Predictive Computing for Solids and Liquids

Size: px
Start display at page:

Download "Predictive Computing for Solids and Liquids"

Transcription

1 Predictive Computing for Solids and Liquids So Hirata Department of Chemistry May 214 Blue Waters Symposium 1

2 Schrödinger equation for a water molecule 1-particle, 3-dimensional partial differential equation Ĥ i Z I I e e Z + + I Z J e 2 2m e i=1 2m I I=1 I=1 i=1 4πε r ii i=1 j=i+1 4πε r ij I=1 J=I+1 4πε r Ψ = EΨ IJ sin θ i 2 ri ri ri ri sin θi φi sinθi θi θi Conditions arising from the indistinguishability of electrons ( re 1, re2, re3, re4, re5, re6, re7, re8, re9, re 1, rh1, rh2, ro) ( re2, re 1, re3, re4, re5, re6, re7, re8, re9, re 1, rh1, rh2, ro) ( re3, re 1, re2, re4, re5, re6, re7, re8, re9, re 1, rh1, rh2, ro) ( r, r, r, r, r, r, r, r, r, r r r r ) Ψ = Ψ = Ψ = Ψ,,,... e3 e2 e1 e4 e5 e6 e7 e8 e9 e1 H1 H2 O = 3,628,8 terms! Many-body

3 Systematic many-body methods

4 Automated symbolic algebra Definition of a many-electron theory [ ] [ ] [ ] ; ; Φ Φ = Φ Φ = Φ Φ = C T T T T ab ij C T T T T a i C T T T T He e He e He e E Mathematical expressions A parallel computer program

5 Electron Attachment Theory EA-EOM-CCSD EA-EOM-CCSDT EA-EOM-CCSDTQ Kamiya & Hirata JCP (27) Ionization Theory IP-EOM-CCSD IP-EOM-CCSDT IP-EOM-CCSDTQ Kamiya & Hirata JCP (26) Excited State Theories EOM-CCSD EOM-CCSDT EOM-CCSDTQ Hirata JCP (24) Cluster Expansion CCD, CCSD, CCSDT, CCSDTQ, LCCD, LCCSD, QCISD Hirata JPCA (23) Implemented methods CC CI Linear Expansion CIS, CISD, CISDT, CISDTQ Hirata JPCA (23) PT EOM-CC+perturbation EOM-CCSD(2) T, EOM-CCSD(2) TQ EOM-CCSD(3) T Shiozaki et al. JCP (27) CIS+perturbation CIS(D), CIS(3), CIS(4) Hirata JCP (25) Perturbation MP2, MP3, MP4 Hirata JPCA (23) Combined CC+PT CCSD(T) CCSD(2) T, CCSD(3) T CCSD(2) TQ, CCSD(3) TQ CCSDT(2) Q, CR-CCSD(T) Hirata et al. JCP (24) Shiozaki et al. JCP (27)

6 Structures, thermochemistry, and spectra Hirata et al., J. Chem. Phys. (24); Hirata et al., J. Chem. Phys. (27)

7 Frontiers of predictive computing Applicability Molecules Clusters Polymers Solids Condensed matter Solid-state chemistry Condensed matter physics Materials science Geochemistry High-pressure chemistry Planetary science High-T c superconductivity A DOE report on Computational Materials Science (21): We are at the threshold of a new era where the integrated synthesis, characterization, and modeling of complex materials New theories and chemical and processes will transform our ability to understand algorithms and design new materials and chemistries with predictive power Materials Genome DFT Initiative for MP2 Global Competitiveness CCSD FCI (211): the development of advanced materials can be accelerated through Accuracy advances in computational techniques 7

8 8

9 Embedded-fragment approach Hirata et al., Mol. Phys. (25); Kamiya, Hirata, and Valiev, J. Chem. Phys. (28); Hirata et al., Acc. Chem. Res. (214) N-body (N > 2) Coulomb in point-charge or dipole approximation 1 and 2-body Coulomb Exchange Correlation Pair energy in the presence of selfconsistent atomic charges or dipoles n E = E i + E ij E E i j i=1 n i< j ( ) + Cf. Li, Paulus, Schutz, Manby, Beran, Truhlar, Raghavachari, Herbert, Collins, Gordon, Gao, Fedorov, Kitaura, Zhang, et al.

