Fuel Cell Activities in MME Waterloo

Size: px
Start display at page:

Download "Fuel Cell Activities in MME Waterloo"

Transcription

1 Fuel Cell Activities in MME Waterloo Xianguo Li and Roydon Fraser Fuel Cells and Green Energy Research Group Department of Mechanical & Mechatronics Engineering University of Waterloo, Waterloo, Ontario, CANADA April 27, 2007

2 Our Slogan Fuel Cell R&D: Capacity for Today & Partnering for the Future

3 PEMFCs/DMFCs SOFCs Power Electronics Fuel Cell Research & Development Materials Design/Fabrication Experiments

4 Waterloo Fuel Cell Expertise Main focus on PEM fuel cells with smaller programs in DMFC, SOFC and bio-fuel cells PEM fuel cell research focuses: Development of key component materials Membrane electrolytes, gas diffusion layers, alternative and non-platinum based catalysts, bipolar plates Design and fabrication for single cells and stacks Bipolar plate and flow channel design; Scaling law development Dynamic response and cold-start System integration and optimization Sensing, control and power conditioning Thermal and water management Fuel cell based hybrid drive systems Modeling and simulation to improve fundamental understanding

5 Fuel Cell Infrastructure Research Hydrogen production Hydrocarbon fuel (ethanol) reforming From green power sources (wind and solar PV) Hydrogen storage Metal hydrides Hydrogen distribution Hydrogen re-fuelling station Hydrogen energy systems System design and modeling Life cycle analysis Environmental impact assessment

6 Fuel Cell Testing Facilities

7 Fuel Cell Structural Changes Electrode Before Use Electrode After Use After Use (magnified)

8 Fuel Cell Design and Fabrication End Plate Current Collector Anode Flow (Bipolar) Plate Insulator Sheet Electrolyte Membrane Porous Electrode End Plate Reactant Inlet/Outlet Holes Holes for Tie Bolts Flow Field Channels Cathode Flow (Bipolar) Plate Current Collector

9 Proton/Water Transport Through Membrane Micro/nano Structure at Molecular Level

10 Applying the Generalized Stefan-Maxwell Equations to Ion and Water Transport in the Polymer Electrolyte

11 Anode Catalyst Layer Reaction Model (η a ) Four phenomena contribute to η a : Reaction Kinetics: H 2 adsorption, desorption and electro-oxidation CO adsorption, desorption and electro-oxidation H 2 and CO heterogeneous oxidation In the case of O 2 (air) bleeding: O 2 adsorption, desorption and Heterogeneous oxidation of H 2 and CO Mass Transfer: From gas channels and through electrode backing to arrive at the catalyst layer Within the catalyst layer, where reaction occurs Electron Migration within Catalyst Layer Proton Migration within Catalyst Layer

12 Equilibrium CO Concentration Due to reverse water gas shift reaction for the initial anode composition of 75% H 2 and 25% CO 2 (dry basis)

13 H 2 Kinetics Tafel-Volmer reaction mechanism: Langmuir Kinetics for H 2 adsorption and desorption: Butler-Volmer model for electro-oxidation: Where θ i surface coverage

14 CO poisoning Mechanism: CO Kinetics CO blocks reaction sites for the chemisorption of H 2 Reaction pair mechanism: Temkin kinetics for CO adsorption and desorption: Butler-Volmer model for electro-oxidation:

15 O 2 Kinetics Langmuir-Hinshelwood mechanism: Langmuir kinetics for O 2 adsorption and desorption: Heterogeneous oxidation of H 2 and CO:

16 Anode Catalyst Layer Analysis/Modeling

17 Anode Catalyst Layer Analysis/Modeling At T = 358 K C CO = 20 ppm

18 Effect of O 2 and Air Bleeding Anode: H 2 Cathode: O 2 Anode: 75% H 2 25% CO 2 Cathode: Air

19 O 2 Kinetics in the Cathode Catalyst Layer Electro-reduction of O 2 : + O2 + 4H + 4e 2H 2O l ( ) Butler-Volmer equation for the rate of reaction: w& c O O O 2 2 i C o O2 = sinh 2 2F CO 2 ref γ η B, O c 2

20 Cathode Catalyst Layer Analysis/Modeling Effective Pt Use Pt Loading m Pt (mg/cm 2 ) Void Fraction

21 Cathode Catalyst Layer Analysis/Modeling Thickness δ (µm) Overpotential (V) Pt Loading (mg/cm 2 )

22 Physical Problem inlet L A A B L outlet

23 3-D D Surface Plot of Rate of Reaction (A/m 2 )

24 Cell Analysis/Modeling Reversible Cell Potential Cathode Oxygen Reduction Voltage (V) Actual Cell Potential Membrane Anode H Oxidation 2 Plate & Electrode Cell Current Density (A/cm 2)

25 Cell Analysis/Modeling Mathematical Cell Model Using a Single Domain Approach

26 A Typical Single Cell Layout

27 Gas Transport Water Transport

28 Effect of Channel Length

29 Fuel Cell Modeling and Simulation

30 Fuel Cell Modeling and Simulation

31 Fuel Cell Simulation

32 Flow Structure Changes

33 Current Density Transport of Electrons Flow Channels

34 Stack Analysis/Modeling/Optimization U Stack Design Z Stack Design

35 Effect of Stack Manifolding Design Voltage Spread: S E max min Ecell Ecell = 100 Ncell 1 E () i N cell i= 1 cell 50 cell stack operating at 0.6 A/cm 2

36 Effect of Manifold Cross Sectional Area Reformate-Air H 2 -Air H 2 -O 2 U Configuration Z Configuration

37 Different Stack Design Stack Configuration U-Configuration Z-Configuration S E [%]

38 System Analysis/Modeling/Optimization To environment Control volume 9 Hydrogen recirculation 18 Hydrogen storage 1 Pressure regulator 3 Humidifier 5 7 H 2 2 Air intake filter 4 Air compressor 6 Heat Exchanger Humidifier PEM Fuel cell stack Electric work 20% of total heat 12 Water Air To environment 15 Coolant pump Car radiator Heat lost to the environment fan

39 Neutron Radiography: Perfect Probe for Water Distribution in PEM Fuel Cells A neutron image of rose placed inside a lead cask; this is an impossible task for x-rays

40 Neutron Radiography

41 Liquid water distribution vs. Performance-Case I Case I: Load change: (A/cm 2 ) Each picture is one minute integration and data point is one minute average; T= 60 O C and Load changes every three minutes.

