Discrete Model Predic.ve Control

Size: px
Start display at page:

Download "Discrete Model Predic.ve Control"

Transcription

1 Dcrete Model Predcve Control Lowell Brown

2 Outlne MPC: Bc Ide Stte Spce nd Augented Syte Model OpDzDon Wndow Recedng Horzon Control Exple

3 Reference Model PredcDve Control Syte Degn nd IpleentDon Ung MALAB Lupng Wng, Sprnger 29 Model Bed PredcDve Control-A PrcDcl Approch J A Roter, CRC Pre 24

4 MPC: Bc Ide

5 MPC: Bc Ide PredcDon rele on tte-pce odel OpDl trjecry et preter defne ncreentl oveent Δu ObjecDve yte error funcdon between et-pont gnl nd predcted output gnl

6 rckng Error Setpont r 8 6 e e 2 e 3 e 4 Output y te (ec)

7 Bc Ide: Increentl Control Error funcdon: eureent objecdve OpDl oludon obtned for et ncreentl oveent Δu(k ),Δu(k ),,Δu(k N c -) Only t ple Δu(k ) ued OpDzDon repet on next ple perod Bed on recedng horzon prncple Feedbck nturlly ncorported n yte degn

8 Bc Ide: Ebedded Integrr() Degn odel: ugented plnt odel wth ebedded ntegrr() Integrr() ke() gnl opdzed be Δu(k ) nted equence u(k ) Ebedded ntegrr() elnte() tedy tte error Stedy tte nfordon bout or tte vrble not requred Iportnt for plnt wth uldple nput nd uldple output (MIMO)

9 Stte Spce & Augented Syte Model

10 Stte Spce & Augented Syte Model Syte Model x (k )A x (k)b u(k), C x (k), Eq Model ue : ed D Dfference [ Syte Model ] x (k ) x (k) A (x (k) x (k )) B (u(k) u(k )) (k )A (k)b u(k) Eq y(k ) C (x (k ) x (k)) C (k ) y(k ) C A (k)c B u(k) Eq 2

11 Stte Spce & x(k) [ ] Augented Syte Model Stte Vrble x(k) [ Vecr (k) ] Cobne Eq nd Eq2 x(k) {}}{ [ ] A B {[ }} ]{ [ }} ]{{}}{ ]{ [{}} (k ) A o ]{{ [ } [ ] (k) B u(k) y(k ) C A C B C {[ }}{ o ] [ ] (k) Where: n [ {}}{ ] o wll be ued n th

12 Stte Spce & Aug Syte Model: Ebedded Integrr() Egenvlue Augented Syte? A x(k) ]{}}{ ]{{}} { [ [ ] [ ] A o ] { [ } [ (k) x(k) {[ }}{ (k ) y(k ) C A C {[ }}{ o ] [ ] [ ] [ ] (k) Where: ke Deternnt [ ] λi A o ρ(λ) det(λi A) det[ C A (λ ) (λ ) det(λi A ) At let one pure ntegrr {}}{ [ ] B {[ }} ]{ B u(k) C B n [ {}}{ ] o wll be ued n th

13 Opzon Wndow

14 Opzon Wndow Gol: Clculte predcted plnt output wth future gnl djutble vrble current De k opdzdon wndow N p ple long N_p predcdon horzon Future trjecry: Δu(k ),Δu(k ),,Δu(k N c -) where N c horzon N c dctte nuber preter ued cpture trjecry

15 Opzon Wndow Future tte vrble denoted : x(k k ),x(k 2 k ),, x(k k ),, x(k N p k ), where x(k k ) predcted tte vrble evluted t k gven current plnt nfo x(k ) ypclly elect nd predcdon horzon uch : N c N p

16 Opzon Wndow Future tte vrble propgted equendlly wth ugented tte pce odel x(k k )Ax(k )B u(k ) x(k 2 k )Ax(k k )B u(k ) A 2 x(k )AB u(k )B u(k ) x(k N p k )A N p x(k )A Np B u(k )A Np 2 B u(k ) A N p N c B u(k N c ) Predcted output vrble re lr n for e k : y(k k )CAx(k )CB u(k )

17 Opzon Wndow All predcted vrble re forulted n ter current tte vrble x(k ) nfordon nd future oveent Δu(k j) where j,,,n c - Defne Y vecr predcted output (N p ) Defne ΔU vecr predcted ncreentl tep (N c ) [ Y [ y(k k ) y(k 2 k ) y(k 3 k ) y(k N p k ) ] [ ] [ u(k ) u(k ) u(k 2) u(k N c ) ]

18 Opzon Wndow Output cn be wrfen where F CA CA 2 CA 3 CA N p [ ] Y Fx(k ), ; Eq 3 CB CAB CB CA 2 B CAB CB CA Np BCA Np 2 BCA Np 3 BCA N p N c B

19 Opzon Wndow Set pont gnl r(k ) ue et-pont gnl contnt n opdzdon {}}{ wndow [ ] Set-pont vecr wth n opt wndow R Cot FuncDon N p [{}}{] r(k ), J (R Y ) (R Y ) R, Eq 4

20 Opzon Wndow Cot FuncDon {}}{ [ ] J (R Y ) (R Y ) R, frt ter: n error between predcted output nd et-pont gnl Eq 4 econd ter reflect ze ΔU when J ll poble R dgonl trx for R r w I Nc N c (r w ) where r w tunng preter for cloed loop

21 Opzon Wndow Inert Output funcdon (Eq 3) n Cot funcdon J (Eq 4) nd J expreed : J (R Fx(k )) (R Fx(k )) 2 (R Fx(k )) ( R) Mnze J (Eq 5) wth repect ΔU uch : J 2 (R Fx(k )) 2( R),, OpDl gnl becoe: ( R) (R Fx(k )), Eq 6 Eq 5

22 Opzon Wndow ( R) Note { trx }} { clled Hen trx nd ued ext Recll R_ expreon et-pont nfordon: N p {}}{ R [ { ] }} r(k ){ R r(k ), he opdl oludon gnl lnked et-pont gnl r(k_) nd tte vrble x(k_) uch Eq 6 cn be rewrfen : ( R) ( R r(k ) Fx(k )) Eq 7

23 Recedng Horzon

24 Recedng Horzon OpDl preter vecr ΔU contn Δu(k ),Δu(k ),,Δu(k N c -) Only frt ple Δu(k ) pleented At next ple perod x(k ) ued clculte new equence ΔU Procedure repeted nd yeld recedng horzon lw

25 Illutron Recedng Horzon Illutrn recedng horzon Splng ntnt Horzon wndow

26 Relon LQR MPC lnk clcl lner qudrdc regulr (LQR) for uffcently long predcdon horzon Dfference between predcdve nd LQR predcdve olve opdzdon proble ung ovng De horzon wndow LQR olve e proble wthn fxed wndow

27 MPC Advntge over LQR Movng De horzon wndow Ablty perfor rel-de opdzdon wth hrd contrnt on plnt vrble

28 Cloed-Loop Control Syte

29 {}}{ Cloed-Loop Control Syte Recll ΔU olved ung Eq 7: ( R) ( R r(k ) Fx(k )) ( R) R Eq 7 where relte et-pont chnge nd ( R) F correpond tte feedbck ework wthn frework predcdve he recedng horzon yeld ncreentl u(k ) N c {}}{ [ ] ( R) ( R r(k ) Fx(k )) Eq 8

30 Cloed-Loop Control Syte {[ }}{] Rewrte Eq 8 u(k ) K y r(k ) K pc x(k ), where K_y frt eleent K_pc frt row ( R) R ( R) F ework Eq 9 K_pc tte feedbck gn vecr Inert Eq 9 n degn odel (Eq ) yeld x(k )Ax(k) BK pc x(k)bk y r(k) (A BK pc )x(k)bk y r(k)

31 Cloed-Loop Control Syte he cloed-loop Egenvlue cn be evluted fro cloed loop equdon: det[λi (A BK pc )] Note: Lt Colun F dendcl Rbr_ K_y dendcl lt eleent K_pc K_pc cn n be wrfen Recll tte vrble vecr y x(k )[ (k) ], K pc [K x K y ],

