Transformations of Quadratic Functions

Size: px
Start display at page:

Download "Transformations of Quadratic Functions"

Transcription

1 .1 Transormations o Quadratic Functions Essential Question How do the constants a, h, and k aect the raph o the quadratic unction () = a( h) + k? The parent unction o the quadratic amil is. A transormation o the raph o the parent unction is represented b the unction () = a( h) + k, where a 0. Identiin Graphs o Quadratic Functions Work with a partner. Match each quadratic unction with its raph. Eplain our reasonin. Then use a raphin calculator to veri that our answer is correct. a. () = ( ) b. () = ( ) + c. () = ( + ) d. () = 0.5( ) e. () = ( ). () = ( + ) + A. B. C. D. E. F. LOOKING FOR STRUCTURE To be proicient in math, ou need to look closel to discern a pattern or structure. Communicate Your Answer. How do the constants a, h, and k aect the raph o the quadratic unction () = a( h) + k? 3. Write the equation o the quadratic unction whose raph is shown at the riht. Eplain our reasonin. Then use a raphin calculator to veri that our equation is correct. Section.1 Transormations o Quadratic Functions 1

2 .1 Lesson What You Will Learn Core Vocabular quadratic unction, p. parabola, p. verte o a parabola, p. verte orm, p. Previous transormations Describe transormations o quadratic unctions. Write transormations o quadratic unctions. Describin Transormations o Quadratic Functions A quadratic unction is a unction that can be written in the orm () = a( h) + k, where a 0. The U-shaped raph o a quadratic unction is called a parabola. In Section 1., ou raphed quadratic unctions usin tables o values. You can also raph quadratic unctions b applin transormations to the raph o the parent unction. Core Concept Horizontal Translations ( h) = ( h) = ( h), h < 0 = Vertical Translations () + k = + k = + k, k > 0 = shits let when h < 0 shits riht when h > 0 = ( h), h > 0 = + k, k < 0 shits down when k < 0 shits up when k > 0 Translations o a Quadratic Function Describe the transormation o represented b () = ( + ) 1. Then raph each unction. Notice that the unction is o the orm () = ( h) + k. Rewrite the unction to identi h and k. () = ( ( )) + ( 1) h k Because h = and k = 1, the raph o is a translation units let and 1 unit down o the raph o. Monitorin Proress Describe the transormation o represented b. Then raph each unction. 1. () = ( 3). () = ( ) 3. () = ( + 5) + 1 Chapter Quadratic Functions

3 Core Concept Relections in the -Ais () = ( ) = = Relections in the -Ais ( ) = ( ) = = lips over the -ais = Horizontal Stretches and Shrinks (a) = (a) = (a), a > 1 = = is its own relection in the -ais. Vertical Stretches and Shrinks a () = a = a, a > 1 = = (a), 0 < a < 1 = a, 0 < a < 1 horizontal stretch (awa rom -ais) when 0 < a < 1 horizontal shrink (toward -ais) when a > 1 vertical stretch (awa rom -ais) when a > 1 vertical shrink (toward -ais) when 0 < a < 1 Transormations o Quadratic Functions LOOKING FOR STRUCTURE In Eample b, notice that () = + 1. So, ou can also describe the raph o as a vertical stretch b a actor o ollowed b a translation 1 unit up o the raph o. Describe the transormation o represented b. Then raph each unction. a. () = 1 b. () = () + 1 a. Notice that the unction is o the orm () = a, where a = 1. So, the raph o is a relection in the -ais and a vertical shrink b a actor o 1 o the raph o. b. Notice that the unction is o the orm () = (a) + k, where a = and k = 1. So, the raph o is a horizontal shrink b a actor o 1 ollowed b a translation 1 unit up o the raph o. Section.1 Transormations o Quadratic Functions 3

4 Monitorin Proress Describe the transormation o represented b. Then raph each unction.. () = ( 1 3 ) 5. () = 3( 1). () = ( + 3) + Writin Transormations o Quadratic Functions The lowest point on a parabola that opens up or the hihest point on a parabola that opens down is the verte. The verte orm o a quadratic unction is () = a( h) + k, where a 0 and the verte is (h, k). a indicates a relection in the -ais and/or a vertical stretch or shrink. () = a( h) + k h indicates a horizontal translation. k indicates a vertical translation. Writin a Transormed Quadratic Function Let the raph o be a vertical stretch b a actor o and a relection in the -ais, ollowed b a translation 3 units down o the raph o. Write a rule or and identi the verte. Method 1 Identi how the transormations aect the constants in verte orm. relection in -ais vertical stretch b a = translation 3 units down} k = 3 Write the transormed unction. () = a( h) + k Verte orm o a quadratic unction = ( 0) + ( 3) Substitute or a, 0 or h, and 3 or k. = 3 Simpli. The transormed unction is () = 3. The verte is (0, 3). Method Bein with the parent unction and appl the transormations one at a time in the stated order. Check 0 First write a unction h that represents the relection and vertical stretch o. h() = () Multipl the output b. = Substitute or (). 5 5 Then write a unction that represents the translation o h. 0 () = h() 3 Subtract 3 rom the output. = 3 Substitute or h(). The transormed unction is () = 3. The verte is (0, 3). Chapter Quadratic Functions

5 Writin a Transormed Quadratic Function REMEMBER To multipl two binomials, use the FOIL Method. First Inner ( + 1)( + ) = Outer Last Let the raph o be a translation 3 units riht and units up, ollowed b a relection in the -ais o the raph o 5. Write a rule or. Step 1 First write a unction h that represents the translation o. h() = ( 3) + Subtract 3 rom the input. Add to the output. = ( 3) 5( 3) + Replace with 3 in (). = 11 + Simpli. Step Then write a unction that represents the relection o h. () = h( ) Multipl the input b 1. = ( ) 11( ) + Replace with in h(). = Simpli. 0 = Modelin with Mathematics The heiht h (in eet) o water sprain rom a ire hose can be modeled b h() = , where is the horizontal distance (in eet) rom the ire truck. The crew raises the ladder so that the water hits the round 10 eet arther rom the ire truck. Write a unction that models the new path o the water. 1. Understand the Problem You are iven a unction that represents the path o water sprain rom a ire hose. You are asked to write a unction that represents the path o the water ater the crew raises the ladder.. Make a Plan Analze the raph o the unction to determine the translation o the ladder that causes water to travel 10 eet arther. Then write the unction. 3. Solve the Problem Use a raphin calculator to raph the oriinal unction. Because h(50) = 0, the water oriinall hits the round 50 eet rom the ire truck. The rane o the unction in this contet does not include neative values. However, b observin that h(0) = 3, ou can determine that a translation 3 units (eet) up causes the water to travel 10 eet arther rom the ire truck. () = h() + 3 Add 3 to the output. = Substitute or h() and simpli. 0 X=50 Y= The new path o the water can be modeled b () = Look Back To check that our solution is correct, veri that (0) = 0. (0) = 0.03(0) = = 0 Monitorin Proress 7. Let the raph o be a vertical shrink b a actor o 1 ollowed b a translation units up o the raph o. Write a rule or and identi the verte. 8. Let the raph o be a translation units let ollowed b a horizontal shrink b a actor o 1 3 o the raph o () = +. Write a rule or. 9. WHAT IF? In Eample 5, the water hits the round 10 eet closer to the ire truck ater lowerin the ladder. Write a unction that models the new path o the water. Section.1 Transormations o Quadratic Functions 5

