Size: px
Start display at page:

Download ""

Transcription

1

2

3

4

5

6

7

8

9

10

11

12 S i = a b i A i r i i T avg T min T max T vit

13

14

15

16

17 e 2

18 e 2 (4/1.8) 2

19 ϕ inc ϕ diff m B λ = Λ(sin θ incident + sin θ diffracted ) m B λ Λ θ diffracted

20 F uel ext

21 Air Nozzle Fuel 1 Spark Vitiation Stage Second Stage Injector Fuel 2

22 (SNR) SNR σ t σ s σ d σ b σ r σ t σ 2 t = σ 2 s + σ 2 b + σ 2 d + σ 2 r, σ s S S σ s S R Q Q

23 S R S Q S = S R Q B σ b B τ B = Ḃτ τ > 700

24 τ

25 σ d σ d D τ D = Ḋτ σ 2 t = (QS R + QḂτ + Ḋτ) + σ2 r, S R

26 G σ 2 t = ( ) 2 2 N t σ 2 (QS R ) 2 s + ( ) 2 2 t σ 2 D 2 d + ( ) 2 2 t σ 2 (QB) 2 z

27 σ 2 t = G 2 QS R + G 2 QB + G 2 D + σ 2 r G σ 2 t = M 2 G 2 QS R + M 2 G 2 QB + M 2 G 2 D + σ 2 r M M SNR = MGQS R M 2 G 2 QS R + M 2 G 2 QB + M 2 G 2 D + σ 2 r M G F 2

28 SNR = QS R ( (QSR + QB + D) + σ r MG ) 2 G M σ r B 45

29

30

31

32

33 E B3 E N2 E CO2 E B4 E O2 E CO2 E B γ δ γ 1 δ = β α β 1 α E B3 E N 2 E CO 2 E B4 E O 2 E CO 2 E B5 E i i E i i B i α β γ δ N 2 CO O 2 CO 2

34 α α = E O 2 E B4 E CO 2 E CO 2 = (E O2 E B4 ) + (E CO2 E B5 ) E CO 2 CO 2 β β = E CO 2 E B5 E O 2 E O 2 = (E O2 E B4 ) + (E CO2 E B5 ) α O 2

35 alpha Superpixel Num ber α O 2 α β O2

36 E i = ϵ n V X ilω [ ] σ E l ω i n V C = n/v X i l ω ( σ/ ω) i E l ϵ E i(λ, x) = S i (x)ϵ n V X ilω [ ] σ E l ω i S i (x) S(x)

37 1 N2 CO Superpixel S N2 (x) S CO2 (x) X i C ρ

38 Density [g/m 3 ] z (mm) r (mm)

39

40

41 Laser pulse Flashlamps 400 µs Q-switch var Q-switch Gate Q-switch Pulse Gen τ delay τ exp CCD Fire Laser CCD PD DAQ Lamps Q-switched fixed Q-switch var Trig Fire Trig A A B Trig Ext/Gate Out Trig Input LSO Pulse/Delay Gen Boxcar

42 E o α β γ δ

43 CO2 CO

44 E E E C i = E i ϵlω [ ] σ ω i E l C i C m v ρ = (X i W i ) C X i W i

45 Density [g/m3] Pixel N J N J = Ng J(2J + 1)e hcbj(j+1)/kt Q rot

46 Q rot = g J (2J + 1)e hcbj(j+1)/kt 0 N J j th g J j th Q rot 0 N J H 2 N J = N a g J(2J + 1)e hcbj(j+1)/kt Q rot E rot = E rot a a N J = N a g J(2J + 1)e hcbj(j+1)/kt Q rot

47

48 cm 1 cm 1

49 m R I/C I/C amb m R I C amb

50 I/C] amb I C I/C] amb m R.

51 F uel ext F uel ext

52

53

54 E i = E o ϵlωσ i C i E o ϵ l σ i Ω C i i E i ϵlω σ i

55 wavelength axis λ [nm] wavelength axis λ [nm] (a) (c) H O 2 CH 4 N O CO laser axis r (mm) 3 H O 2 CH 4N laser axis r (mm) O 2 CO 2 (b) laser axis r (mm) (d) laser axis r (mm) H 2 O CH 4 N 2 O 2 CO 2 H 2 O CH 4 N 2 O 2 CO 2

56

57 ṁ F 1 ṁ F 2 ṁ air P chamber ϕ vit ṁ F 1 ṁ air ϕ ext ṁ = Ap o γ (γrt o ) 1/2 ( 2 ) γ+1 2(γ 1) γ + 1 R T o p 0 γ

58 τ ( ν ϵ )1/2 ϵ ν C τ ṁ F 1 ṁ air ṁ F 2 P chamber ϕ vit ϕ ext Re D Da 0.065x x x x10 3

59 R1 CH O 2 CO + 2H 2 O R2 CO + 0.5O 2 CO 2 R1 CH O 2 CO + 2H 2 R2 CH 4 + H 2 O CO + 3H 2

60 R3 CO + H 2 O CO 2 + H 2 R4 H O 2 H 2 O A β E a /R x10 11 [CH 4 ] 0.7 [O 2 ] 0.8 2f 2.24x10 12 [CO][O 2 ] 0.25 [H 2 O] 0.5 2b 5x10 8 [CO 2 ] 1 4.4x10 11 [CH 4 ] 0.5 [O 2 ] x10 8 [CH 4 ][O 2 ] 3f 2.75x10 9 [CO][H 2 O] 3b 6.71x10 10 [CO 2 ][H 2 ] 4f 5.69x10 11 [H2][O 2 ] 0.5 4b 2.51x10 14 [H 2 O] m 3

