UNIVERSITY OF TORONTO. FINAL EXAM, APRIL 28, hours. EXAMINER D.W. Kirk,

Size: px
Start display at page:

Download "UNIVERSITY OF TORONTO. FINAL EXAM, APRIL 28, hours. EXAMINER D.W. Kirk,"

Transcription

1 Page 1 of 11 PRINT FIRST NAME LAST NAME STUDENT NUMBER UNIVERSITY OF TORONTO FINAL EXAM, APRIL 28, hours CHE 469F - FUEL CELLS and ELECTROCHEMICAL SYSTEMS Do all questions. The marks add up to 100. EXAMINER D.W. Kirk, Calculator Type 2 - Non-programmable calculators are allowed. No programmable calculators are allowed. No other aids are allowed. ALL WORK IS TO BE DONE ON THESE SHEETS! Use the back of the page if you need more space. Be sure to indicate clearly if your work continues elsewhere. CLEARLY INDICATE YOUR FINAL ANSWERS. G=H-TS ag =vp-st AG=AG' +RTlnQ AG =RTlflK eq AG flfe eii F =96,485 c/mo1. E=E - T1nQ nf In = ogx ah S C1, = C,, = at T R ::: J/(mol K) I atrn= kpa=760mrnhg=1.013bar K=0 C 1m 3 =1000L PV=nRT W=-PAV MolarMass: H = 1.008, 0 = 16.00, N = Na = 23.0, Air = 79%N2 21%07 Ch RT( i 1h =zfd or = ln zf h im Peukert equ.t = C - In.r (anf (anf - 1a exp L RT I = T Butler Volmer general equation ETh= 1.48V for 1-12/02 at 25 C TOTAL MARKS Tafel Equation ij=a+b log i 1=b (log i/io) 303RT Where, a = RT log 10, and b = anf anf Where, iii,,, = limiting current density D = diffusion coefficient Cb= bulk concentration ô = boundary layer thickness 10 = exchange current density 11 = overpotential (= E - E ) ii = number of electrons a4 = anodic transfer coefficient ac= cathodic transfer coefficient n = factor in Peukert equ. Capacitors C = c c A/d (capacitance units F ( farads)) C= QiV (Q coulombs, V volts) E energy stored (J) = 1/2 CV2

2 Page 2 of II Problem 1 [20 marks total] Ethanol (C21-150H) is proposed to be a fuel for an alkaline type fuel cell. Data: AH (kj/mol) C2H50H H H201iq H20gas CO AG (kj/mol) AS (J/mol.K) cp (J/K.mol) a) If oxygen is used for the cathode, what is the maximum voltage that could be generated at 25 C assuming water is in a liquid state? What is the thermoneutral voltage for this cell? Write the anodic '/2 cell reaction. If the cell were operated at 0.5 MPa (ie. anode and cathode gases at 0.5 MPa), what would be the change in theoretical voltage at 25 C.? (an ethanol/water azeotrope has a boiling point of 78.2 C)

3 Page 3 of 11 e) Assuming entropy values are almost constant from 25 C to 60 C what is change in theoretical cell voltage frcm 25 C to 60 C at kp? (Enthalpy values are not constant) f) If the cell is operated with 95.6% ethanol and water for the anode and air as the cathode what would be the theoretical voltage at 25C and kpa?

4 Page 4 of 11 Problem marks totall For an experimental 112/02fue1 cell operating under alkaline conditions, a Tafel slope for the cathode was found to be 125mV/decade and the exchange current density (lo) was extrapolated from the data and was reported to be 0.5 x 10-2 ma/cm2. Severe mass transfer limitations were found at 0.95mAIcm2. The electrolyte (a Nafion membrane) had a conductivity of 5.0 x 102 S/cm and a thickness of 200um. Using the semilog chart provided, plot the activation polarization from to 1.0 ma/cm2 plot the resistance polarization from to 1.0 ma/cm2 On the same chart sketch the expected current voltage profile into the mass transfer region. 1.2 Ii

5 Page 5 of 11 d) The following reaction sequence has been proposed. Experimentally a Tafel slope of V/decade of current has been measured. Which of the following step(s) would provide that Tafel Slope? M e - - M02-11] M02- + H -+ M02H [21 M02H + e - M02H 131 M02H -FH - M M02H2+e-3 MOH + OH- [5J MOH +e - M For a multi step reactior written as a cathodic reaction a=y/v+r3 and a a = (n- y )l v - r where: v = number of times the RIDS occurs in the overall reaction = number of electrons before the RIDS = symmetry factor (default = 0.5) r = I for an electron trarsfer step and r=0 for a chemical step

6 Page 6 of II Problem marks total] How much hydrogen (L at NIP) is needed to produce 1 kwh in a PEM fuel cell stack with 5 cells in series. Each cell is operating at 0.6V? For 0.01 M H2SO4, the molar conductivity = Scm2/mol.. Determine the resistance of a planar cell using 10cm2 electrodes with 0.5 cm separator having a porosity of 60%. c) A NiCd battery rated 1200 mah at 0.1C is to be used with a current draw of 3 amps. Peukert no. = How long will the battery last?. d) From a test using different concentrations of oxygen for the gas fed to a cathode in a PEM cell, the limiting current density was found to depend linearly on the oxygen concentration. The relation was 7.14mA/cm2 per atmosphere of oxygen pressure. Henry's Law for the oxygen solubility in water from air = 1.28 x I 0-3 mol/l.atm (T25 C) The diffusion coefficient of oxygen in water is D= 1.4 x 10-5 cm2/s Determine the diffusion layer thickness Air is 21% oxygen

7 Page 7 of 11 Problem marks total] The positive grid of the lead acid battery has what active material? Describe briefly the function of the GDL Describe the function of the MEA What does the term"flooded" lead acid cell mean? What does the term"valve regulated" lead acid cell mean? 1) What information do you need to determine the energy content of a 1000mAh battery? g) A lithium ion battery is referred to as being an FePO4 type. What does this mean? A lithium ion battery fire can be caused by a single cell shorting. What cell level modification is used to minimize the effect of this event?

8 Page 8 of 11 Qu 4 continued h What is the cause of the memory effect in a NiCd battery? i) Write the reaction that takes place on the cathode of the MCFC fuel cell. If a fuel cell were operating on glucose CH4 as a fuel and oxygen as the oxidant, what is the value of n for the Nernst Equation? Microbial fuel cells have 3 ways of extracting energy from the fuel. What are they?

