Existence and Uniqueness of Solution for a Fractional Order Integro-Differential Equation with Non-Local and Global Boundary Conditions

Size: px
Start display at page:

Download "Existence and Uniqueness of Solution for a Fractional Order Integro-Differential Equation with Non-Local and Global Boundary Conditions"

Transcription

1 Applied Mthetic doi:0.436/ Pulihed Online Octoer 0 ( Eitence nd Uniquene of Solution for Frctionl Order Integro-Differentil Eqution with Non-Locl nd Glol Boundry Condition Atrct Mehrn Ftei Nihn Aliev Sedght Shhord Deprtent of Mthetic Bku Stte Univerity Bku Azern Deprtent of Applied Mthetic Univerity of Triz Triz Irn E-il: ftei.ehrn@yhoo.co hhord@trizu.c.ir Received Ferury 4 0; revied Septeer 5 0; ccepted Septeer 3 0 In thi pper we prove n iportnt eitence nd uniquene theore for frctionl order Fredhol Volterr integro-differentil eqution with non-locl nd glol oundry condition y converting it to the correponding well known Fredhol integrl eqution of econd kind. The conidered prole in thi pper h een olved lredy nuericlly in []. Keyword: Frctionl Order Integro-Differentil Eqution Non-Locl Boundry Condition Fundentl Solution. Introduction Let conider prole under oundry condition contining non-locl nd glol ter for frctionl order integro-differentil eqution q D y f K t y t t K t y t t d d q j j y y Hi t y t t di j= i d () () q 0 f K t K Hi t i = t nd re continuou rel-vlued function i nd d i i = j = re rel contnt nd oundry condition () re linerly independent.. Eitence nd Uniquene of Solution Theore. Let the function f K j t j = nd Hi t i = re continuou i nd d i. = re rel contnt the oundry condition () re linerly independent nd condition (5) i tified. Then the oundry vlue prole ()-() h unique olution. Proof: Acting in Eqution () y frctionl order derivtive opertor D [] we q get ince q q q q q D D y D f D K t y t t D K t y t t q q D D y = D y d d then we get the eqution (3) D y F M t y t d t M t y t d t Copyright 0 SciRe.

2 M. FATEMI ET AL. 93 q q d F D f = f d d q! q d M t K t d d t q! q d M t K td. d q! Now we write Eqution (3) in the generl fro D y G y (4) (3.) nd ccept tht G y i known then the fundentl olution (ee [3]) i in the for! Y. (5) > 0 < i Heviide unit function. Now we try to get oe ic reltion. The firt of thee reltion i Lgrnge forul. We ultiply oth ide of Eqution (3) y fundentl olution (5) nd integrte the otined epreion on (ee [45]) to get D y Y d G y Y d (7) G y F M t y t d t M t y t dt (7.) integrting y prt on the left hnd ide of epreion (7) nd tking into ccount tht (5) i fundentl olution of (3.) give the firt ic reltion in the for (6) y n D y Y G yyd =0 = y. Hence the firt epreion for the necery condition re otined in the for y D y Y G y Y d =0 y D y Y G yy d =0 (8) (9) It i ey to ee tht the econd epreion in (9) turn into n identity. Indeed it i een fro (5)-(6) the integrl t the right ide of the econd condition contin the vlue of the function which i zero for =. For = the the ution in the econd epreion contin the Heviide function which i zero for =0. Finlly the firt und contin poitive degree of for =0 thee ter ecoe zero t = =. Here for = the the epreion of fundentl olution for = yield the Heviide function. For = = thi ecoe therefore the econd one of necery condition (9) turn into identity. Now we contruct the econd ic epreion to get the econd group of necery condition. For tht we ultiply oth ide of (3) y the derivtive of (5) nd integrte on [67]: D yy d G yy d. Integrting y prt on the left ide of the otined epreion nd tking into ccount (5) nd (6) we get the econd ic reltion follow: y D y Y G yy d ( ) (0) =0 = y nd o the econd group of the necery condition re otined Copyright 0 SciRe.

3 94 M. FATEMI ET AL. y D y Y G y Y d =0 y D yy GyY d. =0 () Siilr to the econd epreion of (9) we cn how tht the econd epreion of () turn into identity. If we continue thi proce in order to get the -th ic reltion we ultiply (3) the -th order derivtive of (5) nd integrte on to get: d D yy G y Y d. Here once integrting y prt on the left ide of the otined epreion give D y Y D yy d = G y Y d. Thu if we tke into ccount tht (5) i the fundentl olution the lt reltion (-th) will e follow: y D y Y G y Y d = ( ) y. () Therefore the lt group of necery condition will e in the for: y D yy G y Y d = y D yy G y Y d = (3) here ove the econd necery condition turn into identity. Now we join to the given linerly independent oundry condition (7) the necery condition in (9) () nd etc. (3) tht re not identitie nd write the yte of liner lgeric eqution otined with repect to the oundry vlue of the unknown function in the following wy. y y y y y y d H t y t d t y y y y y y d H tytd t y y y y Y y Y y y GyY d ( ) y( ) y y y y Y y y y GyY d y y y Y y = G y Y d (4) Copyright 0 SciRe.

4 M. FATEMI ET AL. 95 For olving the yte (4) y the Crer rule it i necery tht it ic deterinnt differ fro zero. Accept tht the following condition i tified 0 0 Y... Y 0 0 ( ) 0 0 Then fro yte (4) we get y d H t y t d t G y Y d = = k k y d d H t y t t G y Y d = = 0 k k k k (5) (6) ( p q) denote the cofctor of the eleent t the interection of p-th row nd q-th colun of the deterinnt. Clculte the following epreion: G y Y F M t y t t M t y t ty d ( ) d d d ( ) Then we get: nd o d d d d F Y Y M t y t t Y M t y t dt F Y d ytd ty M t d ytd ty M t d. G y Y d F M t y t d t (7) F F Y d (8) M t Y M t d Y M td Finlly coing ck to (8) we tke into ccount (6) nd (7) nd write the econd kind Fredhol type integrl eqution [8] for which the oundry vlue prole ()-() i reduced to: y A B t y t d t (9) 0 k 0 k k dk k A Y Y F k dk k Y Y F k FY d 0 k 0 k k (0) Copyright 0 SciRe.

