Quadratic Functions. The graph of the function shifts right 3. The graph of the function shifts left 3.

Size: px
Start display at page:

Download "Quadratic Functions. The graph of the function shifts right 3. The graph of the function shifts left 3."

Transcription

1 Quadratic Functions The translation o a unction is simpl the shiting o a unction. In this section, or the most part, we will be graphing various unctions b means o shiting the parent unction. We will go over the parent unction or a variet o algebraic unctions in this section. It is much easier to see the eects dierent constants have on a particular unction i we use the parent unction. We will begin with quadratics. Observe the ollowing regarding a quadratic unction in standard orm. = a( h) + k = Notice that in the equation above, the h and k values are zero, while the value o a is one. This gives ou the parent unction or all quadratics. Everthing else is merel a manipulation o the parent unction. = ( 3) = ( + 3) The graph o the unction shits right 3. The graph o the unction shits let 3. The number inside the parenthesis makes the graph shit to the let or right. Remember P.L.N.R., Positive Let Negative Right, tells about the horizontal shit needed to graph the unction. I the unction above is ( ), the unctions below would be ( 3) and ( + 3) respectivel. This is important to know, because in the uture, ou will be required to graph unctions based solel on the picture provided. No equation will be given. You must rel solel on our knowledge o translating graphs.

2 = Once again, the parent unction is illustrated above, and translations o it below. = + = The graph o the unction shits up. The graph o the unction shits down. In these eamples, the k value is what is changing. The value o k dictates a vertical shit o the unction. In this case, consider the parent unction as being. Given no inormation regarding the speciic equation o the unction, the equations or these two translations o = ( ) ( ) are ( ) +, and ( ). Now, on the let we have the opposite o the parent unction. In this particular eample, the value o a, in the standard orm is -1. A negative relects the graph o the unction about the horizontal ais. Once again, i the parent unction given is reerred to as ( ), this unction is ( ).

3 We have seen how to graph a unction b shiting the parent unction. You ma have noticed that we graphed ( ), but not ( ). The reason we did not see ( ), is because this is the graph o an even unction. That means that i a were plugged in to the unction, it would make no dierence. The outcome would be the same. However, i we are dealing with a dierent tpe o unction, one that was not even, ( ) would cause the graph o the unction to relect about a vertical ais. In other words, i ( ) makes a graph lip upside down, ( ) would make the graph lip rom right to let, or let to right, whatever ma be the case. Lets see how diering values o a, h and k will cause various shits o the unction. = a( h) + k Once again, take note o the parent unction = = ( + ) + 3 ( ) = 3 + This graph opens down, and shits let, up 3. This graph opens up and shits right 3, and up I this graph is a translation o the unction It would b written as ( ) ( ) I this graph is a translation o the unction It would b written as +. ( ) 3 ( ) We will be graphing unctions using onl ( ) in the translations o unctions section.

4 = a( h) + k = Here we will see how the value o a or the quadratic unction in standard orm aects the graph o the unction. To illustrate this, we will look at the graph o a parabola that has its verte on the origin. = 4 = 1 4 This graph seems ver narrow, but what is actuall happening, is the value o the unction is increasing ver rapidl. The values are increasing at 4 times their normal rate. The rapid increase causes the graph to appear narrow. This graph is wider than the parent unction. In this case, the values o the unction are increasing at ¼ their normal rate, causing a more gradual increase. As ou can see, i the value o the leading coeicient is a whole number, the values o the graph will increase rapidl causing a narrow and steeper curve. In contrast, i the leading coeicient is a raction, the values o the unction will increase mildl, causing a more gradual curve.

5 Describe the movement o each o the ollowing quadratic unctions. Describe how each opens and i there is an horizontal or vertical movement. Be sure to state how man spaces it moves, or eample: This graph opens down, and shits let, up A) = 3( 4) + B) = ( + 3) 8 C) = ( ) D) 1 = + 3 E) = ( + 5) + 6 F) ( ) = G) = ( ) + H) = 3( + 6) + 8 I) ( ) = 4 3 J) = 3 K) ( ) = L) 5 = + 8 As ou describe the graphs o the quadratic unctions above, ou wrote that it shits to the let or right, and up or down. What is actuall shiting?

6 Write the equation or a quadratic unction in = a ( h) + k orm that opens down, shits let 3 and up 7. Write the equation or a quadratic unction in = a ( h) + k orm that opens up, shits right 4 and down. Write the equation or a quadratic unction in = a ( h) + k orm that opens up, and onl shits down 4. Write the equation or a quadratic unction in = a ( h) + k orm that opens down and shits to the let 8 spaces. Write the equation or a quadratic unction in = a ( h) + k orm that opens down and shits up 7. Is a quadratic unction a one-to-one unction? Wh or wh not? What does this tell ou about the inverse o a quadratic unction?