61

62 3.5 mm T [K] Length [mm] Vitiation Products T vit = 1080 K 5/10 cm Y X Temperature [K] External Fuel

63 P_cham ber [Pa] x Experiment Tem perature at thermocouple location [K] Experiment T_vit [K] T_vit [K]

64 ṁ p T

65

66 X i [%] Z X CH 4 O 2 H 2 O CH 4 O 2 H 2 O T [K] T[K]

67 T X i

68 E (t) Flow Tim e [s] Flow Tim e [s]

69 t m σ 2 t m = 0 te(t)dt, σ 2 = 0 (t t m ) 2 E(t)dt, COV = σ2 t m t inj t outlet t m = t outlet t inj σ 2 = 0

70 t inj t outlet t m σ x10 4 t m σ 2 σ 2 σ 2

71 S i = a b a b r i b/2 a /2 A i S i i=1 i=2 i=3 i=4 i=5 i=6 S i = a b i A i r i i A i

72 r i i r i A i /S i r i i a ϕ = 0.93rad w i A i S i (ϕ/2π)πr2 i (ϕ/2π)πr 2 i 1 a 2 = ϕ(2i 1)/2.

73 Exp Com p Vit / FC FC Vit 100 CH 4 O 2 PDF X X Vit FC Vit FC 100 PDF H 2 O CO X X

74 Exp Com p Vit / FC FC Vit 100 CH 4 O 2 PD F X X 100 Vit FC Vit FC PDF 10 H 2 O CO X X

75

76 RR CH RR CO RR H2O X CH X CO X H2O

77

78

79

80 1000 T [K] Tm in [K ] Tm ax [K ] Tavg [K ] Tvit [K] Height [m ] T avg T min T max T vit T avg T min T max T vit

81 Heat Flux [W / m 2 ]

82 T vit

83

84

85

86

87

88

89

90 e

91

Motion and motional qubit

Motion and motional qubit Quantized motion Motion and motional qubit... > > n=> > > motional qubit N ions 3 N oscillators Motional sidebands Excitation spectrum of the S / transition -level-atom harmonic trap coupled system & transitions

More information

Homework # cm. 11 cm cm. 100 cm. MAE Propulsion Systems, II

Homework # cm. 11 cm cm. 100 cm. MAE Propulsion Systems, II Homework #3.1 Nitrous Oxide HTPB Hybrid Rocket design Desired Thrust of 8 knt Operate near optimal mixture ratio (based on C*) Nozzle A/A * =16.4, exit diameter = 19.17 cm, Nozzle Exit Divergence angle

More information

Fabrication and Measurement of Spin Devices. Purdue Birck Presentation

Fabrication and Measurement of Spin Devices. Purdue Birck Presentation Fabrication and Measurement of Spin Devices Zhihong Chen School of Electrical and Computer Engineering Birck Nanotechnology Center, Discovery Park Purdue University Purdue Birck Presentation zhchen@purdue.edu

More information

Detonation Diffraction

Detonation Diffraction Detonation Diffraction E. Schultz, J. Shepherd Detonation Physics Laboratory Pasadena, CA 91125 MURI Mid-Year Pulse Detonation Engine Review Meeting February 10-11, 2000 Super-critical Detonation Diffraction

More information

Detection of X-Rays. Solid state detectors Proportional counters Microcalorimeters Detector characteristics

Detection of X-Rays. Solid state detectors Proportional counters Microcalorimeters Detector characteristics Detection of X-Rays Solid state detectors Proportional counters Microcalorimeters Detector characteristics Solid State X-ray Detectors X-ray interacts in material to produce photoelectrons which are collected

More information

Electromagnetic Torque From Event Report Data A Measure of Machine Performance

Electromagnetic Torque From Event Report Data A Measure of Machine Performance Electromagnetic Torque From Event Report Data A Measure of Machine Performance Derrick Haas and Dale Finney Schweitzer Engineering Laboratories, Inc. 7 SEL Overview Electromagnetic torque calculation Modeling

More information

Physics 7A Lecture 2 Fall 2014 Final Solutions. December 22, 2014

Physics 7A Lecture 2 Fall 2014 Final Solutions. December 22, 2014 Physics 7A Lecture Fall 04 Final Solutions December, 04 PROBLEM The string is oscillating in a transverse manner. The wave velocity of the string is thus T s v = µ, where T s is tension and µ is the linear

More information

Supplementary Information

Supplementary Information 1 Supplementary Information 3 Supplementary Figures 4 5 6 7 8 9 10 11 Supplementary Figure 1. Absorbing material placed between two dielectric media The incident electromagnetic wave propagates in stratified

More information

= (fundamental constants c 0, h, k ). (1) k

= (fundamental constants c 0, h, k ). (1) k Introductory Physics Laboratory, Faculty of Physics and Geosciences, University of Leipzig W 12e Radiation Thermometers Tasks 1 Measure the black temperature T s of a glowing resistance wire at eight different

More information

Time and space resolved spectroscopy of nanoenergetic materials Dana Dlott

Time and space resolved spectroscopy of nanoenergetic materials Dana Dlott Time and space resolved spectroscopy of nanoenergetic materials Dana Dlott Hyunung Yu Selezion A. Hambir School of Chemical Sciences and Fredrick Seitz Materials Research Laboratory University of Illinois

More information

Systems Approaches to Estimation Problems in Thin Film Processing

Systems Approaches to Estimation Problems in Thin Film Processing Systems Approaches to Estimation Problems in Thin Film Processing Tyrone Vincent tvincent@mines.edu October 20, 2008 T. Vincent (IMPACT) Systems Approaches to Estimation October 20, 2008 1 / 45 Acknowledgements

More information

Detecting high energy photons. Interactions of photons with matter Properties of detectors (with examples)

Detecting high energy photons. Interactions of photons with matter Properties of detectors (with examples) Detecting high energy photons Interactions of photons with matter Properties of detectors (with examples) Interactions of high energy photons with matter Cross section/attenution length/optical depth Photoelectric

More information

Characterisation of Silicon Photomultipliers for the T2K Experiment

Characterisation of Silicon Photomultipliers for the T2K Experiment Characterisation of Silicon Photomultipliers for the T2K Experiment, 18th May 2010 Martin Haigh, University of Oxford Outline Brief introduction to the T2K experiment. Overall configuration and goals.