5 96 M. FATEMI ET AL. 0 k 0 k 0 k 0 k Y M t d Y M t d. k = dk k B t Y Hk t Y M k t k ( ) dk k Y Hk t Y M k t () By the hypothei of theore on the function f K j t j = nd Hi t i = the integrl Eqution (9) h unique olution nd o in ll conducted opertion we cn coe ck nd we conclude tht the olution of (9) i the unique olution of oundry vlue prole ()-(). 3. Reference [] D. Nzri nd S. Shhord Appliction of Frctionl Differentil Trnfor Method to the Frctionl Order Integro-Differentil Eqution with Nonlocl Boundry Condition Journl of Coputtionl nd Applied Mthetic Vol. 34 No pp doi:0.06/j.c [] S. G. Sko A. A. Kil nd O. I. Mrichev Frctionl Integrl nd Derivtive Theory nd Appliction Cordon nd Brech Yverdon 993. [3] C. J. Trnter Integrl Trnfor in Mtheticl Phyic Methuen London nd New York 949. [4] V. S. Vldiirov Eqution of Mtheticl Phyic Mir Puliction Mocow 984. [5] G. E. Shilov Mtheticl Anlyi. The Second Specil Coure Nuk Mocow 965. [6] S. M. Hoeini nd N. A. Aliev Sufficient Condition for the Reduction of BVP for PDE with Non-Locl nd Glol Boundry Condition to Fredhol Integrl Eqution (on Rectngulr Doin) Applied Mthetic nd Coputtion Vol. 47 No pp [7] F. Bhri N. Aliev nd S. M. Hoeini A Method for the Reduction of Four Ienionl Mied Prole with Generl Boundry Condition to Syte of Second Kind Fredhol Integrl Eqution Itlin Journl of Pure nd Applied Mthetic No pp [8] N. Aliev nd M. Jhnhehi Solution of Poioin Eqution with Glol Locl nd Non-Locl Boundry Condition Interntionl Journl of Mtheticl Eduction in Science nd Technology Vol. 33 No. 00 pp doi:0.080/ Copyright 0 SciRe.

Math 2142 Homework 2 Solutions. Problem 1. Prove the following formulas for Laplace transforms for s > 0. a s 2 + a 2 L{cos at} = e st.

Math 2142 Homework 2 Solutions. Problem 1. Prove the following formulas for Laplace transforms for s > 0. a s 2 + a 2 L{cos at} = e st. Mth 2142 Homework 2 Solution Problem 1. Prove the following formul for Lplce trnform for >. L{1} = 1 L{t} = 1 2 L{in t} = 2 + 2 L{co t} = 2 + 2 Solution. For the firt Lplce trnform, we need to clculte:

More information

Laplace s equation in Cylindrical Coordinates

Laplace s equation in Cylindrical Coordinates Prof. Dr. I. Ner Phy 571, T-131 -Oct-13 Lplce eqution in Cylindricl Coordinte 1- Circulr cylindricl coordinte The circulr cylindricl coordinte (, φ, z ) re relted to the rectngulr Crtein coordinte ( x,

More information

4-4 E-field Calculations using Coulomb s Law

4-4 E-field Calculations using Coulomb s Law 1/11/5 ection_4_4_e-field_clcultion_uing_coulomb_lw_empty.doc 1/1 4-4 E-field Clcultion uing Coulomb Lw Reding Aignment: pp. 9-98 Specificlly: 1. HO: The Uniform, Infinite Line Chrge. HO: The Uniform Dik

More information

UNIQUENESS THEOREMS FOR ORDINARY DIFFERENTIAL EQUATIONS WITH HÖLDER CONTINUITY

UNIQUENESS THEOREMS FOR ORDINARY DIFFERENTIAL EQUATIONS WITH HÖLDER CONTINUITY UNIQUENESS THEOREMS FOR ORDINARY DIFFERENTIAL EQUATIONS WITH HÖLDER CONTINUITY YIFEI PAN, MEI WANG, AND YU YAN ABSTRACT We estblish soe uniqueness results ner 0 for ordinry differentil equtions of the

More information

Generalized Hermite-Hadamard-Fejer type inequalities for GA-convex functions via Fractional integral

Generalized Hermite-Hadamard-Fejer type inequalities for GA-convex functions via Fractional integral DOI 763/s4956-6-4- Moroccn J Pure nd Appl AnlMJPAA) Volume ), 6, Pges 34 46 ISSN: 35-87 RESEARCH ARTICLE Generlized Hermite-Hdmrd-Fejer type inequlities for GA-conve functions vi Frctionl integrl I mdt

More information

Formulae For. Standard Formulae Of Integrals: x dx k, n 1. log. a dx a k. cosec x.cot xdx cosec. e dx e k. sec. ax dx ax k. 1 1 a x.

Formulae For. Standard Formulae Of Integrals: x dx k, n 1. log. a dx a k. cosec x.cot xdx cosec. e dx e k. sec. ax dx ax k. 1 1 a x. Forule For Stndrd Forule Of Integrls: u Integrl Clculus By OP Gupt [Indir Awrd Winner, +9-965 35 48] A B C D n n k, n n log k k log e e k k E sin cos k F cos sin G tn log sec k OR log cos k H cot log sin

More information

TWO DIMENSIONAL INTERPOLATION USING TENSOR PRODUCT OF CHEBYSHEV SYSTEMS

TWO DIMENSIONAL INTERPOLATION USING TENSOR PRODUCT OF CHEBYSHEV SYSTEMS Proceedings of the Third Interntionl Conference on Mthetics nd Nturl Sciences (ICMNS ) TWO DIMENSIONAL INTERPOLATION USING TENSOR PRODUCT OF CHEYSHEV SYSTEMS Lukit Abrwti, nd Hendr Gunwn Anlsis nd Geoetr

More information

Linear predictive coding

Linear predictive coding Liner predictive coding Thi ethod cobine liner proceing with clr quntiztion. The in ide of the ethod i to predict the vlue of the current ple by liner cobintion of previou lredy recontructed ple nd then

More information

Second degree generalized gauss-seidel iteration method for solving linear system of equations. ABSTRACT

Second degree generalized gauss-seidel iteration method for solving linear system of equations. ABSTRACT Ethiop. J. Sci. & Technol. 7( 5-, 0 5 Second degree generlized guss-seidel itertion ethod for solving liner syste of equtions Tesfye Keede Bhir Dr University, College of Science, Deprtent of Mthetics tk_ke@yhoo.co

