linearity Townsend avalanches

8 Elect ronics: Charge Transport in Capacit ors q + conducting plates 8 q + U t Charges q + moving between parallel conducting plates of a capacitor influence t- dependent negative images q + on each plate. Oct 1 q + R e+ Electronics If connected to circuitry, current of e - would emerge from plate, in total proportionally to charge q +.

9 Signal Generation in I onization Counters Primary ionization: Gases I -3 ev/ip, Si: I 3.6 ev/ip Ge: I 3. ev/ip Capacitance C d x x Energy loss n= n I = n e = / I number of primary ion pairs n at x, t Force: F e = -eu / d = -F I Energy content of capacitor C: Oct 1 9 R C s U U(t) C 1) W t U U t CU U t ) W t n F x t x n F x t x 1) ) e e e I I I neu x I t x e t d w t t t W t ne U t w t w t t CU Cd t

10 Tim e- Dependent Signal Shape U t w t w t t t Cd w t 1 w t 3 Total signal: e & I com ponents Drift velocities (w + >, w - < ) 1 C U(t) Both components measure and depend on position of primary ion pairs Oct 1 C x d x = w - (t e -t ) Use electron component only for fast counting. t t e ~ s t I ~ m s t

11 Frisch Grid I on Cham bers 11 Oct 1 d x x d FG particle cathode Suppress position dependence of signal am plitude by shielding charge-collecting electrode from primary ionization track. I nsert wire m esh (Frisch grid) at position x FG held constant potential U FG. e - produce signal only when inside sensitive anode-fg volum e, ions are not seen. Anode/ FG signals out U t w t t t CdFG not x dependent. FG x-dependence used in drift cham bers.

12 Bragg- Curve Sam pling Count ers Sam pling I on cham ber with divided anodes 1 isobutane 5T Oct 1 E/ x x Sample Bragg energy-loss curve at different points along the particle trajectory improves particle identification.

13 I C Perform ance 13 Oct 1 E ( channels) I Cs have excellent resolution in E, Z, A of charged particles but are slow detectors. Gas I C need very stable HV and gas handling syst em s. Energy resolut ion F nip F I E residual (channels) F<1 Fano factor

14 Solid-State I C 14 Oct 1 i p Capacit ance Si C R. 3.7 n U c n p U(t) U U : pf m m pf m m E F Solids have larger density higher stopping power de/dx more ion pairs, better resolution, sm aller detectors (also more damage, max dose ~ 1 7 particles Sem iconductor n-, p-, i- types Si, Ge, GaAs,.. (for e -,lcp,, HI ) Band structure of solids: - E Conduction e - h + Valence + Bias voltage U creates charge- depleted zone Ionization lifts e - up to conduction band free charge carriers, produce U( t).

15 Particles and Holes in Sem i-conductors 15 Oct 1 C F V e h Conduction Band e - G h + Valence Band : f 1 exp e : f 1 exp h G kt kt Small gaps G (Ge) large thermal currents. Reduce by cooling. G 1 Fermion statistics: 3 m V ne f 3 e V volum e 3 m V n f n n for : f h 3 h e h F C G G C e 1 kt 5m ev G n n e e rm s 1 exp n n e h exp m kt 3 3 G kt 1 F V exp exp G kt!! G kt conduct ivit y at T

16 Sem iconduct or Junct ions and Barriers 16 Oct 1 Si Bloc e - Potential Donor Acceptor ions n p e - h + Similar: Homogeneous n(p)-type Si with reverse bias U also creates carrier-free space d n,p : up to 1mm possible. o + o + + o + o + o + o + + o + o + + o + o + o + o + + o + o + + o + o + o + o + + o o o o o o - - -o -o -o -o - o - o - - -o -o -o - o - o - o - - -o -o -o -o - o - o space charge d o o o o o o Need detector with no free carriers. Si: i-type (intrinsic),n-type, p-type by diffusing Li, e - donor (P, Sb, As), or acceptor ions into Si. Trick: Increase effective gap Junctions diffuse donors and acceptors into Si bloc from different ends. Diffusion at interface e - /h + annihilation space charge Contact Potential and zone deplet ed of free charge carriers Depletion zone can be increased by applying reverse bias pot ent ial 5 n, p n, p d U m k cm, U 5V d 7 m n, p

17 Surface Barrier Det ect ors E F Junction CB Semi conductor Metal VB Different Ferm i energies adjust to on contact. Thin m etal film on Si surface produces space charge, an effective barrier (contact potential) and depleted zone free of carriers. Apply reverse bias to increase depletion depth. Insulation 17 Oct 1 Ground +Bias Front: Au Back: Al evaporated electrodes Insulating Mount depleted dead layer Possible: depletion depth ~ 1 dead layer d d 1 V ~.5V/ Over-bias reduces d d Metal film Silicon wafer Metal case Connector ORTEC HI detector

18 Charge Collect ion Efficiency Heavy ions: E deposit > E app = apparent energy due to charge recom bination, trapping. Light ions E deposit E app Typical charge collection tim es: t~ (1-3)ns Moulton et al. E : E E PhD deposit app b( Z, A) a( Z, A) PhD deposit deposit Fit : E E 1 E 18 Oct 1 5 a( Z).3 1 Z.568 b( Z) 14.5 / Z.85 6 a( A) A.578 b( A) 8.4 / A.381 Affect also collection time lower signal rise time.