6 .1 Eercises Dnamic Solutions available at BiIdeasMath.com Vocabular and Core Concept Check 1. COMPLETE THE SENTENCE The raph o a quadratic unction is called a(n).. VOCABULARY Identi the verte o the parabola iven b () = ( + ). Monitorin Proress and Modelin with Mathematics In Eercises 3 1, describe the transormation o represented b. Then raph each unction. (See Eample 1.) 3. () = 3. () = () = ( + ). () = ( ) 7. () = ( 1) 8. () = ( + 3) 9. () = ( + ) 10. () = ( 9) () = ( 7) () = ( + 10) 3 ANALYZING RELATIONSHIPS In Eercises 13 1, match the unction with the correct transormation o the raph o. Eplain our reasonin. 13. = ( 1) 1. = () = ( 1) = ( + 1) 1 A. B. In Eercises 17, describe the transormation o represented b. Then raph each unction. (See Eample.) 17. () = 18. () = ( ) 19. () = 3 0. () = () = (). () = () 3. () = 1 5. () = 1 ( 1) ERROR ANALYSIS In Eercises 5 and, describe and correct the error in analzin the raph o The raph is a relection in the -ais and a vertical stretch b a actor o, ollowed b a translation units up o the raph o the parent quadratic unction. The raph is a translation units down, ollowed b a vertical stretch b a actor o and a relection in the -ais o the raph o the parent quadratic unction. C. D. USING STRUCTURE In Eercises 7 30, describe the transormation o the raph o the parent quadratic unction. Then identi the verte. 7. () = 3( + ) () = ( + 1) 5 9. () = () = 1 ( 1) Chapter Quadratic Functions

7 In Eercises 31 3, write a rule or described b the transormations o the raph o. Then identi the verte. (See Eamples 3 and.) 31. ; vertical stretch b a actor o and a relection in the -ais, ollowed b a translation units up 3. ; vertical shrink b a actor o 1 3 and a relection in the -ais, ollowed b a translation 3 units riht 33. () = 8 ; horizontal stretch b a actor o and a translation units up, ollowed b a relection in the -ais 3. () = ( + ) + 3; horizontal shrink b a actor o 1 and a translation 1 unit down, ollowed b a relection in the -ais USING TOOLS In Eercises 35 0, match the unction with its raph. Eplain our reasonin. 35. () = ( 1) 3. () = 1 ( + 1) 37. () = ( 1) () = ( + 1) () = ( + 1) 0. () = ( 1) + A. B. JUSTIFYING STEPS In Eercises 1 and, justi each step in writin a unction based on the transormations o () = translation units down ollowed b a relection in the -ais h() = () = + () = h() = ( + ) = +. relection in the -ais ollowed b a translation units riht h() = ( ) = ( ) + ( ) = () = h( ) = ( ) ( ) = MODELING WITH MATHEMATICS The unction h() = 0.03( 1) + models the jump o a red kanaroo, where is the horizontal distance traveled (in eet) and h() is the heiht (in eet). When the kanaroo jumps rom a hiher location, it lands 5 eet arther awa. Write a unction that models the second jump. (See Eample 5.) C. D. E. F.. MODELING WITH MATHEMATICS The unction (t) = 1t + 10 models the heiht (in eet) o an object t seconds ater it is dropped rom a heiht o 10 eet on Earth. The same object dropped rom the same heiht on the moon is modeled b (t) = 8 3 t Describe the transormation o the raph o to obtain. From what heiht must the object be dropped on the moon so it hits the round at the same time as on Earth? Section.1 Transormations o Quadratic Functions 7

8 5. MODELING WITH MATHEMATICS Flin ish use their pectoral ins like airplane wins to lide throuh the air. a. Write an equation o the orm = a( h) + k with verte (33, 5) that models the liht path, assumin the ish leaves the water at (0, 0). b. What are the domain and rane o the unction? What do the represent in this situation? c. Does the value o a chane when the liht path has verte (30, )? Justi our answer. 7. COMPARING METHODS Let the raph o be a translation 3 units up and 1 unit riht ollowed b a vertical stretch b a actor o o the raph o. a. Identi the values o a, h, and k and use verte orm to write the transormed unction. b. Use unction notation to write the transormed unction. Compare this unction with our unction in part (a). c. Suppose the vertical stretch was perormed irst, ollowed b the translations. Repeat parts (a) and (b). d. Which method do ou preer when writin a transormed unction? Eplain.. HOW DO YOU SEE IT? Describe the raph o as a transormation o the raph o. 8. THOUGHT PROVOKING A jump on a poo stick with a conventional sprin can be modeled b () = 0.5( ) + 18, where is the horizontal distance (in inches) and () is the vertical distance (in inches). Write at least one transormation o the unction and provide a possible reason or our transormation. 9. MATHEMATICAL CONNECTIONS The area o a circle depends on the radius, as shown in the raph. A circular earrin with a radius o r millimeters has a circular hole with a radius o 3r millimeters. Describe a transormation o the raph below that models the area o the blue portion o the earrin. Area (square units) A Circle A = πr r Radius (units) Maintainin Mathematical Proicienc Reviewin what ou learned in previous rades and lessons A line o smmetr or the iure is shown in red. Find the coordinates o point A. 50. (, 3) = (0, ) A 5. A = A = (, ) 8 Chapter Quadratic Functions

1 Linear Functions. SEE the Big Idea. Pizza Shop (p. 34) Prom (p. 23) Café Expenses (p. 16) Dirt Bike (p. 7) Swimming (p. 10)

1 Linear Functions. SEE the Big Idea. Pizza Shop (p. 34) Prom (p. 23) Café Expenses (p. 16) Dirt Bike (p. 7) Swimming (p. 10) 1 Linear Functions 1.1 Parent Functions and Transormations 1. Transormations o Linear and Absolute Value Functions 1. Modelin with Linear Functions 1. Solvin Linear Sstems Pizza Shop (p. ) Prom (p. ) SEE

More information

Functions. Essential Question What are some of the characteristics of the graph of a logarithmic function?