32 Cloed-Loop Control Syte (Exple Repone) x (k )x (k)bu(k) x (k), 8 b clrfn te-pce N p N c 4, pred [ (k ) ] [ ][ ][ ] (k) ][ ] b u(k) y(k ) b [ ] [ ] [ ] [ ] (k) F R

33 Repon olunby 5 ) Fwe 83 ( R) 2 (R r(k x(k ))frt-order (7) Exple Suppoe yte decrbed , he optl t optl olun let r rble x(k followng equn: w 2 R F rble x(k v followng equn: ; )) v F 2 Exple yte I trx, ))72 (Suppoe R ) ( R frt-order r(k ) F x(k n: gven below, where 4 4 dentty 4 e 2 Suppoe frt-order yte decrbed by tte equf R ncreent ; gnf frt two ) he gntude n: ( R ) ( R r(k F x(k )) (7) ( R ) ( R r(k ) F x(k )) (7) Cloed-Loop Control Syte Exple 2 Suppoe frt-order yte decrbed by 6 x2 (k 4 )6 x bu(k) 3 (k) coponent no b longer 2 4 Fgure o 24lt4two re zero n: 2( I) (4 Splng RIntnt 6 Intnt F8x(k (22) ))2 Splng Intnt Splng Splng Intnt 2 by x (k ) x (k) uppoe frt-order yte decrbed tte equppoe frt-order yte decrbed by tte equ x (k), Splng Intnt Splng Intnt! " x (k ) x (k) bu(k) 2 een tte vrble Itdentcl output y dd not rech ecr R lt colun n trx F R Note vecr R dentcl lt colun n trx F vecr on Note te vrble wth no weght on (b) Stte vrble wth weght on u ble wth no weght on (b) Stte vrble wth weght u x (k), x (k ) x (k) bu(k) wth weght u te vrble wth nowhere weght on (b) Stte vrble on pproche x8 (k), (8), however, zero h becue lt colun F trx dentcl R nd b re clr Fnd ugented tt Gven: lt colun F trx dentcl R h becue lt colu x (k), At te, vecr x(k [ 2] In frt ce, xk (k choce, ) tte x (k) bu(k) th )where Aung tudy predcn N nd follow fro copron It ee f horzon 8 nd b wnt re clrhorzon Fnd N pwe x (k ) x (k) bu(k) Wth gntude frt two ncreent gnf 8 nd b re clr Fnd ugented tte-pce odel grror, tte vecr x(k [ 2] 4 In frt At te k8, outpu t )reduced wthout ny condern ce, between predcted Ytke nd 2 6horzon 2 nd 4 Copron R lte coponent for predcn future ; lne (2) y optl olun Key: lne () where 8 nd b re clr Fnd ugented tc Aung predcn N eng cuuly, n t longer for gnl cntly reduced, lo coponent re no zeropfgure b optl x (8) Splng predcn horzon N olun lt ndtwo horzon Nc 4,longer clcu; lne (2) y Copron Key: lne () p(k), Splng Intnt Intnt x (k), (8) he gntudey chnge Nely, rwf nd hen, optl (2) error between predcted Yk ;lne y not Copron optl olun Key: lne () predcn reduced wthout ny condern predcted nd R R, output Aung t te quntte Aung predcn horzon nd horzon becue lte coponent for predcn coponent for future YN,p nd how optl tte vrble It een output y dd rech te (e, vlue n decree ore lowly), ound through clculn ble wth no weght on (b) Stte vrble wth weght on u nd b clr ugented re Fnd odel x(k lte coponent for predcn outp th exple), r(k tte-pce nd tte vecr )future [ gntude ch chnge Nely, r hen, optl ) unng (No Input RetrcDon): R, F nd Aung t te k (k for e d b re clr Fnd ugented tte-pce odel R, F nd Aung t quntte w et-pont vlue, however, pproche zero energy dtrbuted over longer perod future te "!effect r(k decy zero o exne rrww on R, F [ nd Aung t wte k quntte edcn N nd horzon N 4, optl olun wth repect ce where r weght horzon,clcup c decy zero o exne effect weght on ple), ) nd tte vecr x(k ) 2] fnd found through clcult th exple), r(k ) nd tte vecr dcn horzon N nd horzon N 4, clcuan obervn follow fro copron tudy It ee f we wnt clculn reult p9, whle c 64 ) ( th R ntnng exple), F x(k ))r(k rw)72 tte vecr x(k ) [ N( he yhencreng c nd he optl olun r on l olun, we let r onent for predcn future output Y, nd nd copre reult w he olun l olun, let roptl longer nd rnd, olun wth repect we ce where rtke w w optl w decy zero o exne effect weght olun wth repect r ce ent for predcn future output Y, ove cuuly, n t for wgnl gntude eleent n reducng, but y re optl olun wth repect ce where w gven below, where I 4 4 dentty trx, R, F nd Aung t te k (k for! "ore pre reult ven 4 dentty trx, optl We wthout weghtng on ncreentl, lt two elenote tedy lne ; (2) y becue Copron Control Key: lne () nd copre reult t tte (e, vlue n decree lowly), rech olun R F nd Aung t te k (k for unng (Retrct Input): he optl olun olun, we let r nd copre reult w ) ( ( frt 8 eleent: 64 equn ) nd ( vecr F3)x(k [ r(k ( Solun ugented tte-pce tte ) 2] fnd )) ent 2) R nd u(k x(k, whle 72 frt two, eleent hve ) u(k he where optl %( dtrbuted longer perod future te tteenergy ) [ over (k )he nd vecr x(k 2], &fnd & % % & % & below, I 4 4 dentty trx, ( I) R F x(k )) (22) I) ( R F x(k )) (22) on ugented tte-pce equn r lrge gntude Fgure how chnge tte vrble n We wth repect by ncreng ce where rw nd rw ", (k ) rw b equ Solun he ugented 9, whle ntnng rtte-pce reult cn verfy th N Solun he ugented tte-pce equn he c w(k) nd, wth repect ce where r! " % & % & % & % & w" where we cn ee predcted output y h reched dered et-pont We note wthout wegh he reult thout weghtng on ncreentl, lt two % eleent & % & % & &ele%% u(k) & re % & % y(k ) b (k ) (k) b how gntude n reducng, but y reult decy zero o exne effect weght r on w bnd I) ( R u(k) F )ent % u(k ) (k (k) (k u(k &2)(22) ( x(k )) (k y(k ) b 2) nd u(k 3), whle frt two eleent hve gnfcnt for frt 8 eleent: ' ( y(k ")he b (k) unng Control hh ce(retrct where Nc Input): 4, we when N 9, optl olun olun, we let r & % note y(k ) c w!tte-pce ugented equn choce, frt two ncreent gnfgntude frt two ncreent gnf rr lrge Fg & % %gntude ' how ( (k)! " gntude Fgure chnge tte vrble ' ( ugented tte-pce equn % &dfferent % & 64 %re (k) b & 4 79 r n re lghtly fro prevou ce &trx, (9) educed, lo coponent re no longer zero Fgure b below, where I 4 dentty ' ( educed, lt two coponent no longer zero Fgure (k pr where we cn ee (k ) (k) b & % & % & % & et-pont ehe predcted output y h reched dered Bed onit F ndoutput trce tke followng for vrble u(k) optl tte It(2), (k) een output y dd dd not rech he een y not rech (k ) b y(k ) b n(2), wth trce tke followng for: epont n lterntve wy fnd nu cot two u(k) ncreent F nd nd vlue, however, pproche zero In copron ce where N 4, we note when N 9, ce, gntude frt gnf(2), Bed on trce tke followng for pont vlue F, however, pproche zero & % c c ( I) ( R F x(k )) (22) y(k ) b CA CB trce th qure ' fro ( (k) Bed on (2), F nd tke etng h n ntutve pproch, lo bervn follow copron tudy It ee f we wnt & lghtly frt four preter ncopron re dfferent fro prevou ce obervn follow tudy It f we wnt CB 2 CA no CAB!CAlt "ee d, lo two coponent re longer zero Fgure ( % (9) CA CB b CB ' fro (Exple: unng Preter)