9 Page 9 of I Problem marks total] a) You have ten 3000F supercapacitors with a 3V rating. What would be the maximum run time for a '/4 HP DC voltage pump which has a cutoff voltage of 4V? Show the supercapacitors layout. 1HP=746W b) A back up power system is required to run a 10 Amp motor at 115V AC Provide the layout (number of cells and connections) to satisfy the motor. Four batteries are available with a rating of 12V 1 50Ah (@0.1 C rate), Peukert No = 1.2 A combined 1:10 transformer and AC/DC inverter/converter is available (80% efficient) for any power requirement. Qu 5 continued on next page

10 Page loofi! c) Direct NH3 Fuel cells operating at 700 C with the characteristics shown below. A custom voltage inverter with transformer 1:10 winding is available for 750W input power rating but is only 85% efficient. Each cell is 20cm2.and operates with pure NH oo > E 9c0 700 IM ( I (A/cm) Determine the maximum power for a single cell Determine the minimum number of cells and configuration needed to operate a 10 Amp motor at 115V AC

11 Page II of II Blank Page

12 Page 1 of 11 PRINT FIRST NAME LAST NAME STUDENT NUMBER UNIVERSITY OF TORONTO FINAL EXAM, APRIL 28, hours CHE 469F - FUEL CELLS and ELECTROCHEMICAL SYSTEMS I. Do all questions. The marks add up to 100. EXAMINER D.W. Kirk, Calculator Type 2 - Non-programmable calculators are allowed. No programmable calculators are allowed. No other aids are allowed. ALL WORK IS TO BE DONE ON THESE SHEETS! Use the back of the page if you need more space. Be sure to indicate clearly if your work continues elsewhere. CLEARLY INDICATE YOUR FINAL ANSWERS. GH-TS 0g = vdp - s3t AG =AGO +RTlnQ AGO =RTI11Keq AG = -flfe , MARKS F=96,485 c/mo!.: E=E -!TlnQ nf lnx = ogx OH DS c = cp, = AT AT T R=8.314J/(molK) 1 atin=101.3 kpa=760 mmhg =1.013bar K=0 C Tm 3 =1000L PV=nRT W=-PAV MolarMass: H = 1.008, 0 = 16.00, N = Na = 23.0,Air = 79%N7 21%07 ihin RT ( = zfd or i In I 1- S zf.peukert equ. t = C In. [ (anf (anf '= ' 1a - exp- 77, RT J RT Butler Volmer genera! equation ETN= 1.48V for 1-12/02 at 25 C 4 5 TOTAL Tafel Equation 77 =a+b log i i=b(log i/i0) Where, a= 2.303RT log :0,and b= 2.303RT an an Where, u1,,1 = limiting current density D = diffusion coefficient Cb= bulk concentration ö = boundary layer thickness io = exchange current density fl = overpotential (= E - E ) n = number of electrons = anodic transfer coefficient ac = cathodic transfer coefficient ii = factor in Peukert equ. Capacitors C = Aid (capacitance units F ( farads)) C= Q/V (Q coulombs, V volts) E energy stored (J) = V2 CV2

13 Page 4 of 11 Problem 2 [20 marks total] For an experimental H2/02fue1 cell operating under alkaline conditions, a Tafel slope for the cathode was found to be 125mV/decade and the exchange current density (lo) was extrapolated from the data and was reported to be 0.5 x 102 ma/cm2. Severe mass transfer limitations were found at 0.95mA/cm2. The electrolyte (a Nafion membrane) had a conductivity of 5.0 x 102 S/cm and a thickness of 200um. Using the semilog chart provided, plot the activation polarization from to 1.0 ma/cm2 plot the resistance polarization from to 1.0 ma/cm2 for a 10cm2 electrode. On the same chart sketch the expected current voltage profile into the mass transfer region IM 0.6 t1 0.2 I I 1 I I I ji i I - II

14 a Page 5 of 11 d) The following reaction sequence has been proposed. Experimentally a Tafel slope of V/decade of current has been measured Which of the following step(s) would provide that Tafel Slope? M+02 +e *M M02 + H M02H 121 M02H + e * M02H 131 M02H +W * M02H2 141 MO2H2+e * MOH + OH- [5] MOH +e M [61 For a multi step reaction written as a cathodic reaction a?iv+r and a a = (n- ' r)i v - r where: v = number of times the RIDS occurs in the overall reaction = number of electrons before the RIDS = symmetry factor (default = 0.5) r = 1 for an electron transfer step and r=o for a chemical step

FUEL CELLS in energy technology (4)

FUEL CELLS in energy technology (4) Fuel Cells 1 FUEL CELLS in energy technology (4) Werner Schindler Department of Physics Nonequilibrium Chemical Physics TU Munich summer term 213 Fuel Cells 2 Nernst equation and its application to fuel

More information

Prof. Mario L. Ferrari

Prof. Mario L. Ferrari Sustainable Energy Mod.1: Fuel Cells & Distributed Generation Systems Dr. Ing. Mario L. Ferrari Thermochemical Power Group (TPG) - DiMSET University of Genoa, Italy Lesson II Lesson II: fuel cells (electrochemistry)

More information

Basic overall reaction for hydrogen powering

Basic overall reaction for hydrogen powering Fuel Cell Basics Basic overall reaction for hydrogen powering 2H 2 + O 2 2H 2 O Hydrogen produces electrons, protons, heat and water PEMFC Anode reaction: H 2 2H + + 2e Cathode reaction: (½)O 2 + 2H +

More information

Modeling as a tool for understanding the MEA. Henrik Ekström Utö Summer School, June 22 nd 2010

Modeling as a tool for understanding the MEA. Henrik Ekström Utö Summer School, June 22 nd 2010 Modeling as a tool for understanding the MEA Henrik Ekström Utö Summer School, June 22 nd 2010 COMSOL Multiphysics and Electrochemistry Modeling The software is based on the finite element method A number

More information

Basic overall reaction for hydrogen powering

Basic overall reaction for hydrogen powering Fuel Cell Basics Basic overall reaction for hydrogen powering 2H 2 + O 2 2H 2 O Hydrogen produces electrons, protons, heat and water PEMFC Anode reaction: H 2 2H + + 2e Cathode reaction: (½)O 2 + 2H +