7 Match the appropriate graph with its equation below. Eplain wh each o our solutions is true. A B C D E F = 1 + ) ( ) 1) ( ) ( ) = 3) ( ) ( ) = ) ( ) = ( ) + 1 5) ( ) = 3( + ) 6) ( ) ( ) = 3 +

8 Graph each o the ollowing unctions. You ma need to use an ais o smmetr to graph some o these. Label the verte, -intercept, and all -intercepts. A) ( ) = ( 3) + 1 B) ( ) ( ) = C) ( ) = ( ) D) ( ) ( ) =

9 E) ( ) = + 3 F) ( ) ( ) = G) ( ) = ( 4) H) ( ) ( ) = 1 8

10 The quadratic unction given b the equation ( ) ( ) o. = has an ais o smmetr The quadratic unction given b the equation ( ) ( ) o. = has an ais o smmetr The quadratic unction given b the equation ( ) ( ) o. = a h + k has an ais o smmetr Considering our answers to the previous questions, we can conclude that the ais o smmetr or an quadratic unction is given b the value o the. Wh does the ais o smmetr look as though we are saing equals a number ( = # )? Wh is it sometimes necessar to graph a quadratic unction using the ais o smmetr?

Objectives. By the time the student is finished with this section of the workbook, he/she should be able

Objectives. By the time the student is finished with this section of the workbook, he/she should be able FUNCTIONS Quadratic Functions......8 Absolute Value Functions.....48 Translations o Functions..57 Radical Functions...61 Eponential Functions...7 Logarithmic Functions......8 Cubic Functions......91 Piece-Wise

More information

RATIONAL FUNCTIONS. Finding Asymptotes..347 The Domain Finding Intercepts Graphing Rational Functions

RATIONAL FUNCTIONS. Finding Asymptotes..347 The Domain Finding Intercepts Graphing Rational Functions RATIONAL FUNCTIONS Finding Asymptotes..347 The Domain....350 Finding Intercepts.....35 Graphing Rational Functions... 35 345 Objectives The ollowing is a list o objectives or this section o the workbook.

More information

Math-3 Lesson 1-4. Review: Cube, Cube Root, and Exponential Functions

Math-3 Lesson 1-4. Review: Cube, Cube Root, and Exponential Functions Math- Lesson -4 Review: Cube, Cube Root, and Eponential Functions Quiz - Graph (no calculator):. y. y ( ) 4. y What is a power? vocabulary Power: An epression ormed by repeated Multiplication o the same

More information

Vertex. March 23, Ch 9 Guided Notes.notebook

Vertex. March 23, Ch 9 Guided Notes.notebook March, 07 9 Quadratic Graphs and Their Properties A quadratic function is a function that can be written in the form: Verte Its graph looks like... which we call a parabola. The simplest quadratic function

More information

( x) f = where P and Q are polynomials.

( x) f = where P and Q are polynomials. 9.8 Graphing Rational Functions Lets begin with a deinition. Deinition: Rational Function A rational unction is a unction o the orm ( ) ( ) ( ) P where P and Q are polynomials. Q An eample o a simple rational

More information

Quadratic Functions Objective: To be able to graph a quadratic function and identify the vertex and the roots.

Quadratic Functions Objective: To be able to graph a quadratic function and identify the vertex and the roots. Name: Quadratic Functions Objective: To be able to graph a quadratic function and identif the verte and the roots. Period: Quadratic Function Function of degree. Usuall in the form: We are now going to

More information

Mathematics 10 Page 1 of 7 The Quadratic Function (Vertex Form): Translations. and axis of symmetry is at x a.

Mathematics 10 Page 1 of 7 The Quadratic Function (Vertex Form): Translations. and axis of symmetry is at x a. Mathematics 10 Page 1 of 7 Verte form of Quadratic Relations The epression a p q defines a quadratic relation called the verte form with a horizontal translation of p units and vertical translation of

More information

Unit 2 Notes Packet on Quadratic Functions and Factoring

Unit 2 Notes Packet on Quadratic Functions and Factoring Name: Period: Unit Notes Packet on Quadratic Functions and Factoring Notes #: Graphing quadratic equations in standard form, verte form, and intercept form. A. Intro to Graphs of Quadratic Equations: a

More information

Math-Essentials Unit 3 Review. Equations and Transformations of the Linear, Quadratic, Absolute Value, Square Root, and Cube Functions

Math-Essentials Unit 3 Review. Equations and Transformations of the Linear, Quadratic, Absolute Value, Square Root, and Cube Functions Math-Essentials Unit Review Equations and Transormations o the Linear, Quadratic, Absolute Value, Square Root, and Cube Functions Vocabulary Relation: A mapping or pairing o input values to output values.

More information

9.1 The Square Root Function

9.1 The Square Root Function Section 9.1 The Square Root Function 869 9.1 The Square Root Function In this section we turn our attention to the square root unction, the unction deined b the equation () =. (1) We begin the section

More information

Saturday X-tra X-Sheet: 8. Inverses and Functions

Saturday X-tra X-Sheet: 8. Inverses and Functions Saturda X-tra X-Sheet: 8 Inverses and Functions Ke Concepts In this session we will ocus on summarising what ou need to know about: How to ind an inverse. How to sketch the inverse o a graph. How to restrict

More information

= x. Algebra II Notes Quadratic Functions Unit Graphing Quadratic Functions. Math Background

= x. Algebra II Notes Quadratic Functions Unit Graphing Quadratic Functions. Math Background Algebra II Notes Quadratic Functions Unit 3.1 3. Graphing Quadratic Functions Math Background Previousl, ou Identified and graphed linear functions Applied transformations to parent functions Graphed quadratic

More information

Math 3201 UNIT 5: Polynomial Functions NOTES. Characteristics of Graphs and Equations of Polynomials Functions