34 Repo whch [ for Begnner, ], refore denote lt ele2 y dentcl B C rete-te q ntegrr 2Kodule n MPC new equence gnl procedure repeted q dcrete-te n: e, vrble x(k followng equn: h ) v n: q 4 Notng tte vrble vecr x(k, ) [ (k) ]! " u(k) te gve recedng horzon Aby cloed-loop yte obtned lw u(k) ubttutng (29) y(, we ],F where K K pc x )K y x corre (R r(k [K K K ( R ) ( ) cn wrte R )y Exple x(k )) (7) F R ; efnn 5 h exple wll exne cloed-loop feedbc x (k ) x (k) bu(k) 3 x (k ) x (k) bu(k) x (k relted ) u(k) q eedbck gnvecr x (k), nd Ky correpond yte equn; chngng ndex k k, ledng c (k) ce generted fro Exple 2 nd egenvlue cloed le 4 We llutrte th procedure by contnung Exple 2, where we block x n cloed-loop dbrelted q obtn x Suppoe hen, frt-order yte C decrbed by tte equ K x (k), (8) (k), A y K wth weght r nd r order wth decrpn denote edctveyte yte ntte-pce Fgure 3 where q x w w! ) x(k) BKy r x(k! " " Ax(k) BKpc A u(k) odel he8 dgr tte feedbck tructure for ( q re 8 clr ( R ) Fugented ) clr 8 Fnd K q where nd b re ugented tte-p )operr pc where nd bhow Fnd tte-pce (A BK )x(k) BK pc y r(k) r n whch x odel predcn (DMPC) wth ntegrl cn (k ) x (k) bu(k) q x (k ) 8x (k) u(k) Aung predcn horzon N nd horzon Aung predcn horzon N nd horzon N 4, clcu R dentcl lt n, we hve Solun Whenyte colun weght rpw Hence, egenvlue cloed-loop re clculted by evlutng c p ctrx F N K Gven: cr denote dcrete-te ntegrr 6 qcrete-te predctve 2output Y A K xcloed-loop (8) trx A cloed-loop BK, future where, fro Exple 4 egenvlue 6 2 yte x lte coponent for predcn output Y, nd lte coponent for predcn future (k), pc hu, egenvlue cn be evluted thro Fg 3 Block dgr dcrete-t lt colun F trx dentcl R Splng Intnt Splng Intnt h wll cloed-loop feedbck gn u(k) n exple wll ce he ntl exne We ) t for R conder rt q te 2 coputn w * F ) tr*equn:, F nd Aung te k (k quntte chrctertc R, nd Aung quntte k (k odelclculte Egenvlue 8 u(k) 8 nd b re clr Fnd ugented tte-pce q ro Exple 2 nd egenvlue cloed-loop yte K y, tte vecr x(k )(b) [ tte frt ce, nd u(9) on re x() [ 2] u r(k And ; )B vecr x(k!2] "In[ Augented Syte: ble wth no weght on Stte vrble wth weght on th exple), r(k ) tte ) 2], fnd 7 th exple), nd vecr x(k ) [ 2] nd r w predcn horzon N nd horzon N 4, clcu8 7 on c ( R ) k)λ2 649 p, pproxtely K ( q hey re λ 649 nd λ2 64 r (A r BK )]) ywthout Fg 3 Block where dgr det[λi predctve yte dcrete-te pc nd, optl olun wth repect ce r reduced ny condern redcted Y nd R K w w nd optl olun wth repect ce where x ponent for predcn future Y, nd outpurgn plne w K coplex x on ple kcopre optl w prevouly co te, reult we hve en weght rw At, nd copre R RetrcDon):, F nd x nd Aung t w te k (khen, for reult pecl unng (No Input f chnge Nely, r optl nd A, K Becue tructure trce C we 7 7 u(9) hve When λweght rw, hve u() 72 Aung, n gnl hey re λ 649 nd 649, pproxtely 2 e), r(k ) nd tte vecr, fnd [, ], refore K de x(k ) [2] dentcl R, whch ; lne (2) y! y " Copron optl olun Key: lne () orgn wth coplex plne "y()!nd 2, he 72 nt clculn u() " u(9) u() nd x () we! wth Solun he ugented tte-pce equn r, un repect ce where r w w he ugented tte-pce equn 8 ent pc K dgr Notng x(ky Block ( tte R ) vrble (predctve F )vecr ) K pc 3 Block dcrete-te predctve When weght rw dgr, we hve ulted K (Solun R )plnt ( tte Fg )Fg y next 3 dcrete-te yt te vrble % & % & % & % & Block dgr dcrete-te predctve yte e3 reult & % b & K % y, we & [Kx K % nd wth!defnn! & %"Kpc cn wrte " (k ) (k) cloed-loop u(k) (k) reb(clculted Ky yte R ) b( Hence, egenvlue ( ) 2453 (k ) 64 R ) pond feedbck gn vecr relted u(k) 72 ) R F x(k )) ( 7 ( (k), nd 649 8x ) λy(k " 7"b 649 λ 649, re pproxtely on 2y(k 7! () () u() 88 (26) egenvlue he ugented tte-pce equn ) br, 2453! x"nd! hey nd λ 649 BK pc cloed-loop trx A, pprox where, fr hey re λ 649 nd λ 649,pproxt % K 2 2 o exne decy zero weght on &effect relted ( R ) ( ) feedbck hen, we obtn cl y gn coplex plne w 8 ( R ) ( F ) K pc & % % & % &2 %orgnorgn & ' &(%coplex plne (k) coplex plne ) * ) (9) * Fgure 3 wh ' ( weght r, we hve w (k) 68 (k ) nforn (k) gr predctve yte n bfor unng (Retrct Control Input): nvlue cloed-loop yte re clculted by evlutng, new plnt () 88 2 nd he optl olun olun, we let r u(k) w 8! " When weght r, we hve thout weghtng on ncreentl, lt two elewhen weght r, we hve w w!pc, where, " Exple fee ) A BK bfro bckwrd hft operr how tte A Khe ;dgr B y(k cloed-loop trx ( R ) (! " pc hen we obtn 88, whch for x() 8! "! " & % below, where I 4 4 dentty trx,! " )KR ) ( nd, nteg hvewth *'6939 ) 3) dcrete odel 2453 Bed ) u(k whle ( followng frt predcn 2453 Kpc ( two for: R )eleent ( F ) (DMPC) 6939 (2), F)( F( nd tke R ) ) (k) trce 2453 * y on Wth th gn vecr, egenvlue t 8 Bed on (2), F nd trce tke followng for: (9) A ; B denote dcrete-te ntegrr odule! "! " Wth re cloed-loop! q "egenvlue gntude Fgure chnge j542, tte vrble th gn vecr, yte re 8 lue cloed-loop yte λ 853 ± ndctng dyn how ( K R ) ( ) 2453 CB,2 y ( ) ( R CA F x()) F KyR ndctng ( )) R ) ( ) (22) 2453yte cloed-loop 853 ± j542, dync ( I) ( x(k CA CB n f! "! " Exple 5 h exple wll exne cloed-loop uch lower repone thn one 2 he dync cloed-loop yte hve output y h reched dered et-pont 2), F nd trce tke followng for: predcted CA CAB CB 2repone uch thn one n ce when pc (! R ) ( F3 ) lower fro " rw CA CAB CB ce generted Exple 2 nd egenvlue 2 d optl u() u() u() 296 h new ne n ce when r CA CA B Suppoe CAB CB Suppoe w n vecr, CA egenvlue cloed-loop yte re λ65 Exple 6 contnuou-t,2 CB Exple 6 contnuou-te yte decrbed "CAr B CAB CB! " wthca weght r! nd Cloed-Loop Control Syte (Exple: unng Preter)

35 Nuercl Intblty Ebedded ntegrr() reult n t let one egenvlue on unt crcle A predcdon horzon N p becoe lrge nuercl ntblty occur Stblty cnnot be gurnteed wth ll predcdon N p nd horzon N c preter Stblty cn be checked N p nd N c becoe tunng preter odfcdon cn overcoe ue nd tblty cn be gurnteed (Ch 4)