42 Liquid water distribution vs. Performance-Case II Case II: Load change: (A/cm 2 ) Each picture is one minute integration and data point is one minute average; T= 60 O C and Load changes every three minutes.

43 Liquid Water Distribution in a PEM Fuel Cell

44 Comparison on liquid water distribution Contour plot for the velocity (y-component) in GDL

45 University of Waterloo Alternative UWAFT has installed 65 kwatt Hydrogenics fuel cell stack into Chevy Equinox drive train, and has the first fuel cell passenger vehicle in Ontario. Fuel Team (UWAFT) UWAFT is one of the 17 teams competing in ChallengeX. Waterloo Finished First in the first year (2005) of the 3 year competition. Eight Awards in 2006 UWAFT would like to thank GM and the US DOE for sponsoring this competition. (Controls, Freescale, Mathworks, Cross Model/Design, Outreach).

46

e - Galvanic Cell 1. Voltage Sources 1.1 Polymer Electrolyte Membrane (PEM) Fuel Cell

e - Galvanic Cell 1. Voltage Sources 1.1 Polymer Electrolyte Membrane (PEM) Fuel Cell Galvanic cells convert different forms of energy (chemical fuel, sunlight, mechanical pressure, etc.) into electrical energy and heat. In this lecture, we are interested in some examples of galvanic cells.

More information

Modeling of Liquid Water Distribution at Cathode Gas Flow Channels in Proton Exchange Membrane Fuel Cell - PEMFC

Modeling of Liquid Water Distribution at Cathode Gas Flow Channels in Proton Exchange Membrane Fuel Cell - PEMFC Modeling of Liquid Water Distribution at Cathode Gas Flow Channels in Proton Exchange Membrane Fuel Cell - PEMFC Sandro Skoda 1*, Eric Robalinho 2, André L. R. Paulino 1, Edgar F. Cunha 1, Marcelo Linardi

More information

Modeling as a tool for understanding the MEA. Henrik Ekström Utö Summer School, June 22 nd 2010

Modeling as a tool for understanding the MEA. Henrik Ekström Utö Summer School, June 22 nd 2010 Modeling as a tool for understanding the MEA Henrik Ekström Utö Summer School, June 22 nd 2010 COMSOL Multiphysics and Electrochemistry Modeling The software is based on the finite element method A number

More information

Direct Energy Conversion: Fuel Cells

Direct Energy Conversion: Fuel Cells Direct Energy Conversion: Fuel Cells References and Sources: Direct Energy Conversion by Stanley W. Angrist, Allyn and Beacon, 1982. Fuel Cell Systems, Explained by James Larminie and Andrew Dicks, Wiley,

More information

Prof. Mario L. Ferrari

Prof. Mario L. Ferrari Sustainable Energy Mod.1: Fuel Cells & Distributed Generation Systems Dr. Ing. Mario L. Ferrari Thermochemical Power Group (TPG) - DiMSET University of Genoa, Italy Lesson II Lesson II: fuel cells (electrochemistry)

More information

Iranian Journal of Hydrogen & Fuel Cell 2(2017) Iranian Journal of Hydrogen & Fuel Cell IJHFC. Journal homepage://ijhfc.irost.

Iranian Journal of Hydrogen & Fuel Cell 2(2017) Iranian Journal of Hydrogen & Fuel Cell IJHFC. Journal homepage://ijhfc.irost. Iranian Journal of Hydrogen & Fuel Cell (017) 153-165 Iranian Journal of Hydrogen & Fuel Cell IJHFC Journal homepage://ijhfc.irost.ir Effect of CO in the ormatted fuel on the performance of Polymer Electrolyte

More information

Basic overall reaction for hydrogen powering

Basic overall reaction for hydrogen powering Fuel Cell Basics Basic overall reaction for hydrogen powering 2H 2 + O 2 2H 2 O Hydrogen produces electrons, protons, heat and water PEMFC Anode reaction: H 2 2H + + 2e Cathode reaction: (½)O 2 + 2H +

More information

Basic overall reaction for hydrogen powering

Basic overall reaction for hydrogen powering Fuel Cell Basics Basic overall reaction for hydrogen powering 2H 2 + O 2 2H 2 O Hydrogen produces electrons, protons, heat and water PEMFC Anode reaction: H 2 2H + + 2e Cathode reaction: (½)O 2 + 2H +

More information

FINITE ELEMENT METHOD MODELLING OF A HIGH TEMPERATURE PEM FUEL CELL

FINITE ELEMENT METHOD MODELLING OF A HIGH TEMPERATURE PEM FUEL CELL CONDENSED MATTER FINITE ELEMENT METHOD MODELLING OF A HIGH TEMPERATURE PEM FUEL CELL V. IONESCU 1 1 Department of Physics and Electronics, Ovidius University, Constanta, 900527, Romania, E-mail: ionescu.vio@gmail.com

More information

Transient carbon monoxide poisoning of a polymer electrolyte fuel cell operating on diluted hydrogen feed

Transient carbon monoxide poisoning of a polymer electrolyte fuel cell operating on diluted hydrogen feed Electrochimica Acta 49 (2004) 2333 2341 Transient carbon monoxide poisoning of a polymer electrolyte fuel cell operating on diluted hydrogen feed Krishan Kumar Bhatia, Chao-Yang Wang Electrochemical Engine

More information

Fuel Cells in Energy Technology. Tutorial 5 / SS solutions. Prof. W. Schindler, Jassen Brumbarov / Celine Rüdiger

Fuel Cells in Energy Technology. Tutorial 5 / SS solutions. Prof. W. Schindler, Jassen Brumbarov / Celine Rüdiger Fuel Cells in Energy Technology Tutorial 5 / SS 2013 - solutions Prof. W. Schindler, Jassen Brumbarov / Celine Rüdiger 05.06.2013 Homework 3: What hydrogen flow rate (g/hour) is required to generate 1

