RMM - Cyclic Inequalities Marathon 1-100

Size: px
Start display at page:

Download "RMM - Cyclic Inequalities Marathon 1-100"

Transcription

1 RMM - Cyclic Inequlities Mrthon - 00 ROMANIAN MATHEMATICAL MAGAZINE Avilble online Founding Editor DANIEL SITARU ISSN-L

2 RMM CYCLIC INEQUALITIES MARATHON 00

3 Proposed by Dniel Sitru Romni, George Apostolopoulos - Messolonghi - Greece Nguyen Viet Hung Hnoi Vietnm, Bbis Stergioiu Greece Erdene Ntsgdorj Ulnbtr-Mongoli, Abhy Chndr-Indi Dorin Mrghidnu Romni, Vggelis Stmtidis-Greece Le Viet Hung Hi Lng-Vietnm, Sldjn Stnkovic-Mcedoni Richdd Phuc-Hnoi-Vietnm, Hong Le Nht Tung Hnoi Vietnm Anish Ry-Sntrgchi-Indi, Mrin Chirciu Romni Nguyen Phuc Tng - Dong Thp Vietnm, Mihlce Andrei Ștefn Romni Adil Abdullyev Bku Azerbidin

4 Solutions by Dniel Sitru Romni, Henry Ricrdo - New York USA Kunihiko Chiky Tokyo Jpn, Imd Zk Sid Lebnon Ngoc Minh Ngoc Bo-Gi Ln Province-Vietnm, Fotini Kldi Greece Redwne El Mellss-Csblnc-Morroco, Sk Rejun-West Bengl-Indi Mygmrsuren Ydmsuren Mongoli, Sfl Ds Bisws Chinsurh Indi Kevin Soto Plcios Hurmey-Peru, Nguyen Viet Hung Hnoi Vietnm Soumitr Mndl-Chndr Ngore-Indi, Abhy Chndr Indi Mrin Dincă Romni, Rvi Prksh - New Delhi Indi Leonrd Giugiuc-Romni, Seyrn Ibrhimov Msilli Azerbidin Abdllh El Frisi-Bechr-Algerie, Anh Ti Trn Hnoi Vietnm Le Viet Hung- Qung Tri Vietnm, Nirpd Pl-Indi, Soumv Chkrborty Kolkt Indi, Ans Adlny-El Jdid-Morroco, Phn Loc So'n-Quy - Nhon City Vietnm, Sptk Bhttchry-Kolkt-Indi, Nguyen Minh Triet-Qung Ngi-Vietnm Mihlce Andrei Stefn-Romni, Soumitr Mndl-Chndr Ngore-Indi Hong Le Nht Tung Hnoi Vietnm, Khung Long Xnh - D Nng Vietnm Nguyen Phuc Tng - Dong Thp Vietnm, Sldjn Stnkovic Mcedoni Adity Nryn Shrm Knchrpr Indi, Richdd Phuc Hnoi Vietnm Phm Quy Qung Ngi- Vietnm, Hmz Mhmood-Lhore-Pkistn

5 . Given, b, c, d be positive rel number such tht 4 Prove tht: b bc cd d b c d. Proposed by Sldjn Stnkovic-Mcedoni Solution by Ngoc Minh Ngoc Bo-Gi Ln Province-VietNm Without loss of generlity, ssume tht: b c d. Considering function: f, b, c, d b bc cd d b c d We hve: f.c f, b, c, d f c, b,.c, d 4.c b 4.c d.c c, b,, d c c c We need to prove tht: c.c b d 0 b d b d Use AM-GM inequlity: 4 b c d 4. 4 bcd bcd c And b d c c.c c > 0 b d c c We prove tht: f t, t, t, d t td t d 0. With t d 4. Indeed t dt t d t7 6748t.t.8 t 47t t7 t 47t. Ming t 0 (With g t 6 48t t 8, nd Ming t g > 0) 4

6 . If x, y, z, t,, b, c 0,, xyzt 4 then: Solution by Dniel Sitru-Romni x b y c y z t 4 b c Solution by Mygmrsuren Ydmsuren Mongoli Proposed by Dniel Sitru Romni Solution by Dniel Sitru-Romni x y z t 4 4 xyzt (AM-GM) x b y z t x b 4 b7 x x b7 4 b7 4 bf 4 bf 4bF bf 4 bf 4 bf () y c y z t x c 4 c7 x x 47 4 c7 4 cf 4 cf 4cF cf 4 cf 4 cf By dding (); (): () x y c y z t 4 b7 c7 Solution by Mygmrsuren Ydmsuren Mongoli x, y, z, t,, b 0, xyzt 4 Prove tht: LHS x b.y c y.z.t 4 b c 5

7 x b y c Chebyshev y z t 4 xb x c x y z Cuchy7Schwrz 4 xb x c 4 x y z t 4 x b x c x y z t Chebyshev 4 4 x y z t x b7 x c7 x y z t Cuchy xb7 x c7 4 4 xyzt b7 4 c7 xyzt LHS 4 b7 c7 x b y c y z t 4 b7 c7 4 b c. Prove tht for ny rel numbers, b nd c the following inequlity holds: 8 bc b c c b b c Solution by Leonrd Giugiuc-Romni Proposed by Richdd Phuc-Vietnm bc b c c b p b c b b c c, where p bc. But b c b c b c b c bc p nd b b c c b bc c p b c b c bc p Cse : b c 0 b c p nd b b c c b bc c p 6

8 8 bc b c c b 8 b bc c. But b c b c bc b c 89 b bc c So ctully we ve got the identity 8 bc b c c b b c, hence proved. Cse : b c 0. Assume WLOG b c b bc c t, t 0. We get: b c t, b c p 9t p nd b b c c 7 t 7p t p. Hence we need to prove 8 t 8p t. It s well known tht p t t. It s enough to show 8 t 8 t t t 6t 4 6t 6t 0 t 8t 8t 0, which is clerly true since t 8t 8t 0 nd > 0. Remrk: From bove, if b c 0 we hve equlity nd if b c 0 inequlity is strict. 4. If, b, c 0, then: b 5 b 5 b c b 5 c 5 c c 5 5 b b c c Proposed by Dniel Sitru Romni 7

9 Solution by Kevin Soto Plcios Hurmey-Peru b 5 b 5 b Si:, b, c < 0, >. Probr que: b c b 5 c 5 b 5 b 5 c c 5 5 b L desiguldd es equivlente: b c b c b 5 c 5 c Tener presente lo siguiente: b c c c 5 0 c5 5 b 5 b 4 b b b b 4 (Cocientes Notbles) Se: A b 5.b 5 7.b b.b 5.b 5 5.b 5.b A b 4 b 4 b b 5 b 5 b 4 b 4 b b 5 b 5 Desde que:, b, c < 0, >. Por: MA MG b 4 4 b b 4 b 4 b 4 b 4 4b Sumndo: 4 b 4 b b 4 b 4 b b 0 Por l tnto: A 4.b 4 7b.b b 5.b 5 b 5 0 b If, b, c 0, then: 8 b 8 b 8 c 8 c b 5 c b 4 c 4 Proposed by Dniel Sitru Romni 8

10 Solution by Kevin Soto Plcios-Hurmey-Peru Si:, b, c < 0, >. Probr que: 8 b 8 b 8 c 8 c b 5 c 5 Desde que:, b, c < 0, > b 4 c 4 8 b 8 b 8 c 8 c b 4 c 4 4 b 4 c 4 Por lo cul nos flt probr que: 4 b 4 c 4 4 b 4 c 4 5 b 5 c b 4 c 4 4 b 4 c 4 bc b 4 c 4 4 b 4 c 4 4 bc b 4 c 4 4 b 4 c 4 7 bc 4 Válido por: (MAMG). Por l tnto: 8 b 8 b 8 c 8 c b 5 c 5 L iguldd se lcnz cundo: b c 6. Let, b, c be positive rel numbers such tht: Prove tht b 4 c. b c Solution by Kevin Soto Plcios Hurmey Peru Sen:, b, c números reles positivos tl que : 7 4 b 4 c 4 Proposed by Nguyen Viet Hung Hnoi Vietnm Probr que: b c bc (B) Se: x.y z > 0, b z.x y (A)..b.c y.z > 0, c > 0 x 9

11 x y z x y z z y x b c x y z yz Reemplzndo en (A) z x y z Por l tnto (B) es equivlente: x y z y x y z x x y z z x y z y x x y z z x y y z x xyz x y z z x y y z x x y z y z x x y z yz y z x y z x x y x z x y y z y x z y z z x y z yz xyz x y z z x y y z x x y z xy x y yz y z zx z x xyz xyz x y z xyz xy x y yz y z zx z x 7. If, b, c, then prove tht: b (Válido por desiguldd de Schur) c 4 b Solution by Hung Nguyen Viet Hnoi Vietnm 4 bc 4 c Proposed by Erdene Ntsgdorj - Ulnbtr Mongoli We hve known tht if x 0, y 0 nd xy then x y xy 0

12 Applying this result step by step we obtin b b b b b b Similrly b c 4 bc 4, c 4 4 c b b Adding up these three reltions we get the desired inequlity. 8. Prove the inequlity holds for ll positive rel numbers, b, c b c c b b c bc Solution by Kevin Soto Plcios Hurmey Peru b4.c 4 b c4. 4 c 4.b 4 Proposed by Nguyen Viet Hung Hnoi Vietnm Siendo:, b, c números R.. Probr l siguiente desiguldd: b c b c c b bc b4.c 4 Prtimos de l siguiente desiguldd: b b 4 6 b 4b 4 b 0 4 b 4 b b b b b b 4 b 4 b b Análogmente pr los siguientes términos: b c4. 4 c 4.b 4 4 b 4 4.b 4 (A)

13 b bc c b4.c 4 (B) c c c4. 4 (C) En consecuenci, l desiguldd inicil es equivlente: bc b4 c 4 b c4 4 c 4 b 4 bc b bc c b c c c b b bc b4 c 4 b c4 4 c 4 b 4 b c b c c b (LQQD) 9. If, b, c, x, y, z 0, b c then: x y b z c x b y c z x c y z b Solution by Soumitr Mndl-Chndr Ngore-Indi 9 x y z Proposed by Dniel Sitru Romni x y b z c x y b z c (Bergstrom s inequlity) x by cz b c.b.c 9 x by cz 9 x y z b c

14 9 x y z (Proved) 0. Let, b, c be positive rel numbers such tht b bc c. Prove tht b bc c b c c c b b Proposed by Nguyen Viet Hung Hnoi Vietnm Solution by Kevin Soto Plcios Hurmey Peru Sen, b, c números R. tl que: b bc c. Probr que: b bc c b c b c b c c L desiguldd es equivlente: b c c c b b c b b Pr todos los R. :, b, c, x, y, z, se cumple l siguiente desiguldd: b c x c y b z b bc c xy yz zx xy yz zx (Demostrdo nteriormente) Sen: x b c b.c, y b b c.c Asimismo: b c, z c.b c b Sen: m, n b, p c c b b c xy yz zx mn p n p m np m p m n pm n m n p 4

15 b bc c (Demostrdo nteriormente) b c c Por l tnto: c xy yz zx b b 9 4. Let, b, c be positive rel numbers such tht b c. Prove tht: b bc c bc b c c b b c Proposed by Nguyen Viet Hung Hnoi - Vietnm Solution by Kevin Soto Plcios Hurmey Peru Siendo, b, c números R., de tl mner que: b c. Probr que: b bc c bc b c c b b c bc b c bc b c c b b c c c c b c b c b b b b b c c L desiguldd se puede expresr de l siguiente mner: bc b c c b.bc.bc b.c c.b b c bc b.c b.c.bc c.b c b b c c b c.b.bc c.b b.c b c b c 4

16 b c b c c b c b c b.c b c b c c b c b c b.c b c c b c b c b c c b c c c c b b c c b b c c b b b c b.b.b c b 0 b c b c b 0 b c b c c b b c b b c b c b b c c 0 c bc c b b c b bc b b c b b c c c 0 c c b c c b b c b b b b c b c b c c b c 0 c b c c c c b b c b b b b b c b b c b c b c c b c c 0 0 5

17 c b b b c.c.b b.c b c b c c 0 (Lo cul probremos) Desde que, b, c > 0: Por: MA MG b 4.b 4 b c b.c 4 c.c (A) (B) (C) Sumndo: (A) (B) (C) b c.c.b. Let, b, c be non-negtive rel numbers such tht b c. Prove tht: b.c b c 6 b c Solution by Kevin Soto Plcios Hurmey Peru (LQQD) Proposed by Nguyen Viet Hung Hnoi Vietnm Siendo:, b, c números reles no negtivos, de tl mner que: b c. Probr que: b c 6 b c L desiguldd se puede expresr como: b b b c c c 6 b c Por l desiguldd de Cuchy Schwrz: b b b c c c b c b c b c 6

18 b b b c c c 6 b c b c 6 b c... (LQQD). Prove tht for ll positive rel numbers, b, c : b b b c bc Solution by Kevin Soto Plcios Hurmey Peru c c 8 b c Proposed by Nguyen Viet Hung Hnoi Vietnm Probr pr todos los números R., b, c l siguiente desiguldd: b b c c 8 b c b bc c Relizmos los siguientes cmbios de vribles: p b c q b bc c Desde que:, b, c > 0 Por l desiguldd de Bergstrom s: b b b c bc c c b q 8p Por lo cul nos qued demostrr que: b 8p q p q 4p 8pq 9 4p q p 4pq 6q 4p 8pq 7

19 4p q 9 4pq p 6q 0 Pero... 4p q 9 4pq p 6q p q 0... (LQQD) 4. Prove tht for ll rel numbers, b, c: b c b c Solution by Abhy Chndr Indi b c Solution by Mrin Dincă Romni b c c b Proposed by Nguyen Viet Hung Hnoi Vietnm Solution by Abhy Chndr Indi For rel numbers we hve b c b c which implies b c b c b c b c Hence we re required to prove the following for ll non-negtive rel numbers x, y b, z c x y z x y z x y z But from Cuchy Schwrz on LHS we hve LHS x y z x y z xy yz zx we re left to prove x y z xy yz zx x y z 0 which is obviously true. Equlity t x y z 0 or b c 0. Solution by Mrin Dincă Romni 8