36 Exple ] x (k ) Syte [ ] x (k) [ ] x (k) t do N c 4 n f N p 2 [ 5 ] u(k) Effect r_w on output repone? Effect r_w on nput? Look t r_w v r_w 2

37 Exple R_w Repone efle t roughly 5 tep Control nput between 6 nd -4

38 Exple R_w 2 Repone efle t roughly 8 tep Control nput between 3 nd -8

39 Iportnt MPC opc Cover n Future OpDzDon nd QudrDc Progrng MPC nd LQR Input Contrnt Output contrnt Lguerre B FuncDon nd MPC MIMO MPC Stblty nd MPC

40 Contrnt Convex OpDzDon

41 Contrnt nd Generl Convex Opzon Mnze cot funcdon Subject J 2 x Ex x F 2 Mx γ, Convex opdzdon technque requred: Pre-Dul Method Hldreth QudrDc Progrng Procedure

42 Forulte Contrnt Contrnt nert n cot funcdon Becoe nequlde: In trx for: n x [ I I ] n x [ ] n x Note th ft generl contrnt for 2 Mx γ,

43 QueDon? hnk You!

8. INVERSE Z-TRANSFORM

8. INVERSE Z-TRANSFORM 8. INVERSE Z-TRANSFORM The proce by whch Z-trnform of tme ere, nmely X(), returned to the tme domn clled the nvere Z-trnform. The nvere Z-trnform defned by: Computer tudy Z X M-fle trn.m ued to fnd nvere

More information

v v at 1 2 d vit at v v 2a d

v v at 1 2 d vit at v v 2a d SPH3UW Unt. Accelerton n One Denon Pge o 9 Note Phyc Inventory Accelerton the rte o chnge o velocty. Averge ccelerton, ve the chnge n velocty dvded by the te ntervl, v v v ve. t t v dv Intntneou ccelerton

More information

ECEN 5807 Lecture 26

ECEN 5807 Lecture 26 ECEN 5807 eture 6 HW 8 due v D Frdy, rh, 0 S eture 8 on Wed rh 0 wll be leture reorded n 0 he week of rh 5-9 Sprng brek, no le ody: Conlude pled-dt odelng of hghfrequeny ndutor dyn n pek urrentode ontrolled

More information

Quick Visit to Bernoulli Land

Quick Visit to Bernoulli Land Although we have een the Bernoull equaton and een t derved before, th next note how t dervaton for an uncopreble & nvcd flow. The dervaton follow that of Kuethe &Chow ot cloely (I lke t better than Anderon).

More information

UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS. M.Sc. in Economics MICROECONOMIC THEORY I. Problem Set II

UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS. M.Sc. in Economics MICROECONOMIC THEORY I. Problem Set II Mcroeconomc Theory I UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS MSc n Economcs MICROECONOMIC THEORY I Techng: A Lptns (Note: The number of ndctes exercse s dffculty level) ()True or flse? If V( y )

More information

Let us look at a linear equation for a one-port network, for example some load with a reflection coefficient s, Figure L6.

Let us look at a linear equation for a one-port network, for example some load with a reflection coefficient s, Figure L6. ECEN 5004, prng 08 Actve Mcrowve Crcut Zoy Popovc, Unverty of Colordo, Boulder LECURE 5 IGNAL FLOW GRAPH FOR MICROWAVE CIRCUI ANALYI In mny text on mcrowve mplfer (e.g. the clc one by Gonzlez), gnl flow-grph

More information

Principle Component Analysis

Principle Component Analysis Prncple Component Anlyss Jng Go SUNY Bufflo Why Dmensonlty Reducton? We hve too mny dmensons o reson bout or obtn nsghts from o vsulze oo much nose n the dt Need to reduce them to smller set of fctors

More information

Kinematics Quantities. Linear Motion. Coordinate System. Kinematics Quantities. Velocity. Position. Don t Forget Units!

Kinematics Quantities. Linear Motion. Coordinate System. Kinematics Quantities. Velocity. Position. Don t Forget Units! Knemtc Quntte Lner Phyc 11 Eyre Tme Intnt t Fundmentl Tme Interl t Dened Poton Fundmentl Dplcement Dened Aerge g Dened Aerge Accelerton g Dened Knemtc Quntte Scler: Mgntude Tme Intnt, Tme Interl nd Speed

More information

APPENDIX 2 LAPLACE TRANSFORMS

APPENDIX 2 LAPLACE TRANSFORMS APPENDIX LAPLACE TRANSFORMS Thi ppendix preent hort introduction to Lplce trnform, the bic tool ued in nlyzing continuou ytem in the frequency domin. The Lplce trnform convert liner ordinry differentil

More information

Linear predictive coding

Linear predictive coding Liner predictive coding Thi ethod cobine liner proceing with clr quntiztion. The in ide of the ethod i to predict the vlue of the current ple by liner cobintion of previou lredy recontructed ple nd then

More information

a = Acceleration Linear Motion Acceleration Changing Velocity All these Velocities? Acceleration and Freefall Physics 114

a = Acceleration Linear Motion Acceleration Changing Velocity All these Velocities? Acceleration and Freefall Physics 114 Lner Accelerton nd Freell Phyc 4 Eyre Denton o ccelerton Both de o equton re equl Mgntude Unt Drecton (t ector!) Accelerton Mgntude Mgntude Unt Unt Drecton Drecton 4/3/07 Module 3-Phy4-Eyre 4/3/07 Module

More information

Chapter I Continuous Control Systems : A Review

Chapter I Continuous Control Systems : A Review Chpter I Contnuou Control Sytem : A Revew I.D. Lnu, G. Zto - "Dgtl Control Sytem" - Chpter Chpter. Contnuou Control Sytem : A Revew. Contnuou-tme Moel.. me Domn.. Frequency Domn..3 Stblty..4 me Repone..5

More information

x=0 x=0 Positive Negative Positions Positions x=0 Positive Negative Positions Positions

x=0 x=0 Positive Negative Positions Positions x=0 Positive Negative Positions Positions Knemtc Quntte Lner Moton Phyc 101 Eyre Tme Intnt t Fundmentl Tme Interl Defned Poton x Fundmentl Dplcement Defned Aerge Velocty g Defned Aerge Accelerton g Defned Knemtc Quntte Scler: Mgntude Tme Intnt,

More information

Position and Speed Control. Industrial Electrical Engineering and Automation Lund University, Sweden

Position and Speed Control. Industrial Electrical Engineering and Automation Lund University, Sweden Poton nd Speed Control Lund Unverty, Seden Generc Structure R poer Reference Sh tte Voltge Current Control ytem M Speed Poton Ccde Control * θ Poton * Speed * control control - - he ytem contn to ntegrton.

More information

Lecture 3 Camera Models 2 & Camera Calibration. Professor Silvio Savarese Computational Vision and Geometry Lab

Lecture 3 Camera Models 2 & Camera Calibration. Professor Silvio Savarese Computational Vision and Geometry Lab Lecture Cer Models Cer Clbrton rofessor Slvo Svrese Coputtonl Vson nd Geoetry Lb Slvo Svrese Lecture - Jn 7 th, 8 Lecture Cer Models Cer Clbrton Recp of cer odels Cer clbrton proble Cer clbrton wth rdl

More information

Partially Observable Systems. 1 Partially Observable Markov Decision Process (POMDP) Formalism

Partially Observable Systems. 1 Partially Observable Markov Decision Process (POMDP) Formalism CS294-40 Lernng for Rootcs nd Control Lecture 10-9/30/2008 Lecturer: Peter Aeel Prtlly Oservle Systems Scre: Dvd Nchum Lecture outlne POMDP formlsm Pont-sed vlue terton Glol methods: polytree, enumerton,

More information

Chapter Newton-Raphson Method of Solving a Nonlinear Equation

Chapter Newton-Raphson Method of Solving a Nonlinear Equation Chpter.4 Newton-Rphson Method of Solvng Nonlner Equton After redng ths chpter, you should be ble to:. derve the Newton-Rphson method formul,. develop the lgorthm of the Newton-Rphson method,. use the Newton-Rphson