Math 3201 UNIT 5: Polynomial Functions NOTES. Characteristics of Graphs and Equations of Polynomials Functions 1 Math 301 UNIT 5: Polnomial Functions NOTES Section 5.1 and 5.: Characteristics of Graphs and Equations of Polnomials Functions What is a polnomial function? Polnomial Function: - A function that contains

More information

Graphs and Solutions for Quadratic Equations

Graphs and Solutions for Quadratic Equations Format y = a + b + c where a 0 Graphs and Solutions for Quadratic Equations Graphing a quadratic equation creates a parabola. If a is positive, the parabola opens up or is called a smiley face. If a is

More information

Chapter 18 Quadratic Function 2

Chapter 18 Quadratic Function 2 Chapter 18 Quadratic Function Completed Square Form 1 Consider this special set of numbers - the square numbers or the set of perfect squares. 4 = = 9 = 3 = 16 = 4 = 5 = 5 = Numbers like 5, 11, 15 are

More information

8.4 Inverse Functions

8.4 Inverse Functions Section 8. Inverse Functions 803 8. Inverse Functions As we saw in the last section, in order to solve application problems involving eponential unctions, we will need to be able to solve eponential equations

More information

RELATIONS AND FUNCTIONS through

RELATIONS AND FUNCTIONS through RELATIONS AND FUNCTIONS 11.1.2 through 11.1. Relations and Functions establish a correspondence between the input values (usuall ) and the output values (usuall ) according to the particular relation or

More information

Vertex form of a quadratic equation

Vertex form of a quadratic equation Verte form of a quadratic equation Nikos Apostolakis Spring 017 Recall 1. Last time we looked at the graphs of quadratic equations in two variables. The upshot was that the graph of the equation: k = a(

More information

Unit 10 - Graphing Quadratic Functions

Unit 10 - Graphing Quadratic Functions Unit - Graphing Quadratic Functions PREREQUISITE SKILLS: students should be able to add, subtract and multipl polnomials students should be able to factor polnomials students should be able to identif

More information

Maintaining Mathematical Proficiency

Maintaining Mathematical Proficiency Name Date Chapter 8 Maintaining Mathematical Proficienc Graph the linear equation. 1. = 5. = + 3 3. 1 = + 3. = + Evaluate the epression when =. 5. + 8. + 3 7. 3 8. 5 + 8 9. 8 10. 5 + 3 11. + + 1. 3 + +

More information

Systems of Linear Equations: Solving by Graphing

Systems of Linear Equations: Solving by Graphing 8.1 Sstems of Linear Equations: Solving b Graphing 8.1 OBJECTIVE 1. Find the solution(s) for a set of linear equations b graphing NOTE There is no other ordered pair that satisfies both equations. From

More information

1.2 Functions and Their Properties PreCalculus

1.2 Functions and Their Properties PreCalculus 1. Functions and Their Properties PreCalculus 1. FUNCTIONS AND THEIR PROPERTIES Learning Targets for 1. 1. Determine whether a set of numbers or a graph is a function. Find the domain of a function given

More information

9.12 Quadratics Review

9.12 Quadratics Review Algebra Name _ B2g0gD6L jkwudtaaa msvopfwtowiarneq CLOLXCa.I K `Awljla `rtiugohhtfs_ QrIefsfeYrZvtetdf. 9.2 Quadratics Review ) What is the difference between the two mathematical statements below? Then

More information

Maintaining Mathematical Proficiency

Maintaining Mathematical Proficiency Chapter Maintaining Mathematical Proficienc Find the -intercept of the graph of the linear equation. 1. = + 3. = 3 + 5 3. = 10 75. = ( 9) 5. 7( 10) = +. 5 + 15 = 0 Find the distance between the two points.

More information

College Algebra Final, 7/2/10

College Algebra Final, 7/2/10 NAME College Algebra Final, 7//10 1. Factor the polnomial p() = 3 5 13 4 + 13 3 + 9 16 + 4 completel, then sketch a graph of it. Make sure to plot the - and -intercepts. (10 points) Solution: B the rational

More information

Syllabus Objective: 2.9 The student will sketch the graph of a polynomial, radical, or rational function.

Syllabus Objective: 2.9 The student will sketch the graph of a polynomial, radical, or rational function. Precalculus Notes: Unit Polynomial Functions Syllabus Objective:.9 The student will sketch the graph o a polynomial, radical, or rational unction. Polynomial Function: a unction that can be written in

More information

f(x) = 2x 2 + 2x - 4

f(x) = 2x 2 + 2x - 4 4-1 Graphing Quadratic Functions What You ll Learn Scan the tet under the Now heading. List two things ou will learn about in the lesson. 1. Active Vocabular 2. New Vocabular Label each bo with the terms

More information

Curve Sketching. The process of curve sketching can be performed in the following steps:

Curve Sketching. The process of curve sketching can be performed in the following steps: Curve Sketching So ar you have learned how to ind st and nd derivatives o unctions and use these derivatives to determine where a unction is:. Increasing/decreasing. Relative extrema 3. Concavity 4. Points

More information

Transformations of Quadratic Functions

Transformations of Quadratic Functions .1 Transormations o Quadratic Functions Essential Question How do the constants a, h, and k aect the raph o the quadratic unction () = a( h) + k? The parent unction o the quadratic amil is. A transormation