19 Position-Sensitive Sem iconductor Detectors Gerber et al., IEEE TNS- 4,18(1977) Double-sided x/y matrix detector, resistive readout. 19 Oct 1 y x Au Q R n- Si R R x ( L x ) Q Q Q Q n x n 1 Lx Lx y Q Q Q Q m 3 4 Ly Q Q Q Q Q E ( L y ) y L y m R ~ cm, 3 U 16V

20 Si-Strip Detectors 5 cm Typically (3-5) thick. Fully depleted, thin dead layer. Annular: 16 bins, 4 Micron Ltd.) Oct 1 circuit board Rectangular with 7 strips

21 Ge ray Detectors Ge detectors for -rays use p-i-n Ge junctions. Because of sm all gap E G, cool to -77 o C (LN ) Ge Cryostate (Canberra) Oct 1 1 Ge cryostate geometries (Canberra)

22 Properties of Ge Detectors: Energy Resolution Superior energy resolution, compared to NaI E E =1keV Oct 1 Size=dependent mall detection efficiencies of Ge detectors 1% solution: bundle in 4 -arrays Gam m asphere, EuroBall, Tessa,

23 Townsend Gas Avalanche Am plificat ion _ Radiation U M Nonlinear Region 3 d IC Region Oct 1 + U ~ kv/ cm I U Amplification M M n n ip 1 n ip i( t) dt ; nip prim ary IP : nm d 1. Townsend coef ficient

24 Avalanche Form at ion Townsend Coefficient Electron-ion pairs through gas ionization Elect r ons in out er shells ar e mor e r eadily removed, ionization energies are smaller for heavier elements. dn n dx x n( x) n e for const n( x) n exp ( x ) dx x

25 Parallel Plate Counters: t-resolution cathode - d~1/ sensitive layer e - anode + 5 R Oct 1 + Charges produced at different positions along the particle track are differently amplified. non-linearity n ip ( E) PPAC ff U ff PPAC PPACs used where time resolution important, U(p,f)f p

26 Sparking and Spark Count ers /p I mpact ionizat ion Pr obabilit y 6 Oct 1 Different cathode materials + Amplification by impact ionization d n e M n d 1 e 1 - d Pr event spar k by r educing for ions: collisions wit h lar ge or ganic molecules quenching d Sparking : e 1 p 1 3 (1 1 ) Torr

27 Avalanche Quenching A. Sharma and F. Sauli, Nucl. Instr. and Meth. A334(1993)4 7 Oct 1 in Argon Reduce and energy of ions by collisions with com plex organic m olecules (CH4, ). Excitation of rotations and vibrations already at low ion energies Organic vapors = self quenching CH 4

28 Effect ive I onizat ion Energies 8 Oct 1 Mean energy per ion pair larger than IP because of excitations Lar ge or ganic molecules have low-lying excited rotational states excit at ion wit hout ionizat ion t hr ough collisions quenching additives

29 Am plificat ion Count ers Single-wire gas counter signal gas C Oct 1 counter gas - U +

30 Proport ional Count er 3 Oct 1 R c counter gas Anode Wire - gas + e - q + R - U + R A R I C signal eu I R I Anode wir e: small r adius R A 5 m or less Volt age U E( r) (3-5) V Field at r from wire U ln( R R ) r C 1 Avalanche R I R A, sever al mean f r ee pat hs needed Pulse height mainly due t o posit ive ions (q + ) A

31 Pulse Shape U event 1 event event 4 t Pulse shape : time t, wire length L q t U ( t) ln(1 ) 4 L t t / CU, mobility w / E dielectric constant drift 31 Oct 1 event 1 event event 4 t long decay t ime of pulse pulse pile up, summar y inf or mat ion U C R dif f er ent iat e elect r onically, RCcir cuit r y in shaping amplif ier, individual inf or mat ion f or each event (= incoming par t icle)

32 Multi-Wire Proportional Counters Magic Gas: Ar( 7 5 % ), isobutane ( 4.5 % ), freon (.5%) HV:kV/cm (Charpak ) I m portant for detection of high-energy part icles, beam profile,.. Equipotential Lines 3 Oct 1 d ac Anode Wires Field at V ( x, y) U ln 4 sin x sinh y ( x, y) (,) C 4 d Capacitance C ; dac s d d s ln( d s) ac s Cathode Wire Planes s s Anode Wires Field strength close to anode wires: V(x,y) 1/ r

33 Oct 1 33

34 This document was created with WinPDF available at The unregistered version of WinPDF is for evaluation or non-commercial use only.

Semiconductor Detectors

Semiconductor Detectors Semiconductor Detectors Summary of Last Lecture Band structure in Solids: Conduction band Conduction band thermal conductivity: E g > 5 ev Valence band Insulator Charge carrier in conductor: e - Charge

More information

Ionization Detectors. Mostly Gaseous Detectors

Ionization Detectors. Mostly Gaseous Detectors Ionization Detectors Mostly Gaseous Detectors Introduction Ionization detectors were the first electrical devices developed for radiation detection During the first half of the century: 3 basic types of

More information

3. Gas Detectors General introduction

3. Gas Detectors General introduction 3. Gas Detectors 3.1. General introduction principle ionizing particle creates primary and secondary charges via energy loss by ionization (Bethe Bloch, chapter 2) N0 electrons and ions charges drift in

More information

DETECTORS. I. Charged Particle Detectors

DETECTORS. I. Charged Particle Detectors DETECTORS I. Charged Particle Detectors A. Scintillators B. Gas Detectors 1. Ionization Chambers 2. Proportional Counters 3. Avalanche detectors 4. Geiger-Muller counters 5. Spark detectors C. Solid State

More information

Lecture 18. New gas detectors Solid state trackers

Lecture 18. New gas detectors Solid state trackers Lecture 18 New gas detectors Solid state trackers Time projection Chamber Full 3-D track reconstruction x-y from wires and segmented cathode of MWPC z from drift time de/dx information (extra) Drift over