More information

Harmonic oscillator approximation

Harmonic oscillator approximation armonc ocllator approxmaton armonc ocllator approxmaton Euaton to be olved We are fndng a mnmum of the functon under the retrcton where W P, P,..., P, Q, Q,..., Q P, P,..., P, Q, Q,..., Q lnwgner functon

More information

Collapsing to Sample and Remainder Means. Ed Stanek. In order to collapse the expanded random variables to weighted sample and remainder

Collapsing to Sample and Remainder Means. Ed Stanek. In order to collapse the expanded random variables to weighted sample and remainder Collapg to Saple ad Reader Mea Ed Staek Collapg to Saple ad Reader Average order to collape the expaded rado varable to weghted aple ad reader average, we pre-ultpled by ( M C C ( ( M C ( M M M ( M M M,

More information

Intermediate Applications of Vectors and Matrices Ed Stanek

Intermediate Applications of Vectors and Matrices Ed Stanek Iteredite Applictio of Vector d Mtrice Ed Stek Itroductio We decribe iteredite opertio d pplictio of vector d trice for ue i ttitic The itroductio i iteded for thoe who re filir with bic trix lgebr Followig

More information

When current flows through the armature, the magnetic fields create a torque. Torque = T =. K T i a

When current flows through the armature, the magnetic fields create a torque. Torque = T =. K T i a D Motor Bic he D pernent-gnet otor i odeled reitor ( ) in erie with n inductnce ( ) nd voltge ource tht depend on the ngulr velocity of the otor oltge generted inide the rture K ω (ω i ngulr velocity)

More information

Analysis of Variance and Design of Experiments-II

Analysis of Variance and Design of Experiments-II Anly of Vrne Degn of Experment-II MODULE VI LECTURE - 8 SPLIT-PLOT AND STRIP-PLOT DESIGNS Dr Shlbh Deprtment of Mthemt & Sttt Indn Inttute of Tehnology Knpur Tretment ontrt: Mn effet The uefulne of hvng

More information

Exponents and Powers

Exponents and Powers EXPONENTS AND POWERS 9 Exponents nd Powers CHAPTER. Introduction Do you know? Mss of erth is 5,970,000,000,000, 000, 000, 000, 000 kg. We hve lredy lernt in erlier clss how to write such lrge nubers ore

More information

Introduction to Numerical Integration Part II

Introduction to Numerical Integration Part II Introducton to umercl Integrton Prt II CS 75/Mth 75 Brn T. Smth, UM, CS Dept. Sprng, 998 4/9/998 qud_ Intro to Gussn Qudrture s eore, the generl tretment chnges the ntegrton prolem to ndng the ntegrl w

More information

Chapter Newton-Raphson Method of Solving a Nonlinear Equation

Chapter Newton-Raphson Method of Solving a Nonlinear Equation Chpter 0.04 Newton-Rphson Method o Solvng Nonlner Equton Ater redng ths chpter, you should be ble to:. derve the Newton-Rphson method ormul,. develop the lgorthm o the Newton-Rphson method,. use the Newton-Rphson

More information

Rank One Update And the Google Matrix by Al Bernstein Signal Science, LLC

Rank One Update And the Google Matrix by Al Bernstein Signal Science, LLC Introducton Rnk One Updte And the Google Mtrx y Al Bernsten Sgnl Scence, LLC www.sgnlscence.net here re two dfferent wys to perform mtrx multplctons. he frst uses dot product formulton nd the second uses

More information

Dynamics of Linked Hierarchies. Constrained dynamics The Featherstone equations

Dynamics of Linked Hierarchies. Constrained dynamics The Featherstone equations Dynm o Lnke Herrhe Contrne ynm The Fethertone equton Contrne ynm pply ore to one omponent, other omponent repotone, rom ner to r, to ty tne ontrnt F Contrne Boy Dynm Chpter 4 n: Mrth mpule-be Dynm Smulton

More information

1.B Appendix to Chapter 1

1.B Appendix to Chapter 1 Secon.B.B Append o Chper.B. The Ordnr Clcl Here re led ome mporn concep rom he ordnr clcl. The Dervve Conder ncon o one ndependen vrble. The dervve o dened b d d lm lm.b. where he ncremen n de o n ncremen

More information

The Schur-Cohn Algorithm

The Schur-Cohn Algorithm Modelng, Estmton nd Otml Flterng n Sgnl Processng Mohmed Njm Coyrght 8, ISTE Ltd. Aendx F The Schur-Cohn Algorthm In ths endx, our m s to resent the Schur-Cohn lgorthm [] whch s often used s crteron for

More information

E-Companion: Mathematical Proofs

E-Companion: Mathematical Proofs E-omnon: Mthemtcl Poo Poo o emm : Pt DS Sytem y denton o t ey to vey tht t ncee n wth d ncee n We dene } ] : [ { M whee / We let the ttegy et o ech etle n DS e ]} [ ] [ : { M w whee M lge otve nume oth

More information

Discrete Model Predic.ve Control

Discrete Model Predic.ve Control Dcete Model Pedcve Contol Loell on 5- - Outlne MPC: asc Idea State Space Augented Syste Model OpCzaCon Wndo Recedng Hozon Contol Exaple Refeences Model PedcCve Contol Syste Desgn IpleentaCon Usng MALA

More information

Solubilities and Thermodynamic Properties of SO 2 in Ionic

Solubilities and Thermodynamic Properties of SO 2 in Ionic Solubltes nd Therodync Propertes of SO n Ionc Lquds Men Jn, Yucu Hou, b Weze Wu, *, Shuhng Ren nd Shdong Tn, L Xo, nd Zhgng Le Stte Key Lbortory of Checl Resource Engneerng, Beng Unversty of Checl Technology,

More information

20.2. The Transform and its Inverse. Introduction. Prerequisites. Learning Outcomes

20.2. The Transform and its Inverse. Introduction. Prerequisites. Learning Outcomes The Trnform nd it Invere 2.2 Introduction In thi Section we formlly introduce the Lplce trnform. The trnform i only pplied to cul function which were introduced in Section 2.1. We find the Lplce trnform

More information

Root Locus Techniques

Root Locus Techniques Root Locu Technque ELEC 32 Cloed-Loop Control The control nput u t ynthezed baed on the a pror knowledge of the ytem plant, the reference nput r t, and the error gnal, e t The control ytem meaure the output,

More information

Fitting a Polynomial to Heat Capacity as a Function of Temperature for Ag. Mathematical Background Document

Fitting a Polynomial to Heat Capacity as a Function of Temperature for Ag. Mathematical Background Document Fttng Polynol to Het Cpcty s Functon of Teperture for Ag. thetcl Bckground Docuent by Theres Jul Zelnsk Deprtent of Chestry, edcl Technology, nd Physcs onouth Unversty West ong Brnch, J 7764-898 tzelns@onouth.edu

More information

Introduction to Modern Control Theory

Introduction to Modern Control Theory Itroductio to Moder Cotrol Theory MM : Itroductio to Stte-Spce Method MM : Cotrol Deig for Full Stte Feedck MM 3: Etitor Deig MM 4: Itroductio of the Referece Iput MM 5: Itegrl Cotrol d Rout Trckig //4

More information

Reinforcement learning

Reinforcement learning Reinforcement lerning Regulr MDP Given: Trnition model P Rewrd function R Find: Policy π Reinforcement lerning Trnition model nd rewrd function initilly unknown Still need to find the right policy Lern

More information

Definition of Tracking

Definition of Tracking Trckng Defnton of Trckng Trckng: Generte some conclusons bout the moton of the scene, objects, or the cmer, gven sequence of mges. Knowng ths moton, predct where thngs re gong to project n the net mge,

More information

Math 2142 Homework 2 Solutions. Problem 1. Prove the following formulas for Laplace transforms for s > 0. a s 2 + a 2 L{cos at} = e st.