20 b c b c b c b c c b c b b c b c c b b c 9.9. b. c.. b. c 9 ciclic.. b. b. c.. b. c use hrmonic inequlity. b. c.. b. c b c b c becuse the function f x 5. If, b, c, d 0,, prove tht: x.x b c b c b c b c done!, is incresing for x 0 nd b c.d b c d. c d.b d b.c > Proposed by Dorin Mrghidnu Romni Solution by Mrin Dincă Romni, b, c, d 0, b c.d > use Lem by Dorin Mrghidnu x y x, for x, y 0, x.y 9

21 b c d b 0,, 0, c.d b b nd similrly, we shll obtin: c d b b c d b c.d b b c d 6. If, b, c 0, then: 6 bc Solution by Soumitr Mndl - Chndr Ngore Indi Applying Holder s Inequlity bc Proposed by Dniel Sitru Romni b b c c b c b c bc bc (proved) 7., b, c > 0 b bc c b c.b. b.c. c.. 0

22 Solution by Nguyen Viet Hung Hnoi Vietnm By Cuchy Schwrz inequlity we hve Proposed by Vggelis Stmtidis-Greece b b c b b c b c b c b c b c b c It suffices to show tht b c b c b c or b c (since b c b bc c) But this is true by b c b bc c b c The proof is completed. 8. If, b, c 0,, b c then: 5b 7c b 5c 7 Solution by Mygmrsuren Ydmsuren Mongoli I Chebyshev I 5b 7c 7 b c b 5c 7 c 5 7b 6 Proposed by Dniel Sitru Romni c 5 7b 6 5b 7c 5c 7 5 7b

23 7 9. If, b, c 0, then: 5 7b 5b 7c 5c 7 7 b c 6 Cuchy7Schwrz b b c c b c c b b c Proposed by Dniel Sitru - Romni Solution by Rvi Prksh - New Delhi Indi Solution by Seyrn Ibrhimov Msilli Azerbidin Solution by Rvi Prksh - New Delhi Indi b b b c c b c c b c b b b b b b b b b b b 0 Thus, b b b () Similrly b c c b b c () nd

24 c c c () Adding (), () nd () we get the desired inequlity. Solution by Seyrn Ibrhimov Msilli Azerbidin b b c c b c c b b c bc c c b b b c AM GM c b b c bc c b 4 c c b b c 4 bc b c 4 b LHS bc c b b c b c 0. If, b, c 0, nd m, n N, prove tht: m.n bm.n b m cn7 c m n7 cm.n m b c bn7 Solution by Soumitr Mndl - Chndr Ngore Indi Proposed by Dorin Mărghidnu Romni Applying A.M. G.M.

25 mun b m cnf.mb. n7 c m.n b mun c m nf.mc. n7 m.n b nd now,, similrly c mun m bnf.m. n7 b m.n c m.n b m c n7 l m l n l m n l so,. If, b, c, then: b c b c m.n b m c n7 l b c (proved) c b bc Solution by Kevin Soto Plcios Hurmey Peru Solution by Rvi Prksh - New Delhi Indi Solution by Kevin Soto Plcios Hurmey Peru b c b c c b Si:, b, c <, > c b bc Por desiguldd de Cuchy: b c c b Proposed by Dniel Sitru Romni b c c b c b 4 ( b c 4

26 4 7bc 7bc... (I) b 7c b b 7 7c... (II) c 7 c c 7b 7b... (III) Sumndo... (I)(II)(III):. b 7c b. c 7 c. 7b b c... (LQQD) 7bc 7c 7b Solution by Rvi Prksh - New Delhi Indi Rewrite the inequlity s: b c b c c b bc c c b For < b, c < b b c bc b bc c bc b b c b bc c bc c bc b c bc b c c b b c b c b 0 c Thus, b c bc Similrly for the second nd third expressions on both sides.. If, b, c > 0 then: 4 c e b b 4 e b c c 4 b e c e b c 5

27 Solution Abdllh El Frisi-Bechr-Algerie Solution by Mygmrsuren Ydmsuren Mongoli Solution by Sfl Ds Bisws Chindhr Indi Solution 4 by Soumitr Mndl - Chndr Ngore Indi Solution Abdllh El Frisi-Bechr-Algerie Proposed by Dniel Sitru Romni The function x e x is convex for x 0 then we hve for ll, b, c > 0. b e b b c b c b c e b c by MA-MG c e b. b c. c Solution by Mygmrsuren Ydmsuren Mongoli 4 c e b b 4 c e b c c 4 b c c e c b e AM7GM 6 b 6 c 6 e b.b c.c b c e b.b c.c AM7GM b c e b b c c Solution by Sfl Ds Bisws Chindhr Indi e b c 4 c e b b 4 e b c c 4 b e c k. Then by A.M G.M we hve k 6 b 6 c 6 e b.b c.c b c e b ub c uc gin A.M G.M b.b c.c k e b c then e b ub c uc e, thus 6

28 Solution 4 by Soumitr Moukherjee - Chndr Ngore Indi Applying A.M G. M, 4 c e b 4 c e b b c e b e b c (proved). Let, b, c be rel numbers such tht min b, b c, c > 0. Prove tht b b b bc c b bc c c c c c. b b Solution by Leonrd Giugiuc Romni Proposed by Nguyen Viet Hung Hnoi Vietnm We hve: b 0 b b Similrly, b b > 0. c c c c > 0 nd b bc c b bc c > 0. So tht: b b b bc c b b b bc c b b b bc c 4. If, b, c 0 then: b 7c b c 7 c 7b b c Proposed by Dniel Sitru Romni Solution by Abdllh El Frisi-Bechr Algerie Solution by Rvi Prksh - New Dehi Indi 7

29 Solution by Soumitr Mndl - Chndr Ngore Indi Solution by Abdllh El Frisi-Bechr Algerie The functions x nd 7x re convex for x 0 then for ll, b, c > 0 b c b b c 7c we hve: b b c c b b c 7 b ubuc. bc ubuc. c ubuc 7 b ubuc. bc ubuc. c ubuc c b c c b c 7b by MA-MG Solution by Rvi Prksh - New Dehi Indi b b c c b c bubcuc ubuc () 7c b 7 c 7b b c 7cububc ubuc () Adding (), () we get b 7c b c 7 c 7b b c α 7α b c where α b.bc.c.b.c Solution by Soumitr Mndl - Chndr Ngore Indi We know, e x x nd e 7x x for ll x 0 8

30 b 7c e b log 7c log e b log c log log b c b c log b c b c c b b c (proved) 5. Prove tht for ll positive rel numbers, b, c b c b c c b. Solution by Kevin Soto Plcios Hurmey Peru Proposed by Nguyen Viet Hung Hnoi Vietnm Probr pr todos los numerous R., b, c: b c b c c b Por l desiguldd de Cuchy: b b (A) De form nálog: b c b c (B) c c (C) Multiplicndo (A) (B) (C): b c b c c b b c b c c b De l desiguldd propuest Por: MA MG 9

31 . b.c. b. c.. c.. b. c..b. b.c. c...b. (LQQD) 6. If, b 0, ; m, n N then: m nb n mb 9 m n b c Solution by Rvi Prksh - New Delhi Indi Solution by Mygmrsuren Ydmsuren Mongoli Solution by Rvi Prksh - New Delhi Indi Proposed by Dniel Sitru Romni m nb n mb m nb n mb m n b m nb n mb m nb n mb m n b m nb n mb m n b m n b m n b c [AM HM] Solution by Mygmrsuren Ydmsuren Mongoli m nb n mb Cuchy m n m n b m n b 0

32 Cuchy7Schwrz m n 9 b c 9 m n b c 7. If, b, c 0, then: b 5 b b c 5b c Solution by Imd Zk Sid Lebnon Solution by Kevin Soto Plcios Hurmey Peru Solution by Soumitr Mndl Chndr Ngore Indi Solution by Imd Zk Sid Lebnon f x c 5c 7 x 5 x 9 49 ln x 7 Proposed by Dniel Sitru Romni f x x 6x 56x 45 49x x 5 0 f x 0 f x 0 f x 0 x > 0 Now consider the inequlity b 5 b?? 7 Let x b y c b z c xyz We get g x?? 7

33 g x f x 9 49 ln x 7 f x 9 49 ln xyz 7 f x t x y z or b c Solution by Kevin Soto Plcios Hurmey Peru Siendo:, b, c < 0, >. Probr que: b 5 b b c 5b c Por l desiguldd de Cuchy: c 5c 7 b c b 5.b c 5b.c 5c. b 5 b bc 5b c c 5c b c b c.b.c b 5.b c 5b.c 5c. 5 b.b.c b. c 7 7 b c 5 b b c b c 6 4 b 4 c 4 4 b 4 c 4 4 b 5 b 6b 6c b 6 c 4 b 4 c 4 b c b c Por: MA MG: c 4 4 c (A) b 4 b 4 b 4 4 4b c (B) c 4 c 4 c 4 b 4 4c b (C) Sumndo (A) (B) (C): 4 b 4 c 4 b c b c (LQQD) Solution by Soumitr Mndl Chndr Ngore Indi

34 b 5 b Rdon s Inequlity b c b c b c b b 5b 5b b [Applying Cuchy Schwrz] b c b c b c b bc c.b.c.b.c.b.c..b.c 7 (proved) 8. Prove tht for ny positive rel numbers, b, c: b c b c c b bc bc Solution by Kevin Soto Plcios Hurmey Peru b c b c b c b c c b c b c b Proposed by Nguyen Viet Hung Hnoi Vietnm Probr pr todos los numerous R. : b c c b bc bc c b c Por l desiguldd de Nesbitt: R. : c b b c b c b c c b 4 b c Por trnsitividd: b c b c b 4 b c c b

35 b c b c c b bc bc b c c b c Es suficiente probr: b c b c b c b 4 b c b c b c b c c b 4 c b bc bc bc bc c b c c b c b c b b c b b.c b.c c.b.bc b b.c c c.b b c b b bc c c cb bc Por desiguldd de Cuchy: b b c c c b 9 b.c b b.bc c c.cb.bc b b.c c c.b.bc b b.c c c.b 9 bc.. c.b (A) 9b c.b. b.bc (B) 9c.c. bc.c (C) b c b b bc Sumndo (A) (B) (C): c c cb bc b b c c c b 9 bc c b 9 bc c bc b 9 bc b c 9 (LQQD) 4

36 9. Let, b, x, y, z, u, v, w be positive rel numbers such tht x y z. u uw y bz x v wu Prove tht: z bx y w uv Solution by Soumitr Mndl Chndr Ngore Indi u uw x by z b Proposed by Nguyen Viet Hung Hnoi Vietnm x y z, xy yz zx y bz x y bz x Applying Weighted A.M G.M 9 x y bz x y bz x y z xuyuz y bz x y bz x y bz x x y bz u uw y bz x 0. If, b, c > 0, bc then: b b 9 x y bz b bc c Solution by Imd Zk Sid Lebnon (proved) c c Solution by Soumitr Mndl - Chndr Ngore Indi 9 b xy yz zx b b bc c Proposed by Bbis Stergioiu Greece 5

37 Solution by Le Viet Hung- Qung Tri Vietnm Solution 4 by Fotini Kldi Greece Solution by Imd Zk Sid Lebnon, b, c > 0, bc prove tht?? b b when bc it is known tht p b, q pr pc c LHS c bc c b c b bc c b b c bc b b c c c b c b c We need to prove tht p b b c b b b p 9 b p C7B7S b c b 9 b.p?? b or b?? b p or b?? p or b pr?? p q p true Q.E.D t b c Solution by Soumitr Mndl - Chndr Ngore Indi Let x b, y bc nd c ; xyz b b b zx y xy z x x y () z 6

38 zx y xy z x x y xy Now, yz x y z yz xyz x y xy 9 x y z xy yz zx 9 x y z x y z x y z Hence sttement () is estblished b b (proved) Solution by Le Viet Hung- Qung Tri Vietnm First, we hve: b b b b b b 0 b b b b b bc c b bc c b c 0 b bc c b bc c c c c c c 0 c c c c b b b b 9 b b 7

39 .b.c 7 b.bc.c Cuchy Schwrz b.bc.c b c.b.c 7 b.bc.c b.bc.c ub uc Solution 4 by Fotini Kldi Greece 9.b.c 9 b b c c b b c c AM GM B b bc c b bc c B LHS A b bc c b bc c A x y z x y z xy yz zx, A b bc b c c bc A b c A A b c c c c bc A b c A b c b c b bc c b c b b 9 A b c 9 A A b bc c c c b bc b b b bc c A b c b bc c. Let, b, c be positive rel numbers such tht, b 5 nd b c. Prove tht b c 8

40 Solution by Kevin Soto Plcios Hurmey Peru b b c. Let x; y; z > 0. Prove tht: Proposed by Nguyen Viet Hung Hnoi Vietnm Siendo:, b, c números R. de tl mner que, b 5, b c. Probr que: b c Por l desiguldd de Cuchy: 6 9.4b.c (LQQD) 6.b.c..b.5 L iguldd se lcnz cundo, b, c x y y z z x x y y z z x x xy y z Proposed by Le Viet Hung Hi Lng-Vietnm Solution by Rvi Prksh - New Delhi Indi Solution by Soumv Chkrborty Kolkt Indi Solution by Imd Zk Sid Lebnon Solution 4 by Dniel Sitru Romni Solution by Rvi Prksh - New Delhi Indi x y y z z x x y y z z x x xy y z LHS x y y z z x x y y z z x 9

41 x xy z x y x.xy.y z x x y y () Let E x y x y x x y x y 0 y x y x y y x y x y y Thus, form () 0 x y y z z x x y y z z x x xy y z Solution by Soumv Chkrborty Kolkt Indi LHS x y xy z z y x z y yz z x zx y y x z x RHS x z xy z y z y x yz x z x z y zx y x y LHS RHS x y z y z x y z x z x y () Now, x x y AM7GM x, y y y z Adding the : AM7GM y z, z z x AM7GM z x x y z y z x x y z x y z y z x () 40