More information

Advantages / Disadvantages of semiconductor detectors

Advantages / Disadvantages of semiconductor detectors Advantages / Disadvantages of semiconductor detectors Semiconductor detectors have a high density (compared to gas detector) large energy loss in a short distance diffusion effect is smaller than in gas

More information

Ionization Detectors

Ionization Detectors Ionization Detectors Basic operation Charged particle passes through a gas (argon, air, ) and ionizes it Electrons and ions are collected by the detector anode and cathode Often there is secondary ionization

More information

Generic Detector. Layers of Detector Systems around Collision Point

Generic Detector. Layers of Detector Systems around Collision Point Generic Detector Layers of Detector Systems around Collision Point Tracking Detectors Observe particle trajectories in space with as little disturbance as possible 2 use a thin ( gm. cm ) detector Scintillators

More information

Semiconductor-Detectors

Semiconductor-Detectors Semiconductor-Detectors 1 Motivation ~ 195: Discovery that pn-- junctions can be used to detect particles. Semiconductor detectors used for energy measurements ( Germanium) Since ~ 3 years: Semiconductor

More information

Energetic particles and their detection in situ (particle detectors) Part II. George Gloeckler

Energetic particles and their detection in situ (particle detectors) Part II. George Gloeckler Energetic particles and their detection in situ (particle detectors) Part II George Gloeckler University of Michigan, Ann Arbor, MI University of Maryland, College Park, MD Simple particle detectors Gas-filled

More information

Lecture # 3. Muhammad Irfan Asghar National Centre for Physics. First School on LHC physics

Lecture # 3. Muhammad Irfan Asghar National Centre for Physics. First School on LHC physics Lecture # 3 Muhammad Irfan Asghar National Centre for Physics Introduction Gaseous detectors Greater mobility of electrons Obvious medium Charged particles detection Particle information easily transformed

More information

EEE4106Z Radiation Interactions & Detection

EEE4106Z Radiation Interactions & Detection EEE4106Z Radiation Interactions & Detection 2. Radiation Detection Dr. Steve Peterson 5.14 RW James Department of Physics University of Cape Town steve.peterson@uct.ac.za May 06, 2015 EEE4106Z :: Radiation

More information

Chap. 5 Ion Chambers the electroscope

Chap. 5 Ion Chambers the electroscope Chap. 5 Ion Chambers the electroscope Electroscope: an early device used to study static electricity continues to be used for personal dosimeters. Put a (known) charge on the central electrode, leaves

More information

Lecture 2. Introduction to semiconductors Structures and characteristics in semiconductors

Lecture 2. Introduction to semiconductors Structures and characteristics in semiconductors Lecture 2 Introduction to semiconductors Structures and characteristics in semiconductors Semiconductor p-n junction Metal Oxide Silicon structure Semiconductor contact Literature Glen F. Knoll, Radiation

More information

Resolution. σ z. = σ z. If D(z) is gaussian the relation between FWHM and standard deviation is. = Δz 2.36

Resolution. σ z. = σ z. If D(z) is gaussian the relation between FWHM and standard deviation is. = Δz 2.36 Resolution Another general property of detectors (Hw 7) is the resolution for measuring a quantity Z. If z is the response of the detector to this quantity the resolution is the standard deviation σ z

More information

GEM: A new concept for electron amplification in gas detectors

GEM: A new concept for electron amplification in gas detectors GEM: A new concept for electron amplification in gas detectors F. Sauli, Nucl. Instr. & Methods in Physics Research A 386 (1997) 531-534 Contents 1. Introduction 2. Two-step amplification: MWPC combined

More information

The outline. 1) Detector parameters: efficiency, geometrical acceptance, dead-time, resolution, linearity. 2) gaseous ionization chambers

The outline. 1) Detector parameters: efficiency, geometrical acceptance, dead-time, resolution, linearity. 2) gaseous ionization chambers The outline 1) Detector parameters: efficiency, geometrical acceptance, dead-time, resolution, linearity 2) gaseous ionization chambers 3) proportional counters- ionization measurement 4) silicon detectors

More information

Solid State Detectors

Solid State Detectors Solid State Detectors Most material is taken from lectures by Michael Moll/CERN and Daniela Bortoletto/Purdue and the book Semiconductor Radiation Detectors by Gerhard Lutz. In gaseous detectors, a charged

More information

Week 5: Chap. 5 Ion Chambers

Week 5: Chap. 5 Ion Chambers Week 5: Chap. 5 Ion Chambers Basic Detector Principles Ion Chambers Current Mode Pulse Mode signal shape Grids Proportional Counters Chap. 5 Ion Chambers the electroscope Electroscope: an early device

More information

Lecture 2. Introduction to semiconductors Structures and characteristics in semiconductors

Lecture 2. Introduction to semiconductors Structures and characteristics in semiconductors Lecture 2 Introduction to semiconductors Structures and characteristics in semiconductors Semiconductor p-n junction Metal Oxide Silicon structure Semiconductor contact Literature Glen F. Knoll, Radiation

More information

Detectors in Nuclear and High Energy Physics. RHIG summer student meeting June 2014

Detectors in Nuclear and High Energy Physics. RHIG summer student meeting June 2014 Detectors in Nuclear and High Energy Physics RHIG summer student meeting June 2014 Physics or Knowledge of Nature Experimental Data Analysis Theory ( application) Experimental Data Initial Conditions /

More information

Semiconductor Detectors are Ionization Chambers. Detection volume with electric field Energy deposited positive and negative charge pairs