Math 2142 Homework 2 Solutions. Problem 1. Prove the following formulas for Laplace transforms for s > 0. a s 2 + a 2 L{cos at} = e st. Mth 2142 Homework 2 Solution Problem 1. Prove the following formul for Lplce trnform for >. L{1} = 1 L{t} = 1 2 L{in t} = 2 + 2 L{co t} = 2 + 2 Solution. For the firt Lplce trnform, we need to clculte:

More information

Chapter 13. Gas Mixtures. Study Guide in PowerPoint. Thermodynamics: An Engineering Approach, 5th edition by Yunus A. Çengel and Michael A.

Chapter 13. Gas Mixtures. Study Guide in PowerPoint. Thermodynamics: An Engineering Approach, 5th edition by Yunus A. Çengel and Michael A. Chapter 3 Gas Mxtures Study Gude n PowerPont to accopany Therodynacs: An Engneerng Approach, 5th edton by Yunus A. Çengel and Mchael A. Boles The dscussons n ths chapter are restrcted to nonreactve deal-gas

More information

Problems (Show your work!)

Problems (Show your work!) Prctice Midter Multiple Choice 1. A. C 3. D 4. D 5. D 6. E 7. D 8. A 9. C 9. In word, 3.5*10 11 i E. 350 billion (I nubered 9 twice by itke!) 10. D 11. B 1. D 13. E 14. A 15. C 16. B 17. A 18. A 19. E

More information

Chapter 11. Supplemental Text Material. The method of steepest ascent can be derived as follows. Suppose that we have fit a firstorder

Chapter 11. Supplemental Text Material. The method of steepest ascent can be derived as follows. Suppose that we have fit a firstorder S-. The Method of Steepet cent Chapter. Supplemental Text Materal The method of teepet acent can be derved a follow. Suppoe that we have ft a frtorder model y = β + β x and we wh to ue th model to determne

More information

Reinforcement Learning and Policy Reuse

Reinforcement Learning and Policy Reuse Reinforcement Lerning nd Policy Reue Mnuel M. Veloo PEL Fll 206 Reding: Reinforcement Lerning: An Introduction R. Sutton nd A. Brto Probbilitic policy reue in reinforcement lerning gent Fernndo Fernndez

More information

Math 497C Sep 17, Curves and Surfaces Fall 2004, PSU

Math 497C Sep 17, Curves and Surfaces Fall 2004, PSU Mth 497C Sep 17, 004 1 Curves nd Surfces Fll 004, PSU Lecture Notes 3 1.8 The generl defnton of curvture; Fox-Mlnor s Theorem Let α: [, b] R n be curve nd P = {t 0,...,t n } be prtton of [, b], then the

More information

Lecture 8: Camera Calibration

Lecture 8: Camera Calibration Lecture 8: Cer Clbrton rofessor Fe-Fe L Stnford Vson Lb Fe-Fe L 9-Oct- Wht we wll lern tody? Revew cer preters Affne cer odel (roble Set (Q4)) Cer clbrton Vnshng ponts nd lnes (roble Set (Q)) Redng: [F]

More information

4-4 E-field Calculations using Coulomb s Law

4-4 E-field Calculations using Coulomb s Law 1/11/5 ection_4_4_e-field_clcultion_uing_coulomb_lw_empty.doc 1/1 4-4 E-field Clcultion uing Coulomb Lw Reding Aignment: pp. 9-98 Specificlly: 1. HO: The Uniform, Infinite Line Chrge. HO: The Uniform Dik

More information

8 Transportation Problem Alpha-Beta

8 Transportation Problem Alpha-Beta 8 rnsportton Proble Alph-Bet Now, we ntroduce n ddtonl lgorth for the Htchcock rnsportton proble, whch ws lredy ntroduced before hs s the Alph-Bet Algorth It copletes the lst of soluton pproches for solvng

More information

Current Programmed Control (i.e. Peak Current-Mode Control) Lecture slides part 2 More Accurate Models

Current Programmed Control (i.e. Peak Current-Mode Control) Lecture slides part 2 More Accurate Models Curret Progred Cotrol.e. Pek Curret-Mode Cotrol eture lde prt More Aurte Model ECEN 5807 Drg Mkovć Sple Frt-Order CPM Model: Sury Aupto: CPM otroller operte delly, Ueful reult t low frequee, well uted

More information

MEG 741 Energy and Variational Methods in Mechanics I

MEG 741 Energy and Variational Methods in Mechanics I EG 74 Energy nd rton ethod n echnc I Brendn J. O Tooe, Ph.D. Aocte Profeor of echnc Engneerng Hord R. Hughe Coege of Engneerng Unerty of Ned eg TBE B- (7) 895-885 j@me.un.edu Chter 4: Structur Any ethod

More information

Digital Control System

Digital Control System Digital Control Sytem Summary # he -tranform play an important role in digital control and dicrete ignal proceing. he -tranform i defined a F () f(k) k () A. Example Conider the following equence: f(k)

More information

Jens Siebel (University of Applied Sciences Kaiserslautern) An Interactive Introduction to Complex Numbers

Jens Siebel (University of Applied Sciences Kaiserslautern) An Interactive Introduction to Complex Numbers Jens Sebel (Unversty of Appled Scences Kserslutern) An Interctve Introducton to Complex Numbers 1. Introducton We know tht some polynoml equtons do not hve ny solutons on R/. Exmple 1.1: Solve x + 1= for

More information

Improvements on Waring s Problem

Improvements on Waring s Problem Improvement on Warng Problem L An-Png Bejng, PR Chna apl@nacom Abtract By a new recurve algorthm for the auxlary equaton, n th paper, we wll gve ome mprovement for Warng problem Keyword: Warng Problem,

More information

EFFECTIVE BUCKLING LENGTH OF COLUMNS IN SWAY FRAMEWORKS: COMPARISONS

EFFECTIVE BUCKLING LENGTH OF COLUMNS IN SWAY FRAMEWORKS: COMPARISONS IV EFFETIVE BUING ENGTH OF OUMN IN WAY FRAMEWOR: OMARION Ojectives In the present context, two different pproches re eployed to deterine the vlue the effective uckling length eff n c of colun n c out the

More information

Fig. 1. Open-Loop and Closed-Loop Systems with Plant Variations

Fig. 1. Open-Loop and Closed-Loop Systems with Plant Variations ME 3600 Control ystems Chrcteristics of Open-Loop nd Closed-Loop ystems Importnt Control ystem Chrcteristics o ensitivity of system response to prmetric vritions cn be reduced o rnsient nd stedy-stte responses

More information

Lecture 8: Camera Calibra0on

Lecture 8: Camera Calibra0on Lecture 8: Cer Clbron rofessor Fe- Fe L Stnford Vson Lb Lecture 8 -! Wht we wll lern tody? Revew cer preters Affne cer odel (roble Set (Q4)) Cer clbron Vnshng ponts nd lnes (roble Set (Q)) Redng: [F] Chpter

More information

ECONOMETRIC THEORY. MODULE IV Lecture - 16 Predictions in Linear Regression Model

ECONOMETRIC THEORY. MODULE IV Lecture - 16 Predictions in Linear Regression Model ECONOMETRIC THEORY MODULE IV Lecture - 16 Predictions in Liner Regression Model Dr. Shlbh Deprtent of Mthetics nd Sttistics Indin Institute of Technology Knpur Prediction of vlues of study vrible An iportnt

More information

2. Work each problem on the exam booklet in the space provided.

2. Work each problem on the exam booklet in the space provided. ECE470 EXAM # SOLUTIONS SPRING 08 Intructon:. Cloed-book, cloed-note, open-mnd exm.. Work ech problem on the exm booklet n the pce provded.. Wrte netly nd clerly for prtl credt. Cro out ny mterl you do

More information

Does the Order Matter?