More information

Electrochemical System

Electrochemical System Electrochemical System Topic Outcomes Week Topic Topic Outcomes 8-10 Electrochemical systems It is expected that students are able to: Electrochemical system and its thermodynamics Chemical reactions in

More information

Direct Energy Conversion: Fuel Cells

Direct Energy Conversion: Fuel Cells Direct Energy Conversion: Fuel Cells References and Sources: Direct Energy Conversion by Stanley W. Angrist, Allyn and Beacon, 1982. Fuel Cell Systems, Explained by James Larminie and Andrew Dicks, Wiley,

More information

Chemistry 163B. Electrochemistry

Chemistry 163B. Electrochemistry Chemistry 163B Electrochemistry 1 activity coefficients for ions (HW9 #58) BaCl s Ba aq Cl aq a a ( ) ( ) ( ) K sp BaCl ( s) 1 a ( ) a Ba aq Cl ( aq) Ba Ba ( aq) Ba a Cl ( aq) Cl a Cl BaCl ( s) cannot

More information

Electrode Kinetics 1

Electrode Kinetics 1 Electrode Kinetics 1 Background Consider the reaction given below: A B (1) Let k f and k b are the rate constants of the forward and backward reactions 2 Reaction rates Rate of the forward reaction is

More information

Fuel Cells in Energy Technology. Tutorial 5 / SS solutions. Prof. W. Schindler, Jassen Brumbarov / Celine Rüdiger

Fuel Cells in Energy Technology. Tutorial 5 / SS solutions. Prof. W. Schindler, Jassen Brumbarov / Celine Rüdiger Fuel Cells in Energy Technology Tutorial 5 / SS 2013 - solutions Prof. W. Schindler, Jassen Brumbarov / Celine Rüdiger 05.06.2013 Homework 3: What hydrogen flow rate (g/hour) is required to generate 1

More information

Oxidation-reduction (redox) reactions

Oxidation-reduction (redox) reactions Oxidation-reduction (redox) reactions Reactions in which there are changes in oxidation state (oxidation number) between reactants and products 2 MnO 4- + 10 Br - + 16 H + 2 Mn 2+ + 5 Br 2 + 8 H 2 O One

More information

Batteries (Electrochemical Power Sources)

Batteries (Electrochemical Power Sources) Batteries (Electrochemical Power Sources) 1. Primary (single-discharge) batteries. => finite quantity of the reactants 2. Secondary or rechargeable batteries => regeneration of the original reactants by

More information

surface c, c. Concentrations in bulk s b s b red red ox red

surface c, c. Concentrations in bulk s b s b red red ox red CHEM465/865, 26-3, Lecture 16, Oct. 13, 26 compact layer S c ox,red b c ox,red Note, that we explicitly distinguish concentrations at surface bulk b red c, c from those in s red b ox s ox c, c. Concentrations

More information

Figure 1. Schematic of Scriber Associates Model 850C fuel cell system.

Figure 1. Schematic of Scriber Associates Model 850C fuel cell system. Objective of the fuel cell experiments: To familiarize the working principles and performance characteristics of proton exchange membrane fuel cells. Experimental Procedures Instrumentation A Scriber Associates

More information

Electrochemistry. Goal: Understand basic electrochemical reactions. Half Cell Reactions Nernst Equation Pourbaix Diagrams.

Electrochemistry. Goal: Understand basic electrochemical reactions. Half Cell Reactions Nernst Equation Pourbaix Diagrams. Electrochemistry Goal: Understand basic electrochemical reactions Concepts: Electrochemical Cell Half Cell Reactions Nernst Equation Pourbaix Diagrams Homework: Applications Battery potential calculation

More information

ANALYTICAL INVESTIGATION AND IMPROVEMENT OF PERFORMANCE OF A PROTON EXCHANGE MEMBRANE (PEM) FUEL CELL IN MOBILE APPLICATIONS

ANALYTICAL INVESTIGATION AND IMPROVEMENT OF PERFORMANCE OF A PROTON EXCHANGE MEMBRANE (PEM) FUEL CELL IN MOBILE APPLICATIONS Int. J. of Applied Mechanics and Engineering, 015, vol.0, No., pp.319-38 DOI: 10.1515/ijame-015-001 ANALYTICAL INVESTIGATION AND IMPROVEMENT OF PERFORMANCE OF A PROTON EXCHANGE MEMBRANE (PEM) FUEL CELL

More information

Basic Concepts of Electrochemistry

Basic Concepts of Electrochemistry ELECTROCHEMISTRY Electricity-driven Chemistry or Chemistry-driven Electricity Electricity: Chemistry (redox): charge flow (electrons, holes, ions) reduction = electron uptake oxidation = electron loss

More information

(name) Electrochemical Energy Systems, Spring 2014, M. Z. Bazant. Final Exam

(name) Electrochemical Energy Systems, Spring 2014, M. Z. Bazant. Final Exam 10.626 Electrochemical Energy Systems, Spring 2014, M. Z. Bazant Final Exam Instructions. This is a three-hour closed book exam. You are allowed to have five doublesided pages of personal notes during

More information

Appendix A Electric Vehicle PEM Fuel Cell Stack Parameters

Appendix A Electric Vehicle PEM Fuel Cell Stack Parameters Appendix A Electric Vehicle PEM Fuel Cell Stack Parameters A.1 Return Manifold Polynomial Fitting Table A.1 Return manifold polynomial fitting Parameter Value Return manifold parameter p 0 0.001248 kg/s

More information

Fuel Cell Activities in MME Waterloo

Fuel Cell Activities in MME Waterloo Fuel Cell Activities in MME Waterloo Xianguo Li and Roydon Fraser Fuel Cells and Green Energy Research Group Department of Mechanical & Mechatronics Engineering University of Waterloo, Waterloo, Ontario,

More information

Oxygen Transfer Model in Cathode GDL of PEM Fuel Cell for Estimation of Cathode Overpotential

Oxygen Transfer Model in Cathode GDL of PEM Fuel Cell for Estimation of Cathode Overpotential Oxygen Transfer Model in Cathode GDL of PEM Fuel Cell for Estimation of Cathode Overpotential Abstract... The mathematical model involving kinetics and mass transfer in a PEM fuel cell cathode is developed