More information

NUMERICAL ANALYSIS ON 36cm 2 PEM FUEL CELL FOR PERFORMANCE ENHANCEMENT

NUMERICAL ANALYSIS ON 36cm 2 PEM FUEL CELL FOR PERFORMANCE ENHANCEMENT NUMERICAL ANALYSIS ON 36cm 2 PEM FUEL CELL FOR PERFORMANCE ENHANCEMENT Lakshminarayanan V 1, Karthikeyan P 2, D. S. Kiran Kumar 1 and SMK Dhilip Kumar 1 1 Department of Mechanical Engineering, KGiSL Institute

More information

Computational Analysis of Heat Transfer in Air-cooled Fuel Cells

Computational Analysis of Heat Transfer in Air-cooled Fuel Cells Proceedings of ASME 2011, 5th International Conference on Energy Sustainability & 9th Fuel Cell Science, Engineering and Technology Conference, ESFuelCell2011 August 7-10, 2011, Washington, DC, USA ESFuelCell2011-54794

More information

Current and Temperature Distributions in Proton Exchange Membrane Fuel Cell

Current and Temperature Distributions in Proton Exchange Membrane Fuel Cell Current and Temperature Distributions in Proton Exchange Membrane Fuel Cell by Ibrahim Alaefour A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree

More information

Cross Section of Proton Exchange Membrane Fuel Cell

Cross Section of Proton Exchange Membrane Fuel Cell PEMFC Electrodes 1 Cross Section of Proton Exchange Membrane Fuel Cell Anode Cathode 2 Typical PEMFC Electrodes: - Anode Hydrogen Oxidation - Pt Ru / C - Cathode Oxygen reduction - Pt / C Pt is alloyed

More information

Modeling the Behaviour of a Polymer Electrolyte Membrane within a Fuel Cell Using COMSOL

Modeling the Behaviour of a Polymer Electrolyte Membrane within a Fuel Cell Using COMSOL Modeling the Behaviour of a Polymer Electrolyte Membrane within a Fuel Cell Using COMSOL S. Beharry 1 1 University of the West Indies, St. Augustine, Trinidad and Tobago Abstract: In recent years, scientists

More information

ANALYTICAL INVESTIGATION AND IMPROVEMENT OF PERFORMANCE OF A PROTON EXCHANGE MEMBRANE (PEM) FUEL CELL IN MOBILE APPLICATIONS

ANALYTICAL INVESTIGATION AND IMPROVEMENT OF PERFORMANCE OF A PROTON EXCHANGE MEMBRANE (PEM) FUEL CELL IN MOBILE APPLICATIONS Int. J. of Applied Mechanics and Engineering, 015, vol.0, No., pp.319-38 DOI: 10.1515/ijame-015-001 ANALYTICAL INVESTIGATION AND IMPROVEMENT OF PERFORMANCE OF A PROTON EXCHANGE MEMBRANE (PEM) FUEL CELL

More information

Oxygen Reduction Reaction

Oxygen Reduction Reaction Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2016 Oxygen Reduction Reaction Oxygen is the most common oxidant for most fuel cell cathodes simply

More information

Modelling fuel cells in start-up and reactant starvation conditions

Modelling fuel cells in start-up and reactant starvation conditions Modelling fuel cells in start-up and reactant starvation conditions Brian Wetton Radu Bradean Keith Promislow Jean St Pierre Mathematics Department University of British Columbia www.math.ubc.ca/ wetton

More information

January 21, 2004 Fuel Cell Engineering Course CHEG 320 Taught at UTC Fuel Cells. Fuel Cells

January 21, 2004 Fuel Cell Engineering Course CHEG 320 Taught at UTC Fuel Cells. Fuel Cells January 21, 2004 Fuel Cell Engineering Course CHEG 320 Taught at UTC Fuel Cells Fuel Cells Instructor James M. Fenton, Professor, Chemical Engineering University of Connecticut Teaching Assistants: 1.

More information

Activity. Modeling the Fuel Cell Reaction. Overview. Advance Preparation. Background Information

Activity. Modeling the Fuel Cell Reaction. Overview. Advance Preparation. Background Information 4 Activity 1-2 class sessions Modeling the uel Cell Reaction 2011 Regents of the University of California Overview n order to understand the chemistry of fuel cells, students are introduced to oxidation-reduction

More information

Review of temperature distribution in cathode of PEMFC

Review of temperature distribution in cathode of PEMFC Project Report 2008 MVK 160 Heat and Mass Transport May 08, 2008, Lund, Sweden Review of temperature distribution in cathode of PEMFC Munir Ahmed Khan Department of Energy Sciences, Lund Institute of Technology,

More information

Structural and Electronic properties of platinum nanoparticles studied by diffraction and absorption spectroscopy

Structural and Electronic properties of platinum nanoparticles studied by diffraction and absorption spectroscopy The 4 th SUNBEAM Workshop Structural and Electronic properties of platinum nanoparticles studied by in situ x-ray x diffraction and in situ x-ray x absorption spectroscopy Hideto Imai Fundamental and Environmental

More information

Oxygen Transfer Model in Cathode GDL of PEM Fuel Cell for Estimation of Cathode Overpotential

Oxygen Transfer Model in Cathode GDL of PEM Fuel Cell for Estimation of Cathode Overpotential Oxygen Transfer Model in Cathode GDL of PEM Fuel Cell for Estimation of Cathode Overpotential Abstract... The mathematical model involving kinetics and mass transfer in a PEM fuel cell cathode is developed

More information

Appendix A Electric Vehicle PEM Fuel Cell Stack Parameters

Appendix A Electric Vehicle PEM Fuel Cell Stack Parameters Appendix A Electric Vehicle PEM Fuel Cell Stack Parameters A.1 Return Manifold Polynomial Fitting Table A.1 Return manifold polynomial fitting Parameter Value Return manifold parameter p 0 0.001248 kg/s