Does the Order Matter? LESSON 6 Does the Order Mtter? LEARNING OBJECTIVES Tody I : writing out exponent ultipliction. So tht I cn: develop rules for exponents. I ll know I hve it when I cn: solve proble like ( b) = b 5 0. Opening

More information

II The Z Transform. Topics to be covered. 1. Introduction. 2. The Z transform. 3. Z transforms of elementary functions

II The Z Transform. Topics to be covered. 1. Introduction. 2. The Z transform. 3. Z transforms of elementary functions II The Z Trnsfor Tocs o e covered. Inroducon. The Z rnsfor 3. Z rnsfors of eleenry funcons 4. Proeres nd Theory of rnsfor 5. The nverse rnsfor 6. Z rnsfor for solvng dfference equons II. Inroducon The

More information

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s A g la di ou s F. L. 462 E l ec tr on ic D ev el op me nt A i ng er A.W.S. 371 C. A. M. A l ex an de r 236 A d mi ni st ra ti on R. H. (M rs ) A n dr ew s P. V. 326 O p ti ca l Tr an sm is si on A p ps

More information

Lecture 4: Piecewise Cubic Interpolation

Lecture 4: Piecewise Cubic Interpolation Lecture notes on Vrtonl nd Approxmte Methods n Appled Mthemtcs - A Perce UBC Lecture 4: Pecewse Cubc Interpolton Compled 6 August 7 In ths lecture we consder pecewse cubc nterpolton n whch cubc polynoml

More information

Calculate the efficiency associated with one rotation of the axle

Calculate the efficiency associated with one rotation of the axle We cn clculte the efficiency of one rottion of the xle by exining the work one. k Mx Your Rie: Workheet hi ctivity will tke you through the tep neee to optiize the work ue in your ouetrp cr. ollow thi

More information

10.2 Series. , we get. which is called an infinite series ( or just a series) and is denoted, for short, by the symbol. i i n

10.2 Series. , we get. which is called an infinite series ( or just a series) and is denoted, for short, by the symbol. i i n 0. Sere I th ecto, we wll troduce ere tht wll be dcug for the ret of th chpter. Wht ere? If we dd ll term of equece, we get whch clled fte ere ( or jut ere) d deoted, for hort, by the ymbol or Doe t mke

More information

On generalized 2-step continuous linear multistep method of hybrid type for the integration of second order ordinary differential equations

On generalized 2-step continuous linear multistep method of hybrid type for the integration of second order ordinary differential equations Avlble onlne t www.colrreerclbrry.co Scolr Reerc brry Arcve o Apple Scence Reerc :- ttp://colrreerclbrry.co/rcve.tl ISSN 9-X CODEN USA AASRC9 On generlze -tep contnuou lner ulttep eto o ybr type or te

More information

Team. Outline. Statistics and Art: Sampling, Response Error, Mixed Models, Missing Data, and Inference

Team. Outline. Statistics and Art: Sampling, Response Error, Mixed Models, Missing Data, and Inference Team Stattc and Art: Samplng, Repone Error, Mxed Model, Mng Data, and nference Ed Stanek Unverty of Maachuett- Amhert, USA 9/5/8 9/5/8 Outlne. Example: Doe-repone Model n Toxcology. ow to Predct Realzed

More information

? plate in A G in

? plate in A G in Proble (0 ponts): The plstc block shon s bonded to rgd support nd to vertcl plte to hch 0 kp lod P s ppled. Knong tht for the plstc used G = 50 ks, deterne the deflecton of the plte. Gven: G 50 ks, P 0

More information

Computer Control Systems

Computer Control Systems Computer Control ytem In th chapter we preent the element and the bac concept of computercontrolled ytem. The dcretaton and choce of amplng frequency wll be frt examned, followed by a tudy of dcrete-tme

More information

1.3 Hence, calculate a formula for the force required to break the bond (i.e. the maximum value of F)

1.3 Hence, calculate a formula for the force required to break the bond (i.e. the maximum value of F) EN40: Dynacs and Vbratons Hoework 4: Work, Energy and Lnear Moentu Due Frday March 6 th School of Engneerng Brown Unversty 1. The Rydberg potental s a sple odel of atoc nteractons. It specfes the potental

More information

PHYS 2421 Fields and Waves

PHYS 2421 Fields and Waves PHYS 242 Felds nd Wves Instucto: Joge A. López Offce: PSCI 29 A, Phone: 747-7528 Textook: Unvesty Physcs e, Young nd Feedmn 23. Electc potentl enegy 23.2 Electc potentl 23.3 Clcultng electc potentl 23.4

More information

STABILITY and Routh-Hurwitz Stability Criterion

STABILITY and Routh-Hurwitz Stability Criterion Krdeniz Technicl Univerity Deprtment of Electricl nd Electronic Engineering 6080 Trbzon, Turkey Chpter 8- nd Routh-Hurwitz Stbility Criterion Bu der notlrı dece bu deri ln öğrencilerin kullnımın çık olup,

More information

Existence and Uniqueness of Solution for a Fractional Order Integro-Differential Equation with Non-Local and Global Boundary Conditions

Existence and Uniqueness of Solution for a Fractional Order Integro-Differential Equation with Non-Local and Global Boundary Conditions Applied Mthetic 0 9-96 doi:0.436/.0.079 Pulihed Online Octoer 0 (http://www.scirp.org/journl/) Eitence nd Uniquene of Solution for Frctionl Order Integro-Differentil Eqution with Non-Locl nd Glol Boundry

More information

Quiz: Experimental Physics Lab-I

Quiz: Experimental Physics Lab-I Mxmum Mrks: 18 Totl tme llowed: 35 mn Quz: Expermentl Physcs Lb-I Nme: Roll no: Attempt ll questons. 1. In n experment, bll of mss 100 g s dropped from heght of 65 cm nto the snd contner, the mpct s clled

More information

PHY2053 Summer C 2013 Exam 1 Solutions

PHY2053 Summer C 2013 Exam 1 Solutions PHY053 Sue C 03 E Soluon. The foce G on o G G The onl cobnon h e '/ = doubln.. The peed of lh le 8fulon c 86,8 le 60 n 60n h 4h d 4d fonh.80 fulon/ fonh 3. The dnce eled fo he ene p,, 36 (75n h 45 The

More information

4. Eccentric axial loading, cross-section core

4. Eccentric axial loading, cross-section core . Eccentrc xl lodng, cross-secton core Introducton We re strtng to consder more generl cse when the xl force nd bxl bendng ct smultneousl n the cross-secton of the br. B vrtue of Snt-Vennt s prncple we

More information

Our focus will be on linear systems. A system is linear if it obeys the principle of superposition and homogenity, i.e.

Our focus will be on linear systems. A system is linear if it obeys the principle of superposition and homogenity, i.e. SSTEM MODELLIN In order to solve a control syste proble, the descrptons of the syste and ts coponents ust be put nto a for sutable for analyss and evaluaton. The followng ethods can be used to odel physcal

More information

CURVE FITTING LEAST SQUARES METHOD

CURVE FITTING LEAST SQUARES METHOD Nuercl Alss for Egeers Ger Jord Uverst CURVE FITTING Although, the for of fucto represetg phscl sste s kow, the fucto tself ot be kow. Therefore, t s frequetl desred to ft curve to set of dt pots the ssued

More information

Introduction to Electronic Circuits. DC Circuit Analysis: Transient Response of RC Circuits

Introduction to Electronic Circuits. DC Circuit Analysis: Transient Response of RC Circuits Introduction to Electronic ircuits D ircuit Anlysis: Trnsient esponse of ircuits Up until this point, we hve een looking t the Stedy Stte response of D circuits. StedyStte implies tht nothing hs chnged

More information

An Ising model on 2-D image

An Ising model on 2-D image School o Coputer Scence Approte Inerence: Loopy Bele Propgton nd vrnts Prolstc Grphcl Models 0-708 Lecture 4, ov 7, 007 Receptor A Knse C Gene G Receptor B Knse D Knse E 3 4 5 TF F 6 Gene H 7 8 Hetunndn

More information

BAYESIAN CURVE FITTING USING PIECEWISE POLYNOMIALS. Dariusz Biskup

BAYESIAN CURVE FITTING USING PIECEWISE POLYNOMIALS. Dariusz Biskup BAYESIAN CURVE FITTING USING PIECEWISE POLYNOMIALS Darusz Bskup 1. Introducton The paper presents a nonparaetrc procedure for estaton of an unknown functon f n the regresson odel y = f x + ε = N. (1) (