More information

Introductory Lecture: Principle and Applications of Fuel Cells (Methanol/Air as Example)

Introductory Lecture: Principle and Applications of Fuel Cells (Methanol/Air as Example) 3 rd LAMNET Workshop Brazil -4 December 00 3 rd LAMNET Workshop Brazil 00 Introductory Lecture: Principle and Applications of Fuel Cells (Methanol/Air as Example) Prof. Dr. Wolf Vielstich University of

More information

Electrochemical Cell - Basics

Electrochemical Cell - Basics Electrochemical Cell - Basics The electrochemical cell e - (a) Load (b) Load e - M + M + Negative electrode Positive electrode Negative electrode Positive electrode Cathode Anode Anode Cathode Anode Anode

More information

ELECTROCHEMICAL COMPRESSION OF PRODUCT HYDROGEN FROM PEM ELECTROLYZER STACK

ELECTROCHEMICAL COMPRESSION OF PRODUCT HYDROGEN FROM PEM ELECTROLYZER STACK ELECTROCHEMICAL COMPRESSION OF PRODUCT HYDROGEN FROM PEM ELECTROLYZER STACK N.V. Dale 1,*, C. Y. Biaku 1, M. D. Mann 1, H. Salehfar 2, A. J. Peters 2 Abstract The low volumetric energy density of hydrogen

More information

Review. Chapter 17 Electrochemistry. Outline. Voltaic Cells. Electrochemistry. Mnemonic

Review. Chapter 17 Electrochemistry. Outline. Voltaic Cells. Electrochemistry. Mnemonic Review William L Masterton Cecile N. Hurley Edward J. Neth cengage.com/chemistry/masterton Chapter 17 Electrochemistry Oxidation Loss of electrons Occurs at electrode called the anode Reduction Gain of

More information

8 Phenomenological treatment of electron-transfer reactions

8 Phenomenological treatment of electron-transfer reactions 8 Phenomenological treatment of electron-transfer reactions 8.1 Outer-sphere electron-transfer Electron-transfer reactions are the simplest class of electrochemical reactions. They play a special role

More information

ELECTROCHEMISTRY OXIDATION-REDUCTION

ELECTROCHEMISTRY OXIDATION-REDUCTION ELECTROCHEMISTRY Electrochemistry involves the relationship between electrical energy and chemical energy. OXIDATION-REDUCTION REACTIONS SPONTANEOUS REACTIONS Can extract electrical energy from these.

More information

SCIENCES & TECHNOLOGY

SCIENCES & TECHNOLOGY Pertanika J. Sci. & Technol. 22 (2): 645-655 (2014) SCIENCES & TECHNOLOGY Journal homepage: http://www.pertanika.upm.edu.my/ Numerical Modelling of Molten Carbonate Fuel Cell: Effects of Gas Flow Direction

More information

EMA4303/5305 Electrochemical Engineering Lecture 03 Electrochemical Kinetics

EMA4303/5305 Electrochemical Engineering Lecture 03 Electrochemical Kinetics EMA4303/5305 Electrochemical Engineering Lecture 03 Electrochemical Kinetics Dr. Junheng Xing, Prof. Zhe Cheng Mechanical & Materials Engineering Florida International University 2 Electrochemical Kinetics

More information

Chemistry II Midterm Exam 20 April, 2012

Chemistry II Midterm Exam 20 April, 2012 Chemistry II Midterm Exam 0 April, 01 Constants R = 8.314 J/mol K = 0.08314 L bar/k mol = 0.081 L atm/k mol = 8.314 L kpa/k mol 1 bar = 750.06 torr = 0.9869 atm F = 9.6485 10 4 C/mol 1. A 0.5-g sample

More information

Chemistry 112 Name Exam III Form A Section November 13,

Chemistry 112 Name Exam III Form A Section November 13, Chemistry 112 Name Exam III Form A Section November 13, 2012 email IMPORTANT: On the scantron (answer sheet), you MUST clearly fill your name, your student number, section number, and test form (white

More information

Q1. Why does the conductivity of a solution decrease with dilution?

Q1. Why does the conductivity of a solution decrease with dilution? Q1. Why does the conductivity of a solution decrease with dilution? A1. Conductivity of a solution is the conductance of ions present in a unit volume of the solution. On dilution the number of ions per

More information

CHEM J-14 June 2014

CHEM J-14 June 2014 CHEM1101 2014-J-14 June 2014 An electrochemical cell consists of an Fe 2+ /Fe half cell with unknown [Fe 2+ ] and a Sn 2+ /Sn half-cell with [Sn 2+ ] = 1.10 M. The electromotive force (electrical potential)

More information

DETERMINING THE OPERATING CONDITIONS OF ALL-VANADIUM REDOX FLOW BATTERY

DETERMINING THE OPERATING CONDITIONS OF ALL-VANADIUM REDOX FLOW BATTERY Proceedings of the Asian Conference on Thermal Sciences 2017, 1st ACTS March 26-30, 2017, Jeju Island, Korea ACTS-P00650 DETERMINING THE OPERATING CONDITIONS OF ALL-VANADIUM REDOX FLOW BATTERY Jungmyoung

More information

CHEM J-8 June /01(a)

CHEM J-8 June /01(a) CHEM1001 2012-J-8 June 2012 22/01(a) A galvanic cell has the following cell reaction: D(s) + 2Zn 2+ (aq) 2Zn(s) + D 4+ (aq) Write the overall cell reaction in shorthand cell notation. E = 0.18 V 8 D(s)

More information

Chemistry 223 Spring 2012 Oregon State University Exam 2 May 24, 2012 Drs. Nafshun, Watson, Richardson

Chemistry 223 Spring 2012 Oregon State University Exam 2 May 24, 2012 Drs. Nafshun, Watson, Richardson Chemistry 223 Spring 2012 Oregon State University Exam 2 May 24, 2012 Drs. Nafshun, Watson, Richardson Instructions: You should have with you several number two pencils, an eraser, your 3" x 5" note card,

More information

FUEL CELLS: INTRODUCTION

FUEL CELLS: INTRODUCTION FUEL CELLS: INTRODUCTION M. OLIVIER marjorie.olivier@fpms.ac.be 19/5/8 A SIMPLE FUEL CELL Two electrochemical half reactions : H 1 O H + + H + e + + e H O These reactions are spatially separated: Electrons:

More information

Experimental Characterization Methodology for the Identification of Voltage Losses of PEMFC: Applied to an Open Cathode Stack

Experimental Characterization Methodology for the Identification of Voltage Losses of PEMFC: Applied to an Open Cathode Stack Experimental Characterization Methodology for the Identification of Voltage Losses of PEMFC: Applied to an Open Cathode Stack A. Husar *, S. Strahl, J. Riera Institut de Robòtica i Informàtica Industrial

More information

Chapter 17 Electrochemistry

Chapter 17 Electrochemistry Chapter 17 Electrochemistry 17.1 Galvanic Cells A. Oxidation-Reduction Reactions (Redox Rxns) 1. Oxidation = loss of electrons a. the substance oxidized is the reducing agent 2. Reduction = gain of electrons

More information

Ch 18 Electrochemistry OIL-RIG Reactions

Ch 18 Electrochemistry OIL-RIG Reactions Ch 18 Electrochemistry OIL-RIG Reactions Alessandro Volta s Invention Modified by Dr. Cheng-Yu Lai Daily Electrochemistry Appliactions Electrochemistry: The area of chemistry that examines the transformations

More information

Transient carbon monoxide poisoning of a polymer electrolyte fuel cell operating on diluted hydrogen feed

Transient carbon monoxide poisoning of a polymer electrolyte fuel cell operating on diluted hydrogen feed Electrochimica Acta 49 (2004) 2333 2341 Transient carbon monoxide poisoning of a polymer electrolyte fuel cell operating on diluted hydrogen feed Krishan Kumar Bhatia, Chao-Yang Wang Electrochemical Engine

More information

Electrochemical reaction

Electrochemical reaction Electrochemical reaction electrochemistry electrochem. reaction mechanism electrode potential Faradays law electrode reaction kinetics 1 Electrochemistry in industry Chlor-Alkali galvano industry production

More information

Pre-Lab Questions/Answers Experiment 6

Pre-Lab Questions/Answers Experiment 6 Pre-Lab Questions/Answers Experiment 6 Part I 1. Based on Ohm s Law, calculate the current (ma) flow through a 1.00Ω resistor when the voltage across the resister is 5.00 mv. 2. Calculate the standard

More information

Tutorials : Corrosion Part 1: Theory and basics

Tutorials : Corrosion Part 1: Theory and basics Tutorials : Corrosion Part 1: Theory and basics Outline A. Definition and effects of corrosion B. General thermodynamics and kinetics in electrochemistry C. Thermodynamics and kinetics in corrosion 2 2/21

More information

Lecture 14. Thermodynamics of Galvanic (Voltaic) Cells.

Lecture 14. Thermodynamics of Galvanic (Voltaic) Cells. Lecture 14 Thermodynamics of Galvanic (Voltaic) Cells. 51 52 Ballard PEM Fuel Cell. 53 Electrochemistry Alessandro Volta, 1745-1827, Italian scientist and inventor. Luigi Galvani, 1737-1798, Italian scientist

More information

Sliding Mode Control for Stabilizing of Boost Converter in a Solid Oxide Fuel Cell

Sliding Mode Control for Stabilizing of Boost Converter in a Solid Oxide Fuel Cell BUGARAN ACADEMY OF SCENCES CYBERNETCS AND NFORMATON TECHNOOGES Volume 13, No 4 Sofia 013 Print SSN: 1311-970; Online SSN: 1314-4081 DO: 10.478/cait-013-0060 Sliding Mode Control for Stabilizing of Boost

More information

In all electrochemical methods, the rate of oxidation & reduction depend on: 1) rate & means by which soluble species reach electrode surface (mass

In all electrochemical methods, the rate of oxidation & reduction depend on: 1) rate & means by which soluble species reach electrode surface (mass Voltammetry Methods based on an electrolytic cell Apply potential or current to electrochemical cell & concentrations change at electrode surface due to oxidation & reduction reactions Can have 2 or 3

More information

Electrode Potentials and Their Measurement

Electrode Potentials and Their Measurement Electrochemistry Electrode Potentials and Their Measurement Cu(s) + 2Ag + (aq) Cu(s) + Zn 2+ (aq) Cu 2+ (aq) + 2 Ag(s) No reaction Zn(s) + Cu 2+ (aq) Cu(s) + Zn 2+ (aq) In this reaction: Zn (s) g Zn 2+

More information

Estimation of approximate activation energy loss and mass transfer coefficient from a polarization curve of a polymer electrolyte fuel cell

Estimation of approximate activation energy loss and mass transfer coefficient from a polarization curve of a polymer electrolyte fuel cell Korean J. Chem. Eng., 29(9), 1158-1162 (2012) DOI: 10.1007/s11814-012-0006-3 INVITED REVIEW PAPER Estimation of approximate activation energy loss and mass transfer coefficient from a polarization curve

More information

K a = [H + ][A ]/[HA] ph = log([h + ]) K b = [HA][HO ]/[A ]

K a = [H + ][A ]/[HA] ph = log([h + ]) K b = [HA][HO ]/[A ] Chemistry 271 23XX Prof. Jason Kahn Your Name: University of Maryland, College Park Your SID #: General Chemistry and Energetics Final Exam (200 points total) You have 120 minutes for this exam. Your Section

More information

Name AP CHEM / / Collected Essays Chapter 17

Name AP CHEM / / Collected Essays Chapter 17 Name AP CHEM / / Collected Essays Chapter 17 1980 - #2 M(s) + Cu 2+ (aq) M 2+ (aq) + Cu(s) For the reaction above, E = 0.740 volt at 25 C. (a) Determine the standard electrode potential for the reaction

More information

An Introduction to Electrochemical Impedance Spectroscopy (EIS)

An Introduction to Electrochemical Impedance Spectroscopy (EIS) An Introduction to Electrochemical Impedance Spectroscopy (EIS) Dr. Robert S Rodgers, Ph.D. PO Box 7561 Princeton, NJ 08543 Delivered at June 18, 2009 Meeting of ACS Princeton Local Section Outline A Little