10 Ice Ih He, Sode, Xantheas, and Hirata, J. Chem. Phys. (212) Xiao He MP2/aug-cc-pVDZ 1

11 Ice Ih He, Sode, Xantheas, and Hirata, J. Chem. Phys. (212) IR, Raman, and Inelastic neutron scattering spectra Xiao He 11

12 Ice Ih He, Sode, Xantheas, and Hirata, J. Chem. Phys. (212) Inelastic neutron scattering spectra Xiao He Heat capacities 12

13 Ice VIII Gilliard, Sode, and Hirata, J. Chem. Phys. (214) Kandis Gilliard MP2/aug-cc-pVDZ CCSD/aug-cc-pVDZ 13

14 Ice VIII Gilliard, Sode, and Hirata, J. Chem. Phys. (214) Pressure dependence of volume and lattice constants Kandis Gilliard Diamond synthesis (18 GPa) Center of the Moon (5 GPa) Bottom of the Mariana Trench (.1 GPa) 14

15 Ice VIII Gilliard, Sode, and Hirata, J. Chem. Phys. (214) Kandis Gilliard Pressure dependence of IR, Raman, and INS spectra 15

16 Solid CO 2 Sode, Keçeli, Yagi, and Hirata, J. Chem. Phys. (212) Olaseni Sode MP2/aug-cc-pVDZ 16

17 Solid CO 2 Sode, Keçeli, Yagi, and Hirata, J. Chem. Phys. (212) Pressure dependence of Raman spectra Olaseni Sode Frequency / cm Experiment (2K) Experiment (4K) Experiment (8K) Experiment (3K) Theory Pressure / GPa ν ν + CO 2 encapsulation in minerals 17

18 Phase transition in solid CO2 Li, Sode, Voth and Hirata, Nature Communications (213) Jinjin Li Pressure dependence of volume Experiment Pa3 (MP2/aug-cc-pVDZ) Volume / cm3 mol -1 Volume / cm3 mol -1 Experiment Theory 2 18 Cmca (MP2/aug-cc-pVDZ) (2) Orthor (1) Cubic Pa3 φ 2 18 Pressure (2) Orthorhombic Cmca (1) Cubic Pa3 Temperature φ K Pressure / GPa 15 2 Pressure 14 Temperature a c 5 b Pressure / GPa 18

19 Phase transition in solid CO2 Li, Sode, Voth and Hirata, Nature Communications (213) Jinjin Li 2 Experiment 1 Experiment 2 Experiment 3 MP2/aug-cc-pVDZ V Fluid Raman spectra Phase III IV 1 VII Raman intensity Raman intensity Raman spectra Phase I Temperature (K) 15 II Experiment (2)(1) Orthorhombic Cubic Pa3 Cmca (1) Cubic Pa3 5 φ I (Pa3) Pressure Temperature (2) Orthorhombic Cmca φ a b Pressure c a III (Cmca) c b Temperature MP2/aug-cc-pVDZ MP2/aug-cc-pVDZ Frequency / cm -1 Experiment 1 2 Pressure (GPa) Frequency / cm -1 19

20 What can be done with Blue Waters? First-principles phase diagram of ice First-principles prediction of thermal expansion of ice First-principles simulation of liquid water First-principles simulation of chemical reactions in aqueous media 2 BIM-MP2 exp Soohaeng Willow goo (R) R(Å) 2