More information

Applied Mathematics Letters

Applied Mathematics Letters Appled Matheatcs Letters 2 (2) 46 5 Contents lsts avalable at ScenceDrect Appled Matheatcs Letters journal hoepage: wwwelseverco/locate/al Calculaton of coeffcents of a cardnal B-splne Gradr V Mlovanovć

More information

Chapter #3 EEE Subsea Control and Communication Systems

Chapter #3 EEE Subsea Control and Communication Systems EEE 87 Chter #3 EEE 87 Sube Cotrol d Commuictio Sytem Cloed loo ytem Stedy tte error PID cotrol Other cotroller Chter 3 /3 EEE 87 Itroductio The geerl form for CL ytem: C R ', where ' c ' H or Oe Loo (OL)

More information

PHYS 705: Classical Mechanics. Small Oscillations: Example A Linear Triatomic Molecule

PHYS 705: Classical Mechanics. Small Oscillations: Example A Linear Triatomic Molecule PHYS 75: Clssicl echnics Sll Oscilltions: Exple A Liner Tritoic olecule A Liner Tritoic olecule x b b x x3 x Experientlly, one ight be interested in the rdition resulted fro the intrinsic oscilltion odes

More information

Chapter 2 Introduction to Algebra. Dr. Chih-Peng Li ( 李 )

Chapter 2 Introduction to Algebra. Dr. Chih-Peng Li ( 李 ) Chpter Introducton to Algebr Dr. Chh-Peng L 李 Outlne Groups Felds Bnry Feld Arthetc Constructon of Glos Feld Bsc Propertes of Glos Feld Coputtons Usng Glos Feld Arthetc Vector Spces Groups 3 Let G be set

More information

6 Roots of Equations: Open Methods

6 Roots of Equations: Open Methods HK Km Slghtly modfed 3//9, /8/6 Frstly wrtten t Mrch 5 6 Roots of Equtons: Open Methods Smple Fed-Pont Iterton Newton-Rphson Secnt Methods MATLAB Functon: fzero Polynomls Cse Study: Ppe Frcton Brcketng

More information

Physics 3A: Linear Momentum. Physics 3A: Linear Momentum. Physics 3A: Linear Momentum. Physics 3A: Linear Momentum

Physics 3A: Linear Momentum. Physics 3A: Linear Momentum. Physics 3A: Linear Momentum. Physics 3A: Linear Momentum Recall that there was ore to oton than just spee A ore coplete escrpton of oton s the concept of lnear oentu: p v (8.) Beng a prouct of a scalar () an a vector (v), oentu s a vector: p v p y v y p z v

More information

Section 14.3 Arc Length and Curvature

Section 14.3 Arc Length and Curvature Section 4.3 Arc Length nd Curvture Clculus on Curves in Spce In this section, we ly the foundtions for describing the movement of n object in spce.. Vector Function Bsics In Clc, formul for rc length in

More information

DCDM BUSINESS SCHOOL NUMERICAL METHODS (COS 233-8) Solutions to Assignment 3. x f(x)

DCDM BUSINESS SCHOOL NUMERICAL METHODS (COS 233-8) Solutions to Assignment 3. x f(x) DCDM BUSINESS SCHOOL NUMEICAL METHODS (COS -8) Solutons to Assgnment Queston Consder the followng dt: 5 f() 8 7 5 () Set up dfference tble through fourth dfferences. (b) Wht s the mnmum degree tht n nterpoltng

More information

Remember: Project Proposals are due April 11.

Remember: Project Proposals are due April 11. Bonformtcs ecture Notes Announcements Remember: Project Proposls re due Aprl. Clss 22 Aprl 4, 2002 A. Hdden Mrov Models. Defntons Emple - Consder the emple we tled bout n clss lst tme wth the cons. However,

More information

Chapter 3. Generator and Transformer Models; The Per-Unit System

Chapter 3. Generator and Transformer Models; The Per-Unit System 3.1 Introduction Chpter 3. Genertor nd Trnforer Model; The Per-Unit Syte 1. Ue of the "per phe" bi to repreent three-phe blnced yte.. Ue the π odel to decribe trniion line (ee Chpter 5). 3. Siple odel

More information

SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics

SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics SCHOOL OF ENGINEERING & BUIL ENVIRONMEN Mthemtics An Introduction to Mtrices Definition of Mtri Size of Mtri Rows nd Columns of Mtri Mtri Addition Sclr Multipliction of Mtri Mtri Multipliction 7 rnspose

More information

LINKÖPINGS TEKNISKA HÖGSKOLA. Fluid and Mechanical Engineering Systems

LINKÖPINGS TEKNISKA HÖGSKOLA. Fluid and Mechanical Engineering Systems (6) Fluid nd Mechnicl Engineering Sytem 008086. ) Cvittion in orifice In hydrulic ytem cvittion occur downtrem orifice with high preure drop. For n orifice with contnt inlet preure of p = 00 br cvittion

More information

Solutions for Homework #9

Solutions for Homework #9 Solutons for Hoewor #9 PROBEM. (P. 3 on page 379 n the note) Consder a sprng ounted rgd bar of total ass and length, to whch an addtonal ass s luped at the rghtost end. he syste has no dapng. Fnd the natural

More information

Effects of polarization on the reflected wave

Effects of polarization on the reflected wave Lecture Notes. L Ros PPLIED OPTICS Effects of polrzton on the reflected wve Ref: The Feynmn Lectures on Physcs, Vol-I, Secton 33-6 Plne of ncdence Z Plne of nterfce Fg. 1 Y Y r 1 Glss r 1 Glss Fg. Reflecton

More information

Resonant FCS Predictive Control of Power Converter in Stationary Reference Frame

Resonant FCS Predictive Control of Power Converter in Stationary Reference Frame Preprnt of the 9th World Congre The Internatonal Federaton of Automatc Control Cape Town, South Afrca. Augut -9, Reonant FCS Predctve Control of Power Converter n Statonary Reference Frame Lupng Wang K

More information

T h e C S E T I P r o j e c t

T h e C S E T I P r o j e c t T h e P r o j e c t T H E P R O J E C T T A B L E O F C O N T E N T S A r t i c l e P a g e C o m p r e h e n s i v e A s s es s m e n t o f t h e U F O / E T I P h e n o m e n o n M a y 1 9 9 1 1 E T

More information

Additional File 1 - Detailed explanation of the expression level CPD

Additional File 1 - Detailed explanation of the expression level CPD Addtonal Fle - Detaled explanaton of the expreon level CPD A mentoned n the man text, the man CPD for the uterng model cont of two ndvdual factor: P( level gen P( level gen P ( level gen 2 (.).. CPD factor

More information

TP 10:Importance Sampling-The Metropolis Algorithm-The Ising Model-The Jackknife Method

TP 10:Importance Sampling-The Metropolis Algorithm-The Ising Model-The Jackknife Method TP 0:Importnce Smpling-The Metropoli Algorithm-The Iing Model-The Jckknife Method June, 200 The Cnonicl Enemble We conider phyicl ytem which re in therml contct with n environment. The environment i uully

More information

P a g e 5 1 of R e p o r t P B 4 / 0 9

P a g e 5 1 of R e p o r t P B 4 / 0 9 P a g e 5 1 of R e p o r t P B 4 / 0 9 J A R T a l s o c o n c l u d e d t h a t a l t h o u g h t h e i n t e n t o f N e l s o n s r e h a b i l i t a t i o n p l a n i s t o e n h a n c e c o n n e

More information

,..., k N. , k 2. ,..., k i. The derivative with respect to temperature T is calculated by using the chain rule: & ( (5) dj j dt = "J j. k i.

,..., k N. , k 2. ,..., k i. The derivative with respect to temperature T is calculated by using the chain rule: & ( (5) dj j dt = J j. k i. Suppleentary Materal Dervaton of Eq. 1a. Assue j s a functon of the rate constants for the N coponent reactons: j j (k 1,,..., k,..., k N ( The dervatve wth respect to teperature T s calculated by usng

More information

2.3 Least-Square regressions

2.3 Least-Square regressions .3 Leat-Square regreon Eample.10 How do chldren grow? The pattern of growth vare from chld to chld, o we can bet undertandng the general pattern b followng the average heght of a number of chldren. Here

More information