42 Agin x y Rdon y z x.y.z z x x.y.z () x y z ()() x y y z z x x y z y z x x y z x y z x Solution by Imd Zk Sid Lebnon y y z z x () is true (Proved) By Cuchy Schwrz B x y z x y z B x y z () A x y z B A B x So it is sufficient to prove B B B x which is true by () x Solution 4 by Dniel Sitru Romni holds for x y z LHS x z xyz x z xyz RHS x z x z xyz xy x xy y xyz x z x z xyz xy x xy y x 5 z xy z 4. If, b, c 0, then: 0 7bc 5, 0,,, 4 (Muirhed) 0b b 7c 0c c b c 7b 4

43 Solution by Ans Adlny-El Jdid-Morroco Solution by Imd Zk Sid Lebnon Solution by Kevin Soto Plcios Hurmey Peru Solution 4 by Soumitr Mndl Chndr Ngore Indi Solution by Ans Adlny-Morroco Proposed by Dniel Sitru Romni WLOG, let. 0 7bc 0 7 b c 0 6 7b 0 7c 7 [Using Chebyshev s inequlity two times] Solution by Imd Zk Sid Lebnon s desired. Homogeneous let bc the inequlity is re-written s f 0 where f x 0x4 x 7x x 7 x.7 x.7 f x g x 0 f which is convex x the tngent t x, we get g

44 q.e.d equlity t b c Solution by Kevin Soto Plcios Hurmey Peru By: Inequlity Holder s: 0 7bc 0b b 7c 0c c 7bc b 7c c 8b 7b 0 b c It is enough prove tht: 7bc b 7c c 0 b c 7b b c b bc c 0 7bc 0b b 7c 0c c 7b 0 b c 7bc b 7c c 7b 0 b c b c 0 b c Solution 4 by Soumitr Mndl -Kolkt Indi 0 b c 7bc bc b c b c 7bc b c 7bc b c 7bc b b c 7bc b b c b b 7c c b b c 7bc b 7c

45 7 b 7c b bc b 7c b 7bc b 7c 0 7 b 7c.b.7c.b.4bc.7bc b.7c 0, which is true Hence, 0 b c 7bc (proved) 4. Let, b, c be positive rel numbers such tht b c. Prove tht b c n b c n Solution by Kevin Soto Plcios Hurmey Peru c b n Solution by Phn Loc So'n-Quy - Nhon City Vietnm Proposed by Nguyen Viet Hung Hnoi Vietnm n Solution by Kevin Soto Plcios Hurmey Peru Siendo:, b, c números R. de tl mner que: b c. Probr que: b c n b c n c b n L desiguldd puede ser equivlente: n nu b.c n bnu b c. n cnu c.b De l desiguldd de Rdon:... (A) n Si: x k, k > 0, k,,,, n, n N m > 0, se cumple lo siguiente: 44

46 x m. m x m. m x m. n m n m. x x x n m n L iguldd se lcnz cundo: x x x x n n Por l desiguldd de Rdon en (A)... : n. b c n b n. b c n c n. c b n b c n. b c b c c b n b c Solution by Phn Loc So'n-Quy Nhon City Vietnm Asume: b c. b c b c c b & b c b c b c By Cebyshev s inequlity: b c n b c b c c b n c c n c b b n b c n b. c n c n n. n 5. If, b, c > 0 then: b 5 b b c c Proposed by Dniel Sitru Romni Solution by Kevin Soto Plcios Hurmey Peru Solution by Soumv Chkrborty Kolkt Indi Solution by Seyrn Ibrhimov Msilli Azerbidjin 45

47 Solution by Kevin Soto Plcios Hurmey Peru Si:, b, c > 0. Probr que: b 5 b b c c b b c c 5 b c b b c c 9 b c 6b b 6bc b c 6c c b b c c 9 b c 6b 6c b 6 c 5 b b c c Desde que:, b, c > 0. Por: MA MG 6 6b b (A) 6b 6c b b c (B), 6c 6 c c (C) Sumndo: (A) (B) (C): 6 b c 6b 6c b 6 c b b c c (D) Por otro ldo. Por: MA MG b b b c c c b c b b c c (E) Finlmente sumndo: (D) (E) 9 b c 6b 6c b 6 c 5 b b c c (LQQD) Solution by Soumv Chkrborty Kolkt Indi Given inequlity b b 5 b b b 7 b (A) 46

48 b b b b c bc c c c A7G b A7G b c A7G c b b b b b 6 b Agin, (A-G) b b b b c b c c c c b b () () () b b 7 b (A) is true (Proved) Solution by Seyrn Ibrhimov Msilli Azerbidjin b b 4 b b b bc bc 4b c c c c c 4c x b c b bc c cc b c c b 5 b b c c l l 9 9b 9c 6b 6bc 6c 5 b 5b c 5c b c b bc c 5 b 5b c 5c b c x 5 b 5b c 5c b c b b c c (proved) 6. If, b, c > 0 then: 47

49 c bc c b b b c c Proposed by Dniel Sitru Romni Solution by Rvi Prksh - New Delhi Indi c bc c b b b c c c b b c c b 0 () Consider c b b c c b c b b 4 b b b c b 6b 4 b b c b 4 b b 4b c b b c b 4 0 Similrly for other two expressions. Thus () is true. 7. If x, y, z 0,, xyz then: x 4 y z x y z Proposed by Dniel Sitru Romni Solution by Imd Zk Sid Lebnon Schur x 4 xyz x y z xy x y but xyz xy z 48

50 x 4 x x.y z Our inequlity: x 4 x x... () x.y z!! but () x.y z x 4 x so we need to prove tht x 4 x x?? x 4 x x?? True by AM-GM x y z 8. If, b, c > 0 then: b c bc b c c b Solution by Kevin Soto Plcios Hurmey Peru Solution by Soumv Chkrborty Kolkt-Indi Proposed by Dniel Sitru Romni Solution by Kevin Soto Plcios Hurmey Peru Si:, b, c > 0. Probr que: b c bc b c c b b c c b b b bc b bc b b bc b bc 49

51 b c bc b b c bc bc LQQD Solution by Soumv Chkrborty Kolkt-Indi b c bc b c b c b c b c bc b b c b c c CBS bc bc b c b c c b c b b b c c b c CBS c b b c b c c b bc b( c) b AM7GM b b etc b bc c b 50

52 bc b bc c bc bc b bc c C7B7S () bc bc b c bc () ().b c c.b.b.c bc (Proved) 9. Let x, y, z 0, such tht xy yz zx. Prove tht: x y z y z x z 9 x y 4 Solution by Kevin Soto Plcios Hurmey Peru Solution by Abhy Chndr Indi Proposed by Nguyen Viet Hung Hnoi Vietnm Solution by Kevin Soto Plcios Hurmey Peru Siendo: x, y, z < 0, > de tl mner que: xy yz zx. Probr que: x y z y z x z 9 x y 4 Por l desiguldd de Cuchy: x x y z y y z x z 9 z x y 4 5

53 Por l desiguldd de Cuchy: x x.y.z x 7y 7z x.y.z.xyz xy.yz.zx 7 x.y.z x x y z y y z x z xy.yz.zx.xyz z x y xy yz zx x y z 4xyz (LQQD) 9 4 Lo cul es cierto y que, por MA MG: xyz xyz x y z x y z xy yz zx L iguldd se lcnz cundo, x y z Solution by Abhy Chndr Indi From AM GM, we hve x 7x y z 8 y 7x 8 z 7x 4 which implies x 7x y z 8 Summing it up, we get y z x 7x 7y 7z 8 y z 7 8 x y z We re left to prove tht xy yz zx xyz 5

54 but x y z x y z xyz 4 nd xyz. Hence we re done. Equlity t x y z. 40. Let, b, c be positive rel numbers such tht: b c b bc c bc b c. Prove tht: 9 9 b 9 9 b9 c 9 9 c9 9. Solution by Kevin Soto Plcios Hurmey Peru Proposed by Nguyen Viet Hung Hnoi Vietnm Siendo:, b, c números R. de tl mner que: b c b bc c bc b c Probr que: 9 9 b 9 9 b9 c 9 9 c9 9 De l condición, se tiene lo siguiente: bc b c c b b b bc b c c c bc b c c b bc b c b c c b b b Demostrremos lo siguiente: b c bc c c 5

55 9 9 b 9 b b b b 6 b 9 b b 8 8 b b 9 70 b 56 9 b b 8 8 b b b 9 56b b 4 8 b 8 8 b b 9 6 b 00 9 b b 8 8 b b 4 0 Dividendo b, de tl mner que el sentido no se ltere, y que:, b > 0: b b 8 9 b9 b b6 b b b 6 0 Se: b b x (Válido por: MA MG). Por lo tnto: 6 b6 b6 6 x, 9 b9 b9 9 x x, b b x x 8 x x 8 x 00x 6 0 x 4 4x 4x x 4 8x 4x 4x 7 0 Lo cul se puede expresr de l siguiente form: x 48x 48x 68x 7x 7 0 x x x x 68 x x x x 68 0 Luego: 54

56 9 9 b 9 9 b9 c 9 9 c9 9 b b b c bc c c (LQQD) 4. Let, b, c be the side lengths of tringle. Prove tht bc b c c b b c b c c b b c. Solution by Kevin Soto Plcios Hurmey Peru Proposed by Nguyen Viet Hung Hnoi Vietnm Siendo, b, c los ldos de un triángulo. Probr que: bc b c c b b c b c c b b c. sin A sin B sin C Recordr lo siguiente: b c c b b c 8bc Dividiendo 8 bc l desiguldd inicil se tiene: b c c b b c 8bc b c bc c b c b c b sin A sin B sin C cos A cos B cos C ) Supongmos que se un triángulo cutángulo: cos A cos B cos A B cos A B cos C sin C, 55

57 cos B cos C sin A cos C cos A sin B Luego, multiplicndo: cos A cos B cos C sin A sin B sin C sin A sin B sin C cos A cos B cos C (LQQD) ) Supongmos que se un triángulo obtusángulo: C B A, C 90, A, B 90 cos A cos B cos C 0 sin A sin B sin C > 0 sin A sin B sin C cos A cos B cos C 0 (LQQD) 4. If, b, c > 0, b c then: b c 6 b bc c Proposed by Le Viet Hung - Qung Tri Vietnm Solution by Hung Nguyen Viet Hnoi Vietnm Solution by Imd Zk Sid Lebnon Solution by Hung Nguyen Viet Hnoi Vietnm Squring both sides, the desired inequlity becomes b c b b c c 6 b bc c 56

58 By AM-GM inequlity we obtin LHS b b c c b b c b b c c b c b b c c b bc c bc b c It s enough to show tht b b c c bc b c b bc c. Indeed, we hve b bc c b c b bc c b b bc b c c c bc b c b b c c Solution by Imd Zk Sid Lebnon nd we re done. bc b c, b, c > 0, Prove tht b 6 b... (E) First let s prove b b b b bc... (F) LHS RHS b b b c c c AM7GM b c bc b c (F) is proved. b b 0 Now by weighted Jensen s of weights, b, c on the concve function f x x, we hve 57

59 b b c f c b b c c b b c b b ccording to (F). b b 6 b Q.E.D. t, b, c,, 4. If, b, c, b bc c 9 then: b b c c bc Solution by Soumv Chkrborty Kolkt Indi b c Solution by Soumitr Mndl Chndr Ngore Indi Solution by Mygmrsuren Ydmsuren Mongoli Solution by Soumv Chkrborty Kolkt Indi b b c c Weighted GM-HM inequlity Bergstrom b b c c b b c c Proposed by Dniel Sitru Romni A7G bc A7G b c bc bc b c 58

60 ( bc, >, b c it suffices to prove: >, s, b, c ) bc b c bc b c x x x x 6 x x x x x bc x x x x x ln x x ln x () Cse () x < x bc x, ln x 0 LHS of 0 x <, ln x < 0 RHS of < 0 Cse x x LHS > RHS () is true Now, b bc c A7G b c x x x x x x nd lso, ln x ln x x ln x x ln x ( x, ln x, x > 0 nd ln x 0) () is true (Proved) 59

61 (Equlity when b c, i.e., t x ) Solution by Soumitr Mndl Kolkt Indi Let f x x log x for ll x, f x x log x x > 0 for ll x, log now b c f x log x > 0 Applying Jensen s Inequlity b c log b c b bc c 9bc b c bc log b b c c log bc.b.c (proved) Solution by Mygmrsuren Ydmsuren Mongoli b b c c bc bc ) ln b ln b c ln c b c LHS f x x ln x f ln bc x 0 JENSEN: ln b ln b c ln c.b.c ln.b.c ) RHS: b c b bc c 9bc (ASSURE) Cuchy Cuchy.b.cª bc b.bc.cª bc.b.c b.bc.c ª9bc b c b bc c 9bc 9 b c 9bc b c bc (*) (*) b c b c 60

62 b c b bc c Cuchy b c b c b bc c b c b c b c (**) (*), (**) RHS: b c ln bc,.b.c ln.b.c LHS 44. Prove the inequlity holds for ll positive rel numbers, b, c b b b bc c b bc c c c c c b b 4 b 4 c 4 Solution by Kevin Soto Plcios Hurmey Peru Proposed by Nguyen Viet Hung Hnoi Vietnm Probr pr todos los números R. :, b, c b b b bc c b bc c c c c c b b 4 b 4 c 4 Ahor bien : x, y, z R, se cumple l siguiente desiguldd: Siendo: xy yz zx x y z x b b, y b bc c, z c c c Por lo cul solo hce flt demostrr lo siguiente: 6

63 b b b bc c c c 4 b 4 b 4 c 4 c b 4 c 4 Lo cul es cierto y que: b b 4 6 b 4 b 4b 0 4 b 4 b b b b 4 b 4 b b 4 b 4 Además por desiguldd de Cuchy: x, y, z > 0, se cumple lo siguiente: x y z x y y z z x 45. Prove the inequlity holds for ll positive rel numbers, b, c b b bc c c c b c c c b b c b b b bc c Proposed by Hung Nguyen Viet-Hnoi-Vietnm Solution by Le Viet Hung-Vietnm Using AM-GM inequlity: b b b b b b b b 4 b 4 Similrly, we hve: 6