More information

Physics A - PHY 2048C

Physics A - PHY 2048C Physics A - PHY 2048C and 11/15/2017 My Office Hours: Thursday 2:00-3:00 PM 212 Keen Building Warm-up Questions 1 Did you read Chapter 12 in the textbook on? 2 Must an object be rotating to have a moment

More information

Harold s AP Physics Cheat Sheet 23 February Electricity / Magnetism

Harold s AP Physics Cheat Sheet 23 February Electricity / Magnetism Harold s AP Physics Cheat Sheet 23 February 206 Kinematics Position (m) (rad) Translation Horizontal: x = x 0 + v x0 t + 2 at2 Vertical: y = y 0 + v y0 t 2 gt2 x = x 0 + vt s = rθ x = v / Rotational Motion

More information

b) (6) What is the volume of the iron cube, in m 3?

b) (6) What is the volume of the iron cube, in m 3? General Physics I Exam 4 - Chs. 10,11,12 - Fluids, Waves, Sound Nov. 14, 2012 Name Rec. Instr. Rec. Time For full credit, make your work clear to the grader. Show formulas used, essential steps, and results

More information

EXTREME ULTRAVIOLET AND SOFT X-RAY LASERS

EXTREME ULTRAVIOLET AND SOFT X-RAY LASERS Chapter 7 EXTREME ULTRAVIOLET AND SOFT X-RAY LASERS Hot dense plasma lasing medium d θ λ λ Visible laser pump Ch07_00VG.ai The Processes of Absorption, Spontaneous Emission, and Stimulated Emission Absorption

More information

Development of a Pulse Shape Discrimination IC

Development of a Pulse Shape Discrimination IC Development of a Pulse Shape Discrimination IC Michael Hall Southern Illinois University Edwardsville VLSI Design Research Laboratory October 20, 2006 Design Team Southern Illinois University Edwardsville:

More information

3.3 Unsteady State Heat Conduction

3.3 Unsteady State Heat Conduction 3.3 Unsteady State Heat Conduction For many applications, it is necessary to consider the variation of temperature with time. In this case, the energy equation for classical heat conduction, eq. (3.8),

More information

Erratum to: High speed mixture fraction and temperature imaging of pulsed, turbulent fuel jets auto igniting in high temperature, vitiated co flows

Erratum to: High speed mixture fraction and temperature imaging of pulsed, turbulent fuel jets auto igniting in high temperature, vitiated co flows DOI 10.1007/s00348-015-2101-9 ERRATUM Erratum to: High speed mixture fraction and temperature imaging of pulsed, turbulent fuel jets auto igniting in high temperature, vitiated co flows Michael J. Papageorge

More information

Experimental Physics EP3 Atoms and Molecules Spectroscopy X-rays, lasers

Experimental Physics EP3 Atoms and Molecules Spectroscopy X-rays, lasers Experiental Physics EP3 Atos and Molecules Spectroscopy X-rays, lasers http://research.uni-leipzig.de/valiu/ Experiental Physics III X-ray and laser spectroscopy 1 Bresstrahlung Tungsten ev E ax 1 ax h

More information

Knowing the Fire Sprinkler Spray

Knowing the Fire Sprinkler Spray Knowing the Fire Sprinkler Spray November 9, 2011 The Science of Suppression FireSEAT Edinburgh, Scotland UK Ning Ren, Chi Do, and Andre Marshall Sponsors: FM Global, NSF 1 of 28 Overview Introduction

More information

Final on December Physics 106 R. Schad. 3e 4e 5c 6d 7c 8d 9b 10e 11d 12e 13d 14d 15b 16d 17b 18b 19c 20a

Final on December Physics 106 R. Schad. 3e 4e 5c 6d 7c 8d 9b 10e 11d 12e 13d 14d 15b 16d 17b 18b 19c 20a Final on December11. 2007 - Physics 106 R. Schad YOUR NAME STUDENT NUMBER 3e 4e 5c 6d 7c 8d 9b 10e 11d 12e 13d 14d 15b 16d 17b 18b 19c 20a 1. 2. 3. 4. This is to identify the exam version you have IMPORTANT

More information

Electron temperature is the temperature that describes, through Maxwell's law, the kinetic energy distribution of the free electrons.