Functions. Essential Question What are some of the characteristics of the graph of a logarithmic function? 5. Logarithms and Logarithmic Functions Essential Question What are some o the characteristics o the graph o a logarithmic unction? Ever eponential unction o the orm () = b, where b is a positive real

More information

Inverse of a Function

Inverse of a Function . Inverse o a Function Essential Question How can ou sketch the graph o the inverse o a unction? Graphing Functions and Their Inverses CONSTRUCTING VIABLE ARGUMENTS To be proicient in math, ou need to

More information

9. v > 7.3 mi/h x < 2.5 or x > x between 1350 and 5650 hot dogs

9. v > 7.3 mi/h x < 2.5 or x > x between 1350 and 5650 hot dogs .5 Etra Practice. no solution. (, 0) and ( 9, ). (, ) and (, ). (, 0) and (, 0) 5. no solution. ( + 5 5 + 5, ) and ( 5 5 5, ) 7. (0, ) and (, 0). (, ) and (, 0) 9. (, 0) 0. no solution. (, 5). a. Sample

More information

Math-3 Lesson 1-4. Review: Cube, Cube Root, and Exponential Functions

Math-3 Lesson 1-4. Review: Cube, Cube Root, and Exponential Functions Math- Lesson -4 Review: Cube, Cube Root, and Eponential Functions Quiz - Graph (no calculator):. y. y ( ) 4. y What is a power? vocabulary Power: An epression ormed by repeated Multiplication o the same

More information

Answers. Chapter 4 A33. + as. 4.1 Start Thinking

Answers. Chapter 4 A33. + as. 4.1 Start Thinking . + 7i. 0 i 7. 9 i. 79 + i 9. 7 i 0. 7 i. + i. 0 + i. a. lb b. $0. c. about $0.9 Chapter. Start Thinkin () = () = The raph o = is a curv line that is movin upward rom let to riht as increases. The raph

More information

2 variables. is the same value as the solution of. 1 variable. You can use similar reasoning to solve quadratic equations. Work with a partner.

2 variables. is the same value as the solution of. 1 variable. You can use similar reasoning to solve quadratic equations. Work with a partner. 9. b Graphing Essential Question How can ou use a graph to solve a quadratic equation in one variable? Based on what ou learned about the -intercepts of a graph in Section., it follows that the -intercept

More information

Name Date. Work with a partner. Each graph shown is a transformation of the parent function

Name Date. Work with a partner. Each graph shown is a transformation of the parent function 3. Transformations of Eponential and Logarithmic Functions For use with Eploration 3. Essential Question How can ou transform the graphs of eponential and logarithmic functions? 1 EXPLORATION: Identifing

More information

Quadratic Functions. The graph of the function shifts right 3. The graph of the function shifts left 3.

Quadratic Functions. The graph of the function shifts right 3. The graph of the function shifts left 3. Quadratic Functions The translation o a unction is simpl the shiting o a unction. In this section, or the most part, we will be graphing various unctions b means o shiting the parent unction. We will go

More information

Lesson Goals. Unit 4 Polynomial/Rational Functions Quadratic Functions (Chap 0.3) Family of Quadratic Functions. Parabolas

Lesson Goals. Unit 4 Polynomial/Rational Functions Quadratic Functions (Chap 0.3) Family of Quadratic Functions. Parabolas Unit 4 Polnomial/Rational Functions Quadratic Functions (Chap 0.3) William (Bill) Finch Lesson Goals When ou have completed this lesson ou will: Graph and analze the graphs of quadratic functions. Solve

More information

Math-Essentials Unit 3 Review. Equations and Transformations of the Linear, Quadratic, Absolute Value, Square Root, and Cube Functions

Math-Essentials Unit 3 Review. Equations and Transformations of the Linear, Quadratic, Absolute Value, Square Root, and Cube Functions Math-Essentials Unit Review Equations and Transormations o the Linear, Quadratic, Absolute Value, Square Root, and Cube Functions Vocabulary Relation: A mapping or pairing o input values to output values.

More information

9.1 The Square Root Function

9.1 The Square Root Function Section 9.1 The Square Root Function 869 9.1 The Square Root Function In this section we turn our attention to the square root unction, the unction deined b the equation () =. (1) We begin the section

More information

Maintaining Mathematical Proficiency

Maintaining Mathematical Proficiency Chapter Maintaining Mathematical Proficienc Find the -intercept of the graph of the linear equation. 1. = + 3. = 3 + 5 3. = 10 75. = ( 9) 5. 7( 10) = +. 5 + 15 = 0 Find the distance between the two points.

More information

Maintaining Mathematical Proficiency

Maintaining Mathematical Proficiency Name Date Chapter 8 Maintaining Mathematical Proficienc Graph the linear equation. 1. = 5. = + 3 3. 1 = + 3. = + Evaluate the epression when =. 5. + 8. + 3 7. 3 8. 5 + 8 9. 8 10. 5 + 3 11. + + 1. 3 + +

More information

Characteristics of Quadratic Functions

Characteristics of Quadratic Functions . Characteristics of Quadratic Functions Essential Question What tpe of smmetr does the graph of f() = a( h) + k have and how can ou describe this smmetr? Parabolas and Smmetr Work with a partner. a. Complete

More information

Using Intercept Form

Using Intercept Form 8.5 Using Intercept Form Essential Question What are some of the characteristics of the graph of f () = a( p)( q)? Using Zeros to Write Functions Work with a partner. Each graph represents a function of

More information

New Functions from Old Functions

New Functions from Old Functions .3 New Functions rom Old Functions In this section we start with the basic unctions we discussed in Section. and obtain new unctions b shiting, stretching, and relecting their graphs. We also show how

More information

Syllabus Objective: 2.9 The student will sketch the graph of a polynomial, radical, or rational function.