Semiconductor Detectors are Ionization Chambers. Detection volume with electric field Energy deposited positive and negative charge pairs 1 V. Semiconductor Detectors V.1. Principles Semiconductor Detectors are Ionization Chambers Detection volume with electric field Energy deposited positive and negative charge pairs Charges move in field

More information

General Overview of Gas Filled Detectors

General Overview of Gas Filled Detectors GAS-FILLED DETECTOR General Overview of Gas Filled Detectors Gas-Filled Detectors Ion chamber Proportional counter G-M (Geiger-Miller) counter Diagram of a Generic Gas-Filled Detector A Anode High-voltage

More information

Proportional Counters

Proportional Counters Proportional Counters 3 1 Introduction 3 2 Before we can look at individual radiation processes, we need to understand how the radiation is detected: Non-imaging detectors Detectors capable of detecting

More information

GEM at CERN. Leszek Ropelewski CERN PH-DT2 DT2-ST & TOTEM

GEM at CERN. Leszek Ropelewski CERN PH-DT2 DT2-ST & TOTEM GEM at CERN Leszek Ropelewski CERN PH-DT2 DT2-ST & TOTEM MicroStrip Gas Chamber Semiconductor industry technology: Photolithography Etching Coating Doping A. Oed Nucl. Instr. and Meth. A263 (1988) 351.

More information

Week 4: Chap. 4 Basic Detector Principles

Week 4: Chap. 4 Basic Detector Principles Week 4: Chap. 4 Basic Detector Principles General use of Statistical Distributions Basic Detector Principles -- Current Mode -- Pulse Mode --- resolution ---- Fano Factor --- efficiency --- dead time Ion

More information

EE 5344 Introduction to MEMS CHAPTER 5 Radiation Sensors

EE 5344 Introduction to MEMS CHAPTER 5 Radiation Sensors EE 5344 Introduction to MEMS CHAPTER 5 Radiation Sensors 5. Radiation Microsensors Radiation µ-sensors convert incident radiant signals into standard electrical out put signals. Radiant Signals Classification

More information

Part II. Momentum Measurement in B Field. Contribution from Multiple Scattering. Relative Momentum Error

Part II. Momentum Measurement in B Field. Contribution from Multiple Scattering. Relative Momentum Error Part II Momentum Measurement in B Field Momentum is determined by measurement of track curvature κ = 1 ρ in B field: Use of Track Detectors for Momentum Measurement Gas Detectors - Proportional Chamber

More information

3 Gaseous Detectors. Detectors for Particle Physics Manfred Krammer Institute for High Energy Physics, Vienna, Austria

3 Gaseous Detectors. Detectors for Particle Physics Manfred Krammer Institute for High Energy Physics, Vienna, Austria 3 Gaseous Detectors Detectors for Particle Physics Manfred Krammer Institute for High Energy Physics, Vienna, Austria 3 Gaseous Detectors Content 3.1 Basic Principles 3.2 Diffusion and Drift 3.3 Amplification

More information

Tracking detectors for the LHC. Peter Kluit (NIKHEF)

Tracking detectors for the LHC. Peter Kluit (NIKHEF) Tracking detectors for the LHC Peter Kluit (NIKHEF) Overview lectures part I Principles of gaseous and solid state tracking detectors Tracking detectors at the LHC Drift chambers Silicon detectors Modeling

More information

PHYS 3446 Lecture #12

PHYS 3446 Lecture #12 PHYS 3446 Lecture #12 Wednesday, Oct. 18, 2006 Dr. 1. Particle Detection Ionization Detectors MWPC Scintillation Counters Time of Flight 1 Announcements Next LPCC Workshop Preparation work Each group to

More information

Particle Energy Loss in Matter

Particle Energy Loss in Matter Particle Energy Loss in Matter Charged particles loose energy when passing through material via atomic excitation and ionization These are protons, pions, muons, The energy loss can be described for moderately

More information

Semiconductor X-Ray Detectors. Tobias Eggert Ketek GmbH

Semiconductor X-Ray Detectors. Tobias Eggert Ketek GmbH Semiconductor X-Ray Detectors Tobias Eggert Ketek GmbH Semiconductor X-Ray Detectors Part A Principles of Semiconductor Detectors 1. Basic Principles 2. Typical Applications 3. Planar Technology 4. Read-out

More information

Lecture 2. Introduction to semiconductors Structures and characteristics in semiconductors. Fabrication of semiconductor sensor

Lecture 2. Introduction to semiconductors Structures and characteristics in semiconductors. Fabrication of semiconductor sensor Lecture 2 Introduction to semiconductors Structures and characteristics in semiconductors Semiconductor p-n junction Metal Oxide Silicon structure Semiconductor contact Fabrication of semiconductor sensor

More information

A Triple-GEM Telescope for the TOTEM Experiment

A Triple-GEM Telescope for the TOTEM Experiment A Triple-GEM Telescope for the TOTEM Experiment Giuseppe Latino (Siena University & Pisa INFN) IPRD06 Siena October 4, 2006 TOTEM Experiment @ LHC T2 Telescope 3-GEM Technology Detailed Detector Simulation

More information

Momentum Measurement in B Field. Part II. Relative Momentum Error. Contribution from Multiple Scattering

Momentum Measurement in B Field. Part II. Relative Momentum Error. Contribution from Multiple Scattering Part II Momentum Measurement in B Field Momentum is determined by measurement of track curvature κ = 1 ρ in B field: Use of Track Detectors for Momentum Measurement Gas Detectors - Proportional Chamber