More information

Übung 7: Elektrochemische Kinetik (2. Teil) Konzentrationsüberspannung

Übung 7: Elektrochemische Kinetik (2. Teil) Konzentrationsüberspannung Elektrochemie Prof. Petr Novàk WS 2017/2018 Übung 7: Elektrochemische Kinetik (2. Teil) Konzentrationsüberspannung Assistant: Laura Höltschi (laura.hoeltschi@psi.ch) Exercise 1 In a very diluted aqueous

More information

Physics 219 Question 1 January

Physics 219 Question 1 January Lecture 6-16 Physics 219 Question 1 January 30. 2012. A (non-ideal) battery of emf 1.5 V and internal resistance 5 Ω is connected to a light bulb of resistance 50 Ω. How much power is delivered to the

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature17653 Supplementary Methods Electronic transport mechanism in H-SNO In pristine RNO, pronounced electron-phonon interaction results in polaron formation that dominates the electronic

More information

2013 AP CHEMISTRY FREE-RESPONSE QUESTIONS

2013 AP CHEMISTRY FREE-RESPONSE QUESTIONS 2013 AP CHEMISTRY FREE-RESPONSE QUESTIONS 2. Answer the following questions involving the stoichiometry and thermodynamics of reactions containing aluminum species. 2 Al 2 O 3 (l) + 3 C(s) 4 Al(l) + 3

More information

CHEMISTRY - CLUTCH CH.18 - ELECTROCHEMISTRY.

CHEMISTRY - CLUTCH CH.18 - ELECTROCHEMISTRY. !! www.clutchprep.com CONCEPT: OXIDATION-REDUCTION REACTIONS Chemists use some important terminology to describe the movement of electrons. In reactions we have the movement of electrons from one reactant

More information

Unit - 3 ELECTROCHEMISTRY VSA QUESTIONS (1 - MARK QUESTIONS) 3. Mention the purpose of salt-bridge placed between two half-cells of a galvanic cell?

Unit - 3 ELECTROCHEMISTRY VSA QUESTIONS (1 - MARK QUESTIONS) 3. Mention the purpose of salt-bridge placed between two half-cells of a galvanic cell? Unit - 3 ELECTROCHEMISTRY 1. What is a galvanic cell? VSA QUESTIONS (1 - MARK QUESTIONS) 2. Give the cell representation for Daniell Cell. 3. Mention the purpose of salt-bridge placed between two half-cells

More information

Capacity fade studies of Lithium Ion cells

Capacity fade studies of Lithium Ion cells Capacity fade studies of Lithium Ion cells by Branko N. Popov, P.Ramadass, Bala S. Haran, Ralph E. White Center for Electrochemical Engineering, Department of Chemical Engineering, University of South

More information

8. ELECTROCHEMICAL CELLS. n Electrode Reactions and Electrode Potentials a. H 2 2H + + 2e. Cl 2 + 2e 2Cl. H 2 + Cl 2 2H + + 2Cl ; z = 2

8. ELECTROCHEMICAL CELLS. n Electrode Reactions and Electrode Potentials a. H 2 2H + + 2e. Cl 2 + 2e 2Cl. H 2 + Cl 2 2H + + 2Cl ; z = 2 8. ELECTROCHEMICAL CELLS n Electrode Reactions and Electrode Potentials 8.1. a. H H + + e Cl + e Cl H + Cl H + + Cl ; z = E = E RT F ln ( a H +a Cl ) b. Hg(l)+ Cl Hg Cl + e H + + e H Hg + H + + Cl Hg Cl

More information

Electrochemistry. Chapter 18. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Electrochemistry. Chapter 18. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Electrochemistry Chapter 18 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Electrochemical processes are oxidation-reduction reactions in which: the energy

More information

Non-Equilibrium Thermodynamics: Foundations and Applications. Lecture 9: Modelling the polymer electrolyte fuel cell

Non-Equilibrium Thermodynamics: Foundations and Applications. Lecture 9: Modelling the polymer electrolyte fuel cell Non-Equilibrium Thermodynamics: Foundations and Applications. Lecture 9: Modelling the polymer electrolyte fuel cell Signe Kjelstrup Department of Chemistry, Norwegian University of Science and Technology,

More information

Electrochemistry Pearson Education, Inc. Mr. Matthew Totaro Legacy High School AP Chemistry

Electrochemistry Pearson Education, Inc. Mr. Matthew Totaro Legacy High School AP Chemistry 2012 Pearson Education, Inc. Mr. Matthew Totaro Legacy High School AP Chemistry Electricity from Chemistry Many chemical reactions involve the transfer of electrons between atoms or ions electron transfer

More information

3. Potentials and thermodynamics

3. Potentials and thermodynamics Electrochemical Energy Engineering, 2012 3. Potentials and thermodynamics Learning subject 1. Electrochemical reaction 2. Thermodynamics and potential 3. Nernst equation Learning objective 1. To set up

More information

Electrochem: It s Got Potential!

Electrochem: It s Got Potential! Electrochem: It s Got Potential! Presented by: Denise DeMartino Westlake High School, Eanes ISD Pre-AP, AP, and Advanced Placement are registered trademarks of the College Board, which was not involved

More information

Multidimensional, Non-Isothermal, Dynamic Modelling Of Planar Solid Oxide Fuel Cells

Multidimensional, Non-Isothermal, Dynamic Modelling Of Planar Solid Oxide Fuel Cells Multidimensional, Non-Isothermal, Dynamic Modelling Of Planar Solid Oxide Fuel Cells K. Tseronis a, I. Kookos b, C. Theodoropoulos a* a School of Chemical Engineering and Analytical Science, University

More information

Equations: q trans = 2 mkt h 2. , Q = q N, Q = qn N! , < P > = kt P = , C v = < E > V 2. e 1 e h /kt vib = h k = h k, rot = h2.