More information

EE Control Systems LECTURE 8

EE Control Systems LECTURE 8 Coyright F.L. Lewi 999 All right reerved Udted: Sundy, Ferury, 999 EE 44 - Control Sytem LECTURE 8 REALIZATION AND CANONICAL FORMS A liner time-invrint (LTI) ytem cn e rereented in mny wy, including: differentil

More information

Green function and Eigenfunctions

Green function and Eigenfunctions Green function nd Eigenfunctions Let L e regulr Sturm-Liouville opertor on n intervl (, ) together with regulr oundry conditions. We denote y, φ ( n, x ) the eigenvlues nd corresponding normlized eigenfunctions

More information

On New Inequalities of Hermite-Hadamard-Fejer Type for Harmonically Quasi-Convex Functions Via Fractional Integrals

On New Inequalities of Hermite-Hadamard-Fejer Type for Harmonically Quasi-Convex Functions Via Fractional Integrals X th Interntionl Sttistics Dys Conference ISDC 6), Giresun, Turkey On New Ineulities of Hermite-Hdmrd-Fejer Type for Hrmoniclly Qusi-Convex Functions Vi Frctionl Integrls Mehmet Kunt * nd İmdt İşcn Deprtment

More information

Bernoulli Numbers Jeff Morton

Bernoulli Numbers Jeff Morton Bernoulli Numbers Jeff Morton. We re interested in the opertor e t k d k t k, which is to sy k tk. Applying this to some function f E to get e t f d k k tk d k f f + d k k tk dk f, we note tht since f

More information

APPENDIX 2 LAPLACE TRANSFORMS

APPENDIX 2 LAPLACE TRANSFORMS APPENDIX LAPLACE TRANSFORMS Thi ppendix preent hort introduction to Lplce trnform, the bic tool ued in nlyzing continuou ytem in the frequency domin. The Lplce trnform convert liner ordinry differentil

More information

Calculus of variations with fractional derivatives and fractional integrals

Calculus of variations with fractional derivatives and fractional integrals Anis do CNMAC v.2 ISSN 1984-820X Clculus of vritions with frctionl derivtives nd frctionl integrls Ricrdo Almeid, Delfim F. M. Torres Deprtment of Mthemtics, University of Aveiro 3810-193 Aveiro, Portugl

More information

ARCHIVUM MATHEMATICUM (BRNO) Tomus 47 (2011), Kristína Rostás

ARCHIVUM MATHEMATICUM (BRNO) Tomus 47 (2011), Kristína Rostás ARCHIVUM MAHEMAICUM (BRNO) omu 47 (20), 23 33 MINIMAL AND MAXIMAL SOLUIONS OF FOURH ORDER IERAED DIFFERENIAL EQUAIONS WIH SINGULAR NONLINEARIY Kritín Rotá Abtrct. In thi pper we re concerned with ufficient

More information

Proc. of the 8th WSEAS Int. Conf. on Mathematical Methods and Computational Techniques in Electrical Engineering, Bucharest, October 16-17,

Proc. of the 8th WSEAS Int. Conf. on Mathematical Methods and Computational Techniques in Electrical Engineering, Bucharest, October 16-17, Proc. of the 8th WSEAS Int. Conf. on Mtheticl Methods nd Coputtionl Techniques in Electricl Engineering, Buchrest, October 6-7, 006 Guss-Legendre Qudrture Forul in Runge-utt Method with Modified Model

More information

20.2. The Transform and its Inverse. Introduction. Prerequisites. Learning Outcomes

20.2. The Transform and its Inverse. Introduction. Prerequisites. Learning Outcomes The Trnform nd it Invere 2.2 Introduction In thi Section we formlly introduce the Lplce trnform. The trnform i only pplied to cul function which were introduced in Section 2.1. We find the Lplce trnform

More information

Dynamics and stability of Hilfer-Hadamard type fractional differential equations with boundary conditions

Dynamics and stability of Hilfer-Hadamard type fractional differential equations with boundary conditions Journl Nonliner Anlyi nd Appliction 208 No. 208 4-26 Avilble online t www.ipc.com/jn Volume 208, Iue, Yer 208 Article ID jn-00386, 3 Pge doi:0.5899/208/jn-00386 Reerch Article Dynmic nd tbility of Hilfer-Hdmrd

More information

New Expansion and Infinite Series

New Expansion and Infinite Series Interntionl Mthemticl Forum, Vol. 9, 204, no. 22, 06-073 HIKARI Ltd, www.m-hikri.com http://dx.doi.org/0.2988/imf.204.4502 New Expnsion nd Infinite Series Diyun Zhng College of Computer Nnjing University

More information

Modification Adomian Decomposition Method for solving Seventh OrderIntegro-Differential Equations

Modification Adomian Decomposition Method for solving Seventh OrderIntegro-Differential Equations IOSR Journl of Mthemtics (IOSR-JM) e-issn: 2278-5728, p-issn: 239-765X. Volume, Issue 5 Ver. V (Sep-Oct. 24), PP 72-77 www.iosrjournls.org Modifiction Adomin Decomposition Method for solving Seventh OrderIntegro-Differentil

More information

PHYS 601 HW 5 Solution. We wish to find a Fourier expansion of e sin ψ so that the solution can be written in the form

PHYS 601 HW 5 Solution. We wish to find a Fourier expansion of e sin ψ so that the solution can be written in the form 5 Solving Kepler eqution Conider the Kepler eqution ωt = ψ e in ψ We wih to find Fourier expnion of e in ψ o tht the olution cn be written in the form ψωt = ωt + A n innωt, n= where A n re the Fourier

More information

Physics 116C Solution of inhomogeneous ordinary differential equations using Green s functions

Physics 116C Solution of inhomogeneous ordinary differential equations using Green s functions Physics 6C Solution of inhomogeneous ordinry differentil equtions using Green s functions Peter Young November 5, 29 Homogeneous Equtions We hve studied, especilly in long HW problem, second order liner

More information

Math 1431 Section M TH 4:00 PM 6:00 PM Susan Wheeler Office Hours: Wed 6:00 7:00 PM Online ***NOTE LABS ARE MON AND WED