More information

Lecture 8. Detectors for Ionizing Particles

Lecture 8. Detectors for Ionizing Particles Lecture 8 Detectors for Ionizing Particles Content Introduction Overview of detector systems Sources of radiation Radioactive decay Cosmic Radiation Accelerators Interaction of Radiation with Matter General

More information

Introduction to Semiconductor Physics. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India

Introduction to Semiconductor Physics. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India Introduction to Semiconductor Physics 1 Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India http://folk.uio.no/ravi/cmp2013 Review of Semiconductor Physics Semiconductor fundamentals

More information

Radioactivity. Lecture 6 Detectors and Instrumentation

Radioactivity. Lecture 6 Detectors and Instrumentation Radioactivity Lecture 6 Detectors and Instrumentation The human organs Neither humans nor animals have an organ for detecting radiation from radioactive decay! We can not hear it, smell it, feel it or

More information

Gamma and X-Ray Detection

Gamma and X-Ray Detection Gamma and X-Ray Detection DETECTOR OVERVIEW The kinds of detectors commonly used can be categorized as: a. Gas-filled Detectors b. Scintillation Detectors c. Semiconductor Detectors The choice of a particular

More information

Particle Energy Loss in Matter

Particle Energy Loss in Matter Particle Energy Loss in Matter Charged particles, except electrons, loose energy when passing through material via atomic excitation and ionization These are protons, pions, muons, The energy loss can

More information

Contents. Charged Particles. Coulomb Interactions Elastic Scattering. Coulomb Interactions - Inelastic Scattering. Bremsstrahlung

Contents. Charged Particles. Coulomb Interactions Elastic Scattering. Coulomb Interactions - Inelastic Scattering. Bremsstrahlung Contents Marcel MiGLiERiNi Nuclear Medicine, Radiology and Their Metrological Aspects. Radiation in Medicine. Dosimetry 4. Diagnostics & Therapy 5. Accelerators in Medicine 6. Therapy Planning 7. Nuclear

More information

Chemistry Instrumental Analysis Lecture 8. Chem 4631

Chemistry Instrumental Analysis Lecture 8. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 8 UV to IR Components of Optical Basic components of spectroscopic instruments: stable source of radiant energy transparent container to hold sample device

More information

Relative Momentum Error. Momentum Measurement in B Field. Contribution from Multiple Scattering. First Track Detectors

Relative Momentum Error. Momentum Measurement in B Field. Contribution from Multiple Scattering. First Track Detectors Momentum Measurement in B Field Momentum is determined by measurement of track curvature κ = 1 ρ in B field: Measure sagitta s of the track. For the momentum component transverse to B field: = qbρ Units:

More information

MICROMEGAS PERFORMANCE BASED IN ARGON- ISOBUTANE AND ARGON-DEMETHYL-ETHER

MICROMEGAS PERFORMANCE BASED IN ARGON- ISOBUTANE AND ARGON-DEMETHYL-ETHER MICROMEGAS PERFORMANCE BASED IN ARGON- ISOBUTANE AND ARGON-DEMETHYL-ETHER Hamid Mounir Mustapha Haddad Laboratory Spectrometry of Materials and Archaeomaterials (LASMAR), Faculty of Science, Moulay Ismail

More information

RANGE OF ALPHAS. Advanced Laboratory, Physics 407 University of Wisconsin Madison, Wisconsin 53706

RANGE OF ALPHAS. Advanced Laboratory, Physics 407 University of Wisconsin Madison, Wisconsin 53706 (revised 10/20/10) RANGE OF ALPHAS Advanced Laboratory, Physics 407 University of Wisconsin Madison, Wisconsin 53706 Abstract A silicon solid state detector is used to measure the energy of alphas which

More information

Tracking Detectors at HEP

Tracking Detectors at HEP Experimental Nuclear and Particle Physics Seminar Tracking Detectors at HEP László Oláh 5th December 2011 OUTLINE I. Introduction II. Gaesous Detectors III. Semiconductor Detectors IV. Applications I.

More information

Chem 481 Lecture Material 3/20/09

Chem 481 Lecture Material 3/20/09 Chem 481 Lecture Material 3/20/09 Radiation Detection and Measurement Semiconductor Detectors The electrons in a sample of silicon are each bound to specific silicon atoms (occupy the valence band). If

More information

PN Junction

PN Junction P Junction 2017-05-04 Definition Power Electronics = semiconductor switches are used Analogue amplifier = high power loss 250 200 u x 150 100 u Udc i 50 0 0 50 100 150 200 250 300 350 400 i,u dc i,u u

More information

Modeling of charge collection efficiency degradation in semiconductor devices induced by MeV ion beam irradiation

Modeling of charge collection efficiency degradation in semiconductor devices induced by MeV ion beam irradiation Modeling of charge collection efficiency degradation in semiconductor devices induced by MeV ion beam irradiation Ettore Vittone Physics Department University of Torino - Italy 1 IAEA Coordinate Research

More information

R&D on Astroparticles Detectors. (Activity on CSN )

R&D on Astroparticles Detectors. (Activity on CSN ) R&D on Astroparticles Detectors (Activity on CSN5 2000-2003) Introduction Results obtained with the R&D activity (2000-2003) with some drift chambers prototypes are reported. With different photocathode

More information

Chapter 3 Gas Filled Detectors

Chapter 3 Gas Filled Detectors Med Phys 4RA3, 4RB3/6R03 Radioisotopes and Radiation Methodology 3-1 Chapter 3 Gas Filled Detectors 3.1. Ionization chamber A. Ionization process and charge collection The interactions of charged particles