21 Monte Carlo MP2 Willow, Kim and Hirata, J. Chem. Phys. (212) Very long O(n 4 ) summation of products of two 6-dimensional integrals occ. vir. ab ij ij ab E (2) = i, j a, b ε i + ε j ε a ε b Explicit two-electron integrals E (2) = occ. occ. vir. i, j vir. a, b ϕ i ( r 1 )ϕ j r 2 ϕ r a ( r 1 )ϕ b ( r 2 )dr 1 dr 2 ϕ i ( r 3 )ϕ j 12 r 4 ϕ r a ( r 3 )ϕ b ( r 4 )dr 3 dr 4 34 ε i + ε j ε a ε b Laplace transformation of the denominator ( ) 1 E (2) = ϕ i ( r 1 )ϕ j ( r 2 ) 1 ϕ a ( r 1 )ϕ b ( r 2 )dr 1 dr 2 ϕ i ( r 3 )ϕ j r 4 r 12 i, j a, b E (2) = occ. occ. ( ) 1 ( ) 1 ϕ a ( r 3 )ϕ b ( r 4 )dr 3 dr 4 r 34 Change of orders of summations and integrations Single 13-dimensional integral evaluated by Monte Carlo E (2) ( = G r 1, r 3,τ )G ( r 2, r 4,τ )G + ( r 1, r 3,τ )G + ( r 2, r 4,τ ) dr 1 dr 4 dτ r 12 r 34 vir. vir. Soohaeng Willow e ( ε i +ε j ε a ε )τ b dτ ϕ i ( r 1 )ϕ i ( r 3 )e ε iτ ϕ j ( r 2 )ϕ j ( r 4 )e ε jτ ϕ a ( r 1 )ϕ a ( r 3 )e ε aτ ϕ b ( r 2 )ϕ b ( r 4 )e ε bτ i j a b dr 1 dr 4 dτ r 12 r 34

22 Monte Carlo MP2 Willow, Kim and Hirata, J. Chem. Phys. (212) E = f ( x ) dx = f ( x) f ( x) g x dx = ( ) g(x) weight x g g ( x ) function Requirement 1: analytically integrable E = g ( r1, r2, r3, r4 ) = 1 2 4ECoulomb 2 3 f ( x) / g( x) G ( r1, r3, τ ) G ( r2, r4, τ ) G + ( r1, r3, τ ) G + ( r2, r4, τ ) dr1 dr4 dτ r12 r34 Singularities ρ ( r1 ) ρ ( r2 ) ρ ( r3 ) ρ ( r4 ) r12 r34 g (r, r, r, r ) dr dr dr dr 1 Metropolis g ( x ) dx = 1 Requirement 2: cancellation of singularities (2) Soohaeng Willow =1

23 MC-MP2 for Ecorr, IP, and EA Willow, Kim and Hirata, J. Chem. Phys. (212) Willow, Kim and Hirata, J. Chem. Phys. (213) Nitrogen 6-31G**.35 Water HOMO and HOMO 1 Correlated IP and EA Soohaeng Willow.4 Correlation energy ϵ (2) p /Eh.45 p =4 p = MC step / 1 7 Statistical errors CPU time / sec Cost scaling H 2O N 2 CH 4 C 2H m Size (number of orbitals)

24 Parallel MC-MP2, MP3, MP2-R12 Willow, Hermes, Kim and Hirata, J. Chem. Theo. Comput. (213); Willow and Hirata, J. Chem. Phys. (213); Willow, Zhang, Valeev, and Hirata, J. Chem. Phys. (Comm.) (214) C 6 cc-pvdz on 32 processors of Blue Waters Correlated EA Soohaeng Willow Speedup Parallel scaling Number of processors T tot T MC r 5 τ 1 + τ 2 r 6 G + G + G r 3 r 4 G τ 1 G + G + r 1 τ = r 2 Diagrammatics E/Eh C 6 H 6 D T Q cc-pvxz E MP2 E MP2 F12 R12: basis convergence

25 What can be done with Blue Waters? Accurate calculations of opto-electronic properties of conjugated polymers used in organic solar cells, LED, FET, capacitors, etc. Accurate calculations of van der Waals interactions between conjugated polymers, PAHs, graphene, graphite, C 6, etc Val. band edge PPP (1) PT (2) 7 Experiment ev ev DFT 5. ev 4.5 ev 8 Matthew Hermes HF 6.6 ev 6.2 ev MP2 6.4 ev 5.5 ev 9 25