Equations: q trans = 2 mkt h 2. , Q = q N, Q = qn N! , < P > = kt P = , C v = < E > V 2. e 1 e h /kt vib = h k = h k, rot = h2. Constants: R = 8.314 J mol -1 K -1 = 0.08206 L atm mol -1 K -1 k B = 0.697 cm -1 /K = 1.38 x 10-23 J/K 1 a.m.u. = 1.672 x 10-27 kg 1 atm = 1.0133 x 10 5 Nm -2 = 760 Torr h = 6.626 x 10-34 Js For H 2 O

More information

Chem. 1B Final Practice Test 2 Solutions

Chem. 1B Final Practice Test 2 Solutions First letter of last name Chem. 1B Final Practice Test 2 Solutions Name Print Neatly. You will lose 1 point if I cannot read your name or perm number. Student Number If you are sitting next to someone

More information

Name (Print) Section # or TA. 1. You may use a crib sheet which you prepared in your own handwriting. This may be

Name (Print) Section # or TA. 1. You may use a crib sheet which you prepared in your own handwriting. This may be Name (Print) Section # or TA 1. You may use a crib sheet which you prepared in your own handwriting. This may be one 8-1/2 by 11 inch sheet of paper with handwriting only on one side. 2. You may use a

More information

EMA4303/5305 Electrochemical Engineering Lecture 02 Equilibrium Electrochemistry

EMA4303/5305 Electrochemical Engineering Lecture 02 Equilibrium Electrochemistry EMA4303/5305 Electrochemical Engineering Lecture 02 Equilibrium Electrochemistry Dr. Junheng Xing, Prof. Zhe Cheng Mechanical & Materials Engineering Florida International University 2 Equilibrium Electrochemistry

More information

17.1 Redox Chemistry Revisited

17.1 Redox Chemistry Revisited Chapter Outline 17.1 Redox Chemistry Revisited 17.2 Electrochemical Cells 17.3 Standard Potentials 17.4 Chemical Energy and Electrical Work 17.5 A Reference Point: The Standard Hydrogen Electrode 17.6

More information

Modeling of Liquid Water Distribution at Cathode Gas Flow Channels in Proton Exchange Membrane Fuel Cell - PEMFC

Modeling of Liquid Water Distribution at Cathode Gas Flow Channels in Proton Exchange Membrane Fuel Cell - PEMFC Modeling of Liquid Water Distribution at Cathode Gas Flow Channels in Proton Exchange Membrane Fuel Cell - PEMFC Sandro Skoda 1*, Eric Robalinho 2, André L. R. Paulino 1, Edgar F. Cunha 1, Marcelo Linardi

More information

The Importance of Electrochemistry for the Development of Sustainable Mobility

The Importance of Electrochemistry for the Development of Sustainable Mobility TUM CREATE Centre for Electromobility, Singapore The Importance of Electrochemistry for the Development of Sustainable Mobility Jochen Friedl, Ulrich Stimming DPG-Frühjahrstagung, Working Group on Energy,

More information

Chem 340 Fall 2013 Lecture Notes 12- Electrochemistry (Chap. 6)

Chem 340 Fall 2013 Lecture Notes 12- Electrochemistry (Chap. 6) Chem 340 Fall 2013 Lecture Notes 12- Electrochemistry (Chap. 6) Charged particle energies affected by applied electric fields, similarly dissolution of metals from electrodes to create ions also creates

More information

Part One: Introduction. a. Chemical reactions produced by electric current. (electrolysis)

Part One: Introduction. a. Chemical reactions produced by electric current. (electrolysis) CHAPTER 19: ELECTROCHEMISTRY Part One: Introduction A. Terminology. 1. Electrochemistry deals with: a. Chemical reactions produced by electric current. (electrolysis) b. Production of electric current

More information

Advanced Analytical Chemistry Lecture 12. Chem 4631

Advanced Analytical Chemistry Lecture 12. Chem 4631 Advanced Analytical Chemistry Lecture 12 Chem 4631 What is a fuel cell? An electro-chemical energy conversion device A factory that takes fuel as input and produces electricity as output. O 2 (g) H 2 (g)

More information

Modelling fuel cells in start-up and reactant starvation conditions

Modelling fuel cells in start-up and reactant starvation conditions Modelling fuel cells in start-up and reactant starvation conditions Brian Wetton Radu Bradean Keith Promislow Jean St Pierre Mathematics Department University of British Columbia www.math.ubc.ca/ wetton

More information

ELECTROCHEMISTRY Chapter 14

ELECTROCHEMISTRY Chapter 14 ELECTROCHEMISTRY Chapter 14 Basic Concepts: Overview of Electrochemical Process at Constant T, P (14-1) ΔG = ΔG o + RT ln Q = w elec (maximum) = qe = ItE (exp) (E intensive parameter, q extensive) = nfe

More information

Performance Investigation on Electrochemical Compressor with Ammonia

Performance Investigation on Electrochemical Compressor with Ammonia Purdue University Purdue e-pubs International Compressor Engineering Conference School of Mechanical Engineering 2016 Performance Investigation on Electrochemical Compressor with Ammonia Ye Tao University

More information

Fernando O. Raineri. Office Hours: MWF 9:30-10:30 AM Room 519 Tue. 3:00-5:00 CLC (lobby).

Fernando O. Raineri. Office Hours: MWF 9:30-10:30 AM Room 519 Tue. 3:00-5:00 CLC (lobby). Fernando O. Raineri Office Hours: MWF 9:30-10:30 AM Room 519 Tue. 3:00-5:00 CLC (lobby). P1) What is the reduction potential of the hydrogen electrode g bar H O aq Pt(s) H,1 2 3 when the aqueous solution

More information

Chapter 20. Electrochemistry

Chapter 20. Electrochemistry Chapter 20. Electrochemistry 20.1 OxidationReduction Reactions Oxidationreduction reactions = chemical reactions in which the oxidation state of one or more substance changes (redox reactions). Recall:

More information

Oxidation number. The charge the atom would have in a molecule (or an ionic compound) if electrons were completely transferred.