Math 1431 Section M TH 4:00 PM 6:00 PM Susan Wheeler Office Hours: Wed 6:00 7:00 PM Online ***NOTE LABS ARE MON AND WED Mth 43 Section 4839 M TH 4: PM 6: PM Susn Wheeler swheeler@mth.uh.edu Office Hours: Wed 6: 7: PM Online ***NOTE LABS ARE MON AND WED t :3 PM to 3: pm ONLINE Approimting the re under curve given the type

More information

Lyapunov-type inequalities for Laplacian systems and applications to boundary value problems

Lyapunov-type inequalities for Laplacian systems and applications to boundary value problems Avilble online t www.isr-publictions.co/jns J. Nonliner Sci. Appl. 11 2018 8 16 Reserch Article Journl Hoepge: www.isr-publictions.co/jns Lypunov-type inequlities for Lplcin systes nd pplictions to boundry

More information

Research Article Generalized Hyers-Ulam Stability of the Second-Order Linear Differential Equations

Research Article Generalized Hyers-Ulam Stability of the Second-Order Linear Differential Equations Hindwi Publihing Corportion Journl of Applied Mthemtic Volume 011, Article ID 813137, 10 pge doi:10.1155/011/813137 Reerch Article Generlized Hyer-Ulm Stbility of the Second-Order Liner Differentil Eqution

More information

SIMULATION OF TRANSIENT EQUILIBRIUM DECAY USING ANALOGUE CIRCUIT

SIMULATION OF TRANSIENT EQUILIBRIUM DECAY USING ANALOGUE CIRCUIT Bjop ol. o. Decemer 008 Byero Journl of Pure nd Applied Science, ():70 75 Received: Octoer, 008 Accepted: Decemer, 008 SIMULATIO OF TRASIET EQUILIBRIUM DECAY USIG AALOGUE CIRCUIT *Adullhi,.., Ango U.S.

More information

Research Article Fejér and Hermite-Hadamard Type Inequalities for Harmonically Convex Functions

Research Article Fejér and Hermite-Hadamard Type Inequalities for Harmonically Convex Functions Hindwi Pulishing Corportion Journl of Applied Mthemtics Volume 4, Article ID 38686, 6 pges http://dx.doi.org/.55/4/38686 Reserch Article Fejér nd Hermite-Hdmrd Type Inequlities for Hrmoniclly Convex Functions

More information

Accelerator Physics. G. A. Krafft Jefferson Lab Old Dominion University Lecture 5

Accelerator Physics. G. A. Krafft Jefferson Lab Old Dominion University Lecture 5 Accelertor Phyic G. A. Krfft Jefferon L Old Dominion Univerity Lecture 5 ODU Accelertor Phyic Spring 15 Inhomogeneou Hill Eqution Fundmentl trnvere eqution of motion in prticle ccelertor for mll devition

More information

Green s function. Green s function. Green s function. Green s function. Green s function. Green s functions. Classical case (recall)

Green s function. Green s function. Green s function. Green s function. Green s function. Green s functions. Classical case (recall) Green s functions 3. G(t, τ) nd its derivtives G (k) t (t, τ), (k =,..., n 2) re continuous in the squre t, τ t with respect to both vribles, George Green (4 July 793 3 My 84) In 828 Green privtely published

More information

Hyers-Ulam and Hyers-Ulam-Aoki-Rassias Stability for Linear Ordinary Differential Equations

Hyers-Ulam and Hyers-Ulam-Aoki-Rassias Stability for Linear Ordinary Differential Equations Avilble t http://pvu.edu/ Appl. Appl. Mth. ISSN: 1932-9466 Vol. 10, Issue 1 (June 2015, pp. 149 161 Applictions nd Applied Mthetics: An Interntionl Journl (AAM Hyers-Ul nd Hyers-Ul-Aoki-Rssis Stbility

More information

2. The Laplace Transform

2. The Laplace Transform . The Lplce Trnform. Review of Lplce Trnform Theory Pierre Simon Mrqui de Lplce (749-87 French tronomer, mthemticin nd politicin, Miniter of Interior for 6 wee under Npoleon, Preident of Acdemie Frncie

More information

Research Article On New Inequalities via Riemann-Liouville Fractional Integration

Research Article On New Inequalities via Riemann-Liouville Fractional Integration Abstrct nd Applied Anlysis Volume 202, Article ID 428983, 0 pges doi:0.55/202/428983 Reserch Article On New Inequlities vi Riemnn-Liouville Frctionl Integrtion Mehmet Zeki Sriky nd Hsn Ogunmez 2 Deprtment

More information

Numerical Solutions for Quadratic Integro-Differential Equations of Fractional Orders

Numerical Solutions for Quadratic Integro-Differential Equations of Fractional Orders Open Journl of Applied Sciences, 7, 7, 57-7 http://www.scirp.org/journl/ojpps ISSN Online: 65-395 ISSN Print: 65-397 Numericl Solutions for Qudrtic Integro-Differentil Equtions of Frctionl Orders Ftheh

More information

Research Article On Existence and Uniqueness of Solutions of a Nonlinear Integral Equation

Research Article On Existence and Uniqueness of Solutions of a Nonlinear Integral Equation Journl of Applied Mthemtics Volume 2011, Article ID 743923, 7 pges doi:10.1155/2011/743923 Reserch Article On Existence nd Uniqueness of Solutions of Nonliner Integrl Eqution M. Eshghi Gordji, 1 H. Bghni,

More information

Summary: Method of Separation of Variables

Summary: Method of Separation of Variables Physics 246 Electricity nd Mgnetism I, Fll 26, Lecture 22 1 Summry: Method of Seprtion of Vribles 1. Seprtion of Vribles in Crtesin Coordintes 2. Fourier Series Suggested Reding: Griffiths: Chpter 3, Section

More information

MAC-solutions of the nonexistent solutions of mathematical physics

MAC-solutions of the nonexistent solutions of mathematical physics Proceedings of the 4th WSEAS Interntionl Conference on Finite Differences - Finite Elements - Finite Volumes - Boundry Elements MAC-solutions of the nonexistent solutions of mthemticl physics IGO NEYGEBAUE

More information

Mathematics. Area under Curve.

Mathematics. Area under Curve. Mthemtics Are under Curve www.testprepkrt.com Tle of Content 1. Introduction.. Procedure of Curve Sketching. 3. Sketching of Some common Curves. 4. Are of Bounded Regions. 5. Sign convention for finding

More information

Solutions Problem Set 2. Problem (a) Let M denote the DFA constructed by swapping the accept and non-accepting state in M.