Syllabus Objective: 2.9 The student will sketch the graph of a polynomial, radical, or rational function. Precalculus Notes: Unit Polynomial Functions Syllabus Objective:.9 The student will sketch the graph o a polynomial, radical, or rational unction. Polynomial Function: a unction that can be written in

More information

Objectives. By the time the student is finished with this section of the workbook, he/she should be able

Objectives. By the time the student is finished with this section of the workbook, he/she should be able FUNCTIONS Quadratic Functions......8 Absolute Value Functions.....48 Translations o Functions..57 Radical Functions...61 Eponential Functions...7 Logarithmic Functions......8 Cubic Functions......91 Piece-Wise

More information

Essential Question How can you use a quadratic function to model a real-life situation?

Essential Question How can you use a quadratic function to model a real-life situation? 3. TEXAS ESSENTIAL KNOWLEDGE AND SKILLS A..A A..E A..A A..B A..C Modeling with Quadratic Functions Essential Question How can ou use a quadratic function to model a real-life situation? Work with a partner.

More information

Essential Question What is the equation of a circle with center (h, k) and radius r in the coordinate plane?

Essential Question What is the equation of a circle with center (h, k) and radius r in the coordinate plane? 10.7 Circles in the Coordinate Plane Essential Question What is the equation of a circle with center (h, k) and radius r in the coordinate plane? The Equation of a Circle with Center at the Origin Work

More information

Ready To Go On? Skills Intervention 5-1 Using Transformations to Graph Quadratic Functions

Ready To Go On? Skills Intervention 5-1 Using Transformations to Graph Quadratic Functions Read To Go On? Skills Intervention 5-1 Using Transformations to Graph Quadratic Functions Find these vocabular words in Lesson 5-1 and the Multilingual Glossar. Vocabular quadratic function parabola verte

More information

REVIEW KEY VOCABULARY REVIEW EXAMPLES AND EXERCISES

REVIEW KEY VOCABULARY REVIEW EXAMPLES AND EXERCISES Etra Eample. Graph.. 6. 7. (, ) (, ) REVIEW KEY VOCABULARY quadratic function, p. 6 standard form of a quadratic function, p. 6 parabola, p. 6 verte, p. 6 ais of smmetr, p. 6 minimum, maimum value, p.

More information

Rational Exponents and Radical Functions

Rational Exponents and Radical Functions .1..... Rational Eponents and Radical Functions nth Roots and Rational Eponents Properties of Rational Eponents and Radicals Graphing Radical Functions Solving Radical Equations and Inequalities Performing

More information

RATIONAL FUNCTIONS. Finding Asymptotes..347 The Domain Finding Intercepts Graphing Rational Functions

RATIONAL FUNCTIONS. Finding Asymptotes..347 The Domain Finding Intercepts Graphing Rational Functions RATIONAL FUNCTIONS Finding Asymptotes..347 The Domain....350 Finding Intercepts.....35 Graphing Rational Functions... 35 345 Objectives The ollowing is a list o objectives or this section o the workbook.

More information

Firing an Ideal Projectile

Firing an Ideal Projectile 92 Chapter 13: Vector-Valued Functions and Motion in Space 13.2 Modelin Projectile Motion 921 r at time t v v cos i a j (a) v sin j Newton s second law of motion sas that the force actin on the projectile

More information

Factoring Polynomials

Factoring Polynomials 5. TEXAS ESSENTIAL KNOWLEDGE AND SKILLS 2A.7.D 2A.7.E Factoring Polnomials Essential Question How can ou factor a polnomial? Factoring Polnomials Work with a partner. Match each polnomial equation with

More information

Maintaining Mathematical Proficiency

Maintaining Mathematical Proficiency Name Date Chapter 3 Maintaining Mathematical Proficienc Plot the point in a coordinate plane. Describe the location of the point. 1. A( 3, 1). B (, ) 3. C ( 1, 0). D ( 5, ) 5. Plot the point that is on

More information

Path of the Horse s Jump y 3. transformation of the graph of the parent quadratic function, y 5 x 2.

Path of the Horse s Jump y 3. transformation of the graph of the parent quadratic function, y 5 x 2. - Quadratic Functions and Transformations Content Standards F.BF. Identif the effect on the graph of replacing f() b f() k, k f(), f(k), and f( k) for specific values of k (both positive and negative)

More information

Quadratic Functions Objective: To be able to graph a quadratic function and identify the vertex and the roots.

Quadratic Functions Objective: To be able to graph a quadratic function and identify the vertex and the roots. Name: Quadratic Functions Objective: To be able to graph a quadratic function and identif the verte and the roots. Period: Quadratic Function Function of degree. Usuall in the form: We are now going to

More information

Essential Question How can you solve a nonlinear system of equations?

Essential Question How can you solve a nonlinear system of equations? .5 Solving Nonlinear Sstems Essential Question Essential Question How can ou solve a nonlinear sstem of equations? Solving Nonlinear Sstems of Equations Work with a partner. Match each sstem with its graph.

More information

Mathematics 10 Page 1 of 7 The Quadratic Function (Vertex Form): Translations. and axis of symmetry is at x a.

Mathematics 10 Page 1 of 7 The Quadratic Function (Vertex Form): Translations. and axis of symmetry is at x a. Mathematics 10 Page 1 of 7 Verte form of Quadratic Relations The epression a p q defines a quadratic relation called the verte form with a horizontal translation of p units and vertical translation of

More information

Properties of the Graph of a Quadratic Function. has a vertex with an x-coordinate of 2 b } 2a

Properties of the Graph of a Quadratic Function. has a vertex with an x-coordinate of 2 b } 2a 0.2 Graph 5 a 2 b c Before You graphed simple quadratic functions. Now You will graph general quadratic functions. Wh? So ou can investigate a cable s height, as in Eample 4. Ke Vocabular minimum value

More information

Lesson 9.1 Using the Distance Formula

Lesson 9.1 Using the Distance Formula Lesson. Using the Distance Formula. Find the eact distance between each pair of points. a. (0, 0) and (, ) b. (0, 0) and (7, ) c. (, 8) and (, ) d. (, ) and (, 7) e. (, 7) and (8, ) f. (8, ) and (, 0)