More information

Performance Simulation of Passive Direct Methanol Fuel Cell

Performance Simulation of Passive Direct Methanol Fuel Cell International Journal of Advanced Mechanical Engineering. ISSN 50-334 Volume 8, Number 1 (018), pp. 05-1 Research India Publications http://www.ripublication.com Performance Simulation of Passive Direct

More information

Batteries (Electrochemical Power Sources)

Batteries (Electrochemical Power Sources) Batteries (Electrochemical Power Sources) 1. Primary (single-discharge) batteries. => finite quantity of the reactants 2. Secondary or rechargeable batteries => regeneration of the original reactants by

More information

Ugur Pasaogullari, Chao-Yang Wang Electrochemical Engine Center The Pennsylvania State University University Park, PA, 16802

Ugur Pasaogullari, Chao-Yang Wang Electrochemical Engine Center The Pennsylvania State University University Park, PA, 16802 Computational Fluid Dynamics Modeling of Proton Exchange Membrane Fuel Cells using Fluent Ugur Pasaogullari, Chao-Yang Wang Electrochemical Engine Center The Pennsylvania State University University Park,

More information

Computational model of a PEM fuel cell with serpentine gas flow channels

Computational model of a PEM fuel cell with serpentine gas flow channels Journal of Power Sources 130 (2004) 149 157 Computational model of a PEM fuel cell with serpentine gas flow channels Phong Thanh Nguyen, Torsten Berning 1, Ned Djilali Institute for Integrated Energy Systems,

More information

Basic Concepts of Electrochemistry

Basic Concepts of Electrochemistry ELECTROCHEMISTRY Electricity-driven Chemistry or Chemistry-driven Electricity Electricity: Chemistry (redox): charge flow (electrons, holes, ions) reduction = electron uptake oxidation = electron loss

More information

III. Reaction Kinetics Lecture 15: Ion Adsorption and Intercalation

III. Reaction Kinetics Lecture 15: Ion Adsorption and Intercalation III. Reaction Kinetics Lecture 15: Ion Adsorption and Intercalation MIT Student 1. Surface adsorption/intercalation of neutral species Adsorption on a surface or intercalation in a bulk solid involves

More information

FUEL CELLS in energy technology (4)

FUEL CELLS in energy technology (4) Fuel Cells 1 FUEL CELLS in energy technology (4) Werner Schindler Department of Physics Nonequilibrium Chemical Physics TU Munich summer term 213 Fuel Cells 2 Nernst equation and its application to fuel

More information

MODELING THE BEHAVIOR OF A POLYMER ELECTROLYTE MEMBRANE WITHIN A FUEL CELL USING COMSOL

MODELING THE BEHAVIOR OF A POLYMER ELECTROLYTE MEMBRANE WITHIN A FUEL CELL USING COMSOL MODELING THE BEHAVIOR OF A POLYMER ELECTROLYTE MEMBRANE WITHIN A FUEL CELL USING COMSOL PRESENTER: SUPERVISOR: STEFAN BEHARRY DR. DAVINDER PAL SHARMA (PHYSICS DEPARTMENT, UWI) Excerpt from the Proceedings

More information

Development of Bifunctional Electrodes for Closed-loop Fuel Cell Applications. Pfaffenwaldring 6, Stuttgart, Germany

Development of Bifunctional Electrodes for Closed-loop Fuel Cell Applications. Pfaffenwaldring 6, Stuttgart, Germany Development of Bifunctional Electrodes for Closed-loop Fuel Cell Applications S. Altmann a,b, T. Kaz b, K. A. Friedrich a,b a Institute of Thermodynamics and Thermal Engineering, University Stuttgart,

More information

i i ne. (1) i The potential difference, which is always defined to be the potential of the electrode minus the potential of the electrolyte, is ln( a

i i ne. (1) i The potential difference, which is always defined to be the potential of the electrode minus the potential of the electrolyte, is ln( a We re going to calculate the open circuit voltage of two types of electrochemical system: polymer electrolyte membrane (PEM) fuel cells and lead-acid batteries. To do this, we re going to make use of two

More information

Performance Analysis of a Two phase Non-isothermal PEM Fuel Cell

Performance Analysis of a Two phase Non-isothermal PEM Fuel Cell Performance Analysis of a Two phase Non-isothermal PEM Fuel Cell A. H. Sadoughi 1 and A. Asnaghi 2 and M. J. Kermani 3 1, 2 Ms Student of Mechanical Engineering, Sharif University of Technology Tehran,

More information

ELECTROCHEMICAL COMPRESSION OF PRODUCT HYDROGEN FROM PEM ELECTROLYZER STACK

ELECTROCHEMICAL COMPRESSION OF PRODUCT HYDROGEN FROM PEM ELECTROLYZER STACK ELECTROCHEMICAL COMPRESSION OF PRODUCT HYDROGEN FROM PEM ELECTROLYZER STACK N.V. Dale 1,*, C. Y. Biaku 1, M. D. Mann 1, H. Salehfar 2, A. J. Peters 2 Abstract The low volumetric energy density of hydrogen

More information

Introductory Lecture: Principle and Applications of Fuel Cells (Methanol/Air as Example)

Introductory Lecture: Principle and Applications of Fuel Cells (Methanol/Air as Example) 3 rd LAMNET Workshop Brazil -4 December 00 3 rd LAMNET Workshop Brazil 00 Introductory Lecture: Principle and Applications of Fuel Cells (Methanol/Air as Example) Prof. Dr. Wolf Vielstich University of

More information

Electrolytes for Fuel Cells

Electrolytes for Fuel Cells Electrolytes for Fuel Cells Tom Zawodzinski Materials Science and Technology Division Los Alamos National Laboratory Air-Breather Fuel Cell Stack Systems Laptop Demo DCH/Enable Prototype Small Battery

More information

Master of Applied Science

Master of Applied Science A Three-Dimensional Computational Model of PEM Fuel Cell with Serpentine Gas Channels by Phong Thanh Nguyen B.E.Sc., University of Western Ontario, 2001 A Thesis Submitted in Partial Fulfillment of the

More information

Three-dimensional computational analysis of transport phenomena in a PEM fuel cell a parametric study

Three-dimensional computational analysis of transport phenomena in a PEM fuel cell a parametric study Journal of Power Sources 124 (2003) 440 452 Three-dimensional computational analysis of transport phenomena in a PEM fuel cell a parametric study T. Berning, N. Djilali Institute for Integrated Energy

More information

Figure 1. Schematic of Scriber Associates Model 850C fuel cell system.