More information

KEY Algebra: Unit 9 Quadratic Functions and Relations Class Notes 10-1

KEY Algebra: Unit 9 Quadratic Functions and Relations Class Notes 10-1 Name: KEY Date: Algebra: Unit 9 Quadratic Functions and Relations Class Notes 10-1 Anatomy of a parabola: 1. Use the graph of y 6 5shown below to identify each of the following: y 4 identify each of the

More information

20.2 Connecting Intercepts and Linear Factors

20.2 Connecting Intercepts and Linear Factors Name Class Date 20.2 Connecting Intercepts and Linear Factors Essential Question: How are -intercepts of a quadratic function and its linear factors related? Resource Locker Eplore Connecting Factors and

More information

Section 4.1 Increasing and Decreasing Functions

Section 4.1 Increasing and Decreasing Functions Section.1 Increasing and Decreasing Functions The graph of the quadratic function f 1 is a parabola. If we imagine a particle moving along this parabola from left to right, we can see that, while the -coordinates

More information

+ = + + = x = + = + = 36x

+ = + + = x = + = + = 36x Ch 5 Alg L Homework Worksheets Computation Worksheet #1: You should be able to do these without a calculator! A) Addition (Subtraction = add the opposite of) B) Multiplication (Division = multipl b the

More information

Lesson Goals. Unit 4 Polynomial/Rational Functions Quadratic Functions (Chap 0.3) Family of Quadratic Functions. Parabolas

Lesson Goals. Unit 4 Polynomial/Rational Functions Quadratic Functions (Chap 0.3) Family of Quadratic Functions. Parabolas Unit 4 Polnomial/Rational Functions Quadratic Functions (Chap 0.3) William (Bill) Finch Lesson Goals When ou have completed this lesson ou will: Graph and analze the graphs of quadratic functions. Solve

More information

1.2 Functions and Their Properties PreCalculus

1.2 Functions and Their Properties PreCalculus 1. Functions and Their Properties PreCalculus 1. FUNCTIONS AND THEIR PROPERTIES Learning Targets for 1. 1. Determine whether a set of numbers or a graph is a function. Find the domain of a function given

More information

Flip-Flop Functions KEY

Flip-Flop Functions KEY For each rational unction, list the zeros o the polynomials in the numerator and denominator. Then, using a calculator, sketch the graph in a window o [-5.75, 6] by [-5, 5], and provide an end behavior

More information

LESSON #42 - INVERSES OF FUNCTIONS AND FUNCTION NOTATION PART 2 COMMON CORE ALGEBRA II

LESSON #42 - INVERSES OF FUNCTIONS AND FUNCTION NOTATION PART 2 COMMON CORE ALGEBRA II LESSON #4 - INVERSES OF FUNCTIONS AND FUNCTION NOTATION PART COMMON CORE ALGEBRA II You will recall from unit 1 that in order to find the inverse of a function, ou must switch and and solve for. Also,

More information

Chapter 5: Quadratic Equations and Functions 5.1 Modeling Data With Quadratic Functions Quadratic Functions and Their Graphs

Chapter 5: Quadratic Equations and Functions 5.1 Modeling Data With Quadratic Functions Quadratic Functions and Their Graphs Ch 5 Alg Note Sheet Ke Chapter 5: Quadratic Equations and Functions 5.1 Modeling Data With Quadratic Functions Quadratic Functions and Their Graphs Definition: Standard Form of a Quadratic Function The

More information

New Functions from Old Functions

New Functions from Old Functions .3 New Functions rom Old Functions In this section we start with the basic unctions we discussed in Section. and obtain new unctions b shiting, stretching, and relecting their graphs. We also show how

More information

Quadratic Function. Parabola. Parent quadratic function. Vertex. Axis of Symmetry

Quadratic Function. Parabola. Parent quadratic function. Vertex. Axis of Symmetry Name: Chapter 10: Quadratic Equations and Functions Section 10.1: Graph = a + c Quadratic Function Parabola Parent quadratic function Verte Ais of Smmetr Parent Function = - -1 0 1 1 Eample 1: Make a table,

More information

Graphing Calculator Computations 2

Graphing Calculator Computations 2 Graphing Calculator Computations A) Write the graphing calculator notation and B) Evaluate each epression. 4 1) 15 43 8 e) 15 - -4 * 3^ + 8 ^ 4/ - 1) ) 5 ) 8 3 3) 3 4 1 8 3) 7 9 4) 1 3 5 4) 5) 5 5) 6)

More information

6.4 graphs OF logarithmic FUnCTIOnS

6.4 graphs OF logarithmic FUnCTIOnS SECTION 6. graphs of logarithmic functions 9 9 learning ObjeCTIveS In this section, ou will: Identif the domain of a logarithmic function. Graph logarithmic functions. 6. graphs OF logarithmic FUnCTIOnS

More information

A function from a set D to a set R is a rule that assigns a unique element in R to each element in D.