More information

Solving Quadratic Equations

Solving Quadratic Equations 9 Solving Quadratic Equations 9. Properties of Radicals 9. Solving Quadratic Equations b Graphing 9. Solving Quadratic Equations Using Square Roots 9. Solving Quadratic Equations b Completing the Square

More information

Parametric Equations

Parametric Equations Parametric Equations Suppose a cricket jumps off of the round with an initial velocity v 0 at an anle θ. If we take his initial position as the oriin, his horizontal and vertical positions follow the equations:

More information

Lesson 4.1 Exercises, pages

Lesson 4.1 Exercises, pages Lesson 4.1 Eercises, pages 57 61 When approimating answers, round to the nearest tenth. A 4. Identify the y-intercept of the graph of each quadratic function. a) y = - 1 + 5-1 b) y = 3-14 + 5 Use mental

More information

Essential Question How can you use a scatter plot and a line of fit to make conclusions about data?

Essential Question How can you use a scatter plot and a line of fit to make conclusions about data? . Scatter Plots and Lines of Fit Essential Question How can ou use a scatter plot and a line of fit to make conclusions about data? A scatter plot is a graph that shows the relationship between two data

More information

Solve Quadratic Equations by Graphing

Solve Quadratic Equations by Graphing 0.3 Solve Quadratic Equations b Graphing Before You solved quadratic equations b factoring. Now You will solve quadratic equations b graphing. Wh? So ou can solve a problem about sports, as in Eample 6.

More information

4.2 Parabolas. Explore Deriving the Standard-Form Equation. Houghton Mifflin Harcourt Publishing Company. (x - p) 2 + y 2 = (x + p) 2

4.2 Parabolas. Explore Deriving the Standard-Form Equation. Houghton Mifflin Harcourt Publishing Company. (x - p) 2 + y 2 = (x + p) 2 COMMON CORE. d Locker d LESSON Parabolas Common Core Math Standards The student is epected to: COMMON CORE A-CED.A. Create equations in two or more variables to represent relationships between quantities;

More information

Vertex Form of a Parabola

Vertex Form of a Parabola Verte Form of a Parabola In this investigation ou will graph different parabolas and compare them to what is known as the Basic Parabola. THE BASIC PARABOLA Equation = 2-3 -2-1 0 1 2 3 verte? What s the

More information

( x) f = where P and Q are polynomials.

( x) f = where P and Q are polynomials. 9.8 Graphing Rational Functions Lets begin with a deinition. Deinition: Rational Function A rational unction is a unction o the orm ( ) ( ) ( ) P where P and Q are polynomials. Q An eample o a simple rational

More information

Ch 5 Alg 2 L2 Note Sheet Key Do Activity 1 on your Ch 5 Activity Sheet.

Ch 5 Alg 2 L2 Note Sheet Key Do Activity 1 on your Ch 5 Activity Sheet. Ch Alg L Note Sheet Ke Do Activit 1 on our Ch Activit Sheet. Chapter : Quadratic Equations and Functions.1 Modeling Data With Quadratic Functions You had three forms for linear equations, ou will have

More information

9-1. The Function with Equation y = ax 2. Vocabulary. Graphing y = x 2. Lesson

9-1. The Function with Equation y = ax 2. Vocabulary. Graphing y = x 2. Lesson Chapter 9 Lesson 9-1 The Function with Equation = a BIG IDEA The graph of an quadratic function with equation = a, with a 0, is a parabola with verte at the origin. Vocabular parabola refl ection-smmetric

More information

How can you determine the number of solutions of a quadratic equation of the form ax 2 + c = 0? ACTIVITY: The Number of Solutions of ax 2 + c = 0

How can you determine the number of solutions of a quadratic equation of the form ax 2 + c = 0? ACTIVITY: The Number of Solutions of ax 2 + c = 0 9. Solving Quadratic Equations Using Square Roots How can ou determine the number of solutions of a quadratic equation of the form a + c = 0? ACTIVITY: The Number of Solutions of a + c = 0 Work with a

More information

Graph and Write Equations of Ellipses. You graphed and wrote equations of parabolas and circles. You will graph and write equations of ellipses.

Graph and Write Equations of Ellipses. You graphed and wrote equations of parabolas and circles. You will graph and write equations of ellipses. TEKS 9.4 a.5, A.5.B, A.5.C Before Now Graph and Write Equations of Ellipses You graphed and wrote equations of parabolas and circles. You will graph and write equations of ellipses. Wh? So ou can model

More information

3. The product of x and y is the same for each point, 7.1 Warm Up Practice A. 1. inverse variation 2. inverse variation

3. The product of x and y is the same for each point, 7.1 Warm Up Practice A. 1. inverse variation 2. inverse variation . a. P = b. A = c. = d. 9 t. a. A = 0.5 b. = c. t d. $05.07. a. A = b. = c. 5 t d. $5. Chapter 7 7. Start Thinkin The quotient o and is the same or each point, =. The raph is the line. =. The product o

More information

Math Review and Lessons in Calculus

Math Review and Lessons in Calculus Math Review and Lessons in Calculus Agenda Rules o Eponents Functions Inverses Limits Calculus Rules o Eponents 0 Zero Eponent Rule a * b ab Product Rule * 3 5 a / b a-b Quotient Rule 5 / 3 -a / a Negative

More information

8.4 Inverse Functions

8.4 Inverse Functions Section 8. Inverse Functions 803 8. Inverse Functions As we saw in the last section, in order to solve application problems involving eponential unctions, we will need to be able to solve eponential equations

More information

SEE the Big Idea. Quonset Hut (p. 218) Zebra Mussels (p. 203) Ruins of Caesarea (p. 195) Basketball (p. 178) Electric Vehicles (p.

SEE the Big Idea. Quonset Hut (p. 218) Zebra Mussels (p. 203) Ruins of Caesarea (p. 195) Basketball (p. 178) Electric Vehicles (p. Polnomial Functions.1 Graphing Polnomial Functions. Adding, Subtracting, and Multipling Polnomials.3 Dividing Polnomials. Factoring Polnomials.5 Solving Polnomial Equations. The Fundamental Theorem of

More information

Energizing Math with Engineering Applications

Energizing Math with Engineering Applications Enerizin Math with Enineerin Applications Understandin the Math behind Launchin a Straw-Rocket throuh the use of Simulations. Activity created by Ira Rosenthal (rosenthi@palmbeachstate.edu) as part of

More information

This is only a list of questions use a separate sheet to work out the problems. 1. (1.2 and 1.4) Use the given graph to answer each question.