Figure 1. Schematic of Scriber Associates Model 850C fuel cell system. Objective of the fuel cell experiments: To familiarize the working principles and performance characteristics of proton exchange membrane fuel cells. Experimental Procedures Instrumentation A Scriber Associates

More information

Advanced Analytical Chemistry Lecture 12. Chem 4631

Advanced Analytical Chemistry Lecture 12. Chem 4631 Advanced Analytical Chemistry Lecture 12 Chem 4631 What is a fuel cell? An electro-chemical energy conversion device A factory that takes fuel as input and produces electricity as output. O 2 (g) H 2 (g)

More information

Modeling of Electrochemical Cells: HYD Lecture 04. Overview of transport processes in PEMs

Modeling of Electrochemical Cells: HYD Lecture 04. Overview of transport processes in PEMs Modeling of Electrochemical Cells: Proton Exchange Membrane Fuel Cells HYD7007 01 Lecture 04. Overview of transport processes in PEMs Dept. of Chemical & Biomolecular Engineering Yonsei University Spring,

More information

sensors ISSN by MDPI

sensors ISSN by MDPI Sensors 008, 8, 1475-1487 Full Research Paper sensors ISSN 144-80 008 by MDPI www.mdpi.org/sensors Three-Dimensional Transport Modeling for Proton Exchange Membrane(PEM) Fuel Cell with Micro Parallel Flow

More information

DMFC Models and Applications - A Literature Survey, Part I

DMFC Models and Applications - A Literature Survey, Part I Proceedings of the 2014 International Conference on Industrial Engineering and Operations Management Bali, Indonesia, January 7 9, 2014 DMFC Models and Applications - A Literature Survey, Part I S. Patrabansh,

More information

Optimization on Serpentine flow channel of PEMFC using RSM

Optimization on Serpentine flow channel of PEMFC using RSM Optimization on Serpentine flow channel of PEMFC using RSM Dr.V.Lakshminarayanan Department of Mechanical Engineering, B.V.Raju Institute of Technology, Narsapur, Telangana-502313, India. e-mail: lux32engineer@yahoo.co.in

More information

Electrochemical Cell - Basics

Electrochemical Cell - Basics Electrochemical Cell - Basics The electrochemical cell e - (a) Load (b) Load e - M + M + Negative electrode Positive electrode Negative electrode Positive electrode Cathode Anode Anode Cathode Anode Anode

More information

General Energy PEM Membrane Tests

General Energy PEM Membrane Tests General Energy PEM Membrane Tests Date 11/03/2016 Author Annette Mosdale, R&D PaxiTech Client Ms. Sophia Hu General Energy Room 404, 321 Talent Building, No. 1009 East Tianyuan Road Nanjing 210000 PR China

More information

D DAVID PUBLISHING. 1. Introduction. Akira Nishimura 1, Masashi Baba 1, Kotaro Osada 1, Takenori Fukuoka 1, Masafumi Hirota 1 and Eric Hu 2

D DAVID PUBLISHING. 1. Introduction. Akira Nishimura 1, Masashi Baba 1, Kotaro Osada 1, Takenori Fukuoka 1, Masafumi Hirota 1 and Eric Hu 2 Journal of Energy and Power Engineering () - doi:./-/.. D DAVID PUBLISHING Temperature Distributions in Single Cell of Polymer Electrolyte Fuel Cell Simulated by an D Multi-plate Heat-Transfer Model and

More information

The Pennsylvania State University. The Graduate School. College of Engineering COMPUTATIONAL EXPLORATION OF HIGH POWER OPERATION IN POROUS FLOW

The Pennsylvania State University. The Graduate School. College of Engineering COMPUTATIONAL EXPLORATION OF HIGH POWER OPERATION IN POROUS FLOW The Pennsylvania State University The Graduate School College of Engineering COMPUTATIONAL EXPLORATION OF HIGH POWER OPERATION IN POROUS FLOW FIELD POLYMER ELECTROLYTE FUEL CELLS WITH A VALIDATED MODEL

More information

Fuel Cells Jong Hak Kim Chemical Engineering Yonsei University

Fuel Cells Jong Hak Kim Chemical Engineering Yonsei University 에너지소재특론 Fuel Cells Jong Hak Kim Chemical Engineering Yonsei University Fuel Cells Electrochemical cell which can continuously convert the chemical energy of a fuel and an oxidant to electrical energy PEMFC

More information

Experiment 28 DIRECT METHANOL FUEL CELL

Experiment 28 DIRECT METHANOL FUEL CELL Experiment 28 Direct methanol fuel cell 1 Experiment 28 DIRECT METHANOL FUEL CELL Objective The purpose of this experiment is to learn the principle of direct methanol fuel cell (DMFC) and set up a simple

More information

POLITECNICO DI MILANO

POLITECNICO DI MILANO POLITECNICO DI MILANO Facoltà di Ingegneria Industriale POLITECNICO DI MILANO Department Corso di Laurea of Energy in Doctoral Ingegneria Program in Energy and Nuclear Science and Technology DMFC MODELING:

More information

Analytical Investigation of Fuel Cells by Using In-situ and Ex-situ Diagnostic Methods

Analytical Investigation of Fuel Cells by Using In-situ and Ex-situ Diagnostic Methods Analytical Investigation of Fuel Cells by Using In-situ and Ex-situ Diagnostic Methods G. Schiller, E. Gülzow, M. Schulze, N. Wagner, K.A. Friedrich German Aerospace Center (DLR), Institute of Technical

More information

Electrode Kinetics 1

Electrode Kinetics 1 Electrode Kinetics 1 Background Consider the reaction given below: A B (1) Let k f and k b are the rate constants of the forward and backward reactions 2 Reaction rates Rate of the forward reaction is