Electron temperature is the temperature that describes, through Maxwell's law, the kinetic energy distribution of the free electrons. 10.3.1.1 Excitation and radiation of spectra 10.3.1.1.1 Plasmas A plasma of the type occurring in spectrochemical radiation sources may be described as a gas which is at least partly ionized and contains

More information

Non-traditional methods of material properties and defect parameters measurement

Non-traditional methods of material properties and defect parameters measurement Non-traditional methods of material properties and defect parameters measurement Juozas Vaitkus on behalf of a few Vilnius groups Vilnius University, Lithuania Outline: Definition of aims Photoconductivity

More information

Visualization of Xe and Sn Atoms Generated from Laser-Produced Plasma for EUV Light Source

Visualization of Xe and Sn Atoms Generated from Laser-Produced Plasma for EUV Light Source 3rd International EUVL Symposium NOVEMBER 1-4, 2004 Miyazaki, Japan Visualization of Xe and Sn Atoms Generated from Laser-Produced Plasma for EUV Light Source H. Tanaka, A. Matsumoto, K. Akinaga, A. Takahashi

More information

3D Structure of Liquid Sprays: X- Ray µ- Radiography and Tomography by Polycapillary Based Technique

3D Structure of Liquid Sprays: X- Ray µ- Radiography and Tomography by Polycapillary Based Technique 3D Structure of Liquid Sprays: X- Ray µ- Radiography and Tomography by Polycapillary Based Technique L. Marchitto, L. Allocca, S. Alfuso Istituto Motori CNR, Italy S. Dabagov, D. Hampai, A. Liedl, C. Polese

More information

Edward S. Rogers Sr. Department of Electrical and Computer Engineering. ECE318S Fundamentals of Optics. Final Exam. April 16, 2007.

Edward S. Rogers Sr. Department of Electrical and Computer Engineering. ECE318S Fundamentals of Optics. Final Exam. April 16, 2007. Edward S. Rogers Sr. Department of Electrical and Computer Engineering ECE318S Fundamentals of Optics Final Exam April 16, 2007 Exam Type: D (Close-book + two double-sided aid sheets + a non-programmable

More information

Wireless Communications

Wireless Communications NETW701 Wireless Communications Dr. Wassim Alexan Winter 2018 Lecture 2 NETW705 Mobile Communication Networks Dr. Wassim Alexan Winter 2018 Lecture 2 Wassim Alexan 2 Reflection When a radio wave propagating

More information

IRGPC40UD2 UltraFast CoPack IGBT

IRGPC40UD2 UltraFast CoPack IGBT INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT REOVERY DIODE PD - 9.88A UltraFast opack IGBT Features Switching-loss rating includes all "tail" losses HEXFRED TM soft ultrafast diodes Optimized

More information

Fluorescence tracer technique for simultaneous temperature and equivalence ratio measurements in Diesel jets

Fluorescence tracer technique for simultaneous temperature and equivalence ratio measurements in Diesel jets Renewable energies Eco-friendly production Innovative transport Eco-efficient processes Sustainable resources Fluorescence tracer technique for simultaneous temperature and equivalence ratio measurements

More information

PHYSICS SAMPLE PAPER MARKING SCHEME

PHYSICS SAMPLE PAPER MARKING SCHEME PHYSICS SAMPLE PAPER MARKING SCHEME Ques. No. Electric field Vector. P= VI Value Points I=P/V = 60/0=0.7 A. R= ρ l/a Volume remains constant A l = A l I = l A = A/ R = 4 R 4. (Equally spaced parallel lines

More information

Lire la première partie de la thèse

Lire la première partie de la thèse Lire la première partie de la thèse Chapter 3 Dual-CM engine validation In this chapter, the dual-cm, developed in chapter 2, is validated against two types of results : experimental data from engine test-bench

More information

The Simulation and Optimization of NMR Experiments Using a Liouville Space Method

The Simulation and Optimization of NMR Experiments Using a Liouville Space Method The Simulation and Optimization of NMR Experiments Using a Christopher Kumar Anand 1, Alex D. Bain 2, Zhenghua Nie 1 1 Department of Computing and Software 2 Department of Chemistry McMaster University

More information

CHAPTER 4 The Integral Forms of the Fundamental Laws

CHAPTER 4 The Integral Forms of the Fundamental Laws CHAPTER 4 The Integral Forms of the Fundamental Laws FE-type Exam Review Problems: Problems 4- to 4-5 4 (B) 4 (D) 4 (A) 44 (D) p m ρa A π 4 7 87 kg/s RT 87 9 Refer to the circle of Problem 47: 757 Q A

More information

Physic 492 Lecture 16

Physic 492 Lecture 16 Physic 492 Lecture 16 Main points of last lecture: Angular momentum dependence. Structure dependence. Nuclear reactions Q-values Kinematics for two body reactions. Main points of today s lecture: Measured

More information

Longitudinal Waves. waves in which the particle or oscillator motion is in the same direction as the wave propagation

Longitudinal Waves. waves in which the particle or oscillator motion is in the same direction as the wave propagation Longitudinal Waves waves in which the particle or oscillator motion is in the same direction as the wave propagation Longitudinal waves propagate as sound waves in all phases of matter, plasmas, gases,

More information

Necklace Flower Constellations

Necklace Flower Constellations 2018 26 David Arnas Martínez Necklace Flower Constellations Departamento Instituto Universitario de Investigación en Matemáticas y sus Aplicaciones Director/es Eva Tresaco Vidaller Antonio Elipe Sánchez

More information

Control of dispersion effects for resonant ultrashort pulses M. A. Bouchene, J. C. Delagnes

Control of dispersion effects for resonant ultrashort pulses M. A. Bouchene, J. C. Delagnes Control of dispersion effects for resonant ultrashort pulses M. A. Bouchene, J. C. Delagnes Laboratoire «Collisions, Agrégats, Réactivité», Université Paul Sabatier, Toulouse, France Context: - Dispersion

More information

Physikalische Chemie IV (Magnetische Resonanz) HS Solution Set 2. Hand out: Hand in:

Physikalische Chemie IV (Magnetische Resonanz) HS Solution Set 2. Hand out: Hand in: Solution Set Hand out:.. Hand in:.. Repetition. The magnetization moves adiabatically during the application of an r.f. pulse if it is always aligned along the effective field axis. This behaviour is observed