64 b bc c b4 c 4 c c c4 4 b b bc c c c b b 4 c 4 c c 4 4 b 4 b 4 c 4 nd 4 c 4 4 b 4 b 4 c 4 4 c 4 4 b4 b 4 c 4 Inequlity holds: b c 46. If x, y, z > 0 then: 9 x y z y z x > 8 x y y z z x x y z y z x Solution by Sptk Bhttchry-Kolkt-Indi Solution by Nguyen Minh Triet-Qung Ngi-Vietnm Proposed by Dniel Sitru Romni Solution by Sptk Bhtchry-Kolkt-Indi Put x y, y z b, z x c So, to show, 6

65 9 b c > 8 b c Using b c bc b c And rerrnging b c bc b c b bc c b c 8 b bc c b c 6 b bc c > 0 b c 4b 4bc 4c > 0 which is true. (Proved) Solution by Nguyen Minh Triet-Qung Ngi-Vietnm Let x ; b y, c z then bc y x The inequlity becomes 9 b c 8 b c 9 b c b c bc 8 b c b c b bc c 9 b c 8 b c b bc c 9t 8 t 9 b c b bc c t 9 (where t b c b bc c 9 b bc c 9t 8t 89t 69 t 49 0 True q.e.d. t 49 The equlity holds t bc 4 b c 4b bc c 5 0 b 5 c bc b 5 c ) 64

66 x y 4 5 ± 0 y 5 ± z x y 5 ± x 5 ± z And permuttions. 47. If, b, c > 0, b c then: b c Solution by Leonrd Giugiuc Romni Solution by Soumv Chkrborty Kolkt Indi Solution by Sptk Bhttchry Kolkt-Indi 4 Solution 4 by Soumitr Mndl Chndr Ngore Indi Solution by Leonrd Giugiuc Romni b 4 c 4 Proposed by Dniel Sitru Romni By AM-QM, b c. The functions x. 4 nd x. 4 4 re convex on 0,. By Jensen, b c nd b c

67 Solution by Soumv Chkrborty Kolkt Indi, b, c > 0, b c (Bergstrom s inequlity) it suffices to prove: () Now, let f x x.. x. 4 x > 0 f x 0x 5x x 5 x > 0, x > 0 pplying Jensen s inequlity f f b c 4 b c b c 4 5 b c b c 4 Now, (Proved) () is true Solution by Sptk Bhttchry Kolkt-Indi 66

68 6; Let x, x 6 x x 8 x x 8 x (AM HM) x x [ x x; then Titu s lemm] x 4 (Proved) x x x 4 x Solution 4 by Soumitr Mndl Chndr Ngore Indi 4 b c b c b c we know, 7 b c 7 7 b c Similrly, 74 4 b c b c

69 48. If x, y, z > 0 then: (Proved) 4 x y z 4xyz Solution by Mihlce Andrei Stefn-Romni xy x y Solution by Soumitr Mndl-Chndr Ngore-Indi Solution by Redwne El Mellss-Morroco 7xyz Proposed by Dniel Sitru Romni Solution by Mihlce Andrei Stefn-Romni 4 x y z 4xyz 4 x y y x 4 xy x y 7xyz : xyz > 0 x y y 7 x We ll prove: 4 x y 4 x 9 y x. x y y x not α 4α α 4 0 α y.y x Solution by Soumitr Mndl-Chndr Ngore-Indi 4 z x y 4xyz 4α 7 0, true (α ) xy x y 7xyz 4 z x y 6xyz xyz 4xy x y 68

70 4 x y z xyz x y x y 4 x y xy x y x y x y 4 x.y 7xy xy x.y 0, which is true 4 z 4 x y xy 5xy > 0 x y Hence, 4xyz (proved) Solution by Redwne El Mellss-Morroco The inequlity 4 Let f x 4 x x xy x y 7xyz x y xy y x xuy 7 for x > 0. x. x Since f x x x. x with x x we get x > 0 : f x f 9. LHS f x y 7 with equlity if 49. If, b, c, then: x y y x z x y z > 0 x log b e log bc e log c e log e log b e log c e Solution by Mygmrsuren Ydmsuren Drkhn Mongoli Proposed by Dniel Sitru Romni 69

71 Solution by Rvi Prksh - New Delhi Indi Solution by Mygmrsuren Ydmsuren Drkhn Mongoli log b e log bc e log c e log e log b e log c e ln b ln ln b 4 ln ln b ln bc ln c ln b ln c 4 ln b ln c 4 ln ln b ln c Solution by Rvi Prksh - New Delhi Indi ln ln b ln c ln c ln 4 ln c ln ln ln ln b ln c Cuchy Let x log e, y log e b, z log e c. As, b, c >, x, y, z > 0 Now, log b e log e log.log b x.y We hve:, etc. [chnge of bse] xy x y x y x y 4 x y Thus, x.y 4 x y x log b e log e 50. If, b, c > 0 then: b b 6 b b 4 Proposed by Dniel Sitru Romni Solution by Leonrd Giugiuc Romni 70

72 Solution by Soumv Chkrborty-Kolkt-Indi Solution by Leonrd Giugiuc Romni By Cuchy, b b b 7b.b.b.b b b 6 b b b b 6 b b. By AM-QM, b b b b 4. Solution by Soumv Chkrborty-Kolkt-Indi b b 6 b b x x Let s prove:.b 7b.b 4 ().b b b b b 4 b 4 b b b 4 b 4 b b b b b 0 true Similrly, b.c b 7bc.b b.c 4 () nd 7

73 c. c 7c. c. 4 () () () ().b 7b.b 4 (4).b b b 6 b b b b 4 (using (4)) (proved) 5. For the positive rel numbers, b, c, n, where n N, prove tht n n n n 7 bc b c n Proposed by Abhy Chndr-Indi Solution by Leonrd Giugiuc-Romni: It s equivlent to n ln n ln n ln ln b ln c n ln b c 0 Let the function f: n, n R, f n ln n ln n ln ln b ln c n ln b c. fʹ n Then But n n 7 n 7n.b.c.b.c.b.c > n b c,, n, hence f is strictly decresing n min f f n n ln n ln n ln n ln b ln c n ln n b c Apply twice more this procedure nd get the desired result. Equlity if. 7

74 5. If, b, c, d > 0 then: b c n. 6 b c d > b b c b c d Solution by Ans Adlny - El Jdid Morroco Solution by Henry Ricrdo - New York USA Solution by Mygmrsuren Ydmsuren Drkhn Mongoli Solution by Ans Adlny - El Jdid Morroco 6 b b c b c d 6 b b c b c d Proposed by Dniel Sitru Romni b b c b c d 6 b 4c 6 d 6 (true) Solution by Henry Ricrdo - New York USA b 4c 6 d 6 The AM GM inequlity gives us < b c d 6 b b c b c d lic b b c b c d < 6 lic b c d 6 lic b c d lic lic lic 9 b c d b c d. Solution by Mygmrsuren Ydmsuren Drkhn Mongoli ; b; c; d > 0 7

75 6 > b b c b c d b c d b c d 6 9 b c d 6 b b c b c d 6 Cuchy 6 b b c b c d 5. If, b, c, d 0,,..b.c.d then: b c d 6 Solution by Mygmrsuren Ydmsuren Mongoli ) n i±n n i± x i x i x i n n i± n x i x i i± x x x n x x x n x.x x.x n x i i±n n n i±n x i x i x n.x n x i x i Proposed by Dniel Sitru Romni n x i Chebyshev x i n n i±n Assume x n i n i±n x i x i n i±n x i x i Cuchy n n x i x i n x i x i n 74

76 ; n i±n x i x i n i±n x i x i n x i x i n x i i±n n i±n x i x i n n x i i±n ) n i±n n i±n x i x i x i n Cuchy n x i i±n n n i±n n i±n x i x i x i x i n n n x i i±n n 4 x x x x 4 6 b c d If, b, c, d > 0, b c d then: b c b c d c d d b 8 Proposed by George Apostolopoulos - Messolonghi - Greece Solution by Kevin Soto Plcios Hurmey Peru Si:, b, c, d > 0. b c d. Probr que: b c b c d c d d b 8 Por l desiguldd de Holder: b c b c d c d d b b c c d d b b c d 75

77 b c 55. If x, y, z > 0 then: b c d c d d b (LQQD) b c d 8 b c d 8 x x z y 4 y y x z 4 z z y x 4 > xy yz yx zx zy xy Solution by Mygmrsuren Ydmsuren Mongoli Solution by Nguyen Minh Triet - Qung Ngi Vietnm Solution by Mygmrsuren Ydmsuren Mongoli Proposed by Dniel Sitru Romni x x z y 4 x 4 z y 4 x x z y x x z y x y x z y z y x z x z y x y x z y z y x z xy xz xy yz xz zy > xy xz yx zx zy xy Solution by Nguyen Minh Triet - Qung Ngi Vietnm By AM GM inequlity, we hve: x z y 4 xzy x x z y 4 xy xz () Similrly, we get: y y x z 4 yz xy () z x y x 4 xz xy () () () () LHS RHS > RHS q.e.d. 56. If, b, c > 0 then the following reltionship holds: 76

78 b c b c c b c c b c Proposed by Dniel Sitru Romni Solution by Kevin Soto Plcios Hurmey Peru, Solution by Ans Adlny-El Jdid-Morroco, Solution by Sk Rejun-West Bengl-Indi, Solution 4 by Nirpd Pl-Indi, Solution 5 by Mygmrsuren Ydmsuren-Drkhn-Mongoli Solution by Kevin Soto Plcios Hurmey Peru Si:, b, c > 0. Probr l siguiente desiguldd: b c b c c b c c b c Desde que:, b, c > 0. Por: MA MG: c b c 4 c b c.b.c.c b.c c..b.c. b.c 4 Solution by Ans Adlny-El Jdid-Morroco We hve A B b c (LQQD) 4AB, so if we tke A c, B b c, we get b c c b c c b c A B AB A B A B 4 Solution by Sk Rejun-West Bengl-Indi We hve to prove 77

79 b c c b c c b c b c LHS.b.c.c b.c.c. b.c () Now, c b c b c c b c b c b c c b c b c c b c c b c b c Solution 4 by Nirpd Pl-Indi c b c b c 4 [by G.M A.M] b c.b.c.c b.c.c. b.c s b.b.c.c b.c.b.c b.c b.c.b.c uc. buc.c. b.c s HM AM 4 b c b c Solution 5 by Mygmrsuren Ydmsuren-Drkhn-Mongoli c x c y b c b z x y z x y z x.y xy x.y x y z x y xy x y (ASSURE) 78

80 x y 57. If, b, c, then: y z z x x.y x.y xy x.y (ASSURE) xy x.y x y xy (TRUE) y z z x x y z Solution by Redwne El Mellss-Morroco Similrly y z zy y z z x zx z x x y xy y x b 4 c( b) bc b c x y xy x y b b b Proposed by Dniel Sitru Romni b b 4 b c b 4 c b 4 bc c 0 b b 0 b 4 c b bc. with equlity if nd only if b c. b b c c 58. If, b, c (0, ) then: 79

81 be 7 ce b7 e c7 e Solution by Redwne El Mellss-Morrocco c b c b Let f x xe xf, 0 < x <. Since: Proposed by Dniel Sitru Romni f x x x ex7 x, 59. If, b, c > 0 then: b b we get f x f e. So: b f e b. b > 6 b bc c b Proposed by Dniel Sitru Romni Solution by Mihlce Andrei Ștefn Romni, Solution by Rvi Prksh - New Delhi Indi, Solution by Seyrn Ibrhimov Msilli Azerbidjin Solution 4 by Soumitr Mndl - Chndr Ngore Indi Solution 5 by Abdllh El Frissi Bechr Algerie Solution by Mihlce Andrei Ștefn Romni Let s prove:.b.b b 6 b.b b not s 80

82 b not p s 6s p 9p > 9 s p 0 if b b b c bc b c c c b ± 5 c ± 5 ± 5 Anywy we will hve the signs in ± 5, it will result tht rtionl number is equl to n irrtionl number. Contrdiction LHS > RHS Solution by Rvi Prksh - New Delhi Indi Consider b b b 6 b b b b b 6 b b 9b b b 6 b b b b b b 0 b b b 6 b b Similrly for other two terms. Solution by Seyrn Ibrhimov Msilli Azerbidjin b b b b b b 9b AM7GM 6 b b 8

83 Solution 4 by Soumitr Mndl - Chndr Ngore Indi b b > 6 b b b b 9b 6 b b > 0 b b b > 0 b which is true b b > 6 b b b (Proved) Solution 5 by Abdllh El Frissi Bechr Algerie b b b b 9 b 6 b b b nd equlity if nd only if 7b b 0, b b nd equlity if nd only if b c b 5.7 b 6 b bc c b 7b b 0 b 7bc c 0 c 7c 0 c this is contrdiction then b then it follow tht 8

84 60. If, b, c then: b b b > 6 b bc c b log log b log log bc log Proposed by Dniel Sitru Romni Solution by Mihlce Andrei Ștefn Romni Solution by Soumv Chkrborty Kolkt Indi Solution by Abdllh El Frissi Bechr Algerie Solution by Mihlce Andrei Ștefn Romni x ln 0 Tke y ln b 0 z ln c 0 The inequlity xy x xy x g p g 4q p g 4gp p 4 8g gp 0 g p 0 true Solution by Soumv Chkrborty Kolkt Indi Let log u, log b v, log c w u, v, w 0 Given inequlity uv u u u uv u uv u Let uv x nd u y 8

85 given inequlity x y x y x y 0 which is true (Proved) N.B.: Inequlity is true, b, c > 0 Solution by Abdllh El Frissi Bechr Algerie log log b log 0 then log log b log log log b log 6. If, b, c > 0 then: b b log log bc log b c b b c Solution by Redwne El Mellss Morroco Let f t t.t 6 c c c b b c c Proposed by Dniel Sitru Romni t, t > 0..t6 Since f t 7t t7 t 4.t.t.t..t 6 0 f b 0 b b b b with equlity if nd only if b c c b c > 0. b 6. If x, y, z > 0 then: 84