More information

Numerical simulation of proton exchange membrane fuel cell

Numerical simulation of proton exchange membrane fuel cell CHAPTER 6 Numerical simulation of proton exchange membrane fuel cell T.C. Jen, T.Z. Yan & Q.H. Chen Department of Mechanical Engineering, University of Wisconsin-Milwaukee, USA. Abstract This chapter presents

More information

FUEL CELLS: INTRODUCTION

FUEL CELLS: INTRODUCTION FUEL CELLS: INTRODUCTION M. OLIVIER marjorie.olivier@fpms.ac.be 19/5/8 A SIMPLE FUEL CELL Two electrochemical half reactions : H 1 O H + + H + e + + e H O These reactions are spatially separated: Electrons:

More information

Non-Equilibrium Thermodynamics: Foundations and Applications. Lecture 9: Modelling the polymer electrolyte fuel cell

Non-Equilibrium Thermodynamics: Foundations and Applications. Lecture 9: Modelling the polymer electrolyte fuel cell Non-Equilibrium Thermodynamics: Foundations and Applications. Lecture 9: Modelling the polymer electrolyte fuel cell Signe Kjelstrup Department of Chemistry, Norwegian University of Science and Technology,

More information

Cathode and interdigitated air distributor geometry optimization in polymer electrolyte membrane (PEM) fuel cells

Cathode and interdigitated air distributor geometry optimization in polymer electrolyte membrane (PEM) fuel cells Materials Science and Engineering B 108 (2004) 241 252 Cathode and interdigitated air distributor geometry optimization in polymer electrolyte membrane (PEM) fuel cells M. Grujicic, C.L. Zhao, K.M. Chittajallu,

More information

Fuel Cells Activation polarization

Fuel Cells Activation polarization Fuel Cells The principle of fuel cells Oxygen and hydrogen, when mixed together in the presence of enough activation energy have a natural tendency to react and form water, because the Gibbs free energy

More information

SCIENCES & TECHNOLOGY

SCIENCES & TECHNOLOGY Pertanika J. Sci. & Technol. 22 (2): 645-655 (2014) SCIENCES & TECHNOLOGY Journal homepage: http://www.pertanika.upm.edu.my/ Numerical Modelling of Molten Carbonate Fuel Cell: Effects of Gas Flow Direction

More information

Porous silicon as base material of MEMS-compatible fuel cell components

Porous silicon as base material of MEMS-compatible fuel cell components Porous silicon as base material of MEMS-compatible fuel cell components José Geraldo Alves Brito Neto Tokyo University of Science - Faculty of Science and Technology Department of Mechanical Engineering

More information

MATHEMATICAL MODELING OF PEM FUEL CELL CATHODES: COMPARISON OF FIRST-ORDER AND HALF-ORDER REACTION KINETICS

MATHEMATICAL MODELING OF PEM FUEL CELL CATHODES: COMPARISON OF FIRST-ORDER AND HALF-ORDER REACTION KINETICS MATHEMATICAL MODELING OF PEM FUEL CELL CATHODES: COMPARISON OF FIRST-ORDER AND HALF-ORDER REACTION KINETICS by David Castagne A thesis submitted to the Department of Chemical Engineering In conformity

More information

DETERMINING THE OPERATING CONDITIONS OF ALL-VANADIUM REDOX FLOW BATTERY

DETERMINING THE OPERATING CONDITIONS OF ALL-VANADIUM REDOX FLOW BATTERY Proceedings of the Asian Conference on Thermal Sciences 2017, 1st ACTS March 26-30, 2017, Jeju Island, Korea ACTS-P00650 DETERMINING THE OPERATING CONDITIONS OF ALL-VANADIUM REDOX FLOW BATTERY Jungmyoung

More information

Fuel Cell System Model: Auxiliary Components

Fuel Cell System Model: Auxiliary Components 2 Fuel Cell System Model: Auxiliary Components Models developed specifically for control studies have certain characteristics. Important characteristics such as dynamic (transient) effects are included

More information

Multi-physics Simulation of a Circular-Planar Anode-Supported Solid Oxide Fuel Cell

Multi-physics Simulation of a Circular-Planar Anode-Supported Solid Oxide Fuel Cell Multi-physics Simulation of a Circular-Planar Anode-Supported Solid Oxide Fuel Cell Keyvan Daneshvar *1, Alessandro Fantino 1, Cinzia Cristiani 1, Giovanni Dotelli 1, Renato Pelosato 1, Massimo Santarelli

More information

Research Article The Effects of the PEM Fuel Cell Performance with the Waved Flow Channels

Research Article The Effects of the PEM Fuel Cell Performance with the Waved Flow Channels Applied Mathematics Volume 23, Article ID 862645, 4 pages http://dx.doi.org/.55/23/862645 Research Article The Effects of the PEM Fuel Cell Performance with the Waved Flow Channels ue-tzu ang, Kuo-Teng

More information

AUTOMOTIVE EXHAUST AFTERTREATMENT

AUTOMOTIVE EXHAUST AFTERTREATMENT AUTOMOTIVE EXHAUST AFTERTREATMENT CATALYST FUNDAMENTLS Catalyst in its simplest term is a material that increase the rate (molecules converted by unit time) of a chemical reaction while itself not undergoing

More information

Synthesis and Characterization of Gold-Palladium Nanoparticles Catalyst For Improved Hydrogen Fuel Cell Performance

Synthesis and Characterization of Gold-Palladium Nanoparticles Catalyst For Improved Hydrogen Fuel Cell Performance Synthesis and Characterization of Gold-Palladium Nanoparticles Catalyst For Improved Hydrogen Fuel Cell Performance Adam Bennett a, Helen Liu a, Allen Tran a, Likun Wang b, Miriam Rafailovich a,b* a,b

More information

UNIVERSITY OF TORONTO. FINAL EXAM, APRIL 28, hours. EXAMINER D.W. Kirk,

UNIVERSITY OF TORONTO. FINAL EXAM, APRIL 28, hours. EXAMINER D.W. Kirk, Page 1 of 11 PRINT FIRST NAME LAST NAME STUDENT NUMBER UNIVERSITY OF TORONTO FINAL EXAM, APRIL 28, 2017 2.5 hours CHE 469F - FUEL CELLS and ELECTROCHEMICAL SYSTEMS Do all questions. The marks add up to