This is only a list of questions use a separate sheet to work out the problems. 1. (1.2 and 1.4) Use the given graph to answer each question. Mth Calculus Practice Eam Questions NOTE: These questions should not be taken as a complete list o possible problems. The are merel intended to be eamples o the diicult level o the regular eam questions.

More information

Chapter 2 Analysis of Graphs of Functions

Chapter 2 Analysis of Graphs of Functions Chapter Analysis of Graphs of Functions Chapter Analysis of Graphs of Functions Covered in this Chapter:.1 Graphs of Basic Functions and their Domain and Range. Odd, Even Functions, and their Symmetry..

More information

Polynomial and Rational Functions

Polynomial and Rational Functions Name Date Chapter Polnomial and Rational Functions Section.1 Quadratic Functions Objective: In this lesson ou learned how to sketch and analze graphs of quadratic functions. Important Vocabular Define

More information

Chapter 5: Quadratic Equations and Functions 5.1 Modeling Data With Quadratic Functions Quadratic Functions and Their Graphs

Chapter 5: Quadratic Equations and Functions 5.1 Modeling Data With Quadratic Functions Quadratic Functions and Their Graphs Ch 5 Alg Note Sheet Ke Chapter 5: Quadratic Equations and Functions 5.1 Modeling Data With Quadratic Functions Quadratic Functions and Their Graphs Definition: Standard Form of a Quadratic Function The

More information

REVIEW: Going from ONE to TWO Dimensions with Kinematics. Review of one dimension, constant acceleration kinematics. v x (t) = v x0 + a x t

REVIEW: Going from ONE to TWO Dimensions with Kinematics. Review of one dimension, constant acceleration kinematics. v x (t) = v x0 + a x t Lecture 5: Projectile motion, uniform circular motion 1 REVIEW: Goin from ONE to TWO Dimensions with Kinematics In Lecture 2, we studied the motion of a particle in just one dimension. The concepts of

More information

Attributes and Transformations of Quadratic Functions VOCABULARY. Maximum value the greatest. Minimum value the least. Parabola the set of points in a

Attributes and Transformations of Quadratic Functions VOCABULARY. Maximum value the greatest. Minimum value the least. Parabola the set of points in a - Attributes and Transformations of Quadratic Functions TEKS FCUS VCABULARY TEKS ()(B) Write the equation of a parabola using given attributes, including verte, focus, directri, ais of smmetr, and direction

More information

Modeling with Exponential and Logarithmic Functions 6.7. Essential Question How can you recognize polynomial, exponential, and logarithmic models?

Modeling with Exponential and Logarithmic Functions 6.7. Essential Question How can you recognize polynomial, exponential, and logarithmic models? .7 Modeling with Eponential and Logarithmic Functions Essential Question How can ou recognize polnomial, eponential, and logarithmic models? Recognizing Different Tpes of Models Work with a partner. Match

More information

Functions. Introduction

Functions. Introduction Functions,00 P,000 00 0 y 970 97 980 98 990 99 000 00 00 Fiure Standard and Poor s Inde with dividends reinvested (credit "bull": modiication o work by Prayitno Hadinata; credit "raph": modiication o work

More information

Algebra 2CP Fall Final Exam

Algebra 2CP Fall Final Exam Fall Final Exam Review (Revised 0) Alebra CP Alebra CP Fall Final Exam Can You Solve an equation with one variable, includin absolute value equations (. and.) Solve and raph inequalities, compound inequalities,

More information

Essential Question How can you cube a binomial? Work with a partner. Find each product. Show your steps. = (x + 1) Multiply second power.

Essential Question How can you cube a binomial? Work with a partner. Find each product. Show your steps. = (x + 1) Multiply second power. 4.2 Adding, Subtracting, and Multiplying Polynomials COMMON CORE Learning Standards HSA-APR.A.1 HSA-APR.C.4 HSA-APR.C.5 Essential Question How can you cube a binomial? Cubing Binomials Work with a partner.

More information

Writing Quadratic Functions in Standard Form

Writing Quadratic Functions in Standard Form Chapter Summar Ke Terms standard form (general form) of a quadratic function (.1) parabola (.1) leading coefficient (.) second differences (.) vertical motion model (.3) zeros (.3) interval (.3) open interval

More information

Laurie s Notes. Overview of Section 3.5

Laurie s Notes. Overview of Section 3.5 Overview of Section.5 Introduction Sstems of linear equations were solved in Algebra using substitution, elimination, and graphing. These same techniques are applied to nonlinear sstems in this lesson.

More information

Math-3 Lesson 8-5. Unit 4 review: a) Compositions of functions. b) Linear combinations of functions. c) Inverse Functions. d) Quadratic Inequalities

Math-3 Lesson 8-5. Unit 4 review: a) Compositions of functions. b) Linear combinations of functions. c) Inverse Functions. d) Quadratic Inequalities Math- Lesson 8-5 Unit 4 review: a) Compositions o unctions b) Linear combinations o unctions c) Inverse Functions d) Quadratic Inequalities e) Rational Inequalities 1. Is the ollowing relation a unction

More information

Essential Question How can you factor a polynomial completely?

Essential Question How can you factor a polynomial completely? REASONING ABSTRACTLY 7.8 To be proficient in math, ou need to know and flexibl use different properties of operations and objects. Factoring Polnomials Completel Essential Question How can ou factor a

More information

In order to take a closer look at what I m talking about, grab a sheet of graph paper and graph: y = x 2 We ll come back to that graph in a minute.