More information

Supplementary information for Quantum delayed-choice experiment with a beam splitter in a quantum superposition

Supplementary information for Quantum delayed-choice experiment with a beam splitter in a quantum superposition Supplementary information for Quantum delayed-choice experiment with a beam splitter in a quantum superposition Shi-Biao Zheng 1, You-Peng Zhong 2, Kai Xu 2, Qi-Jue Wang 2, H. Wang 2, Li-Tuo Shen 1, Chui-Ping

More information

Stochastic Processes. M. Sami Fadali Professor of Electrical Engineering University of Nevada, Reno

Stochastic Processes. M. Sami Fadali Professor of Electrical Engineering University of Nevada, Reno Stochastic Processes M. Sami Fadali Professor of Electrical Engineering University of Nevada, Reno 1 Outline Stochastic (random) processes. Autocorrelation. Crosscorrelation. Spectral density function.

More information

PHAS3135 The Physics of Stars

PHAS3135 The Physics of Stars PHAS3135 The Physics of Stars Exam 2013 (Zane/Howarth) Answer ALL SIX questions from Section A, and ANY TWO questions from Section B The numbers in square brackets in the right-hand margin indicate the

More information

all dimensions are mm the minus means meniscus lens f 2

all dimensions are mm the minus means meniscus lens f 2 TEM Gauss-beam described with ray-optics. F.A. van Goor, University of Twente, Enschede The Netherlands. fred@uttnqe.utwente.nl December 8, 994 as significantly modified by C. Nelson - 26 Example of an

More information

PHY 114 A General Physics II 11 AM-12:15 PM TR Olin 101

PHY 114 A General Physics II 11 AM-12:15 PM TR Olin 101 PHY 4 A General Physics II AM-:5 PM TR Olin 0 Plan for Lecture (Chapter 37): Wave properties of light. Interference of two electromagnetic waves. Interference of electromagnetic waves in thin films 4//0

More information

Control of Proton Electrolyte Membrane Fuel Cell Systems. Dr. M. Grujicic Department of Mechanical Engineering

Control of Proton Electrolyte Membrane Fuel Cell Systems. Dr. M. Grujicic Department of Mechanical Engineering Control of Proton Electrolyte Membrane Fuel Cell Systems Dr. M. Grujicic 4 Department of Mechanical Engineering OUTLINE. Feedforward Control, Fuel Cell System. Feedback Control, Fuel Cell System W Cp Supply

More information

Heriot-Watt University

Heriot-Watt University Heriot-Watt University Distinctly Global www.hw.ac.uk Thermodynamics By Peter Cumber Prerequisites Interest in thermodynamics Some ability in calculus (multiple integrals) Good understanding of conduction

More information

PHYSICS ADVANCED HIGHER. Unit 3 Electromagnetism Homework

PHYSICS ADVANCED HIGHER. Unit 3 Electromagnetism Homework PHYSICS ADVANCED HIGHER Unit 3 Electromagnetism Homework 1 DATA SHEET COMMON PHYSICAL QUANTITIES Quantity Symbol Value Quantity Symbol Value Gravitational acceleration on Earth Radius of Earth Mass of

More information

Introduction to Quantum Mechanics of Superconducting Electrical Circuits

Introduction to Quantum Mechanics of Superconducting Electrical Circuits Introduction to Quantum Mechanics of Superconducting lectrical Circuits What is superconductivity? What is a osephson junction? What is a Cooper Pair Box Qubit? Quantum Modes of Superconducting Transmission

More information

Q1. For a completely inelastic two-body collision the kinetic energy of the objects after the collision is the same as:

Q1. For a completely inelastic two-body collision the kinetic energy of the objects after the collision is the same as: Coordinator: Dr.. Naqvi Monday, January 05, 015 Page: 1 Q1. For a completely inelastic two-body collision the kinetic energy of the objects after the collision is the same as: ) (1/) MV, where M is the

More information

of a molecule possessing a vibrational energy hν is

of a molecule possessing a vibrational energy hν is Question 1 (a) A pulse N:YAG laser is to be employe in a Rayleigh scattering experiment to etermine gas temperature. The laser can be use at 532 nm (secon harmonic), 355 nm (thir harmonic), or 266 nm (fourth

More information

Predictive Computing for Solids and Liquids

Predictive Computing for Solids and Liquids Predictive Computing for Solids and Liquids So Hirata Department of Chemistry May 214 Blue Waters Symposium 1 Schrödinger equation for a water molecule 1-particle, 3-dimensional partial differential equation

More information

Lecture 5 Flusso Quasi-Mono-Dimensionale (forma

Lecture 5 Flusso Quasi-Mono-Dimensionale (forma Lecture 5 Dimensionale forma Text: Motori Aeronautici Mar. 6, 2015 Dimensionale forma Mauro Valorani Univeristà La Sapienza 5.50 Agenda Dimensionale forma 1 quasi-monodimensionale 2 5.51 quasi-monodimensionale

More information

On the Assessment of a Bayesian Validation Methodology for Data Reduction Models Relevant to Shock Tube Experiments

On the Assessment of a Bayesian Validation Methodology for Data Reduction Models Relevant to Shock Tube Experiments ICES REPORT -36 November 2 On the Assessment of a Bayesian Validation Methodology for Data Reduction Models Relevant to Shock Tube Experiments by M. Panesi, K. Miki, S. Prudhomme, and A. Brandis The Institute

More information

DETAIL "A" #110 TAB (8 PLACES) X (4 PLACES) Y (3 PLACES) TH1 TH2 F O 1 F O 2 DETAIL "A"