Solutions Problem Set 2. Problem (a) Let M denote the DFA constructed by swapping the accept and non-accepting state in M. Solution Prolem Set 2 Prolem.4 () Let M denote the DFA contructed y wpping the ccept nd non-ccepting tte in M. For ny tring w B, w will e ccepted y M, tht i, fter conuming the tring w, M will e in n ccepting

More information

The Dirichlet Problem in a Two Dimensional Rectangle. Section 13.5

The Dirichlet Problem in a Two Dimensional Rectangle. Section 13.5 The Dirichlet Prolem in Two Dimensionl Rectngle Section 13.5 1 Dirichlet Prolem in Rectngle In these notes we will pply the method of seprtion of vriles to otin solutions to elliptic prolems in rectngle

More information

A Companion of Ostrowski Type Integral Inequality Using a 5-Step Kernel with Some Applications

A Companion of Ostrowski Type Integral Inequality Using a 5-Step Kernel with Some Applications Filomt 30:3 06, 360 36 DOI 0.9/FIL6360Q Pulished y Fculty of Sciences nd Mthemtics, University of Niš, Seri Aville t: http://www.pmf.ni.c.rs/filomt A Compnion of Ostrowski Type Integrl Inequlity Using

More information

(PDE) u t k(u xx + u yy ) = 0 (x, y) in Ω, t > 0, (BC) u(x, y, t) = 0 (x, y) on Γ, t > 0, (IC) u(x, y, 0) = f(x, y) (x, y) in Ω.

(PDE) u t k(u xx + u yy ) = 0 (x, y) in Ω, t > 0, (BC) u(x, y, t) = 0 (x, y) on Γ, t > 0, (IC) u(x, y, 0) = f(x, y) (x, y) in Ω. Seprtion of Vriles for Higher Dimensionl Het Eqution 1. Het Eqution nd Eigenfunctions of the Lplcin: An 2-D Exmple Ojective: Let Ω e plnr region with oundry curve Γ. Consider het conduction in Ω with fixed

More information

1.2. Linear Variable Coefficient Equations. y + b "! = a y + b " Remark: The case b = 0 and a non-constant can be solved with the same idea as above.

1.2. Linear Variable Coefficient Equations. y + b ! = a y + b  Remark: The case b = 0 and a non-constant can be solved with the same idea as above. 1 12 Liner Vrible Coefficient Equtions Section Objective(s): Review: Constnt Coefficient Equtions Solving Vrible Coefficient Equtions The Integrting Fctor Method The Bernoulli Eqution 121 Review: Constnt

More information

OXFORD H i g h e r E d u c a t i o n Oxford University Press, All rights reserved.

OXFORD H i g h e r E d u c a t i o n Oxford University Press, All rights reserved. Renshw: Mths for Econoics nswers to dditionl exercises Exercise.. Given: nd B 5 Find: () + B + B 7 8 (b) (c) (d) (e) B B B + B T B (where 8 B 6 B 6 8 B + B T denotes the trnspose of ) T 8 B 5 (f) (g) B

More information

Taylor Polynomial Inequalities

Taylor Polynomial Inequalities Tylor Polynomil Inequlities Ben Glin September 17, 24 Abstrct There re instnces where we my wish to pproximte the vlue of complicted function round given point by constructing simpler function such s polynomil

More information

Torsion in Groups of Integral Triangles

Torsion in Groups of Integral Triangles Advnces in Pure Mthemtics, 01,, 116-10 http://dxdoiorg/1046/pm011015 Pulished Online Jnury 01 (http://wwwscirporg/journl/pm) Torsion in Groups of Integrl Tringles Will Murry Deprtment of Mthemtics nd Sttistics,

More information

Section 3.3: Fredholm Integral Equations

Section 3.3: Fredholm Integral Equations Section 3.3: Fredholm Integrl Equtions Suppose tht k : [, b] [, b] R nd g : [, b] R re given functions nd tht we wish to find n f : [, b] R tht stisfies f(x) = g(x) + k(x, y) f(y) dy. () Eqution () is

More information

PHYS 601 HW3 Solution

PHYS 601 HW3 Solution 3.1 Norl force using Lgrnge ultiplier Using the center of the hoop s origin, we will describe the position of the prticle with conventionl polr coordintes. The Lgrngin is therefore L = 1 2 ṙ2 + 1 2 r2

More information

Chapter 6 Techniques of Integration

Chapter 6 Techniques of Integration MA Techniques of Integrtion Asst.Prof.Dr.Suprnee Liswdi Chpter 6 Techniques of Integrtion Recll: Some importnt integrls tht we hve lernt so fr. Tle of Integrls n+ n d = + C n + e d = e + C ( n ) d = ln

More information

Research Article Analytical Solution of the Fractional Fredholm Integrodifferential Equation Using the Fractional Residual Power Series Method

Research Article Analytical Solution of the Fractional Fredholm Integrodifferential Equation Using the Fractional Residual Power Series Method Hindwi Compleity Volume 7, Article ID 457589, 6 pges https://doi.org/.55/7/457589 Reserch Article Anlyticl Solution of the Frctionl Fredholm Integrodifferentil Eqution Using the Frctionl Residul Power

More information

The Modified Heinz s Inequality

The Modified Heinz s Inequality Journl of Applied Mthemtics nd Physics, 03,, 65-70 Pulished Online Novemer 03 (http://wwwscirporg/journl/jmp) http://dxdoiorg/0436/jmp03500 The Modified Heinz s Inequlity Tkshi Yoshino Mthemticl Institute,

More information

On the Adders with Minimum Tests

On the Adders with Minimum Tests Proceeding of the 5th Ain Tet Sympoium (ATS '97) On the Adder with Minimum Tet Seiji Kjihr nd Tutomu So Dept. of Computer Science nd Electronic, Kyuhu Intitute of Technology Atrct Thi pper conider two

More information

The Solution of Volterra Integral Equation of the Second Kind by Using the Elzaki Transform

The Solution of Volterra Integral Equation of the Second Kind by Using the Elzaki Transform Applied Mthemticl Sciences, Vol. 8, 214, no. 11, 525-53 HIKARI Ltd, www.m-hikri.com http://dx.doi.org/1.12988/ms.214.312715 The Solution of Volterr Integrl Eqution of the Second Kind by Using the Elzki

More information

Lyapunov-type inequality for the Hadamard fractional boundary value problem on a general interval [a; b]; (1 6 a < b)

Lyapunov-type inequality for the Hadamard fractional boundary value problem on a general interval [a; b]; (1 6 a < b) Lypunov-type inequlity for the Hdmrd frctionl boundry vlue problem on generl intervl [; b]; ( 6 < b) Zid Ldjl Deprtement of Mthemtic nd Computer Science, ICOSI Lbortory, Univerity of Khenchel, 40000, Algeri.