A function from a set D to a set R is a rule that assigns a unique element in R to each element in D. 1.2 Functions and Their Properties PreCalculus 1.2 FUNCTIONS AND THEIR PROPERTIES Learning Targets for 1.2 1. Determine whether a set of numbers or a graph is a function 2. Find the domain of a function

More information

Eigenvectors and Eigenvalues 1

Eigenvectors and Eigenvalues 1 Ma 2015 page 1 Eigenvectors and Eigenvalues 1 In this handout, we will eplore eigenvectors and eigenvalues. We will begin with an eploration, then provide some direct eplanation and worked eamples, and

More information

APPENDIX D Rotation and the General Second-Degree Equation

APPENDIX D Rotation and the General Second-Degree Equation APPENDIX D Rotation and the General Second-Degree Equation Rotation of Aes Invariants Under Rotation After rotation of the - and -aes counterclockwise through an angle, the rotated aes are denoted as the

More information

Name Class Date. Understanding How to Graph g(x) = a(x - h ) 2 + k

Name Class Date. Understanding How to Graph g(x) = a(x - h ) 2 + k Name Class Date - Transforming Quadratic Functions Going Deeper Essential question: How can ou obtain the graph of g() = a( h ) + k from the graph of f () =? 1 F-BF..3 ENGAGE Understanding How to Graph

More information

EOC Review. Algebra I

EOC Review. Algebra I EOC Review Algebra I Order of Operations PEMDAS Parentheses, Eponents, Multiplication/Division, Add/Subtract from left to right. A. Simplif each epression using appropriate Order of Operations.. 5 6 +.

More information

7.2 Connecting Intercepts and Linear Factors

7.2 Connecting Intercepts and Linear Factors Name Class Date 7.2 Connecting Intercepts and Linear Factors Essential Question: How are -intercepts of a quadratic function and its linear factors related? Resource Locker Eplore Connecting Factors and

More information

Example: When describing where a function is increasing, decreasing or constant we use the x- axis values.

Example: When describing where a function is increasing, decreasing or constant we use the x- axis values. Business Calculus Lecture Notes (also Calculus With Applications or Business Math II) Chapter 3 Applications o Derivatives 31 Increasing and Decreasing Functions Inormal Deinition: A unction is increasing

More information

Mth 95 Module 4 Chapter 8 Spring Review - Solving quadratic equations using the quadratic formula

Mth 95 Module 4 Chapter 8 Spring Review - Solving quadratic equations using the quadratic formula Mth 95 Module 4 Chapter 8 Spring 04 Review - Solving quadratic equations using the quadratic formula Write the quadratic formula. The NUMBER of REAL and COMPLEX SOLUTIONS to a quadratic equation ( a b

More information

LESSON #24 - POWER FUNCTIONS COMMON CORE ALGEBRA II

LESSON #24 - POWER FUNCTIONS COMMON CORE ALGEBRA II 1 LESSON #4 - POWER FUNCTIONS COMMON CORE ALGEBRA II Before we start to analze polnomials of degree higher than two (quadratics), we first will look at ver simple functions known as power functions. The

More information

ALGEBRA 1 CP FINAL EXAM REVIEW

ALGEBRA 1 CP FINAL EXAM REVIEW ALGEBRA CP FINAL EXAM REVIEW Alg CP Sem Eam Review 0 () Page of 8 Chapter 8: Eponents. Write in rational eponent notation. 7. Write in radical notation. Simplif the epression.. 00.. 6 6. 7 7. 6 6 8. 8

More information

STUDY KNOWHOW PROGRAM STUDY AND LEARNING CENTRE. Functions & Graphs

STUDY KNOWHOW PROGRAM STUDY AND LEARNING CENTRE. Functions & Graphs STUDY KNOWHOW PROGRAM STUDY AND LEARNING CENTRE Functions & Graphs Contents Functions and Relations... 1 Interval Notation... 3 Graphs: Linear Functions... 5 Lines and Gradients... 7 Graphs: Quadratic

More information

Math-3 Lesson 8-5. Unit 4 review: a) Compositions of functions. b) Linear combinations of functions. c) Inverse Functions. d) Quadratic Inequalities

Math-3 Lesson 8-5. Unit 4 review: a) Compositions of functions. b) Linear combinations of functions. c) Inverse Functions. d) Quadratic Inequalities Math- Lesson 8-5 Unit 4 review: a) Compositions o unctions b) Linear combinations o unctions c) Inverse Functions d) Quadratic Inequalities e) Rational Inequalities 1. Is the ollowing relation a unction

More information

In order to take a closer look at what I m talking about, grab a sheet of graph paper and graph: y = x 2 We ll come back to that graph in a minute.

In order to take a closer look at what I m talking about, grab a sheet of graph paper and graph: y = x 2 We ll come back to that graph in a minute. Module 7: Conics Lesson Notes Part : Parabolas Parabola- The parabola is the net conic section we ll eamine. We talked about parabolas a little bit in our section on quadratics. Here, we eamine them more

More information

The Graphs of Mixed Functions (Day 13 1)

The Graphs of Mixed Functions (Day 13 1) The Graphs of Mied Functions (Day 3 ) In this unit, we will remember how to graph some old functions and discover how to graph lots of new functions. Eercise : Graph and label the parent function f( )

More information

Tangent Line Approximations

Tangent Line Approximations 60_009.qd //0 :8 PM Page SECTION.9 Dierentials Section.9 EXPLORATION Tangent Line Approimation Use a graphing utilit to graph. In the same viewing window, graph the tangent line to the graph o at the point,.