DETAIL A #110 TAB (8 PLACES) X (4 PLACES) Y (3 PLACES) TH1 TH2 F O 1 F O 2 DETAIL A MG6Q2YS6A Powerex, Inc., 2 E. Hillis Street, Youngwood, Pennsylvania 15697-1 (72) 925-7272 Compact IGBT Series Module 6 Amperes/ olts A D H J K DETAIL "A" C2E1 E2 C1 B E F W M F Outline Drawing and Circuit

More information

Solutions to PS 2 Physics 201

Solutions to PS 2 Physics 201 Solutions to PS Physics 1 1. ke dq E = i (1) r = i = i k eλ = i k eλ = i k eλ k e λ xdx () (x x) (x x )dx (x x ) + x dx () (x x ) x ln + x x + x x (4) x + x ln + x (5) x + x To find the field for x, we

More information

Speed of Light in Glass

Speed of Light in Glass Experiment (1) Speed of Light in Glass Objective:- This experiment is used to determine the speed of propagation of light waves in glass. Apparatus:- Prism, spectrometer, Halogen lamp source. Theory:-

More information

Laser Types Two main types depending on time operation Continuous Wave (CW) Pulsed operation Pulsed is easier, CW more useful

Laser Types Two main types depending on time operation Continuous Wave (CW) Pulsed operation Pulsed is easier, CW more useful Main Requirements of the Laser Optical Resonator Cavity Laser Gain Medium of 2, 3 or 4 level types in the Cavity Sufficient means of Excitation (called pumping) eg. light, current, chemical reaction Population

More information

Effect of secondary beam neutrals on MSE: theory

Effect of secondary beam neutrals on MSE: theory Effect of secondary beam neutrals on MSE: theory S. Scott (PPPL) J. Ko, I. Hutchinson (PSFC/MIT) H. Yuh (Nova Photonics) Poster NP8.87 49 th Annual Meeting, DPP-APS Orlando, FL November 27 Abstract A standard

More information

APPENDICES 121 The readings of a normal student in the lab Experiment No. 1: To find the volume of a cylinder using Vernier calipers. Observations and Calculations: Value of the smallest scale division

More information

A Comprehensive Method for the Characterization of Engine Heat Rejection

A Comprehensive Method for the Characterization of Engine Heat Rejection A Spin-Off Company of A Comprehensive Method for the Characterization of Engine Heat Rejection Giuseppe Cicalese Stefano Fontanesi Fabio Berni Genesis of the methodology Methodology guidelines In-Cylinder

More information

FALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Saturday, 14 December 2013, 1PM to 4 PM, AT 1003

FALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Saturday, 14 December 2013, 1PM to 4 PM, AT 1003 FALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Saturday, 14 December 2013, 1PM to 4 PM, AT 1003 NAME: STUDENT ID: INSTRUCTION 1. This exam booklet has 14 pages. Make sure none are missing 2. There is

More information

Summary of Beam Optics

Summary of Beam Optics Summary of Beam Optics Gaussian beams, waves with limited spatial extension perpendicular to propagation direction, Gaussian beam is solution of paraxial Helmholtz equation, Gaussian beam has parabolic

More information

Conservation of Angular Momentum

Conservation of Angular Momentum 10 March 2017 Conservation of ngular Momentum Lecture 23 In the last class, we discussed about the conservation of angular momentum principle. Using RTT, the angular momentum principle was given as DHo

More information

Propagation losses in optical fibers

Propagation losses in optical fibers Chapter Dielectric Waveguides and Optical Fibers 1-Fev-017 Propagation losses in optical fibers Charles Kao, Nobel Laureate (009) Courtesy of the Chinese University of Hong Kong S.O. Kasap, Optoelectronics

More information

TRANSFER OF RADIATION

TRANSFER OF RADIATION TRANSFER OF RADIATION Under LTE Local Thermodynamic Equilibrium) condition radiation has a Planck black body) distribution. Radiation energy density is given as U r,ν = 8πh c 3 ν 3, LTE), tr.1) e hν/kt

More information

Mark Scheme (Results) June AEA Mathematics (9801)

Mark Scheme (Results) June AEA Mathematics (9801) Mark Scheme (Results) June 0 AEA Mathematics (980) Edecel is one of the leading eamining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic,

More information

Physics 9 Fall 2011 Homework 9 Fall October 28, 2011

Physics 9 Fall 2011 Homework 9 Fall October 28, 2011 Physics 9 Fall 2011 Homework 9 Fall October 28, 2011 Make sure your name is on your homework, and please box your final answer. Because we will be giving partial credit, be sure to attempt all the problems,

More information

UNIVERSITY OF MALTA G.F. ABELA JUNIOR COLLEGE FIRST YEAR MARKING END-OF-YEAR EXAMINATION SCHEME SUBJECT: PHYSICS DATE: JUNE 2010

UNIVERSITY OF MALTA G.F. ABELA JUNIOR COLLEGE FIRST YEAR MARKING END-OF-YEAR EXAMINATION SCHEME SUBJECT: PHYSICS DATE: JUNE 2010 UNIVERSITY OF MALTA G.F. ABELA JUNIOR COLLEGE FIRST YEAR MARKING END-OF-YEAR EXAMINATION SCHEME SUBJECT: PHYSICS DATE: JUNE 2010 LEVEL: ADVANCED TIME: 09.00h to 12.00h Directions to Candidates Show ALL

More information

Analytical Modeling of Laser Moving Sources

Analytical Modeling of Laser Moving Sources Analytical Modeling of Laser Moving Sources Contains: Heat flow equation Analytic model in one dimensional heat flow Heat source modeling Point heat source Line heat source Plane heat source Surface heat