86 x xy y y z Solution by Mihlce Andrei Ștefn Romni xy y 4 y z y z yz z 4 Solution by Mygmrsuren Ydmsuren-Drkhn-Mongoli Solution by Soumitr Mndl - Chndr Ngore Indi Solution by Mihlce Andrei Ștefn Romni LHS We ll prove: xy y z Proposed by Dniel Sitru Romni xy y z xy y 4.z 4 7y z7yz.y z y 4 y z z 4 yz 0 y z y yz z Equlity for b c Solution by Mygmrsuren Ydmsuren-Drkhn-Mongoli 0 true. x xy y x y xy xy xy xy Cuchy. y z 0 0 y4 z 4 y z y 4 z 4 y4 z 4 y z y 4 z 4 y z y 4 z 4 y z y 4 z 4 zy y z y 4 z 4 y z yz 0 y 4 z 4 y z y z yz y z y z Cuchy. x 7xy.y y z ; xy y 4 7y z.y z 7yz.z 4 85

87 Solution by Soumitr Mndl - Chndr Ngore Indi x xy y y z x y y z x y xy y 4 y z y z yz z 4 xy y z y 5 z 5 x.y y 5.z 5 7xy z y.z x.y 0 () y z x.y y 5.z 5 Now, x y y 5 z 5 xy z x y y z 4 x y 6 y z 5 xy z x y Hence, () is estblished. y z 0 x xy y y z xy y 4 y z y z yz z 4 (proved) 6. If, b, c then: log b b c c 6 Solution, by Leonrd Giugiuc Romni Solution by Soumitr Mndl-Chndr Ngore-Indi Solution by Leonrd Giugiuc Romni b b c 4 Proposed by Dniel Sitru Romni Lemm: b ln 6b..4. b,, b 86

88 Lemm s proof: For ll, let f b b ln f b ln 6b b on, ; Now let g 4 f b 4 ln on,. We hve: g ln 5 4 nd g ln 4 > 0 g 7 0, g 0, g 0, g() 0 ¹ f is strictly incresing. Since f g().4. 0 the conclusion follows. Similrly, the other two inequlities. Adding up, we re done. Solution by Leonrd Giugiuc Romni Lemm: The function f x ln x 6.x x.4x. Lemm s proof: f x x x.x. x.4x.. We hve: is strictly incresing on,. f x 0 x x x x x x, which is true by AM GM for u x x nd v x. Bck to the problem. By the lemm, f x f x. We get: bf cf b f c b c ln b b c c 6b. b c..4. Solution by Soumitr Mndl-Chndr Ngore-Indi 87

89 Let f x ln x f x x x.x.x x7.4x.x 6.x.4x.x for ll x, x 4x x 4 x.4x.x 4x x x 0 for ll x, now f is continuous on, nd f x 0 for ll x, f x f 0 for ll, b, c, then f c bf cf b 0 ln b b c c 64. If, b, c 0, then: 6 b 4 (Proved) b c b b b 4 4 b b bc c Solution by Seyrn Ibrhimov Msilli Azerbidjin b b b 4 4 b b b b b b 4 4 b b 4 4 b b b b Proposed by Dniel Sitru Romni 6 b 4 b 4 b 6 4 b b 4 5 b b 5 6 b 4 b 6 4 b 4 5 b b 6 b b 4 b 6 4 b 4 b 5 proved(am-gm) 88

90 65. If, b, c, d > 0, bcd then: 6 Solution by Mihlce Andrei Ștefn Romni Solution by Seyrn Ibrhimov-Msilli-Azerbidjin Solution by Mihlce Andrei Ștefn Romni Proposed by Dniel Sitru Romni Inequlity () true becuse 4 bcd Solution by Seyrn Ibrhimov-Msilli-Azerbidjin x b c d 4 x x x 6 x x 5x x 5x 6x x 5x 6 6 x 6x x 0 x x 4 x x 4 x 4 0 x 4 x x 0 ( ) 0 therefore x 4 Equlity x x x x 66. If, b, c R, bc then: c b b b c c c b < 4 Proposed by Dniel Sitru Romni 89

91 Solution by Redwne El Mellss-Morroco Let Δ, b, c R c b. Δ, b, c c c b b Δ, b, c c b b c () Δ b, c, b c c Δ, b, c b c c () b Δ c,, b b c b Δ, b, c c b Now lets study some cses bout, b nd c : If b c : c c > 0 b () c then () Δ, b, c c c < c c. c By the sme ide, if b c we use () nd if c b we use (). If c b : c > 0 b b > 0 c If b : () Δ, b, c b If b : () Δ, b, c c b b < b b c < c b b b b c c b By the sme ide, if c b we use () nd () nd if b c we use () nd (). Finlly Δ, b, c R bc < < Let x, y, z be positive rel numbers such tht: xyz. Prove tht: x x 4.y 4.4xy y (y 4.z 4 ).4yz z z 4.x 4.4zx x.y.z 5 () Proposed by Hong Le Nht Tung Hnoi Vietnm 90

92 Solution by Hong Le Nht Tung Hnoi Vietnm * Since Inequlity Cuchy Schwrz. We hve: x 4 y 4 xy x 4 y 4 4x y 4 x 4 x y y 4 4 x y x 4 y 4 xy x y x 4 y 4 4xy x xy y x 4 y 4 4xy x xy y x x 4.y 4.4xy x x.xy.y () y x 4.y 4.4yz - Similr: y ; z y.yz.z z 4.x 4.4zx - Since (), (): z z.zx.x () x x 4 y 4 4xy y y 4 z 4 4yz z z 4 x 4 x y z (4) x.xy.y y.yz.z z.zx.x - Other, Since inequlity Cuchy Schwrz: 4zx x x xy y x x x y xy y y yz z y y y z yz z z zx x z z z x zx x y z x x y xy y y z yz z z x zx x x xy y y y yz z z z zx x 9

93 x y z x x y z y x y z z x y z x x.xy.y y y.yz.z z z.zx.x x.y.z x.y.z x.y.z x.y.z x.y.z (5) - Since (4), (5): x x 4.y 4.4xy y y 4.z 4.4yz z z 4.x 4.4zx x.y.z x.y.z x (x 4.y 4 ).4xy y y 4.z 4.4yz z z 4.x 4.4zx x.y.z x.y.z x.y.z x.y.z (6) - Since Inequlity AM-GM for 5 positive rel numbers we hve: x y z x y z x y z x y z x y z x y z x y z x y z x y z x.y.z x.y.z x.y.z 6 x.y.z 6 x.y.z 6 x.y.z 6 x y z x y z x y z 5 5 x y z x y z - Since inequlity: xy yz zx xyz x y z nd supposed: xyz. We hve: x y z x y z x y z x y z xyz x y z x y z xy yz zx x y z x y z xy yz zx xy yz zx 9

94 x y z x y z x.y.z xy.yz.zx xy.yz.zx 4 - Other, Inequlity AM-GM for positive rel numbers: (8) x y z x y z xy yz zx xy yz zx x y z xy yz zx xy yz zx x y z 6 7 x y z xy yz zx xy yz zx x y z xy yz zx xy yz zx - Since (8), (9): x y z x y z x y z x.y.z 5 8 x.y.z 5 x.y.z x.y.z 6 7 x.y.z 6 7 (9) x.y.z (0) - Since (7), (0): x.y.z x.y.z x.y.z () - Since (6), (): x (x 4.y 4 ).4xy y y 4.z 4.4yz z z 4.x 4.4zx x.y.z Inequlity () True nd we get the desired result. Equlity occurs if: x, y, z > 0; xyz (x 4 y 4 ) xy; y 4 z 4 yz; z 4 x 4 zx x xy y y yz z z xz x x y z x y z x y z 6 xy yz zx x y z xy yz zx x y z 68. If x, y, z > 0 then: x 7x 5 y z 7, 9 x 5x 7 y z 5 9

95 Solution by Abdllh El Frissi-Bechr-Algerie Solution by Rvi Prksh-New Delhi-Indi Solution by Imd Zk-Sid-Lebnon Solution by Abdllh El Frissi-Bechr-Algerie Proposed by Dniel Sitru Romni Let f.5 x.y.z, > 0 we hve f 70 x.y.z.5 x.y.z < 0 then f is concve function, x 7x 5 y z f x f y f z f x y z 7 Let g, < 7 7 x.y.z 7 x y z, we hve g 8 x.y.z 7 x.y.z 7 0, then g is convex function, x 5x 7 y z f x f y f z f x y z 9 Solution by Rvi Prksh-New Delhi-Indi Consider E x 5 y z 7x 7x 7x 5 y z 7 7 7x 5 y z Similrly, 5 x y 5 x z 7 7x 5y 5z E 5 y7x.5 y7z 7 7y.5x.5z Now, 7 5 nd E E E E 5 z7x.5 z7y 7 7z.5x.5y 94

96 x y 7x 5y 5z 7y 5x 5z y z 7y 5x 5z 7z 5x 5y z x 7z 5x 5y 7x 5y 5z x y 7x 5y 5z 5x 7y 5z y z 5x 7y 5z 5x 5y 7z z x 5x 5y 7z 7x 5y 5z 0 x 7x 5 y z 7 Next, consider F 9 x 5x 7 y z 7 y z 5x 9x 9 5x 7y 7z 7 y x 7 z x 9 5x 7y 7z Similrly, y x F 7 z y 7 x y 9 5y 7x 7z 9 7 5x 7y 7z 5y 7x 7z, F F F F x z 7 x z 7 y z 9 5z 7x 7y 5z 7x 7y 5x 7y 7z z y 5y 7x 7z 5z 7x 7y y x 5x 7y 7z 5y 7x 7z x z 5z 7x 7y 5x 7y 7z z y 5y 7x 7z 5z 7x 7y 0 Solution by Imd Zk-Sid-Lebnon Let f x x 5x 7 y z 9 x x.5 for x 0; we hve: f x 5x Let g x 70 x7 89 x.5 x 7x 5x 0 f x for x 0; we hve: () 95

97 g x x x7 6 7x x 0 g x () 6 6 Both inqulities re homogeneous, so let x y z f x Ineq () f x? 5x x.y. 89 cc. to () we my write! Q.E.D. Ineq () g x?! g x x cc. to () we my ffirm Q.E.D. when x y z or x y z in generl N.B.: y 5x 89 8 is the tngent, t x to G f y x 6 6 // // // // // // to G g 69. Let, b, c be positive rel numbers such tht: b c. b b b bc c Solution by proposer Prove tht: c c c c Solution by Anh Ti Trn Hnoi Vietnm Solution by Leonrd Giugiuc Romni Solution by proposer * We hve inequlity: b b Proposed by Hong Le Nht Tung Hnoi Vietnm 4 b 4 c 4 bc b c b b bc b c c c () 96

98 - () 4 b 4 c 4 bc b c b b bc b c c c 4 b 4 c 4 bc b c b b bc b c c c 0 b c bc b b bc b c c c c cb b 0 b c b b b c c c c b 0 () * b c > 0. We hve: c c 0 c b c b 0 c c b 0 c c c b 0 (4) We hve: b c b b b c b c b b c b c b b b c b b c b b b b b c b b b b b b c bc b b b c bc (5) b c > 0 c 0; b c 0 Therefore: b b c bc c b b c b b > 0. b 0;, b R b b b c bc 0 (5): b c b b b c 0 (6) - Since (4), (6): b c b b b c c c c b 0 Inequlity () True True. - Since inequlity AM-GM for positive rel numbers: b b bc b c c c b b bc bc c c b b c c (7) * Since (7): 4 b 4 c 4 bc b c b b c c 4 b 4 c 4 b b c c 4 b b c c bc b c b c 4 b b c c bc b c.b.c 4 b.b c.c 7bc.b.c (8) 97

99 - Since inequlity Cuchy Schwrz. We hve: b b b bc c b bc c b c c c c b c c bc b Fbcuc. b c Fcu. c Fbub b.bc.c b b c b b c (9) - Other, since inqulity Cuchy Schwrz: b bc c b c c c b b 4 b bc c b 4 b c b c b b c c 4 c bc b c b bc c b c b c b c bc b c - Since (8), (9): - Since (9), (): b bc c b c c.b.c 4 b.b c.c 7bc.b.c b c b 7bc.c c 7c. 7b.b c b b (0) () b c b b 7bc.c c c 7c. 7b.b b.bc.c b b bcc b c c c c b.bc.c bb () b c.b - Since inequlity AM-GM we hve: b.c c. b bc c b bc c b c b bc c b c b bc c b bc c b c b bc c b bc c (becuse b c ) () b c 98

100 - Since (), (): Equlity occurs if: b c b b 7bc.c c c 7c. 7b.b Inequlity () true nd we get the desired result. b Fbcuc b b c b c > 0 b 7bc.c b c Fcu bc c 7c. Solution by Anh Ti Trn Hnoi Vietnm c Fbub c 7b.b b c. b b bc c b bc c b b bc c b b bc c b c We will prove: T Solution by Leonrd Giugiuc Romni T b bc c T 4 bc bc 4 bc b It s true by Shur nd AM-GM LHS b b b By Cuchy, 99

101 b b bc c b bc c b bc c. Suffice it to show tht b bc c b bc c Apply Jensen nd get b bc c b c 4 b b c c bc. We ll show tht.b.c 4 b.b c.c 7bc t 4 t p, where b bc c t, 0 t < nd bc p. Cse : p. Then 4 t t t 4 t p nd t 4 t t t t t 0 Cse : p <. Then t 4 t 4 t p. Becuse b.bc.c, done. 70. If, b, c > 0 then: b c b c b c b bc c 6 bc bc Proposed by Dniel Sitru Romni 00

102 Solution by Soumv Chkrborty Kolkt Indi Solution by proposer Solution by Soumv Chkrborty Kolkt Indi LHS Solution by proposer b bc c b c b 4 b 4 c 4 b b b c b c b bc c b c b c A7G b c 4 b 4 c 4 4 b 4 c b 8 c 8 4 b 4 c b 4 c b 4 c 4 (Proved) 7 4 b 4 c 4 bc bc 6 bc b c 9 4 b 4 c 4 b c b c 4 b c b c b bc c b bc c b bc c b c b c b bc c b c b bc c 0