More information

Skills Practice Skills Practice for Lesson 1.1

Skills Practice Skills Practice for Lesson 1.1 Skills Practice Skills Practice for Lesson. Name Date Lots and Projectiles Introduction to Quadratic Functions Vocabular Give an eample of each term.. quadratic function 9 0. vertical motion equation s

More information

Classwork #40: Final Review: Solving Equations, Word Problems, Linear Equations, Systems of Linear Equations

Classwork #40: Final Review: Solving Equations, Word Problems, Linear Equations, Systems of Linear Equations Classwork #0: Final Review: Solving Equations, Word Problems, Linear Equations, Sstems of Linear Equations Solving Equations: Isolate the variable! Things to watch for: when ou have parentheses the inequalit

More information

Vertex Form of a Parabola

Vertex Form of a Parabola Verte Form of a Parabola In this investigation ou will graph different parabolas and compare them to what is known as the Basic Parabola. THE BASIC PARABOLA Equation = 2-3 -2-1 0 1 2 3 verte? What s the

More information

Chapter 13. Overview. The Quadratic Formula. Overview. The Quadratic Formula. The Quadratic Formula. Lewinter & Widulski 1. The Quadratic Formula

Chapter 13. Overview. The Quadratic Formula. Overview. The Quadratic Formula. The Quadratic Formula. Lewinter & Widulski 1. The Quadratic Formula Chapter 13 Overview Some More Math Before You Go The Quadratic Formula The iscriminant Multiplication of Binomials F.O.I.L. Factoring Zero factor propert Graphing Parabolas The Ais of Smmetr, Verte and

More information

6.3 Interpreting Vertex Form and Standard Form

6.3 Interpreting Vertex Form and Standard Form Name Class Date 6.3 Interpreting Verte Form and Standard Form Essential Question: How can ou change the verte form of a quadratic function to standard form? Resource Locker Eplore Identifing Quadratic

More information

SOLVING SYSTEMS OF EQUATIONS

SOLVING SYSTEMS OF EQUATIONS SOLVING SYSTEMS OF EQUATIONS 3.. 3..4 In this course, one focus is on what a solution means, both algebraicall and graphicall. B understanding the nature of solutions, students are able to solve equations

More information

Mesa College Math SAMPLES

Mesa College Math SAMPLES Mesa College Math 6 - SAMPLES Directions: NO CALCULATOR. Write neatly, show your work and steps. Label your work so it s easy to ollow. Answers without appropriate work will receive NO credit. For inal

More information

QUADRATIC GRAPHS ALGEBRA 2. Dr Adrian Jannetta MIMA CMath FRAS INU0114/514 (MATHS 1) Quadratic Graphs 1/ 16 Adrian Jannetta

QUADRATIC GRAPHS ALGEBRA 2. Dr Adrian Jannetta MIMA CMath FRAS INU0114/514 (MATHS 1) Quadratic Graphs 1/ 16 Adrian Jannetta QUADRATIC GRAPHS ALGEBRA 2 INU0114/514 (MATHS 1) Dr Adrian Jannetta MIMA CMath FRAS Quadratic Graphs 1/ 16 Adrian Jannetta Objectives Be able to sketch the graph of a quadratic function Recognise the shape

More information

Polynomials, Linear Factors, and Zeros. Factor theorem, multiple zero, multiplicity, relative maximum, relative minimum

Polynomials, Linear Factors, and Zeros. Factor theorem, multiple zero, multiplicity, relative maximum, relative minimum Polynomials, Linear Factors, and Zeros To analyze the actored orm o a polynomial. To write a polynomial unction rom its zeros. Describe the relationship among solutions, zeros, - intercept, and actors.

More information

Ch 5 Alg 2 L2 Note Sheet Key Do Activity 1 on your Ch 5 Activity Sheet.

Ch 5 Alg 2 L2 Note Sheet Key Do Activity 1 on your Ch 5 Activity Sheet. Ch Alg L Note Sheet Ke Do Activit 1 on our Ch Activit Sheet. Chapter : Quadratic Equations and Functions.1 Modeling Data With Quadratic Functions You had three forms for linear equations, ou will have

More information

Using Intercept Form

Using Intercept Form 8.5 Using Intercept Form Essential Question What are some of the characteristics of the graph of f () = a( p)( q)? Using Zeros to Write Functions Work with a partner. Each graph represents a function of

More information

SOLVING SYSTEMS OF EQUATIONS

SOLVING SYSTEMS OF EQUATIONS SOLVING SYSTEMS OF EQUATIONS 4.. 4..4 Students have been solving equations even before Algebra. Now the focus on what a solution means, both algebraicall and graphicall. B understanding the nature of solutions,

More information

5. Zeros. We deduce that the graph crosses the x-axis at the points x = 0, 1, 2 and 4, and nowhere else. And that s exactly what we see in the graph.

5. Zeros. We deduce that the graph crosses the x-axis at the points x = 0, 1, 2 and 4, and nowhere else. And that s exactly what we see in the graph. . Zeros Eample 1. At the right we have drawn the graph of the polnomial = ( 1) ( 2) ( 4). Argue that the form of the algebraic formula allows ou to see right awa where the graph is above the -ais, where

More information

QUADRATIC FUNCTION REVIEW

QUADRATIC FUNCTION REVIEW Name: Date: QUADRATIC FUNCTION REVIEW Linear and eponential functions are used throughout mathematics and science due to their simplicit and applicabilit. Quadratic functions comprise another ver important

More information

Inverse of a Function

Inverse of a Function . Inverse o a Function Essential Question How can ou sketch the graph o the inverse o a unction? Graphing Functions and Their Inverses CONSTRUCTING VIABLE ARGUMENTS To be proicient in math, ou need to