In order to take a closer look at what I m talking about, grab a sheet of graph paper and graph: y = x 2 We ll come back to that graph in a minute. Module 7: Conics Lesson Notes Part : Parabolas Parabola- The parabola is the net conic section we ll eamine. We talked about parabolas a little bit in our section on quadratics. Here, we eamine them more

More information

Reteaching (continued)

Reteaching (continued) Quadratic Functions and Transformations If a, the graph is a stretch or compression of the parent function b a factor of 0 a 0. 0 0 0 0 0 a a 7 The graph is a vertical The graph is a vertical compression

More information

The Graphs of Mixed Functions (Day 13 1)

The Graphs of Mixed Functions (Day 13 1) The Graphs of Mied Functions (Day 3 ) In this unit, we will remember how to graph some old functions and discover how to graph lots of new functions. Eercise : Graph and label the parent function f( )

More information

Additional Factoring Examples:

Additional Factoring Examples: Honors Algebra -3 Solving Quadratic Equations by Graphing and Factoring Learning Targets 1. I can solve quadratic equations by graphing. I can solve quadratic equations by factoring 3. I can write a quadratic

More information

Comparing Linear, Exponential, and Quadratic Functions

Comparing Linear, Exponential, and Quadratic Functions . Comparing Linear, Eponential, and Quadratic Functions How can ou compare the growth rates of linear, eponential, and quadratic functions? ACTIVITY: Comparing Speeds Work with a partner. Three cars start

More information

20.2 Connecting Intercepts and Linear Factors

20.2 Connecting Intercepts and Linear Factors Name Class Date 20.2 Connecting Intercepts and Linear Factors Essential Question: How are -intercepts of a quadratic function and its linear factors related? Resource Locker Eplore Connecting Factors and

More information

BIG IDEAS MATH. Ron Larson Laurie Boswell. Sampler

BIG IDEAS MATH. Ron Larson Laurie Boswell. Sampler BIG IDEAS MATH Ron Larson Laurie Boswell Sampler 3 Polnomial Functions 3.1 Graphing Polnomial Functions 3. Adding, Subtracting, and Multipling Polnomials 3.3 Dividing Polnomials 3. Factoring Polnomials

More information

Linear Functions. Essential Question How can you determine whether a function is linear or nonlinear?

Linear Functions. Essential Question How can you determine whether a function is linear or nonlinear? . Linear Functions Essential Question How can ou determine whether a function is linear or nonlinear? Finding Patterns for Similar Figures Work with a partner. Cop and complete each table for the sequence

More information

Quadratic Function. Parabola. Parent quadratic function. Vertex. Axis of Symmetry

Quadratic Function. Parabola. Parent quadratic function. Vertex. Axis of Symmetry Name: Chapter 10: Quadratic Equations and Functions Section 10.1: Graph = a + c Quadratic Function Parabola Parent quadratic function Verte Ais of Smmetr Parent Function = - -1 0 1 1 Eample 1: Make a table,

More information

TRANSFORMATIONS OF f(x) = x Example 1

TRANSFORMATIONS OF f(x) = x Example 1 TRANSFORMATIONS OF f() = 2 2.1.1 2.1.2 Students investigate the general equation for a famil of quadratic functions, discovering was to shift and change the graphs. Additionall, the learn how to graph

More information

Exponential and Logarithmic Functions

Exponential and Logarithmic Functions Eponential and Logarithmic Functions.1 Eponential Growth and Deca Functions. The Natural Base e.3 Logarithms and Logarithmic Functions. Transformations of Eponential and Logarithmic Functions.5 Properties

More information

3.7 Start Thinking. 3.7 Warm Up. 3.7 Cumulative Review Warm Up

3.7 Start Thinking. 3.7 Warm Up. 3.7 Cumulative Review Warm Up .7 Start Thinking Use a graphing calculator to graph the function f ( ) =. Sketch the graph on a coordinate plane. Describe the graph of the function. Now graph the functions g ( ) 5, and h ( ) 5 the same

More information

Saturday X-tra X-Sheet: 8. Inverses and Functions

Saturday X-tra X-Sheet: 8. Inverses and Functions Saturda X-tra X-Sheet: 8 Inverses and Functions Ke Concepts In this session we will ocus on summarising what ou need to know about: How to ind an inverse. How to sketch the inverse o a graph. How to restrict

More information

3.1. Shape and Structure Forms of Quadratic Functions ESSENTIAL IDEAS TEXAS ESSENTIAL KNOWLEDGE AND SKILLS FOR MATHEMATICS 169A

3.1. Shape and Structure Forms of Quadratic Functions ESSENTIAL IDEAS TEXAS ESSENTIAL KNOWLEDGE AND SKILLS FOR MATHEMATICS 169A Shape and Structure Forms of Quadratic Functions.1 LEARNING GOALS KEY TERMS In this lesson, ou will: Match a quadratic function with its corresponding graph. Identif ke characteristics of quadratic functions

More information

Solving Quadratic Equations by Graphing 9.1. ACTIVITY: Solving a Quadratic Equation by Graphing. How can you use a graph to solve a quadratic

Solving Quadratic Equations by Graphing 9.1. ACTIVITY: Solving a Quadratic Equation by Graphing. How can you use a graph to solve a quadratic 9. Solving Quadratic Equations b Graphing equation in one variable? How can ou use a graph to solve a quadratic Earlier in the book, ou learned that the -intercept of the graph of = a + b variables is

More information

Learning Targets: Standard Form: Quadratic Function. Parabola. Vertex Max/Min. x-coordinate of vertex Axis of symmetry. y-intercept.

Learning Targets: Standard Form: Quadratic Function. Parabola. Vertex Max/Min. x-coordinate of vertex Axis of symmetry. y-intercept. Name: Hour: Algebra A Lesson:.1 Graphing Quadratic Functions Learning Targets: Term Picture/Formula In your own words: Quadratic Function Standard Form: Parabola Verte Ma/Min -coordinate of verte Ais of

More information

Name: Period: SM Starter on Reading Quadratic Graph. This graph and equation represent the path of an object being thrown.