103 b c b c b bc c b c b bc c b c b c b c b c b bc c b c b bc c 6 6 b c b bc c 6 4 b 4 c 4 6 bc bc 7. Let, b, c be positive rel numbers such tht b c. b 4 4 Prove tht: Solution by Anish Ry-Sntrgchi-Indi Solution by Soumitr Mndl-Chndr Ngore-Indi Solution by Henry Ricrdo - New York USA Solution by Anish Ry-Sntrgchi-Indi b > b 4 4 c b c > 5 Proposed by Anish Ry-Sntrgchi-Indi Given tht, b, c > 0 We cn write, b 4 4 > b b 4 4 > b 0

104 So, > b 4 4 b Now, By Bergstorm s Lemm, we get tht b b c b c 6 Now, for, b, c > 0 b c > b c b c 6 > b c 6 b c 6 > b c b c 6 > so, b c 6 5 which implies, b c b c therefore, b 5 Thus, > b Solution by Soumitr Mndl-Chndr Ngore-Indi Let, b, c 0 nd b c then > b

105 b 4 4 b b b b b 4 b b c b we need to prove, 5 > b 6 5 > b b c 5 > 9 b 5 4 b > 4 b 4 7 b > 4 b we need to prove (). Now we hve 4 7 b 4 b b bc b 4 b bc 04

106 since, 4 b bc b c 4 b bc 4 b 54bc > 4 b hence sttement () is true. > b 4 5 (proved) Solution by Henry Ricrdo - New York USA Without loss of generlity we my ssume tht b c. It follows tht b c nd.4 b.4 c.4. Now the Rerrngement Inequlity give us b 4 b c 4 c b b 4 c c 4 It cn be seen grphiclly (nd proved with some tedious lgebr/nlysis) tht the curve given by y x x.4 lies on or bove the tngent line to the curve t, x, y lic 5 x, on the intervl 0,. Thus we hve 5 b 4 lic

107 lic > Prove tht: b c d 5.b 5.c 5.d 5,, b, c, d > 0 bcd Proposed by Dniel Sitru Romni Solution by Kunihiko Chiky Tokyo Jpn 7. If x, y, z > 0 then: 5 5 b 5 c 5 d b 5 b 5 c 5 d b 5 c 5 c 5 d b 5 c 5 d 5 d 5 5 x y z y z 5( 5.b 5.c 5.d 5 ) 5 x 8 > x y b 5 c 5 d 5 bcd 5 b 5 b 5 c 5 d 5 b cd 5 b 5 c 5 c 5 d 5 bc d 5 b 5 c 5 d 5 d 5 bcd bcd( b c d) y z z x x y y z z x Proposed by Dniel Sitru Romni Solution by Soumv Chkrborty Kolkt Indi Solution by Mygmrsuren Ydmsuren Drkhn Mongoli Solution by Adity Nryn Shrm Knchrpr Indi 06

108 Solution 4 by Seyrn Ibrhimov Msilli Azerbidin Solution by Soumv Chkrborty Kolkt Indi x, y, z > 0 x x 8 > y x y Let f t t t t 6 t > 0 y Now, t t 4 5 A7G t 4 5 > 5t t 4 5 t t 6 5 > t t 6 5 t t 5 > t 9 t 6 t > 0 t t 6 > 0 t > 0 4 t 6 > t t t > 0 x x 6 > x y y y y y 6 > y z z z z z 6 > z x x x () (putting t x y ) () (putting t y z ) () (putting t z x ) () () () x 8 > x y y x Solution by Mygmrsuren Ydmsuren Drkhn Mongoli If x, y, z > 0 y x x 8 > y x y t 6 > t t (ASSURE) y 07

109 t 6 t t 4 t Cuchy t t t i i± t x y ; t y z ; t z x 8 > t i t i i± i± Solution by Adity Nryn Shrm Knchrpr Indi x y z y z x 8 > x y z y z x x y y z y x Let x y, y z b, z x c bc with, b, c > 0 To prove, b c 9 b c b c > 0 Now define, f, b, c b c z b c b c Evluting first prtil derivtives, f () f b 6b 6b 0 () f c 6c 6c 0 () All of the equtions re identicl, thus we hve sme solution for, b, c. b c Now to justify tht b c is minimum we consider the hessin mtrix, 08

110 b 0 0 H f, b, c 0 b c b b c Now, from the solutions of (), (), () we know, > 0, b > 0, c > 0 becuse we neglect the negtive roots becuse, b, c > 0 Solution 4 by Seyrn Ibrhimov Msilli Azerbidin Equivlent to: x y ; y z c; z x b 6 > 6 > < 6 f f ; ; Ã7 nd Ã. ; 09

Math Adventures on CutTheKnot Math

Math Adventures on CutTheKnot Math Mth Adventures on CutTheKnot Mth 101-150 ROMANIAN MATHEMATICAL MAGAZINE Avilble online www.ssmrmh.ro Founding Editor DANIEL SITARU ISSN-L 501-0099 MATH ADVENTURES ON CutTheKnotMth 101-150 By Alexnder Bogomolny

More information

Number 12 Spring 2019

Number 12 Spring 2019 Number 2 Spring 209 ROMANIAN MATHEMATICAL MAGAZINE Avilble online www.ssmrmh.ro Founding Editor DANIEL SITARU ISSN-L 250-0099 ROMANIAN MATHEMATICAL MAGAZINE PROBLEMS FOR JUNIORS JP.66. If, b [0; + ) nd

More information

SOLUTIONS A 2 + B 2 = AB + BA = 2 4

SOLUTIONS A 2 + B 2 = AB + BA = 2 4 SOLUTIONS /4 SOLUTIONS No problem is ever permnently closed The editor is lwys plesed to consider for publiction new solutions or new insights on pst problems Sttements of the problems in this section

More information

Convex Sets and Functions

Convex Sets and Functions B Convex Sets nd Functions Definition B1 Let L, +, ) be rel liner spce nd let C be subset of L The set C is convex if, for ll x,y C nd ll [, 1], we hve 1 )x+y C In other words, every point on the line

More information

Lecture notes. Fundamental inequalities: techniques and applications

Lecture notes. Fundamental inequalities: techniques and applications Lecture notes Fundmentl inequlities: techniques nd pplictions Mnh Hong Duong Mthemtics Institute, University of Wrwick Emil: m.h.duong@wrwick.c.uk Februry 8, 207 2 Abstrct Inequlities re ubiquitous in

More information

On a class of three-variable inequalities. Vo Quoc Ba Can

On a class of three-variable inequalities. Vo Quoc Ba Can On a class of three-variable inequalities Vo Quoc Ba Can 1 Theem Let a, b, c be real numbers satisfying a + b + c = 1 By the AM - GM inequality, we have ab + bc + ca 1, therefe setting ab + bc + ca = 1

More information

INEQUALITIES. Ozgur Kircak

INEQUALITIES. Ozgur Kircak INEQUALITIES Ozgur Kirk Septemer 27, 2009 2 Contents MEANS INEQUALITIES 5. EXERCISES............................. 7 2 CAUCHY-SCHWARZ INEQUALITY 2. EXERCISES............................. REARRANGEMENT INEQUALITY

More information

Basics of Olympiad Inequalities. Samin Riasat

Basics of Olympiad Inequalities. Samin Riasat Bsics of Olympid Inequlities Smin Rist ii Introduction The im of this note is to cquint students, who wnt to prticipte in mthemticl Olympids, to Olympid level inequlities from the sics Inequlities re used

More information

Some estimates on the Hermite-Hadamard inequality through quasi-convex functions

Some estimates on the Hermite-Hadamard inequality through quasi-convex functions Annls of University of Criov, Mth. Comp. Sci. Ser. Volume 3, 7, Pges 8 87 ISSN: 13-693 Some estimtes on the Hermite-Hdmrd inequlity through qusi-convex functions Dniel Alexndru Ion Abstrct. In this pper

More information

Congruent Contiguous Excircles

Congruent Contiguous Excircles Forum Geometricorum Volume 14 (2014) 397 402 FORUM GEOM ISSN 1534-1178 Congruent Contiguous Excircles Mihály Bencze nd Ovidiu T Pop Abstrct In this pper we present some interesting lines in tringle nd

More information

UNIFORM CONVERGENCE MA 403: REAL ANALYSIS, INSTRUCTOR: B. V. LIMAYE

UNIFORM CONVERGENCE MA 403: REAL ANALYSIS, INSTRUCTOR: B. V. LIMAYE UNIFORM CONVERGENCE MA 403: REAL ANALYSIS, INSTRUCTOR: B. V. LIMAYE 1. Pointwise Convergence of Sequence Let E be set nd Y be metric spce. Consider functions f n : E Y for n = 1, 2,.... We sy tht the sequence

More information

ARITHMETIC OPERATIONS. The real numbers have the following properties: a b c ab ac

ARITHMETIC OPERATIONS. The real numbers have the following properties: a b c ab ac REVIEW OF ALGEBRA Here we review the bsic rules nd procedures of lgebr tht you need to know in order to be successful in clculus. ARITHMETIC OPERATIONS The rel numbers hve the following properties: b b

More information

Homework 11. Andrew Ma November 30, sin x (1+x) (1+x)

Homework 11. Andrew Ma November 30, sin x (1+x) (1+x) Homewor Andrew M November 3, 4 Problem 9 Clim: Pf: + + d = d = sin b +b + sin (+) d sin (+) d using integrtion by prts. By pplying + d = lim b sin b +b + sin (+) d. Since limits to both sides, lim b sin

More information

How many proofs of the Nebitt s Inequality?

How many proofs of the Nebitt s Inequality? How mny roofs of the Neitt s Inequlity? Co Minh Qung. Introdution On Mrh, 90, Nesitt roosed the following rolem () The ove inequlity is fmous rolem. There re mny eole interested in nd solved (). In this

More information

f(x)dx . Show that there 1, 0 < x 1 does not exist a differentiable function g : [ 1, 1] R such that g (x) = f(x) for all

f(x)dx . Show that there 1, 0 < x 1 does not exist a differentiable function g : [ 1, 1] R such that g (x) = f(x) for all 3 Definite Integrl 3.1 Introduction In school one comes cross the definition of the integrl of rel vlued function defined on closed nd bounded intervl [, b] between the limits nd b, i.e., f(x)dx s the

More information

IOAN ŞERDEAN, DANIEL SITARU

IOAN ŞERDEAN, DANIEL SITARU Romanian Mathematical Magazine Web: http://www.ssmrmh.ro The Author: This article is published with open access. TRIGONOMETRIC SUBSTITUTIONS IN PROBLEM SOLVING PART IOAN ŞERDEAN, DANIEL SITARU Abstract.

More information

QUADRATIC EQUATIONS OBJECTIVE PROBLEMS

QUADRATIC EQUATIONS OBJECTIVE PROBLEMS QUADRATIC EQUATIONS OBJECTIVE PROBLEMS +. The solution of the eqution will e (), () 0,, 5, 5. The roots of the given eqution ( p q) ( q r) ( r p) 0 + + re p q r p (), r p p q, q r p q (), (d), q r p q.

More information

approaches as n becomes larger and larger. Since e > 1, the graph of the natural exponential function is as below

approaches as n becomes larger and larger. Since e > 1, the graph of the natural exponential function is as below . Eponentil nd rithmic functions.1 Eponentil Functions A function of the form f() =, > 0, 1 is clled n eponentil function. Its domin is the set of ll rel f ( 1) numbers. For n eponentil function f we hve.

More information

Analytical Methods Exam: Preparatory Exercises

Analytical Methods Exam: Preparatory Exercises Anlyticl Methods Exm: Preprtory Exercises Question. Wht does it men tht (X, F, µ) is mesure spce? Show tht µ is monotone, tht is: if E F re mesurble sets then µ(e) µ(f). Question. Discuss if ech of the

More information

Partial Derivatives. Limits. For a single variable function f (x), the limit lim

Partial Derivatives. Limits. For a single variable function f (x), the limit lim Limits Prtil Derivtives For single vrible function f (x), the limit lim x f (x) exists only if the right-hnd side limit equls to the left-hnd side limit, i.e., lim f (x) = lim f (x). x x + For two vribles

More information

W. We shall do so one by one, starting with I 1, and we shall do it greedily, trying

W. We shall do so one by one, starting with I 1, and we shall do it greedily, trying Vitli covers 1 Definition. A Vitli cover of set E R is set V of closed intervls with positive length so tht, for every δ > 0 nd every x E, there is some I V with λ(i ) < δ nd x I. 2 Lemm (Vitli covering)

More information

HW3, Math 307. CSUF. Spring 2007.

HW3, Math 307. CSUF. Spring 2007. HW, Mth 7. CSUF. Spring 7. Nsser M. Abbsi Spring 7 Compiled on November 5, 8 t 8:8m public Contents Section.6, problem Section.6, problem Section.6, problem 5 Section.6, problem 7 6 5 Section.6, problem

More information

Theoretical foundations of Gaussian quadrature

Theoretical foundations of Gaussian quadrature Theoreticl foundtions of Gussin qudrture 1 Inner product vector spce Definition 1. A vector spce (or liner spce) is set V = {u, v, w,...} in which the following two opertions re defined: (A) Addition of

More information

Chapter 1: Fundamentals

Chapter 1: Fundamentals Chpter 1: Fundmentls 1.1 Rel Numbers Types of Rel Numbers: Nturl Numbers: {1, 2, 3,...}; These re the counting numbers. Integers: {... 3, 2, 1, 0, 1, 2, 3,...}; These re ll the nturl numbers, their negtives,

More information

MATH 423 Linear Algebra II Lecture 28: Inner product spaces.

MATH 423 Linear Algebra II Lecture 28: Inner product spaces. MATH 423 Liner Algebr II Lecture 28: Inner product spces. Norm The notion of norm generlizes the notion of length of vector in R 3. Definition. Let V be vector spce over F, where F = R or C. A function

More information

REVIEW Chapter 1 The Real Number System

REVIEW Chapter 1 The Real Number System Mth 7 REVIEW Chpter The Rel Number System In clss work: Solve ll exercises. (Sections. &. Definition A set is collection of objects (elements. The Set of Nturl Numbers N N = {,,,, 5, } The Set of Whole

More information

PART - III : MATHEMATICS

PART - III : MATHEMATICS JEE(Advnced) 4 Finl Em/Pper-/Code-8 PART - III : SECTION : (One or More Thn One Options Correct Type) This section contins multiple choice questions. Ech question hs four choices (A), (B), (C) nd (D) out

More information

Lecture 1. Functional series. Pointwise and uniform convergence.