More information

Section 2.5: Graphs of Functions

Section 2.5: Graphs of Functions Section.5: Graphs of Functions Objectives Upon completion of this lesson, ou will be able to: Sketch the graph of a piecewise function containing an of the librar functions. o Polnomial functions of degree

More information

Secondary Math 2 Honors Unit 4 Graphing Quadratic Functions

Secondary Math 2 Honors Unit 4 Graphing Quadratic Functions SMH Secondary Math Honors Unit 4 Graphing Quadratic Functions 4.0 Forms of Quadratic Functions Form: ( ) f = a + b + c, where a 0. There are no parentheses. f = 3 + 7 Eample: ( ) Form: f ( ) = a( p)( q),

More information

For questions 5-8, solve each inequality and graph the solution set. You must show work for full credit. (2 pts each)

For questions 5-8, solve each inequality and graph the solution set. You must show work for full credit. (2 pts each) Alg Midterm Review Practice Level 1 C 1. Find the opposite and the reciprocal of 0. a. 0, 1 b. 0, 1 0 0 c. 0, 1 0 d. 0, 1 0 For questions -, insert , or = to make the sentence true. (1pt each) A. 5

More information

Learning Targets: Standard Form: Quadratic Function. Parabola. Vertex Max/Min. x-coordinate of vertex Axis of symmetry. y-intercept.

Learning Targets: Standard Form: Quadratic Function. Parabola. Vertex Max/Min. x-coordinate of vertex Axis of symmetry. y-intercept. Name: Hour: Algebra A Lesson:.1 Graphing Quadratic Functions Learning Targets: Term Picture/Formula In your own words: Quadratic Function Standard Form: Parabola Verte Ma/Min -coordinate of verte Ais of

More information

3 Polynomial and Rational Functions

3 Polynomial and Rational Functions 3 Polnomial and Rational Functions 3.1 Quadratic Functions and Models 3.2 Polnomial Functions and Their Graphs 3.3 Dividing Polnomials 3.4 Real Zeros of Polnomials 3.5 Comple Zeros and the Fundamental

More information

Lecture Outline. Basics of Spatial Filtering Smoothing Spatial Filters. Sharpening Spatial Filters

Lecture Outline. Basics of Spatial Filtering Smoothing Spatial Filters. Sharpening Spatial Filters 1 Lecture Outline Basics o Spatial Filtering Smoothing Spatial Filters Averaging ilters Order-Statistics ilters Sharpening Spatial Filters Laplacian ilters High-boost ilters Gradient Masks Combining Spatial

More information

Power Functions. A polynomial expression is an expression of the form a n. x n 2... a 3. ,..., a n. , a 1. A polynomial function has the form f(x) a n

Power Functions. A polynomial expression is an expression of the form a n. x n 2... a 3. ,..., a n. , a 1. A polynomial function has the form f(x) a n 1.1 Power Functions A rock that is tossed into the water of a calm lake creates ripples that move outward in a circular pattern. The area, A, spanned b the ripples can be modelled b the function A(r) πr,

More information

UNCORRECTED. To recognise the rules of a number of common algebraic relations: y = x 1 y 2 = x

UNCORRECTED. To recognise the rules of a number of common algebraic relations: y = x 1 y 2 = x 5A galler of graphs Objectives To recognise the rules of a number of common algebraic relations: = = = (rectangular hperbola) + = (circle). To be able to sketch the graphs of these relations. To be able

More information

Functions. Essential Question What are some of the characteristics of the graph of a logarithmic function?

Functions. Essential Question What are some of the characteristics of the graph of a logarithmic function? 5. Logarithms and Logarithmic Functions Essential Question What are some o the characteristics o the graph o a logarithmic unction? Ever eponential unction o the orm () = b, where b is a positive real

More information

Number Plane Graphs and Coordinate Geometry

Number Plane Graphs and Coordinate Geometry Numer Plane Graphs and Coordinate Geometr Now this is m kind of paraola! Chapter Contents :0 The paraola PS, PS, PS Investigation: The graphs of paraolas :0 Paraolas of the form = a + + c PS Fun Spot:

More information

AP Calculus AB Summer Assignment

AP Calculus AB Summer Assignment AP Calculus AB Summer Assignment As Advanced placement students, our irst assignment or the 07-08 school ear is to come to class the ver irst da in top mathematical orm. Calculus is a world o change. While

More information

Methods for Advanced Mathematics (C3) Coursework Numerical Methods

Methods for Advanced Mathematics (C3) Coursework Numerical Methods Woodhouse College 0 Page Introduction... 3 Terminolog... 3 Activit... 4 Wh use numerical methods?... Change of sign... Activit... 6 Interval Bisection... 7 Decimal Search... 8 Coursework Requirements on

More information

Algebra 1 Unit 9 Quadratic Equations

Algebra 1 Unit 9 Quadratic Equations Algebra 1 Unit 9 Quadratic Equations Part 1 Name: Period: Date Name of Lesson Notes Tuesda 4/4 Wednesda 4/5 Thursda 4/6 Frida 4/7 Monda 4/10 Tuesda 4/11 Wednesda 4/12 Thursda 4/13 Frida 4/14 Da 1- Quadratic

More information

Chapter Nine Chapter Nine

Chapter Nine Chapter Nine Chapter Nine Chapter Nine 6 CHAPTER NINE ConcepTests for Section 9.. Table 9. shows values of f(, ). Does f appear to be an increasing or decreasing function of? Of? Table 9. 0 0 0 7 7 68 60 0 80 77 73

More information

Properties of the Graph of a Quadratic Function. has a vertex with an x-coordinate of 2 b } 2a

Properties of the Graph of a Quadratic Function. has a vertex with an x-coordinate of 2 b } 2a 0.2 Graph 5 a 2 b c Before You graphed simple quadratic functions. Now You will graph general quadratic functions. Wh? So ou can investigate a cable s height, as in Eample 4. Ke Vocabular minimum value

More information

Worksheet #1. A little review.