More information

Module 9: The Method of Green s Functions

Module 9: The Method of Green s Functions Module 9: The Method of Green s Functions The method of Green s functions is n importnt technique for solving oundry vlue nd, initil nd oundry vlue prolems for prtil differentil equtions. In this module,

More information

In Section 5.3 we considered initial value problems for the linear second order equation. y.a/ C ˇy 0.a/ D k 1 (13.1.4)

In Section 5.3 we considered initial value problems for the linear second order equation. y.a/ C ˇy 0.a/ D k 1 (13.1.4) 678 Chpter 13 Boundry Vlue Problems for Second Order Ordinry Differentil Equtions 13.1 TWO-POINT BOUNDARY VALUE PROBLEMS In Section 5.3 we considered initil vlue problems for the liner second order eqution

More information

21.6 Green Functions for First Order Equations

21.6 Green Functions for First Order Equations 21.6 Green Functions for First Order Equtions Consider the first order inhomogeneous eqution subject to homogeneous initil condition, B[y] y() = 0. The Green function G( ξ) is defined s the solution to

More information

df dt f () b f () a dt

df dt f () b f () a dt Vector lculus 16.7 tokes Theorem Nme: toke's Theorem is higher dimensionl nlogue to Green's Theorem nd the Fundmentl Theorem of clculus. Why, you sk? Well, let us revisit these theorems. Fundmentl Theorem

More information

Adomian Decomposition Method with Green s. Function for Solving Twelfth-Order Boundary. Value Problems

Adomian Decomposition Method with Green s. Function for Solving Twelfth-Order Boundary. Value Problems Applied Mthemticl Sciences, Vol. 9, 25, no. 8, 353-368 HIKARI Ltd, www.m-hikri.com http://dx.doi.org/.2988/ms.25.486 Adomin Decomposition Method with Green s Function for Solving Twelfth-Order Boundry

More information

u(t)dt + i a f(t)dt f(t) dt b f(t) dt (2) With this preliminary step in place, we are ready to define integration on a general curve in C.

u(t)dt + i a f(t)dt f(t) dt b f(t) dt (2) With this preliminary step in place, we are ready to define integration on a general curve in C. Lecture 4 Complex Integrtion MATH-GA 2451.001 Complex Vriles 1 Construction 1.1 Integrting complex function over curve in C A nturl wy to construct the integrl of complex function over curve in the complex

More information

Chapter 8.2: The Integral

Chapter 8.2: The Integral Chpter 8.: The Integrl You cn think of Clculus s doule-wide triler. In one width of it lives differentil clculus. In the other hlf lives wht is clled integrl clculus. We hve lredy eplored few rooms in

More information

MATH 260 Final Exam April 30, 2013

MATH 260 Final Exam April 30, 2013 MATH 60 Finl Exm April 30, 03 Let Mpn,Rq e the spce of n-y-n mtrices with rel entries () We know tht (with the opertions of mtrix ddition nd sclr multipliction), M pn, Rq is vector spce Wht is the dimension

More information

Applicability of Matrix Inverse in Simple Model of Economics An Analysis

Applicability of Matrix Inverse in Simple Model of Economics An Analysis IOSR Journl of Mthemtic IOSR-JM e-issn: 78-578, p-issn: 39-765X. Volume, Iue 5 Ver. VI Sep-Oct. 4, PP 7-34 pplicility of Mtrix Invere in Simple Moel of Economic n nlyi Mr. nupm Srm Deprtment of Economic

More information

STABILITY and Routh-Hurwitz Stability Criterion

STABILITY and Routh-Hurwitz Stability Criterion Krdeniz Technicl Univerity Deprtment of Electricl nd Electronic Engineering 6080 Trbzon, Turkey Chpter 8- nd Routh-Hurwitz Stbility Criterion Bu der notlrı dece bu deri ln öğrencilerin kullnımın çık olup,

More information

Note on Sequence of Functions involving the Product of E γ,k

Note on Sequence of Functions involving the Product of E γ,k Interntionl Bulletin of Mtheticl Reserch Volue XX, Issue X, Deceber 2014 Pges 16-27, ISSN: XXXX-XXXX Note on Sequence of Functions involving the Product of E γ,k () Mehr Chnd Deprtent of Mthetics Fteh

More information

Sturm-Liouville Theory

Sturm-Liouville Theory LECTURE 1 Sturm-Liouville Theory In the two preceing lectures I emonstrte the utility of Fourier series in solving PDE/BVPs. As we ll now see, Fourier series re just the tip of the iceerg of the theory

More information

Application Chebyshev Polynomials for Determining the Eigenvalues of Sturm-Liouville Problem

Application Chebyshev Polynomials for Determining the Eigenvalues of Sturm-Liouville Problem Applied nd Computtionl Mthemtics 5; 4(5): 369-373 Pulished online Septemer, 5 (http://www.sciencepulishinggroup.com//cm) doi:.648/.cm.545.6 ISSN: 38-565 (Print); ISSN: 38-563 (Online) Appliction Cheyshev

More information

M. A. Pathan, O. A. Daman LAPLACE TRANSFORMS OF THE LOGARITHMIC FUNCTIONS AND THEIR APPLICATIONS

M. A. Pathan, O. A. Daman LAPLACE TRANSFORMS OF THE LOGARITHMIC FUNCTIONS AND THEIR APPLICATIONS DEMONSTRATIO MATHEMATICA Vol. XLVI No 3 3 M. A. Pthn, O. A. Dmn LAPLACE TRANSFORMS OF THE LOGARITHMIC FUNCTIONS AND THEIR APPLICATIONS Abtrct. Thi pper del with theorem nd formul uing the technique of