Name: Period: SM Starter on Reading Quadratic Graph. This graph and equation represent the path of an object being thrown. SM Name: Period: 7.5 Starter on Reading Quadratic Graph This graph and equation represent the path of an object being thrown. 1. What is the -ais measuring?. What is the y-ais measuring? 3. What are the

More information

Name Class Date. Deriving the Standard-Form Equation of a Parabola

Name Class Date. Deriving the Standard-Form Equation of a Parabola Name Class Date 1. Parabolas Essential Question: How is the distance formula connected with deriving equations for both vertical and horizontal parabolas? Eplore Deriving the Standard-Form Equation of

More information

Study Guide and Intervention

Study Guide and Intervention 6- NAME DATE PERID Stud Guide and Intervention Graphing Quadratic Functions Graph Quadratic Functions Quadratic Function A function defined b an equation of the form f () a b c, where a 0 b Graph of a

More information

f(x) = 2x 2 + 2x - 4

f(x) = 2x 2 + 2x - 4 4-1 Graphing Quadratic Functions What You ll Learn Scan the tet under the Now heading. List two things ou will learn about in the lesson. 1. Active Vocabular 2. New Vocabular Label each bo with the terms

More information

Name Class Date. Understanding How to Graph g(x) = a(x - h ) 2 + k

Name Class Date. Understanding How to Graph g(x) = a(x - h ) 2 + k Name Class Date - Transforming Quadratic Functions Going Deeper Essential question: How can ou obtain the graph of g() = a( h ) + k from the graph of f () =? 1 F-BF..3 ENGAGE Understanding How to Graph

More information

(a) 1m s -2 (b) 2 m s -2 (c) zero (d) -1 m s -2

(a) 1m s -2 (b) 2 m s -2 (c) zero (d) -1 m s -2 11 th Physics - Unit 2 Kinematics Solutions for the Textbook Problems One Marks 1. Which one of the followin Cartesian coordinate system is not followed in physics? 5. If a particle has neative velocity

More information

Solving Multi-Step Inequalities

Solving Multi-Step Inequalities . Solving Multi-Step Inequalities How can ou use an inequalit to describe the area and perimeter of a composite figure? ACTIVITY: Areas and Perimeters of Composite Figures Wor with a partner. a. For what

More information

9.1. Solving Quadratic Equations. Investigation: Rocket Science CONDENSED LESSON

9.1. Solving Quadratic Equations. Investigation: Rocket Science CONDENSED LESSON CONDENSED LESSON 9.1 Solving Quadratic Equations In this lesson you will look at quadratic functions that model projectile motion use tables and graphs to approimate solutions to quadratic equations solve

More information

4 B. 4 D. 4 F. 3. How can you use the graph of a quadratic equation to determine the number of real solutions of the equation?

4 B. 4 D. 4 F. 3. How can you use the graph of a quadratic equation to determine the number of real solutions of the equation? 3.1 Solving Quadratic Equations COMMON CORE Learning Standards HSA-SSE.A. HSA-REI.B.b HSF-IF.C.8a Essential Question Essential Question How can ou use the graph of a quadratic equation to determine the

More information

CHAPTER 1 FIGURE 22 increasing decreasing FIGURE 23

CHAPTER 1 FIGURE 22 increasing decreasing FIGURE 23 . EXERCISES. The graph o a unction is given. (a) State the value o. (b) Estimate the value o 2. (c) For what values o is 2? (d) Estimate the values o such that. (e) State the domain and range o. () On

More information

ALGEBRA II SEMESTER EXAMS PRACTICE MATERIALS SEMESTER (1.2-1) What is the inverse of f ( x) 2x 9? (A) (B) x x (C) (D) 2. (1.

ALGEBRA II SEMESTER EXAMS PRACTICE MATERIALS SEMESTER (1.2-1) What is the inverse of f ( x) 2x 9? (A) (B) x x (C) (D) 2. (1. 04-05 SEMESTER EXAMS. (.-) What is the inverse of f ( ) 9? f f f f ( ) 9 ( ) 9 9 ( ) ( ) 9. (.-) If 4 f ( ) 8, what is f ( )? f( ) ( 8) 4 f ( ) 8 4 4 f( ) 6 4 f( ) ( 8). (.4-) Which statement must be true

More information

Graph Quadratic Functions in Standard Form

Graph Quadratic Functions in Standard Form TEKS 4. 2A.4.A, 2A.4.B, 2A.6.B, 2A.8.A Graph Quadratic Functions in Standard Form Before You graphed linear functions. Now You will graph quadratic functions. Wh? So ou can model sports revenue, as in

More information

5-4. Focus and Directrix of a Parabola. Key Concept Parabola VOCABULARY TEKS FOCUS ESSENTIAL UNDERSTANDING

5-4. Focus and Directrix of a Parabola. Key Concept Parabola VOCABULARY TEKS FOCUS ESSENTIAL UNDERSTANDING 5- Focus and Directri of a Parabola TEKS FOCUS VOCABULARY TEKS ()(B) Write the equation of a parabola using given attributes, including verte, focus, directri, ais of smmetr, and direction of opening.

More information

7.2 Connecting Intercepts and Linear Factors

7.2 Connecting Intercepts and Linear Factors Name Class Date 7.2 Connecting Intercepts and Linear Factors Essential Question: How are -intercepts of a quadratic function and its linear factors related? Resource Locker Eplore Connecting Factors and

More information

Polynomials, Linear Factors, and Zeros. Factor theorem, multiple zero, multiplicity, relative maximum, relative minimum

Polynomials, Linear Factors, and Zeros. Factor theorem, multiple zero, multiplicity, relative maximum, relative minimum Polynomials, Linear Factors, and Zeros To analyze the actored orm o a polynomial. To write a polynomial unction rom its zeros. Describe the relationship among solutions, zeros, - intercept, and actors.

More information

Graphs and Solutions for Quadratic Equations

Graphs and Solutions for Quadratic Equations Format y = a + b + c where a 0 Graphs and Solutions for Quadratic Equations Graphing a quadratic equation creates a parabola. If a is positive, the parabola opens up or is called a smiley face. If a is

More information

3.5 Graphs of Rational Functions

3.5 Graphs of Rational Functions Math 30 www.timetodare.com Eample Graph the reciprocal unction ( ) 3.5 Graphs o Rational Functions Answer the ollowing questions: a) What is the domain o the unction? b) What is the range o the unction?

More information

the equations for the motion of the particle are written as

the equations for the motion of the particle are written as Dynamics 4600:203 Homework 02 Due: ebruary 01, 2008 Name: Please denote your answers clearly, ie, box in, star, etc, and write neatly There are no points for small, messy, unreadable work please use lots

More information

Sec 3.1. lim and lim e 0. Exponential Functions. f x 9, write the equation of the graph that results from: A. Limit Rules

Sec 3.1. lim and lim e 0. Exponential Functions. f x 9, write the equation of the graph that results from: A. Limit Rules Sec 3. Eponential Functions A. Limit Rules. r lim a a r. I a, then lim a and lim a 0 3. I 0 a, then lim a 0 and lim a 4. lim e 0 5. e lim and lim e 0 Eamples:. Starting with the graph o a.) Shiting 9 units

More information