Lecture 1. Functional series. Pointwise and uniform convergence. 1 Introduction. Lecture 1. Functionl series. Pointwise nd uniform convergence. In this course we study mongst other things Fourier series. The Fourier series for periodic function f(x) with period 2π is

More information

Lecture 3 ( ) (translated and slightly adapted from lecture notes by Martin Klazar)

Lecture 3 ( ) (translated and slightly adapted from lecture notes by Martin Klazar) Lecture 3 (5.3.2018) (trnslted nd slightly dpted from lecture notes by Mrtin Klzr) Riemnn integrl Now we define precisely the concept of the re, in prticulr, the re of figure U(, b, f) under the grph of

More information

UniversitaireWiskundeCompetitie. Problem 2005/4-A We have k=1. Show that for every q Q satisfying 0 < q < 1, there exists a finite subset K N so that

UniversitaireWiskundeCompetitie. Problem 2005/4-A We have k=1. Show that for every q Q satisfying 0 < q < 1, there exists a finite subset K N so that Problemen/UWC NAW 5/7 nr juni 006 47 Problemen/UWC UniversitireWiskundeCompetitie Edition 005/4 For Session 005/4 we received submissions from Peter Vndendriessche, Vldislv Frnk, Arne Smeets, Jn vn de

More information

Integral points on the rational curve

Integral points on the rational curve Integrl points on the rtionl curve y x bx c x ;, b, c integers. Konstntine Zeltor Mthemtics University of Wisconsin - Mrinette 750 W. Byshore Street Mrinette, WI 5443-453 Also: Konstntine Zeltor P.O. Box

More information

[ 20 ] 1. Inequality exists only between two real numbers (not complex numbers). 2. If a be any real number then one and only one of there hold.

[ 20 ] 1. Inequality exists only between two real numbers (not complex numbers). 2. If a be any real number then one and only one of there hold. [ 0 ]. Iequlity eists oly betwee two rel umbers (ot comple umbers).. If be y rel umber the oe d oly oe of there hold.. If, b 0 the b 0, b 0.. (i) b if b 0 (ii) (iii) (iv) b if b b if either b or b b if

More information

Abstract inner product spaces

Abstract inner product spaces WEEK 4 Abstrct inner product spces Definition An inner product spce is vector spce V over the rel field R equipped with rule for multiplying vectors, such tht the product of two vectors is sclr, nd the

More information

set is not closed under matrix [ multiplication, ] and does not form a group.

set is not closed under matrix [ multiplication, ] and does not form a group. Prolem 2.3: Which of the following collections of 2 2 mtrices with rel entries form groups under [ mtrix ] multipliction? i) Those of the form for which c d 2 Answer: The set of such mtrices is not closed

More information

SUMMER KNOWHOW STUDY AND LEARNING CENTRE

SUMMER KNOWHOW STUDY AND LEARNING CENTRE SUMMER KNOWHOW STUDY AND LEARNING CENTRE Indices & Logrithms 2 Contents Indices.2 Frctionl Indices.4 Logrithms 6 Exponentil equtions. Simplifying Surds 13 Opertions on Surds..16 Scientific Nottion..18

More information

42nd International Mathematical Olympiad

42nd International Mathematical Olympiad nd Interntionl Mthemticl Olympid Wshington, DC, United Sttes of Americ July 8 9, 001 Problems Ech problem is worth seven points. Problem 1 Let ABC be n cute-ngled tringle with circumcentre O. Let P on

More information

Physics 116C Solution of inhomogeneous ordinary differential equations using Green s functions

Physics 116C Solution of inhomogeneous ordinary differential equations using Green s functions Physics 6C Solution of inhomogeneous ordinry differentil equtions using Green s functions Peter Young November 5, 29 Homogeneous Equtions We hve studied, especilly in long HW problem, second order liner

More information

On the Generalized Weighted Quasi-Arithmetic Integral Mean 1

On the Generalized Weighted Quasi-Arithmetic Integral Mean 1 Int. Journl of Mth. Anlysis, Vol. 7, 2013, no. 41, 2039-2048 HIKARI Ltd, www.m-hikri.com http://dx.doi.org/10.12988/ijm.2013.3499 On the Generlized Weighted Qusi-Arithmetic Integrl Men 1 Hui Sun School

More information

Algebraic Expressions

Algebraic Expressions Algebraic Expressions 1. Expressions are formed from variables and constants. 2. Terms are added to form expressions. Terms themselves are formed as product of factors. 3. Expressions that contain exactly

More information

MATH1050 Cauchy-Schwarz Inequality and Triangle Inequality

MATH1050 Cauchy-Schwarz Inequality and Triangle Inequality MATH050 Cuchy-Schwrz Inequlity nd Tringle Inequlity 0 Refer to the Hndout Qudrtic polynomils Definition (Asolute extrem for rel-vlued functions of one rel vrile) Let I e n intervl, nd h : D R e rel-vlued

More information

Math 61CM - Solutions to homework 9

Math 61CM - Solutions to homework 9 Mth 61CM - Solutions to homework 9 Cédric De Groote November 30 th, 2018 Problem 1: Recll tht the left limit of function f t point c is defined s follows: lim f(x) = l x c if for ny > 0 there exists δ

More information

a n+2 a n+1 M n a 2 a 1. (2)

a n+2 a n+1 M n a 2 a 1. (2) Rel Anlysis Fll 004 Tke Home Finl Key 1. Suppose tht f is uniformly continuous on set S R nd {x n } is Cuchy sequence in S. Prove tht {f(x n )} is Cuchy sequence. (f is not ssumed to be continuous outside

More information

USA Mathematical Talent Search Round 1 Solutions Year 21 Academic Year

USA Mathematical Talent Search Round 1 Solutions Year 21 Academic Year 1/1/21. Fill in the circles in the picture t right with the digits 1-8, one digit in ech circle with no digit repeted, so tht no two circles tht re connected by line segment contin consecutive digits.

More information

MATH362 Fundamentals of Mathematical Finance

MATH362 Fundamentals of Mathematical Finance MATH362 Fundmentls of Mthemticl Finnce Solution to Homework Three Fll, 2007 Course Instructor: Prof. Y.K. Kwok. If outcome j occurs, then the gin is given by G j = g ij α i, + d where α i = i + d i We

More information

Hadamard-Type Inequalities for s Convex Functions I

Hadamard-Type Inequalities for s Convex Functions I Punjb University Journl of Mthemtics ISSN 6-56) Vol. ). 5-6 Hdmrd-Tye Ineulities for s Convex Functions I S. Hussin Dertment of Mthemtics Institute Of Sce Technology, Ner Rwt Toll Plz Islmbd Highwy, Islmbd

More information

Review of Calculus, cont d

Review of Calculus, cont d Jim Lmbers MAT 460 Fll Semester 2009-10 Lecture 3 Notes These notes correspond to Section 1.1 in the text. Review of Clculus, cont d Riemnn Sums nd the Definite Integrl There re mny cses in which some

More information

Math 360: A primitive integral and elementary functions

Math 360: A primitive integral and elementary functions Mth 360: A primitive integrl nd elementry functions D. DeTurck University of Pennsylvni October 16, 2017 D. DeTurck Mth 360 001 2017C: Integrl/functions 1 / 32 Setup for the integrl prtitions Definition:

More information

Rudin s Principles of Mathematical Analysis: Solutions to Selected Exercises. Sam Blinstein UCLA Department of Mathematics

Rudin s Principles of Mathematical Analysis: Solutions to Selected Exercises. Sam Blinstein UCLA Department of Mathematics Rudin s Principles of Mthemticl Anlysis: Solutions to Selected Exercises Sm Blinstein UCLA Deprtment of Mthemtics Mrch 29, 2008 Contents Chpter : The Rel nd Complex Number Systems 2 Chpter 2: Bsic Topology

More information

ON A CONVEXITY PROPERTY. 1. Introduction Most general class of convex functions is defined by the inequality

ON A CONVEXITY PROPERTY. 1. Introduction Most general class of convex functions is defined by the inequality Krgujevc Journl of Mthemtics Volume 40( (016, Pges 166 171. ON A CONVEXITY PROPERTY SLAVKO SIMIĆ Abstrct. In this rticle we proved n interesting property of the clss of continuous convex functions. This

More information

Integration Techniques

Integration Techniques Integrtion Techniques. Integrtion of Trigonometric Functions Exmple. Evlute cos x. Recll tht cos x = cos x. Hence, cos x Exmple. Evlute = ( + cos x) = (x + sin x) + C = x + 4 sin x + C. cos 3 x. Let u

More information

MAA 4212 Improper Integrals

MAA 4212 Improper Integrals Notes by Dvid Groisser, Copyright c 1995; revised 2002, 2009, 2014 MAA 4212 Improper Integrls The Riemnn integrl, while perfectly well-defined, is too restrictive for mny purposes; there re functions which

More information

Topics in Inequalities - Theorems and Techniques

Topics in Inequalities - Theorems and Techniques Topics in Inequlities - Theorems nd Techniques Hojoo Lee The st edition 8th August, 007 Introduction Inequlities re useful in ll fields of Mthemtics The im of this problem-oriented book is to present elementry

More information

The one-dimensional Henstock-Kurzweil integral

The one-dimensional Henstock-Kurzweil integral Chpter 1 The one-dimensionl Henstock-Kurzweil integrl 1.1 Introduction nd Cousin s Lemm The purpose o this monogrph is to study multiple Henstock-Kurzweil integrls. In the present chpter, we shll irst

More information

Recitation 3: More Applications of the Derivative

Recitation 3: More Applications of the Derivative Mth 1c TA: Pdric Brtlett Recittion 3: More Applictions of the Derivtive Week 3 Cltech 2012 1 Rndom Question Question 1 A grph consists of the following: A set V of vertices. A set E of edges where ech

More information

Math Solutions to homework 1

Math Solutions to homework 1 Mth 75 - Solutions to homework Cédric De Groote October 5, 07 Problem, prt : This problem explores the reltionship between norms nd inner products Let X be rel vector spce ) Suppose tht is norm on X tht

More information

Journal of Inequalities in Pure and Applied Mathematics

Journal of Inequalities in Pure and Applied Mathematics Journl of Inequlities in Pure nd Applied Mthemtics GENERALIZATIONS OF THE TRAPEZOID INEQUALITIES BASED ON A NEW MEAN VALUE THEOREM FOR THE REMAINDER IN TAYLOR S FORMULA volume 7, issue 3, rticle 90, 006.

More information

Polynomial Approximations for the Natural Logarithm and Arctangent Functions. Math 230

Polynomial Approximations for the Natural Logarithm and Arctangent Functions. Math 230 Polynomil Approimtions for the Nturl Logrithm nd Arctngent Functions Mth 23 You recll from first semester clculus how one cn use the derivtive to find n eqution for the tngent line to function t given

More information

Phil Wertheimer UMD Math Qualifying Exam Solutions Analysis - January, 2015

Phil Wertheimer UMD Math Qualifying Exam Solutions Analysis - January, 2015 Problem 1 Let m denote the Lebesgue mesure restricted to the compct intervl [, b]. () Prove tht function f defined on the compct intervl [, b] is Lipschitz if nd only if there is constct c nd function

More information

Review of Riemann Integral

Review of Riemann Integral 1 Review of Riemnn Integrl In this chpter we review the definition of Riemnn integrl of bounded function f : [, b] R, nd point out its limittions so s to be convinced of the necessity of more generl integrl.

More information

MORE FUNCTION GRAPHING; OPTIMIZATION. (Last edited October 28, 2013 at 11:09pm.)

MORE FUNCTION GRAPHING; OPTIMIZATION. (Last edited October 28, 2013 at 11:09pm.) MORE FUNCTION GRAPHING; OPTIMIZATION FRI, OCT 25, 203 (Lst edited October 28, 203 t :09pm.) Exercise. Let n be n rbitrry positive integer. Give n exmple of function with exctly n verticl symptotes. Give

More information

Prof. Girardi, Math 703, Fall 2012 Homework Solutions: 1 8. Homework 1. in R, prove that. c k. sup. k n. sup. c k R = inf

Prof. Girardi, Math 703, Fall 2012 Homework Solutions: 1 8. Homework 1. in R, prove that. c k. sup. k n. sup. c k R = inf Knpp, Chpter, Section, # 4, p. 78 Homework For ny two sequences { n } nd {b n} in R, prove tht lim sup ( n + b n ) lim sup n + lim sup b n, () provided the two terms on the right side re not + nd in some

More information

Absolute values of real numbers. Rational Numbers vs Real Numbers. 1. Definition. Absolute value α of a real

Absolute values of real numbers. Rational Numbers vs Real Numbers. 1. Definition. Absolute value α of a real Rtionl Numbers vs Rel Numbers 1. Wht is? Answer. is rel number such tht ( ) =. R [ ( ) = ].. Prove tht (i) 1; (ii). Proof. (i) For ny rel numbers x, y, we hve x = y. This is necessry condition, but not

More information

7.3 Problem 7.3. ~B(~x) = ~ k ~ E(~x)=! but we also have a reected wave. ~E(~x) = ~ E 2 e i~ k 2 ~x i!t. ~B R (~x) = ~ k R ~ E R (~x)=!

7.3 Problem 7.3. ~B(~x) = ~ k ~ E(~x)=! but we also have a reected wave. ~E(~x) = ~ E 2 e i~ k 2 ~x i!t. ~B R (~x) = ~ k R ~ E R (~x)=! 7. Problem 7. We hve two semi-innite slbs of dielectric mteril with nd equl indices of refrction n >, with n ir g (n ) of thickness d between them. Let the surfces be in the x; y lne, with the g being

More information

ad = cb (1) cf = ed (2) adf = cbf (3) cf b = edb (4)

ad = cb (1) cf = ed (2) adf = cbf (3) cf b = edb (4) 10 Most proofs re left s reding exercises. Definition 10.1. Z = Z {0}. Definition 10.2. Let be the binry reltion defined on Z Z by, b c, d iff d = cb. Theorem 10.3. is n equivlence reltion on Z Z. Proof.