More information

Lecture 4. Detectors for Ionizing Particles

Lecture 4. Detectors for Ionizing Particles Lecture 4 Detectors for Ionizing Particles Introduction Overview of detector systems Sources of radiation Radioactive decay Cosmic Radiation Accelerators Content Interaction of Radiation with Matter General

More information

Review of Semiconductor Fundamentals

Review of Semiconductor Fundamentals ECE 541/ME 541 Microelectronic Fabrication Techniques Review of Semiconductor Fundamentals Zheng Yang (ERF 3017, email: yangzhen@uic.edu) Page 1 Semiconductor A semiconductor is an almost insulating material,

More information

Experimental Particle Physics

Experimental Particle Physics Experimental Particle Physics Particle Interactions and Detectors Lecture 2 2nd May 2014 Fergus Wilson, RAL 1/31 How do we detect particles? Particle Types Charged (e - /K - /π - ) Photons (γ) Electromagnetic

More information

Chapter 4 Scintillation Detectors

Chapter 4 Scintillation Detectors Med Phys 4RA3, 4RB3/6R03 Radioisotopes and Radiation Methodology 4-1 4.1. Basic principle of the scintillator Chapter 4 Scintillation Detectors Scintillator Light sensor Ionizing radiation Light (visible,

More information

Interaction of particles in matter

Interaction of particles in matter Interaction of particles in matter Particle lifetime : N(t) = e -t/ Particles we detect ( > 10-10 s, c > 0.03m) Charged particles e ± (stable m=0.511 MeV) μ ± (c = 659m m=0.102 GeV) ± (c = 7.8m m=0.139

More information

ORTEC. Review of the Physics of Semiconductor Detectors. Interaction of Ionizing Radiation with Semiconductor Detectors. Heavy Charged Particles

ORTEC. Review of the Physics of Semiconductor Detectors. Interaction of Ionizing Radiation with Semiconductor Detectors. Heavy Charged Particles ORTEC Review of the Physics of Historically, semiconductor detectors were conceived as solid-state ionization chambers. To obtain a high-electric-field, low-current, solid-state device for detection and

More information

Simulating the Charge Dispersion Phenomena in Micro Pattern Gas Detectors with a Resistive Anode

Simulating the Charge Dispersion Phenomena in Micro Pattern Gas Detectors with a Resistive Anode Simulating the Charge Dispersion Phenomena in Micro Pattern Gas Detectors with a Resistive Anode M. S. Dixit a b and A. Rankin a a Department of Physics Carleton University 1125 Colonel By Drive Ottawa

More information

Gas Electron Multiplier detectors with high reliability and stability. Abstract. Introduction

Gas Electron Multiplier detectors with high reliability and stability. Abstract. Introduction Gas Electron Multiplier detectors with high reliability and stability B.M.Ovchinnikov 1, V.V.Parusov 1 and Yu.B.Ovchinnikov 2 1 Institute for Nuclear Research of Russian Academy of Sciences, Moscow, Russia

More information

Signals in Particle Detectors (1/2?)

Signals in Particle Detectors (1/2?) Signals in Particle Detectors (1/2?) Werner Riegler, CERN CERN Detector Seminar, 5.9.2008 The principle mechanisms and formulas for signal generation in particle detectors are reviewed. As examples the

More information

Detecting high energy photons. Interactions of photons with matter Properties of detectors (with examples)

Detecting high energy photons. Interactions of photons with matter Properties of detectors (with examples) Detecting high energy photons Interactions of photons with matter Properties of detectors (with examples) Interactions of high energy photons with matter Cross section/attenution length/optical depth Photoelectric

More information

12/10/09. Chapter 18: Electrical Properties. View of an Integrated Circuit. Electrical Conduction ISSUES TO ADDRESS...

12/10/09. Chapter 18: Electrical Properties. View of an Integrated Circuit. Electrical Conduction ISSUES TO ADDRESS... Chapter 18: Electrical Properties ISSUES TO ADDRESS... How are electrical conductance and resistance characterized? What are the physical phenomena that distinguish? For metals, how is affected by and

More information

Detectors for High Energy Physics

Detectors for High Energy Physics Detectors for High Energy Physics Ingrid-Maria Gregor, DESY DESY Summer Student Program 2017 Hamburg July 26th/27th Overview I. Detectors for Particle Physics II. Interaction with Matter } Wednesday III.

More information

Experimental Particle Physics

Experimental Particle Physics Experimental Particle Physics Particle Interactions and Detectors Lecture 2 17th February 2010 Fergus Wilson, RAL 1/31 How do we detect particles? Particle Types Charged (e - /K - /π - ) Photons (γ) Electromagnetic

More information

Development and characterization of 3D semiconductor X-rays detectors for medical imaging

Development and characterization of 3D semiconductor X-rays detectors for medical imaging Development and characterization of 3D semiconductor X-rays detectors for medical imaging Marie-Laure Avenel, Eric Gros d Aillon CEA-LETI, DETectors Laboratory marie-laure.avenel@cea.fr Outlines Problematic

More information

Physics 736. Experimental Methods in Nuclear-, Particle-, and Astrophysics

Physics 736. Experimental Methods in Nuclear-, Particle-, and Astrophysics Physics 736 Experimental Methods in Nuclear-, Particle-, and Astrophysics - Ionization & Semiconductor Detectors - Karsten Heeger heeger@wisc.edu Homework #6 Is due on Friday March 22 at 4.30pm Make-up

More information

Review of Semiconductor Drift Detectors

Review of Semiconductor Drift Detectors Pavia October 25, 2004 Review of Semiconductor Drift Detectors Talk given by Pavel Rehak following a presentation on 5 th Hiroshima Symposium of Semiconductor Tracking Detectors Outline of the Review Principles

More information

ISSUES TO ADDRESS...