More information

Multidimensional, Non-Isothermal, Dynamic Modelling Of Planar Solid Oxide Fuel Cells

Multidimensional, Non-Isothermal, Dynamic Modelling Of Planar Solid Oxide Fuel Cells Multidimensional, Non-Isothermal, Dynamic Modelling Of Planar Solid Oxide Fuel Cells K. Tseronis a, I. Kookos b, C. Theodoropoulos a* a School of Chemical Engineering and Analytical Science, University

More information

Dr. V.LAKSHMINARAYANAN Department of Mechanical Engineering, B V Raju Institute of Technology, Narsapur, Telangana,, India

Dr. V.LAKSHMINARAYANAN Department of Mechanical Engineering, B V Raju Institute of Technology, Narsapur, Telangana,, India Parametric analysis performed on 49 cm 2 serpentine flow channel of PEM fuel cell by Taguchi method (Parametric analysis performed on PEMFC by Taguchi method) Dr. V.LAKSHMINARAYANAN Department of Mechanical

More information

The Pennsylvania State University. The Graduate School. College of Engineering A COMPUTATIONAL MODEL FOR ASSESSING IMPACT OF INTERFACIAL

The Pennsylvania State University. The Graduate School. College of Engineering A COMPUTATIONAL MODEL FOR ASSESSING IMPACT OF INTERFACIAL The Pennsylvania State University The Graduate School College of Engineering A COMPUTATIONAL MODEL FOR ASSESSING IMPACT OF INTERFACIAL MORPHOLOGY ON POLYMER ELECTROLYTE FUEL CELL PERFORMANCE A Thesis in

More information

TRANSIENTS IN POLYMER ELECTROLYTE MEMBRANE (PEM) FUEL CELLS

TRANSIENTS IN POLYMER ELECTROLYTE MEMBRANE (PEM) FUEL CELLS TRANSIENTS IN POLYMER ELECTROLYTE MEMBRANE (PEM) FUEL CELLS Atul Verma Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements

More information

Performance Investigation on Electrochemical Compressor with Ammonia

Performance Investigation on Electrochemical Compressor with Ammonia Purdue University Purdue e-pubs International Compressor Engineering Conference School of Mechanical Engineering 2016 Performance Investigation on Electrochemical Compressor with Ammonia Ye Tao University

More information

PGM-free OER Catalysts for Proton Exchange Membrane Electrolyzer

PGM-free OER Catalysts for Proton Exchange Membrane Electrolyzer PGM-free OER Catalysts for Proton Exchange Membrane Electrolyzer Di-Jia Liu, Argonne National Laboratory November 14, 2017 HydroGEN Kick-Off Meeting, National Renewable Energy Laboratory HydroGEN Kick-Off

More information

Numerical modelling of membrane degradation in PEM water electrolyzer: Influence of the temperature and current density

Numerical modelling of membrane degradation in PEM water electrolyzer: Influence of the temperature and current density Numerical modelling of membrane degradation in PEM water electrolyzer: Influence of the temperature and current density M. Chandesris, V. Médeau, N. Guillet, S. Chelghoum, D. Thoby, F. Fouda-Onana Univ.

More information

DISCLAIMER. Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

DISCLAIMER. Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. ; i i : L4 0 t DSCLAMER Portions of this document may be illegible in electronic image products. mages are produced from the best available original document. EVALUATON OF THE HUMDFCATON REQTJREMENTS OF

More information

Development and Validation of a Computational Model for a Proton Exchange Membrane Fuel Cell

Development and Validation of a Computational Model for a Proton Exchange Membrane Fuel Cell Development and Validation of a Computational Model for a Proton Exchange Membrane Fuel Cell Nathan Phillip Siegel Dissertation Submitted to the Faculty of Virginia Polytechnic Institute and State University

More information

ELECTROCHEMICAL SYSTEMS

ELECTROCHEMICAL SYSTEMS ELECTROCHEMICAL SYSTEMS Third Edition JOHN NEWMAN and KAREN E. THOMAS-ALYEA University of California, Berkeley ELECTROCHEMICAL SOCIETY SERIES WILEY- INTERSCIENCE A JOHN WILEY & SONS, INC PUBLICATION PREFACE

More information

Journal of Power Sources

Journal of Power Sources Journal of Power Sources 196 (2011) 3172 3177 Contents lists available at ScienceDirect Journal of Power Sources journal homepage: www.elsevier.com/locate/jpowsour Study of sulfur dioxide crossover in

More information

Materials for a Sustainable Energy Future. IPAM Tutorials. Sept 10-12, Continuum Models of PEM Fuel Cells. Keith Promislow

Materials for a Sustainable Energy Future. IPAM Tutorials. Sept 10-12, Continuum Models of PEM Fuel Cells. Keith Promislow Materials for a Sustainable Energy Future IPAM Tutorials Sept 10-12, 2013 Continuum Models of PEM Fuel Cells Keith Promislow 1 PEM Fuel Cell: Macroview 2H 2 + O 2 2H 2 O + 1.2V Volts = Energy/electron

More information

(12) Patent Application Publication (10) Pub. No.: US 2004/ A1

(12) Patent Application Publication (10) Pub. No.: US 2004/ A1 (19) United States US 2004O157111A1 (12) Patent Application Publication (10) Pub. No.: US 2004/0157111A1 Sakamoto et al. (43) Pub. Date: (54) FUEL CELL (76) Inventors: Shigeru Sakamoto, Osaka (JP); Yasunori

More information

Lifetime and Performance Prediction of SOFC Anodes Operated with Trace Amounts of Hydrogen Sulfide

Lifetime and Performance Prediction of SOFC Anodes Operated with Trace Amounts of Hydrogen Sulfide www.dlr.de Chart 1 > SOFC Forum > W. G. Bessler Presentation > 28.06.2012 Lifetime and Performance Prediction of SOFC Anodes Operated with Trace Amounts of Hydrogen Sulfide Matthias Riegraf, Günter Schiller,