Worksheet #1. A little review. Worksheet #1. A little review. I. Set up BUT DO NOT EVALUATE definite integrals for each of the following. 1. The area between the curves = 1 and = 3. Solution. The first thing we should ask ourselves

More information

Increasing and Decreasing Functions and the First Derivative Test. Increasing and Decreasing Functions. Video

Increasing and Decreasing Functions and the First Derivative Test. Increasing and Decreasing Functions. Video SECTION and Decreasing Functions and the First Derivative Test 79 Section and Decreasing Functions and the First Derivative Test Determine intervals on which a unction is increasing or decreasing Appl

More information

Writing Quadratic Functions in Standard Form

Writing Quadratic Functions in Standard Form Chapter Summar Ke Terms standard form (general form) of a quadratic function (.1) parabola (.1) leading coefficient (.) second differences (.) vertical motion model (.3) zeros (.3) interval (.3) open interval

More information

Unit 12 Study Notes 1 Systems of Equations

Unit 12 Study Notes 1 Systems of Equations You should learn to: Unit Stud Notes Sstems of Equations. Solve sstems of equations b substitution.. Solve sstems of equations b graphing (calculator). 3. Solve sstems of equations b elimination. 4. Solve

More information

LESSON #28 - POWER FUNCTIONS COMMON CORE ALGEBRA II

LESSON #28 - POWER FUNCTIONS COMMON CORE ALGEBRA II 1 LESSON #8 - POWER FUNCTIONS COMMON CORE ALGEBRA II Before we start to analze polnomials of degree higher than two (quadratics), we first will look at ver simple functions known as power functions. The

More information

UNCORRECTED SAMPLE PAGES. 3Quadratics. Chapter 3. Objectives

UNCORRECTED SAMPLE PAGES. 3Quadratics. Chapter 3. Objectives Chapter 3 3Quadratics Objectives To recognise and sketch the graphs of quadratic polnomials. To find the ke features of the graph of a quadratic polnomial: ais intercepts, turning point and ais of smmetr.

More information

Ch 3 Alg 2 Note Sheet.doc 3.1 Graphing Systems of Equations

Ch 3 Alg 2 Note Sheet.doc 3.1 Graphing Systems of Equations Ch 3 Alg Note Sheet.doc 3.1 Graphing Sstems of Equations Sstems of Linear Equations A sstem of equations is a set of two or more equations that use the same variables. If the graph of each equation =.4

More information

Characteristics of Quadratic Functions

Characteristics of Quadratic Functions . Characteristics of Quadratic Functions Essential Question What tpe of smmetr does the graph of f() = a( h) + k have and how can ou describe this smmetr? Parabolas and Smmetr Work with a partner. a. Complete

More information

MA123, Chapter 1: Equations, functions and graphs (pp. 1-15)

MA123, Chapter 1: Equations, functions and graphs (pp. 1-15) MA123, Chapter 1: Equations, functions and graphs (pp. 1-15) Date: Chapter Goals: Identif solutions to an equation. Solve an equation for one variable in terms of another. What is a function? Understand

More information

Rev Name Date. Solve each of the following equations for y by isolating the square and using the square root property.

Rev Name Date. Solve each of the following equations for y by isolating the square and using the square root property. Rev 8-8-3 Name Date TI-8 GC 3 Using GC to Graph Parabolae that are Not Functions of Objectives: Recall the square root propert Practice solving a quadratic equation f Graph the two parts of a hizontal

More information

Mth Quadratic functions and quadratic equations

Mth Quadratic functions and quadratic equations Mth 0 - Quadratic functions and quadratic equations Name Find the product. 1) 8a3(2a3 + 2 + 12a) 2) ( + 4)( + 6) 3) (3p - 1)(9p2 + 3p + 1) 4) (32 + 4-4)(2-3 + 3) ) (4a - 7)2 Factor completel. 6) 92-4 7)

More information

AP Calculus Notes: Unit 1 Limits & Continuity. Syllabus Objective: 1.1 The student will calculate limits using the basic limit theorems.

AP Calculus Notes: Unit 1 Limits & Continuity. Syllabus Objective: 1.1 The student will calculate limits using the basic limit theorems. Syllabus Objective:. The student will calculate its using the basic it theorems. LIMITS how the outputs o a unction behave as the inputs approach some value Finding a Limit Notation: The it as approaches

More information

x Radical Sign: Radicand: the number beneath the radical sign

x Radical Sign: Radicand: the number beneath the radical sign Sllabus Objective: 9.4 The student will solve quadratic equations using graphic and algebraic techniques to include the quadratic formula, square roots, factoring, completing the square, and graphing.

More information