More information

Lecture 24: Laplace s Equation

Lecture 24: Laplace s Equation Introductory lecture notes on Prtil Differentil Equtions - c Anthony Peirce. Not to e copied, used, or revised without explicit written permission from the copyright owner. 1 Lecture 24: Lplce s Eqution

More information

Generalized Surface Area of Revolution

Generalized Surface Area of Revolution Generlized Surfce Are of Revolution Richrd Winton, Ph.D. Michel. Wrren Astrct Suose curve in the lne R is defined y continuous function over closed ounded intervl. A forul is develoed for the rdius of

More information

PHYS 705: Classical Mechanics. Small Oscillations: Example A Linear Triatomic Molecule

PHYS 705: Classical Mechanics. Small Oscillations: Example A Linear Triatomic Molecule PHYS 75: Clssicl echnics Sll Oscilltions: Exple A Liner Tritoic olecule A Liner Tritoic olecule x b b x x3 x Experientlly, one ight be interested in the rdition resulted fro the intrinsic oscilltion odes

More information

An iterative method for solving nonlinear functional equations

An iterative method for solving nonlinear functional equations J. Mth. Anl. Appl. 316 (26) 753 763 www.elsevier.com/locte/jm An itertive method for solving nonliner functionl equtions Vrsh Dftrdr-Gejji, Hossein Jfri Deprtment of Mthemtics, University of Pune, Gneshkhind,

More information

QUADRATURE is an old-fashioned word that refers to

QUADRATURE is an old-fashioned word that refers to World Acdemy of Science Engineering nd Technology Interntionl Journl of Mthemticl nd Computtionl Sciences Vol:5 No:7 011 A New Qudrture Rule Derived from Spline Interpoltion with Error Anlysis Hdi Tghvfrd

More information

The Hadamard s inequality for quasi-convex functions via fractional integrals

The Hadamard s inequality for quasi-convex functions via fractional integrals Annls of the University of Criov, Mthemtics nd Computer Science Series Volume (), 3, Pges 67 73 ISSN: 5-563 The Hdmrd s ineulity for usi-convex functions vi frctionl integrls M E Özdemir nd Çetin Yildiz

More information

Math 1431 Section 6.1. f x dx, find f. Question 22: If. a. 5 b. π c. π-5 d. 0 e. -5. Question 33: Choose the correct statement given that

Math 1431 Section 6.1. f x dx, find f. Question 22: If. a. 5 b. π c. π-5 d. 0 e. -5. Question 33: Choose the correct statement given that Mth 43 Section 6 Question : If f d nd f d, find f 4 d π c π- d e - Question 33: Choose the correct sttement given tht 7 f d 8 nd 7 f d3 7 c d f d3 f d f d f d e None of these Mth 43 Section 6 Are Under

More information

Section 4: Integration ECO4112F 2011

Section 4: Integration ECO4112F 2011 Reding: Ching Chpter Section : Integrtion ECOF Note: These notes do not fully cover the mteril in Ching, ut re ment to supplement your reding in Ching. Thus fr the optimistion you hve covered hs een sttic

More information

Fatigue Failure of an Oval Cross Section Prismatic Bar at Pulsating Torsion ( )

Fatigue Failure of an Oval Cross Section Prismatic Bar at Pulsating Torsion ( ) World Engineering & Applied Science Journl 6 (): 7-, 5 ISS 79- IDOSI Publiction, 5 DOI:.59/idoi.wej.5.6.. Ftigue Filure of n Ovl Cro Section Primtic Br t Pulting Torion L.Kh. Tlybly nd.m. giyev Intitute

More information

AN INEQUALITY OF OSTROWSKI TYPE AND ITS APPLICATIONS FOR SIMPSON S RULE AND SPECIAL MEANS. I. Fedotov and S. S. Dragomir

AN INEQUALITY OF OSTROWSKI TYPE AND ITS APPLICATIONS FOR SIMPSON S RULE AND SPECIAL MEANS. I. Fedotov and S. S. Dragomir RGMIA Reserch Report Collection, Vol., No., 999 http://sci.vu.edu.u/ rgmi AN INEQUALITY OF OSTROWSKI TYPE AND ITS APPLICATIONS FOR SIMPSON S RULE AND SPECIAL MEANS I. Fedotov nd S. S. Drgomir Astrct. An

More information

A short introduction to local fractional complex analysis

A short introduction to local fractional complex analysis A short introduction to locl rctionl complex nlysis Yng Xio-Jun Deprtment o Mthemtics Mechnics, hin University o Mining Technology, Xuhou mpus, Xuhou, Jingsu, 228, P R dyngxiojun@63com This pper presents

More information

1.1. Linear Constant Coefficient Equations. Remark: A differential equation is an equation

1.1. Linear Constant Coefficient Equations. Remark: A differential equation is an equation 1 1.1. Liner Constnt Coefficient Equtions Section Objective(s): Overview of Differentil Equtions. Liner Differentil Equtions. Solving Liner Differentil Equtions. The Initil Vlue Problem. 1.1.1. Overview

More information

Chapter 9 Definite Integrals

Chapter 9 Definite Integrals Chpter 9 Definite Integrls In the previous chpter we found how to tke n ntiderivtive nd investigted the indefinite integrl. In this chpter the connection etween ntiderivtives nd definite integrls is estlished

More information

MUHAMMAD MUDDASSAR AND AHSAN ALI

MUHAMMAD MUDDASSAR AND AHSAN ALI NEW INTEGRAL INEQUALITIES THROUGH GENERALIZED CONVEX FUNCTIONS WITH APPLICATION rxiv:138.3954v1 [th.ca] 19 Aug 213 MUHAMMAD MUDDASSAR AND AHSAN ALI Abstrct. In this pper, we estblish vrious inequlities

More information

k and v = v 1 j + u 3 i + v 2

k and v = v 1 j + u 3 i + v 2 ORTHOGONAL FUNCTIONS AND FOURIER SERIES Orthogonl functions A function cn e considered to e generliztion of vector. Thus the vector concets like the inner roduct nd orthogonlity of vectors cn e extended

More information

New Integral Inequalities of the Type of Hermite-Hadamard Through Quasi Convexity

New Integral Inequalities of the Type of Hermite-Hadamard Through Quasi Convexity Punjb University Journl of Mthemtics (ISSN 116-56) Vol. 45 (13) pp. 33-38 New Integrl Inequlities of the Type of Hermite-Hdmrd Through Qusi Convexity S. Hussin Deprtment of Mthemtics, College of Science,

More information

The Z transform techniques

The Z transform techniques h Z trnfor tchniqu h Z trnfor h th rol in dicrt yt tht th Lplc trnfor h in nlyi of continuou yt. h Z trnfor i th principl nlyticl tool for ingl-loop dicrt-ti yt. h Z trnfor h Z trnfor i to dicrt-ti yt

More information

Chapter 1. Linear Algebra

Chapter 1. Linear Algebra Liner lger - hpter. Liner lger.. Introduction The solution of lgeric equtions pervdes science nd engineering. Therodynics is n re rife ith eples ecuse of the uiquitous presence of equiliriu constrints.