More information

DYNAMIC MODELING OF POLYMER ELECTROLYTE MEMBRANE FUEL CELL STACK WITH 1D AND 2D CFD TECHNIQUES. Yuyao Shan

DYNAMIC MODELING OF POLYMER ELECTROLYTE MEMBRANE FUEL CELL STACK WITH 1D AND 2D CFD TECHNIQUES. Yuyao Shan DYNAMIC MODELING OF POLYMER ELECTROLYTE MEMBRANE FUEL CELL STACK WITH 1D AND 2D CFD TECHNIQUES Except where reference is made to the work of others, the work described in this thesis is my own or was done

More information

Hydrogen production by electrolysis. Ann Cornell, Department of Chemical Engineering, KTH

Hydrogen production by electrolysis. Ann Cornell, Department of Chemical Engineering, KTH Hydrogen production by electrolysis Ann Cornell, Department of Chemical Engineering, KTH amco@kth.se Sources for hydrogen International Energy Agency. Technology Roadmap Hydrogen and Fuel Cells, 2015

More information

Small-scale demo, large-scale promise of novel bromine battery 27 June 2014, by Nancy W. Stauffer

Small-scale demo, large-scale promise of novel bromine battery 27 June 2014, by Nancy W. Stauffer Small-scale demo, large-scale promise of novel bromine battery 27 June 2014, by Nancy W. Stauffer Figure 1 The availability of low-cost, high-capacity energy storage technology could profoundly change

More information

NUMERICAL MODELING OF THE EFFECT OF SULFUR POISONING ON THE PERFORMANCE OF THE POROUS ANODE SOLID OXIDE FUEL CELL

NUMERICAL MODELING OF THE EFFECT OF SULFUR POISONING ON THE PERFORMANCE OF THE POROUS ANODE SOLID OXIDE FUEL CELL NUMERICAL MODELING OF THE EFFECT OF SULFUR POISONING ON THE PERFORMANCE OF THE POROUS ANODE SOLID OXIDE FUEL CELL by Negar Manafi Rasi A thesis submitted to the Department of Chemical Engineering In conformity

More information

Introduction Fuel Cells Repetition

Introduction Fuel Cells Repetition Introduction Fuel Cells Repetition Fuel cell applications PEMFC PowerCell AB, (S1-S3) PEMFC,1-100 kw Toyota Mirai a Fuel Cell Car A look inside The hydrogen tank 1. Inside Layer of polymer closest to the

More information

Course Specification

Course Specification Al-Azhar University (Girls branch) Faculty of Science Department of Chemistry )فرع البنات( جامعة األزهر كلية العلوم قسم الكيمياء Course Specification Course title: Physical chemistry Code: chem. 468 Program(s)

More information

Three-Dimensional Modeling and Experimental Study of a High Temperature PBI-Based PEM Fuel Cell

Three-Dimensional Modeling and Experimental Study of a High Temperature PBI-Based PEM Fuel Cell Downloaded 3 Mar to 4..3.58. Redistribution subject to ECS license or copyright; see http://www.ecsdl.org/terms_use.jsp B7 Journal of The Electrochemical Society, 5 B7-B8 9 3-45/9/5 /B7/7/$5. The Electrochemical

More information

ANSYS FLUENT 12.0 Fuel Cells Module Manual

ANSYS FLUENT 12.0 Fuel Cells Module Manual ANSYS FLUENT 12.0 Fuel Cells Module Manual April 2009 Copyright c 2009 by ANSYS, Inc. All Rights Reserved. No part of this document may be reproduced or otherwise used in any form without express written

More information

CFD Modeling: Different Kinetic Approaches for Internal Reforming Reactions in an Anode-Supported SOFC

CFD Modeling: Different Kinetic Approaches for Internal Reforming Reactions in an Anode-Supported SOFC Hedvig Paradis 1 e-mail: hedvig.paradis@energy.lth.se Martin Andersson Jinliang Yuan Bengt Sundén Department of Energy Sciences, Faculty of Engineering, Lund University, P.O. Box 118, 221 00 Lund, Sweden

More information

Control of methanol fuelled HTPEM fuel cell system

Control of methanol fuelled HTPEM fuel cell system Control of methanol fuelled HTPEM fuel cell system Running/starting mode switch Burner outlet WGS H2 for burner Methanol gas Reformer Burner air Cooler Electric air heater Evaporator Methanol inlet Pump

More information

CFD Analysis of PEM Fuel Cell

CFD Analysis of PEM Fuel Cell CFD Analysis of PEM Fuel Cell Group Seminar Munir Khan Division of Heat Transfer Department of Energy Sciences Lund University Outline 1 Geometry 2 Mathematical Model 3 Results 4 Conclusions I 5 Pore Scale

More information

Optimizing the Performance of a Single PEM Fuel Cell

Optimizing the Performance of a Single PEM Fuel Cell Zhuqian Zhang School of Mechanical Electronic and Control Engineering, Beijing Jiaotong University, Beijing, P.R.C. Xia Wang 1 Department of Mechanical Engineering, Oakland University, Rochester, MI e-mail:

More information

Topic 6a Electrode Potentials Revision Notes

Topic 6a Electrode Potentials Revision Notes Topic 6a Electrode Potentials Revision Notes 1) Redox Redox reactions involve the transfer of electrons e.g. in the reaction between zinc metal and copper (II) sulphate, electrons are transferred from

More information

Thermal conductivity measurement of gas diffusion layer used in PEMFC

Thermal conductivity measurement of gas diffusion layer used in PEMFC Rochester Institute of Technology RIT Scholar Works Theses Thesis/Dissertation Collections 11-5-2009 Thermal conductivity measurement of gas diffusion layer used in PEMFC Arjun Radhakrishnan Follow this

More information

Topic 12 Redox Equilibria Revision Notes

Topic 12 Redox Equilibria Revision Notes 1) Redox Reactions Topic 12 Redox Equilibria Revision Notes Redox reactions involve the transfer of electrons e.g. in the reaction between zinc metal and copper (II) sulphate, electrons are transferred

More information