Oxidation number. The charge the atom would have in a molecule (or an ionic compound) if electrons were completely transferred. Oxidation number The charge the atom would have in a molecule (or an ionic compound) if electrons were completely transferred. 1. Free elements (uncombined state) have an oxidation number of zero. Na,

More information

Electrochemistry objectives

Electrochemistry objectives Electrochemistry objectives 1) Understand how a voltaic and electrolytic cell work 2) Be able to tell which substance is being oxidized and reduced and where it is occuring the anode or cathode 3) Students

More information

i i ne. (1) i The potential difference, which is always defined to be the potential of the electrode minus the potential of the electrolyte, is ln( a

i i ne. (1) i The potential difference, which is always defined to be the potential of the electrode minus the potential of the electrolyte, is ln( a We re going to calculate the open circuit voltage of two types of electrochemical system: polymer electrolyte membrane (PEM) fuel cells and lead-acid batteries. To do this, we re going to make use of two

More information

Nernst voltage loss in oxyhydrogen fuel cells

Nernst voltage loss in oxyhydrogen fuel cells Nernst voltage loss in oxyhydrogen fuel cells Jinzhe Lyu (Division for Experimental Physics, School of Nuclear Science & Engineering, National Research Tomsk Polytechnic University, Lenina Ave. 43, Tomsk,

More information

F A 7/1/2014. No, I Do Not Drop a Grade!!!!!!! THE IDEAL GAS EQUATION PV = n R T and its APPLICATIONS. PRESSURE (force per unit area) grt VP

F A 7/1/2014. No, I Do Not Drop a Grade!!!!!!! THE IDEAL GAS EQUATION PV = n R T and its APPLICATIONS. PRESSURE (force per unit area) grt VP 7/1/014 Chem 131 Final has 115 points (similar to others) 1. 50 multiple choice questions ( pts each) 30 questions from old material {Chapters 10 14 0 questions from new material {Chap 15 17 & 0. 15 nomenclature

More information

Amperometric biosensors

Amperometric biosensors Electrochemical biosensors II: Amperometric biosensors Lecture 2 Amperometric Sensors: Problem formulation amperometric techniques have some selectivity as every RedOx reaction has it s own characteristic

More information

2. Using Half Cell Potentials and Latimer Diagrams. 100 measured half cell potentials generate 10,000 full reactions

2. Using Half Cell Potentials and Latimer Diagrams. 100 measured half cell potentials generate 10,000 full reactions Electrochemistry 1. Balancing Redox Reactions 2. Using Half Cell Potentials and Latimer Diagrams 100 measured half cell potentials generate 10,000 full reactions 3. E as a Thermodynamic state function

More information

CHEM J-14 June 2014

CHEM J-14 June 2014 CHEM1101 2014-J-14 June 2014 An electrochemical cell consists of an Fe 2+ /Fe half cell with unknown [Fe 2+ ] and a Sn 2+ /Sn half-cell with [Sn 2+ ] = 1.10 M. The electromotive force (electrical potential)

More information

General Energy PEM Membrane Tests

General Energy PEM Membrane Tests General Energy PEM Membrane Tests Date 11/03/2016 Author Annette Mosdale, R&D PaxiTech Client Ms. Sophia Hu General Energy Room 404, 321 Talent Building, No. 1009 East Tianyuan Road Nanjing 210000 PR China

More information

Electrochemistry Pulling the Plug on the Power Grid

Electrochemistry Pulling the Plug on the Power Grid Electrochemistry 18.1 Pulling the Plug on the Power Grid 18.3 Voltaic (or Galvanic) Cells: Generating Electricity from Spontaneous Chemical Reactions 18.4 Standard Electrode Potentials 18.7 Batteries:

More information

Process of Titanium Dioxide Nanotubes

Process of Titanium Dioxide Nanotubes Supporting Information to the manuscript entitled Energy Modeling of Electrochemical Anodization Process of Titanium Dioxide Nanotubes Bingbing Li 1, Xianfeng Gao 1, Hong-Chao Zhang 2, Chris Yuan 1* 1

More information

Homework 11. Electrochemical Potential, Free Energy, and Applications

Homework 11. Electrochemical Potential, Free Energy, and Applications HW11 Electrochemical Poten!al, Free Energy, and Applica!ons Homework 11 Electrochemical Potential, Free Energy, and Applications Question 1 What is the E for Zn(s) Zn (aq) Ce (aq) Ce (aq) + cell + 4+ 3+

More information

Electron Transfer Reactions

Electron Transfer Reactions ELECTROCHEMISTRY 1 Electron Transfer Reactions 2 Electron transfer reactions are oxidation- reduction or redox reactions. Results in the generation of an electric current (electricity) or be caused by

More information

Electrochemistry. Review oxidation reactions and how to assign oxidation numbers (Ch 4 Chemical Reactions).

Electrochemistry. Review oxidation reactions and how to assign oxidation numbers (Ch 4 Chemical Reactions). Electrochemistry Oxidation-Reduction: Review oxidation reactions and how to assign oxidation numbers (Ch 4 Chemical Reactions). Half Reactions Method for Balancing Redox Equations: Acidic solutions: 1.

More information

9/19/2018. Corrosion Thermodynamics 2-3. Course Outline. Guiding Principles. Why study thermodynamics? Guiding Principles

9/19/2018. Corrosion Thermodynamics 2-3. Course Outline. Guiding Principles. Why study thermodynamics? Guiding Principles Kwame Nkrumah University of Science & Technology, Kumasi, Ghana Week 1 Course Outline Topic Introduction: Reactivity types, corrosion definition, atmospheric corrosion, classification, effects, costs,

More information

Development of Bifunctional Electrodes for Closed-loop Fuel Cell Applications. Pfaffenwaldring 6, Stuttgart, Germany

Development of Bifunctional Electrodes for Closed-loop Fuel Cell Applications. Pfaffenwaldring 6, Stuttgart, Germany Development of Bifunctional Electrodes for Closed-loop Fuel Cell Applications S. Altmann a,b, T. Kaz b, K. A. Friedrich a,b a Institute of Thermodynamics and Thermal Engineering, University Stuttgart,

More information

Chapter 20. Electrochemistry

Chapter 20. Electrochemistry Chapter 20. Electrochemistry 20.1 Oxidation-Reduction Reactions Oxidation-reduction reactions = chemical reactions in which the oxidation state of one or more substance changes (redox reactions). Recall:

More information

Performance Simulation of Passive Direct Methanol Fuel Cell

Performance Simulation of Passive Direct Methanol Fuel Cell International Journal of Advanced Mechanical Engineering. ISSN 50-334 Volume 8, Number 1 (018), pp. 05-1 Research India Publications http://www.ripublication.com Performance Simulation of Passive Direct

More information

Direct Energy Conversion: Fuel Cells

Direct Energy Conversion: Fuel Cells Direct Energy Conversion: Fuel Cells Section.. in the Text Book References: Direct Energy Conversion by Stanley W. Angrist, Allyn and Beacon, 8. Fuel Cell Systems, Explained by James Larminie and Andrew

More information