More information

Some Hermite-Hadamard type inequalities for functions whose exponentials are convex

Some Hermite-Hadamard type inequalities for functions whose exponentials are convex Stud. Univ. Beş-Bolyi Mth. 6005, No. 4, 57 534 Some Hermite-Hdmrd type inequlities for functions whose exponentils re convex Silvestru Sever Drgomir nd In Gomm Astrct. Some inequlities of Hermite-Hdmrd

More information

MA FINAL EXAM INSTRUCTIONS

MA FINAL EXAM INSTRUCTIONS MA 33 FINAL EXAM INSTRUCTIONS NAME INSTRUCTOR. Intructor nme: Chen, Dong, Howrd, or Lundberg 2. Coure number: MA33. 3. SECTION NUMBERS: 6 for MWF :3AM-:2AM REC 33 cl by Erik Lundberg 7 for MWF :3AM-:2AM

More information

Chapter 7. Root Locus Analysis

Chapter 7. Root Locus Analysis Chapter 7 Root Locu Analyi jw + KGH ( ) GH ( ) - K 0 z O 4 p 2 p 3 p Root Locu Analyi The root of the cloed-loop characteritic equation define the ytem characteritic repone. Their location in the complex

More information

ON A GENERALIZED STURM-LIOUVILLE PROBLEM

ON A GENERALIZED STURM-LIOUVILLE PROBLEM Foli Mthemtic Vol. 17, No. 1, pp. 17 22 Act Universittis Lodziensis c 2010 for University of Łódź Press ON A GENERALIZED STURM-LIOUVILLE PROBLEM GRZEGORZ ANDRZEJCZAK AND TADEUSZ POREDA Abstrct. Bsic results

More information

Section 6.1 INTRO to LAPLACE TRANSFORMS

Section 6.1 INTRO to LAPLACE TRANSFORMS Section 6. INTRO to LAPLACE TRANSFORMS Key terms: Improper Integrl; diverge, converge A A f(t)dt lim f(t)dt Piecewise Continuous Function; jump discontinuity Function of Exponentil Order Lplce Trnsform

More information

THE EXISTENCE-UNIQUENESS THEOREM FOR FIRST-ORDER DIFFERENTIAL EQUATIONS.

THE EXISTENCE-UNIQUENESS THEOREM FOR FIRST-ORDER DIFFERENTIAL EQUATIONS. THE EXISTENCE-UNIQUENESS THEOREM FOR FIRST-ORDER DIFFERENTIAL EQUATIONS RADON ROSBOROUGH https://intuitiveexplntionscom/picrd-lindelof-theorem/ This document is proof of the existence-uniqueness theorem

More information

A Computational Method for Solving Linear Volterra Integral Equations

A Computational Method for Solving Linear Volterra Integral Equations Applied Mthemticl Sciences, Vol. 6, 01, no. 17, 807-814 A Computtionl Method for Solving Liner Volterr Integrl Equtions Frshid Mirzee Deprtment of Mthemtics, Fculty of Science Mlyer University, Mlyer,

More information

Bob Brown Math 251 Calculus 1 Chapter 5, Section 4 1 CCBC Dundalk

Bob Brown Math 251 Calculus 1 Chapter 5, Section 4 1 CCBC Dundalk Bo Brown Mth Clculus Chpter, Section CCBC Dundlk The Fundmentl Theorem of Clculus Informlly, the Fundmentl Theorem of Clculus (FTC) sttes tht differentition nd definite integrtion re inverse opertions

More information

Properties of Jensen m-convex Functions 1

Properties of Jensen m-convex Functions 1 Interntionl Journl of Mtheticl Anlysis Vol, 6, no 6, 795-85 HIKARI Ltd, www-hikrico http://dxdoiorg/988/ij6575 Properties of Jensen -Convex Functions Teodoro Lr Deprtento de Físic y Mteátics Universidd

More information

Determinants Chapter 3

Determinants Chapter 3 Determinnts hpter Specil se : x Mtrix Definition : the determinnt is sclr quntity defined for ny squre n x n mtrix nd denoted y or det(). x se ecll : this expression ppers in the formul for x mtrix inverse!

More information

Consequently, the temperature must be the same at each point in the cross section at x. Let:

Consequently, the temperature must be the same at each point in the cross section at x. Let: HW 2 Comments: L1-3. Derive the het eqution for n inhomogeneous rod where the therml coefficients used in the derivtion of the het eqution for homogeneous rod now become functions of position x in the

More information

Exam 2, Mathematics 4701, Section ETY6 6:05 pm 7:40 pm, March 31, 2016, IH-1105 Instructor: Attila Máté 1

Exam 2, Mathematics 4701, Section ETY6 6:05 pm 7:40 pm, March 31, 2016, IH-1105 Instructor: Attila Máté 1 Exm, Mthemtics 471, Section ETY6 6:5 pm 7:4 pm, Mrch 1, 16, IH-115 Instructor: Attil Máté 1 17 copies 1. ) Stte the usul sufficient condition for the fixed-point itertion to converge when solving the eqution

More information

Thomas Whitham Sixth Form

Thomas Whitham Sixth Form Thoms Whithm Sith Form Pure Mthemtics Unit C Alger Trigonometry Geometry Clculus Vectors Trigonometry Compound ngle formule sin sin cos cos Pge A B sin Acos B cos Asin B A B sin Acos B cos Asin B A B cos

More information

Lecture 1: Introduction to integration theory and bounded variation

Lecture 1: Introduction to integration theory and bounded variation Lecture 1: Introduction to integrtion theory nd bounded vrition Wht is this course bout? Integrtion theory. The first question you might hve is why there is nything you need to lern bout integrtion. You

More information