More information

THE NUMBER CONCEPT IN GREEK MATHEMATICS SPRING 2009

THE NUMBER CONCEPT IN GREEK MATHEMATICS SPRING 2009 THE NUMBER CONCEPT IN GREEK MATHEMATICS SPRING 2009 0.1. VII, Definition 1. A unit is tht by virtue of which ech of the things tht exist is clled one. 0.2. VII, Definition 2. A number is multitude composed

More information

LESSON 7.1 FACTORING POLYNOMIALS I

LESSON 7.1 FACTORING POLYNOMIALS I LESSON 7.1 FACTORING POLYNOMIALS I LESSON 7.1 FACTORING POLYNOMIALS I 293 OVERVIEW Here s what you ll learn in this lesson: Greatest Common Factor a. Finding the greatest common factor (GCF) of a set of

More information

7.2 Riemann Integrable Functions

7.2 Riemann Integrable Functions 7.2 Riemnn Integrble Functions Theorem 1. If f : [, b] R is step function, then f R[, b]. Theorem 2. If f : [, b] R is continuous on [, b], then f R[, b]. Theorem 3. If f : [, b] R is bounded nd continuous

More information

The Regulated and Riemann Integrals

The Regulated and Riemann Integrals Chpter 1 The Regulted nd Riemnn Integrls 1.1 Introduction We will consider severl different pproches to defining the definite integrl f(x) dx of function f(x). These definitions will ll ssign the sme vlue

More information

1.2. Linear Variable Coefficient Equations. y + b "! = a y + b " Remark: The case b = 0 and a non-constant can be solved with the same idea as above.

1.2. Linear Variable Coefficient Equations. y + b ! = a y + b  Remark: The case b = 0 and a non-constant can be solved with the same idea as above. 1 12 Liner Vrible Coefficient Equtions Section Objective(s): Review: Constnt Coefficient Equtions Solving Vrible Coefficient Equtions The Integrting Fctor Method The Bernoulli Eqution 121 Review: Constnt

More information

n f(x i ) x. i=1 In section 4.2, we defined the definite integral of f from x = a to x = b as n f(x i ) x; f(x) dx = lim i=1

n f(x i ) x. i=1 In section 4.2, we defined the definite integral of f from x = a to x = b as n f(x i ) x; f(x) dx = lim i=1 The Fundmentl Theorem of Clculus As we continue to study the re problem, let s think bck to wht we know bout computing res of regions enclosed by curves. If we wnt to find the re of the region below the

More information

Read section 3.3, 3.4 Announcements:

Read section 3.3, 3.4 Announcements: Dte: 3/1/13 Objective: SWBAT pply properties of exponentil functions nd will pply properties of rithms. Bell Ringer: 1. f x = 3x 6, find the inverse, f 1 x., Using your grphing clcultor, Grph 1. f x,f

More information

A BRIEF INTRODUCTION TO UNIFORM CONVERGENCE. In the study of Fourier series, several questions arise naturally, such as: c n e int

A BRIEF INTRODUCTION TO UNIFORM CONVERGENCE. In the study of Fourier series, several questions arise naturally, such as: c n e int A BRIEF INTRODUCTION TO UNIFORM CONVERGENCE HANS RINGSTRÖM. Questions nd exmples In the study of Fourier series, severl questions rise nturlly, such s: () (2) re there conditions on c n, n Z, which ensure

More information

Euler, Ioachimescu and the trapezium rule. G.J.O. Jameson (Math. Gazette 96 (2012), )

Euler, Ioachimescu and the trapezium rule. G.J.O. Jameson (Math. Gazette 96 (2012), ) Euler, Iochimescu nd the trpezium rule G.J.O. Jmeson (Mth. Gzette 96 (0), 36 4) The following results were estblished in recent Gzette rticle [, Theorems, 3, 4]. Given > 0 nd 0 < s

More information

Overview of Calculus I

Overview of Calculus I Overview of Clculus I Prof. Jim Swift Northern Arizon University There re three key concepts in clculus: The limit, the derivtive, nd the integrl. You need to understnd the definitions of these three things,

More information

A recursive construction of efficiently decodable list-disjunct matrices

A recursive construction of efficiently decodable list-disjunct matrices CSE 709: Compressed Sensing nd Group Testing. Prt I Lecturers: Hung Q. Ngo nd Atri Rudr SUNY t Bufflo, Fll 2011 Lst updte: October 13, 2011 A recursive construction of efficiently decodble list-disjunct

More information

Farey Fractions. Rickard Fernström. U.U.D.M. Project Report 2017:24. Department of Mathematics Uppsala University

Farey Fractions. Rickard Fernström. U.U.D.M. Project Report 2017:24. Department of Mathematics Uppsala University U.U.D.M. Project Report 07:4 Frey Frctions Rickrd Fernström Exmensrete i mtemtik, 5 hp Hledre: Andres Strömergsson Exmintor: Jörgen Östensson Juni 07 Deprtment of Mthemtics Uppsl University Frey Frctions

More information

Number 8 Spring 2018

Number 8 Spring 2018 Number 8 Spring 08 ROMANIAN MATHEMATICAL MAGAZINE Available online www.ssmrmh.ro Founding Editor DANIEL SITARU ISSN-L 50-0099 ROMANIAN MATHEMATICAL MAGAZINE PROBLEMS FOR JUNIORS JP.06. Let a, b, c > 0.

More information

4 7x =250; 5 3x =500; Read section 3.3, 3.4 Announcements: Bell Ringer: Use your calculator to solve

4 7x =250; 5 3x =500; Read section 3.3, 3.4 Announcements: Bell Ringer: Use your calculator to solve Dte: 3/14/13 Objective: SWBAT pply properties of exponentil functions nd will pply properties of rithms. Bell Ringer: Use your clcultor to solve 4 7x =250; 5 3x =500; HW Requests: Properties of Log Equtions

More information

SOLUTIONS FOR ANALYSIS QUALIFYING EXAM, FALL (1 + µ(f n )) f(x) =. But we don t need the exact bound.) Set

SOLUTIONS FOR ANALYSIS QUALIFYING EXAM, FALL (1 + µ(f n )) f(x) =. But we don t need the exact bound.) Set SOLUTIONS FOR ANALYSIS QUALIFYING EXAM, FALL 28 Nottion: N {, 2, 3,...}. (Tht is, N.. Let (X, M be mesurble spce with σ-finite positive mesure µ. Prove tht there is finite positive mesure ν on (X, M such

More information

MATH34032: Green s Functions, Integral Equations and the Calculus of Variations 1

MATH34032: Green s Functions, Integral Equations and the Calculus of Variations 1 MATH34032: Green s Functions, Integrl Equtions nd the Clculus of Vritions 1 Section 1 Function spces nd opertors Here we gives some brief detils nd definitions, prticulrly relting to opertors. For further

More information

Section 3.2: Negative Exponents

Section 3.2: Negative Exponents Section 3.2: Negtive Exponents Objective: Simplify expressions with negtive exponents using the properties of exponents. There re few specil exponent properties tht del with exponents tht re not positive.

More information

RATIO AND PROPORTION, INDICES, LOGARITHMS

RATIO AND PROPORTION, INDICES, LOGARITHMS CHAPTER RATIO AND PROPORTION, INDICES, LOGARITHMS UNIT I: RATIO LEARNING OBJECTIVES After reading this unit a student will learn How to compute and compare two ratios; Effect of increase or decrease of

More information

Appendix to Notes 8 (a)

Appendix to Notes 8 (a) Appendix to Notes 8 () 13 Comprison of the Riemnn nd Lebesgue integrls. Recll Let f : [, b] R be bounded. Let D be prtition of [, b] such tht Let D = { = x 0 < x 1

More information

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : ,

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : , MT TRIGONOMETRIC FUNCTIONS AND TRIGONOMETRIC EQUATIONS C Trigonometric Functions : Bsic Trigonometric Identities : + cos = ; ; cos R sec tn = ; sec R (n ),n cosec cot = ; cosec R {n, n I} Circulr Definition

More information

Entrance Exam, Real Analysis September 1, 2009 Solve exactly 6 out of the 8 problems. Compute the following and justify your computation: lim

Entrance Exam, Real Analysis September 1, 2009 Solve exactly 6 out of the 8 problems. Compute the following and justify your computation: lim 1. Let n be positive integers. ntrnce xm, Rel Anlysis September 1, 29 Solve exctly 6 out of the 8 problems. Sketch the grph of the function f(x): f(x) = lim e x2n. Compute the following nd justify your

More information

New Integral Inequalities for n-time Differentiable Functions with Applications for pdfs

New Integral Inequalities for n-time Differentiable Functions with Applications for pdfs Applied Mthemticl Sciences, Vol. 2, 2008, no. 8, 353-362 New Integrl Inequlities for n-time Differentible Functions with Applictions for pdfs Aristides I. Kechriniotis Technologicl Eductionl Institute

More information

6.5 Numerical Approximations of Definite Integrals

6.5 Numerical Approximations of Definite Integrals Arknss Tech University MATH 94: Clculus II Dr. Mrcel B. Finn 6.5 Numericl Approximtions of Definite Integrls Sometimes the integrl of function cnnot be expressed with elementry functions, i.e., polynomil,

More information

1. On some properties of definite integrals. We prove

1. On some properties of definite integrals. We prove This short collection of notes is intended to complement the textbook Anlisi Mtemtic 2 by Crl Mdern, published by Città Studi Editore, [M]. We refer to [M] for nottion nd the logicl stremline of the rguments.

More information

Best Approximation in the 2-norm

Best Approximation in the 2-norm Jim Lmbers MAT 77 Fll Semester 1-11 Lecture 1 Notes These notes correspond to Sections 9. nd 9.3 in the text. Best Approximtion in the -norm Suppose tht we wish to obtin function f n (x) tht is liner combintion

More information

Geometrically Convex Function and Estimation of Remainder Terms in Taylor Series Expansion of some Functions

Geometrically Convex Function and Estimation of Remainder Terms in Taylor Series Expansion of some Functions Geometriclly Convex Function nd Estimtion of Reminder Terms in Tylor Series Expnsion of some Functions Xioming Zhng Ningguo Zheng December 21 25 Abstrct In this pper two integrl inequlities of geometriclly

More information

1 Techniques of Integration

1 Techniques of Integration November 8, 8 MAT86 Week Justin Ko Techniques of Integrtion. Integrtion By Substitution (Chnge of Vribles) We cn think of integrtion by substitution s the counterprt of the chin rule for differentition.

More information

Pre-Session Review. Part 1: Basic Algebra; Linear Functions and Graphs

Pre-Session Review. Part 1: Basic Algebra; Linear Functions and Graphs Pre-Session Review Prt 1: Bsic Algebr; Liner Functions nd Grphs A. Generl Review nd Introduction to Algebr Hierrchy of Arithmetic Opertions Opertions in ny expression re performed in the following order:

More information

SOME INTEGRAL INEQUALITIES OF GRÜSS TYPE

SOME INTEGRAL INEQUALITIES OF GRÜSS TYPE RGMIA Reserch Report Collection, Vol., No., 998 http://sci.vut.edu.u/ rgmi SOME INTEGRAL INEQUALITIES OF GRÜSS TYPE S.S. DRAGOMIR Astrct. Some clssicl nd new integrl inequlities of Grüss type re presented.

More information

x 2 1 dx x 3 dx = ln(x) + 2e u du = 2e u + C = 2e x + C 2x dx = arcsin x + 1 x 1 x du = 2 u + C (t + 2) 50 dt x 2 4 dx

x 2 1 dx x 3 dx = ln(x) + 2e u du = 2e u + C = 2e x + C 2x dx = arcsin x + 1 x 1 x du = 2 u + C (t + 2) 50 dt x 2 4 dx . Compute the following indefinite integrls: ) sin(5 + )d b) c) d e d d) + d Solutions: ) After substituting u 5 +, we get: sin(5 + )d sin(u)du cos(u) + C cos(5 + ) + C b) We hve: d d ln() + + C c) Substitute

More information

Quadratic Forms. Quadratic Forms

Quadratic Forms. Quadratic Forms Qudrtic Forms Recll the Simon & Blume excerpt from n erlier lecture which sid tht the min tsk of clculus is to pproximte nonliner functions with liner functions. It s ctully more ccurte to sy tht we pproximte

More information

Bulletin of the. Iranian Mathematical Society

Bulletin of the. Iranian Mathematical Society ISSN: 07-060X Print ISSN: 735-855 Online Bulletin of the Irnin Mthemticl Society Vol 3 07, No, pp 09 5 Title: Some extended Simpson-type ineulities nd pplictions Authors: K-C Hsu, S-R Hwng nd K-L Tseng

More information

Advanced Calculus: MATH 410 Notes on Integrals and Integrability Professor David Levermore 17 October 2004

Advanced Calculus: MATH 410 Notes on Integrals and Integrability Professor David Levermore 17 October 2004 Advnced Clculus: MATH 410 Notes on Integrls nd Integrbility Professor Dvid Levermore 17 October 2004 1. Definite Integrls In this section we revisit the definite integrl tht you were introduced to when

More information

Math 554 Integration

Math 554 Integration Mth 554 Integrtion Hndout #9 4/12/96 Defn. A collection of n + 1 distinct points of the intervl [, b] P := {x 0 = < x 1 < < x i 1 < x i < < b =: x n } is clled prtition of the intervl. In this cse, we

More information

Exam 2, Mathematics 4701, Section ETY6 6:05 pm 7:40 pm, March 31, 2016, IH-1105 Instructor: Attila Máté 1

Exam 2, Mathematics 4701, Section ETY6 6:05 pm 7:40 pm, March 31, 2016, IH-1105 Instructor: Attila Máté 1 Exm, Mthemtics 471, Section ETY6 6:5 pm 7:4 pm, Mrch 1, 16, IH-115 Instructor: Attil Máté 1 17 copies 1. ) Stte the usul sufficient condition for the fixed-point itertion to converge when solving the eqution

More information

Functional Analysis I Solutions to Exercises. James C. Robinson

Functional Analysis I Solutions to Exercises. James C. Robinson Functionl Anlysis I Solutions to Exercises Jmes C. Robinson Contents 1 Exmples I pge 1 2 Exmples II 5 3 Exmples III 9 4 Exmples IV 15 iii 1 Exmples I 1. Suppose tht v α j e j nd v m β k f k. with α j,

More information