More information

α(t) = ω 2 θ (t) κ I ω = g L L g T = 2π mgh rot com I rot

α(t) = ω 2 θ (t) κ I ω = g L L g T = 2π mgh rot com I rot α(t) = ω 2 θ (t) ω = κ I ω = g L T = 2π L g ω = mgh rot com I rot T = 2π I rot mgh rot com Chapter 16: Waves Mechanical Waves Waves and particles Vibration = waves - Sound - medium vibrates - Surface ocean

More information

Fundamentals of Gas Dynamics (NOC16 - ME05) Assignment - 10 : Solutions

Fundamentals of Gas Dynamics (NOC16 - ME05) Assignment - 10 : Solutions Fundamentals of Gas Dynamics (NOC16 - ME05) Assignment - 10 : Solutions Manjul Sharma & Aswathy Nair K. Department of Aerospace Engineering IIT Madras April 18, 016 (Note : The solutions discussed below

More information

AO4607, AO4607L(Lead-Free) Complementary Enhancement Mode Field Effect Transistor

AO4607, AO4607L(Lead-Free) Complementary Enhancement Mode Field Effect Transistor Rev : Feb 3 Rev : Jan 4 AO467, AO467L(Lead-Free) Complementary Enhancement Mode Field Effect Transistor General Description The AO467 uses advanced trench technology MOSFETs to provide excellen R DS(ON)

More information

Observational methods for astrophysics. Pierre Hily-Blant

Observational methods for astrophysics. Pierre Hily-Blant Observational methods for astrophysics Pierre Hily-Blant IPAG pierre.hily-blant@univ-grenoble-alpes.fr, OSUG-D/306 2016-17 P. Hily-Blant (Master2 APP) Observational methods 2016-17 1 / 323 VI Spectroscopy

More information

Critical Path to Impact Fast Ignition Suppression of the Rayleigh-Taylor Instability

Critical Path to Impact Fast Ignition Suppression of the Rayleigh-Taylor Instability Critical Path to Impact Fast Ignition Suppression of the Rayleigh-Taylor Instability H. Azechi Vice Director Institute of Laser Engineering, Osaka University Jpn-US WS on HIF and HEDP September 28, 2005

More information

Post-Keplerian effects in binary systems

Post-Keplerian effects in binary systems Post-Keplerian effects in binary systems Laboratoire Univers et Théories Observatoire de Paris / CNRS The problem of binary pulsar timing (Credit: N. Wex) Some classical tests of General Relativity Gravitational

More information

Molecular Dynamics Studied by Picosecond X-ray Diffraction

Molecular Dynamics Studied by Picosecond X-ray Diffraction Paris 17-3-25 Molecular Dynamics Studied by Picosecond X-ray Diffraction Experiments: Theory: Maciej Lorenc, Qingyu Kong, Manuela Lo Russo, Marco Cammarata, Michael Wulff Savo Bratos, Rodolphe Vuilleumier,

More information

PART 1 Introduction to Theory of Solids

PART 1 Introduction to Theory of Solids Elsevier UK Job code: MIOC Ch01-I044647 9-3-2007 3:03p.m. Page:1 Trim:165 240MM TS: Integra, India PART 1 Introduction to Theory of Solids Elsevier UK Job code: MIOC Ch01-I044647 9-3-2007 3:03p.m. Page:2

More information

Opacity and Optical Depth

Opacity and Optical Depth Opacity and Optical Depth Absorption dominated intensity change can be written as di λ = κ λ ρ I λ ds with κ λ the absorption coefficient, or opacity The initial intensity I λ 0 of a light beam will be

More information

Chapter 16 Waves. Types of waves Mechanical waves. Electromagnetic waves. Matter waves

Chapter 16 Waves. Types of waves Mechanical waves. Electromagnetic waves. Matter waves Chapter 16 Waves Types of waves Mechanical waves exist only within a material medium. e.g. water waves, sound waves, etc. Electromagnetic waves require no material medium to exist. e.g. light, radio, microwaves,

More information

Rotational Kinematics

Rotational Kinematics Rotational Kinematics Rotational Coordinates Ridged objects require six numbers to describe their position and orientation: 3 coordinates 3 axes of rotation Rotational Coordinates Use an angle θ to describe

More information

A) Yes B) No C) Impossible to tell from the information given.

A) Yes B) No C) Impossible to tell from the information given. Does escape speed depend on launch angle? That is, if a projectile is given an initial speed v o, is it more likely to escape an airless, non-rotating planet, if fired straight up than if fired at an angle?

More information

Optoelectronic Applications. Injection Locked Oscillators. Injection Locked Oscillators. Q 2, ω 2. Q 1, ω 1

Optoelectronic Applications. Injection Locked Oscillators. Injection Locked Oscillators. Q 2, ω 2. Q 1, ω 1 Injection Locked Oscillators Injection Locked Oscillators Optoelectronic Applications Q, ω Q, ω E. Shumakher, J. Lasri,, B. Sheinman, G. Eisenstein, D. Ritter Electrical Engineering Dept. TECHNION Haifa

More information

Imaging In Challenging Weather Conditions

Imaging In Challenging Weather Conditions Imaging In Challenging Weather Conditions Guy Satat Computational Imaging for Self-Driving Vehicles @ CVPR 2018 Imaging Through Fog == Imaging Through Scattering? Why not RADAR? Visible X rays UV IR

More information

PC4262 Remote Sensing Scattering and Absorption

PC4262 Remote Sensing Scattering and Absorption PC46 Remote Sensing Scattering and Absorption Dr. S. C. Liew, Jan 003 crslsc@nus.edu.sg Scattering by a single particle I(θ, φ) dφ dω F γ A parallel beam of light with a flux density F along the incident

More information

MeV electron diffraction and microscopy

MeV electron diffraction and microscopy UESDM, UCLA, Dec. 12 14, 2012 MeV electron diffraction and microscopy in Osaka University Jinfeng Yang Osaka University, Japan Collaborators: (RIKEN) Yoshie Murooka (Osaka Univ.) Y. Naruse, K. Kan, K.