ISSUES TO ADDRESS... Chapter 12: Electrical Properties School of Mechanical Engineering Choi, Hae-Jin Materials Science - Prof. Choi, Hae-Jin Chapter 12-1 ISSUES TO ADDRESS... How are electrical conductance and resistance

More information

Effect of Applied Electric Field and Pressure on the Electron Avalanche Growth

Effect of Applied Electric Field and Pressure on the Electron Avalanche Growth Effect of Applied Electric Field and Pressure on the Electron Avalanche Growth L. ZEGHICHI (), L. MOKHNACHE (2), and M. DJEBABRA (3) () Department of Physics, Ouargla University, P.O Box.5, OUARGLA 3,

More information

Radiation (Particle) Detection and Measurement

Radiation (Particle) Detection and Measurement Radiation (Particle) Detection and Measurement Radiation detection implies that the radiation interacts (e.g. leaves at least part of its energy) in the material. A specific material is chosen, because

More information

Introductory Nanotechnology ~ Basic Condensed Matter Physics ~

Introductory Nanotechnology ~ Basic Condensed Matter Physics ~ Introductory Nanotechnology ~ Basic Condensed Matter Physics ~ Atsufumi Hirohata Department of Electronics Quick Review over the Last Lecture Classic model : Dulong-Petit empirical law c V, mol 3R 0 E

More information

Classification of Solids

Classification of Solids Classification of Solids Classification by conductivity, which is related to the band structure: (Filled bands are shown dark; D(E) = Density of states) Class Electron Density Density of States D(E) Examples

More information

Chap. 11 Semiconductor Diodes

Chap. 11 Semiconductor Diodes Chap. 11 Semiconductor Diodes Semiconductor diodes provide the best resolution for energy measurements, silicon based devices are generally used for charged-particles, germanium for photons. Scintillators

More information

Queen s University PHYS 352

Queen s University PHYS 352 Page 1 of 5 Queen s University Faculty of Applied Science; Faculty of Arts and Science Department of Physics, Engineering Physics and Astronomy PHYS 352 Measurement, Instrumentation and Experiment Design

More information

Components of a generic collider detector

Components of a generic collider detector Lecture 24 Components of a generic collider detector electrons - ionization + bremsstrahlung photons - pair production in high Z material charged hadrons - ionization + shower of secondary interactions

More information

Performance of high pressure Xe/TMA in GEMs for neutron and X-ray detection

Performance of high pressure Xe/TMA in GEMs for neutron and X-ray detection Performance of high pressure Xe/TMA in GEMs for neutron and X-ray detection R. Kreuger, C. W. E. van Eijk, Member, IEEE, F. A. F. Fraga, M. M. Fraga, S. T. G. Fetal, R. W. Hollander, Member, IEEE, L. M.

More information

Calorimetry I Electromagnetic Calorimeters

Calorimetry I Electromagnetic Calorimeters Calorimetry I Electromagnetic Calorimeters Introduction Calorimeter: Detector for energy measurement via total absorption of particles... Also: most calorimeters are position sensitive to measure energy

More information

A semiconductor is an almost insulating material, in which by contamination (doping) positive or negative charge carriers can be introduced.

A semiconductor is an almost insulating material, in which by contamination (doping) positive or negative charge carriers can be introduced. Semiconductor A semiconductor is an almost insulating material, in which by contamination (doping) positive or negative charge carriers can be introduced. Page 2 Semiconductor materials Page 3 Energy levels

More information

Course overview. Me: Dr Luke Wilson. The course: Physics and applications of semiconductors. Office: E17 open door policy

Course overview. Me: Dr Luke Wilson. The course: Physics and applications of semiconductors. Office: E17 open door policy Course overview Me: Dr Luke Wilson Office: E17 open door policy email: luke.wilson@sheffield.ac.uk The course: Physics and applications of semiconductors 10 lectures aim is to allow time for at least one

More information

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626 OPTI510R: Photonics Khanh Kieu College of Optical Sciences, University of Arizona kkieu@optics.arizona.edu Meinel building R.626 Announcements Homework #6 is assigned, due May 1 st Final exam May 8, 10:30-12:30pm

More information

Solid State Physics SEMICONDUCTORS - IV. Lecture 25. A.H. Harker. Physics and Astronomy UCL

Solid State Physics SEMICONDUCTORS - IV. Lecture 25. A.H. Harker. Physics and Astronomy UCL Solid State Physics SEMICONDUCTORS - IV Lecture 25 A.H. Harker Physics and Astronomy UCL 9.9 Carrier diffusion and recombination Suppose we have a p-type semiconductor, i.e. n h >> n e. (1) Create a local

More information

n i exp E g 2kT lnn i E g 2kT

n i exp E g 2kT lnn i E g 2kT HOMEWORK #10 12.19 For intrinsic semiconductors, the intrinsic carrier concentration n i depends on temperature as follows: n i exp E g 2kT (28.35a) or taking natural logarithms, lnn i E g 2kT (12.35b)

More information

Section 12: Intro to Devices

Section 12: Intro to Devices Section 12: Intro to Devices Extensive reading materials on reserve, including Robert F. Pierret, Semiconductor Device Fundamentals Bond Model of Electrons and Holes Si Si Si Si Si Si Si Si Si Silicon

More information

Charge Carriers in Semiconductor

Charge Carriers in Semiconductor Charge Carriers in Semiconductor To understand PN junction s IV characteristics, it is important to understand charge carriers behavior in solids, how to modify carrier densities, and different mechanisms