More information

PHASE AMBIGUITY REDUCTION IN LASER INTERACTED INTERFEROGRAMS. Asiah Yahaya and Yusof Munajat

PHASE AMBIGUITY REDUCTION IN LASER INTERACTED INTERFEROGRAMS. Asiah Yahaya and Yusof Munajat PHASE AMBIGUITY REDUCTION IN LASER INTERACTED INTERFEROGRAMS Asiah Yahaya and Yusof Munajat Jabatan Fizik, Fakulti Sains, Universiti Teknologi Malaysia, 8131, Skudai, Johor. e-mail. asiah@dfiz2.fs.utm.my

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.286: The Early Universe October 27, 2013 Prof. Alan Guth PROBLEM SET 6

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.286: The Early Universe October 27, 2013 Prof. Alan Guth PROBLEM SET 6 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.86: The Early Universe October 7, 013 Prof. Alan Guth PROBLEM SET 6 DUE DATE: Monday, November 4, 013 READING ASSIGNMENT: Steven Weinberg,

More information

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level *7710720031* PHYSICS 9702/21 Paper 2 AS Level Structured Questions October/November 2016 1 hour 15 minutes

More information

Interference. Gambar: Museum Victoria Australia

Interference. Gambar: Museum Victoria Australia Interference Gambar: Museum Victoria Australia Formulation of Interference Intensity Superposition between two waves (point sources) Two separate point sources S 1 (x 1 ) and S 2 (x 2 ) generate EM waves

More information

III. Spherical Waves and Radiation

III. Spherical Waves and Radiation III. Spherical Waves and Radiation Antennas radiate spherical waves into free space Receiving antennas, reciprocity, path gain and path loss Noise as a limit to reception Ray model for antennas above a

More information

3.155J/6.152J Microelectronic Processing Technology Fall Term, 2004

3.155J/6.152J Microelectronic Processing Technology Fall Term, 2004 3.155J/6.152J Microelectronic Processing Technology Fall Term, 2004 Bob O'Handley Martin Schmidt Quiz Nov. 17, 2004 Ion implantation, diffusion [15] 1. a) Two identical p-type Si wafers (N a = 10 17 cm

More information

1.MEASUREMENT OF THE FOCAL LENGTH OF A CONCAVE MIRROR

1.MEASUREMENT OF THE FOCAL LENGTH OF A CONCAVE MIRROR 1.MEASUREMENT OF THE FOCAL LENGTH OF A CONCAVE MIRROR u/cm 15.0 20.0 25.0 30.0 35.0 40.0 v/cm 60.5 30.0 23.0 20.5 18.0 16.5 1/u 1/v Focal length = 12.0 cm 2.VERIFICATION OF SNELL S LAW OF REFRACTION angle

More information

Impact of a Jet. Experiment 4. Purpose. Apparatus. Theory. Symmetric Jet

Impact of a Jet. Experiment 4. Purpose. Apparatus. Theory. Symmetric Jet Experiment 4 Impact of a Jet Purpose The purpose of this experiment is to demonstrate and verify the integral momentum equation. The force generated by a jet of water deflected by an impact surface is

More information

Relativistic Electron Heating in Focused Multimode Laser Fields with Stochastic Phase Purturbations

Relativistic Electron Heating in Focused Multimode Laser Fields with Stochastic Phase Purturbations 1 Relativistic Electron Heating in Focused Multimode Laser Fields with Stochastic Phase Purturbations Yu.A.Mikhailov, L.A.Nikitina, G.V.Sklizkov, A.N.Starodub, M.A.Zhurovich P.N.Lebedev Physical Institute,

More information

Lake Baikal: from Megaton to Gigaton. Bair Shaybonov, JINR, Dubna on behalf of the Baikal Collaboration

Lake Baikal: from Megaton to Gigaton. Bair Shaybonov, JINR, Dubna on behalf of the Baikal Collaboration Lake Baikal: from Megaton to Gigaton Bair Shaybonov, JINR, Dubna on behalf of the Baikal Collaboration TAUP09, Rome, July 2009 Outline Status of the Baikal Detector Selected Results obtained from NT200

More information

Kinematics (special case) Dynamics gravity, tension, elastic, normal, friction. Energy: kinetic, potential gravity, spring + work (friction)

Kinematics (special case) Dynamics gravity, tension, elastic, normal, friction. Energy: kinetic, potential gravity, spring + work (friction) Kinematics (special case) a = constant 1D motion 2D projectile Uniform circular Dynamics gravity, tension, elastic, normal, friction Motion with a = constant Newton s Laws F = m a F 12 = F 21 Time & Position

More information

Consider a simple RC circuit. We might like to know how much power is being supplied by the source. We probably need to find the current.

Consider a simple RC circuit. We might like to know how much power is being supplied by the source. We probably need to find the current. AC power Consider a simple RC circuit We might like to know how much power is being supplied by the source We probably need to find the current R 10! R 10! is VS Vmcosωt Vm 10 V f 60 Hz V m 10 V C 150

More information

Where are we with laser fusion?

Where are we with laser fusion? Where are we with laser fusion? R. Betti Laboratory for Laser Energetics Fusion Science Center Dept. Mechanical Engineering and Physics & Astronomy University of Rochester HEDSA HEDP Summer School August

More information