More information

Chapter VI: Ionizations and excitations

Chapter VI: Ionizations and excitations Chapter VI: Ionizations and excitations 1 Content Introduction Ionization in gases Ionization in solids Fano factor 2 Introduction (1) Ionizations created by charged particles (incident particles or particles

More information

NEW DEVELOPMENTS IN GASEOUS DETECTORS. Fabio Sauli. CERN, Geneva, Switzerland

NEW DEVELOPMENTS IN GASEOUS DETECTORS. Fabio Sauli. CERN, Geneva, Switzerland EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN-EP/2000-108 July 20, 2000 NEW DEVELOPMENTS IN GASEOUS DETECTORS Fabio Sauli CERN, Geneva, Switzerland Invited lecture at the XXVIII International Meeting

More information

Peak Electric Field. Junction breakdown occurs when the peak electric field in the PN junction reaches a critical value. For the N + P junction,

Peak Electric Field. Junction breakdown occurs when the peak electric field in the PN junction reaches a critical value. For the N + P junction, Peak Electric Field Junction breakdown occurs when the peak electric field in the P junction reaches a critical value. For the + P junction, qa E ( x) ( xp x), s W dep 2 s ( bi Vr ) 2 s potential barrier

More information

smal band gap Saturday, April 9, 2011

smal band gap Saturday, April 9, 2011 small band gap upper (conduction) band empty small gap valence band filled 2s 2p 2s 2p hybrid (s+p)band 2p no gap 2s (depend on the crystallographic orientation) extrinsic semiconductor semi-metal electron

More information

Alpha-particle Stopping Powers in Air and Argon

Alpha-particle Stopping Powers in Air and Argon Alpha-particle Stopping Powers in Air and Argon Mohammad QH 1* and Maghdid HA 2 1 Department of Physics, College of Science, Raparin University, Sulaimanyah, Iraqi Kurdistan, Iraq 2 Department of Physics,

More information

Chapter 1 Overview of Semiconductor Materials and Physics

Chapter 1 Overview of Semiconductor Materials and Physics Chapter 1 Overview of Semiconductor Materials and Physics Professor Paul K. Chu Conductivity / Resistivity of Insulators, Semiconductors, and Conductors Semiconductor Elements Period II III IV V VI 2 B

More information

Radiation Detector 2016/17 (SPA6309)

Radiation Detector 2016/17 (SPA6309) Radiation Detector 2016/17 (SPA6309) Semiconductor detectors (Leo, Chapter 10) 2017 Teppei Katori Semiconductor detectors are used in many situations, mostly for some kind of high precision measurement.

More information

08 - Miscellaneous and historical detectors

08 - Miscellaneous and historical detectors 08 - Miscellaneous and historical detectors Jaroslav Adam Czech Technical University in Prague Version 2 Jaroslav Adam (CTU, Prague) DPD_08, Miscellaneous and historical detectors Version 2 1 / 25 Streamer

More information

Semiconductor Physics. Lecture 3

Semiconductor Physics. Lecture 3 Semiconductor Physics Lecture 3 Intrinsic carrier density Intrinsic carrier density Law of mass action Valid also if we add an impurity which either donates extra electrons or holes the number of carriers

More information

Development of New MicroStrip Gas Chambers for X-ray Applications

Development of New MicroStrip Gas Chambers for X-ray Applications Joint International Workshop: Nuclear Technology and Society Needs for Next Generation Development of New MicroStrip Gas Chambers for X-ray Applications H.Niko and H.Takahashi Nuclear Engineering and Management,

More information

Modern Physics Laboratory (Physics 6180/7180)

Modern Physics Laboratory (Physics 6180/7180) Alpha Particle Spectroscopy Week of Jan. 18, 2010 Modern Physics Laboratory (Physics 6180/7180) The University of Toledo Instructor: Randy Ellingson Alpha Particle Spectroscopy Alpha particle source alpha

More information

3.155J/6.152J Microelectronic Processing Technology Fall Term, 2004

3.155J/6.152J Microelectronic Processing Technology Fall Term, 2004 3.155J/6.152J Microelectronic Processing Technology Fall Term, 2004 Bob O'Handley Martin Schmidt Quiz Nov. 17, 2004 Ion implantation, diffusion [15] 1. a) Two identical p-type Si wafers (N a = 10 17 cm

More information

Silicon Detectors in High Energy Physics

Silicon Detectors in High Energy Physics Thomas Bergauer (HEPHY Vienna) IPM Teheran 22 May 2011 Sunday: Schedule Silicon Detectors in Semiconductor Basics (45 ) Detector concepts: Pixels and Strips (45 ) Coffee Break Strip Detector Performance

More information

arxiv:physics/ v2 27 Mar 2001

arxiv:physics/ v2 27 Mar 2001 High pressure operation of the triple-gem detector in pure Ne, Ar and Xe A. Bondar, A. Buzulutskov, L. Shekhtman arxiv:physics/0103082 v2 27 Mar 2001 Budker Institute of Nuclear Physics, 630090 Novosibirsk,

More information

Introduction to X-ray Photoelectron Spectroscopy (XPS) XPS which makes use of the photoelectric effect, was developed in the mid-1960

Introduction to X-ray Photoelectron Spectroscopy (XPS) XPS which makes use of the photoelectric effect, was developed in the mid-1960 Introduction to X-ray Photoelectron Spectroscopy (XPS) X-ray Photoelectron Spectroscopy (XPS), also known as Electron Spectroscopy for Chemical Analysis (ESCA) is a widely used technique to investigate

More information