Coupled-cluster and perturbation methods for macromolecules

Coupled-cluster and perturbation methods for macromolecules Coupled-cluster and perturbation methods for macromolecules So Hirata Quantum Theory Project and MacroCenter Departments of Chemistry & Physics, University of Florida Contents Accurate electronic structure

More information

Computational Methods. Chem 561

Computational Methods. Chem 561 Computational Methods Chem 561 Lecture Outline 1. Ab initio methods a) HF SCF b) Post-HF methods 2. Density Functional Theory 3. Semiempirical methods 4. Molecular Mechanics Computational Chemistry " Computational

More information

Electron Correlation - Methods beyond Hartree-Fock

Electron Correlation - Methods beyond Hartree-Fock Electron Correlation - Methods beyond Hartree-Fock how to approach chemical accuracy Alexander A. Auer Max-Planck-Institute for Chemical Energy Conversion, Mülheim September 4, 2014 MMER Summerschool 2014

More information

Methods for Treating Electron Correlation CHEM 430

Methods for Treating Electron Correlation CHEM 430 Methods for Treating Electron Correlation CHEM 430 Electron Correlation Energy in the Hartree-Fock approximation, each electron sees the average density of all of the other electrons two electrons cannot

More information

Introduction to Computational Chemistry

Introduction to Computational Chemistry Introduction to Computational Chemistry Vesa Hänninen Laboratory of Physical Chemistry Chemicum 4th floor vesa.hanninen@helsinki.fi September 10, 2013 Lecture 3. Electron correlation methods September

More information

Computational Chemistry I

Computational Chemistry I Computational Chemistry I Text book Cramer: Essentials of Quantum Chemistry, Wiley (2 ed.) Chapter 3. Post Hartree-Fock methods (Cramer: chapter 7) There are many ways to improve the HF method. Most of

More information

Towards gas-phase accuracy for condensed phase problems

Towards gas-phase accuracy for condensed phase problems Towards gas-phase accuracy for condensed phase problems Fred Manby Centre for Computational Chemistry, School of Chemistry University of Bristol STC 2006: Quantum Chemistry Methods and Applications Erkner,

More information

Coupled-Cluster Perturbative Triples for Bond Breaking

Coupled-Cluster Perturbative Triples for Bond Breaking Coupled-Cluster Perturbative Triples for Bond Breaking Andrew G. Taube and Rodney J. Bartlett Quantum Theory Project University of Florida INT CC Meeting Seattle July 8, 2008 Why does chemistry need triples?

More information

Electron Correlation

Electron Correlation Electron Correlation Levels of QM Theory HΨ=EΨ Born-Oppenheimer approximation Nuclear equation: H n Ψ n =E n Ψ n Electronic equation: H e Ψ e =E e Ψ e Single determinant SCF Semi-empirical methods Correlation

More information

c 2012 by Olaseni Sode. All rights reserved.

c 2012 by Olaseni Sode. All rights reserved. c 2012 by Olaseni Sode. All rights reserved. A THEORETICAL STUDY OF MOLECULAR CRYSTALS BY OLASENI SODE DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy

More information

Faddeev Random Phase Approximation (FRPA) Application to Molecules

Faddeev Random Phase Approximation (FRPA) Application to Molecules Faddeev Random Phase Approximation (FRPA) Application to Molecules Matthias Degroote Center for Molecular Modeling (CMM) Ghent University INT 2011 Spring Program Fermions from Cold Atoms to Neutron Stars:

More information

Uptake of OH radical to aqueous aerosol: a computational study

Uptake of OH radical to aqueous aerosol: a computational study Uptake of OH radical to aqueous aerosol: a computational study Grigory Andreev Karpov Institute of Physical Chemistry 10 Vorontsovo pole, Moscow, 105064, Russia Institute of Physical Chemistry and Electrochemistry

More information

Solution of the Electronic Schrödinger Equation. Using Basis Sets to Solve the Electronic Schrödinger Equation with Electron Correlation

Solution of the Electronic Schrödinger Equation. Using Basis Sets to Solve the Electronic Schrödinger Equation with Electron Correlation Solution of the Electronic Schrödinger Equation Using Basis Sets to Solve the Electronic Schrödinger Equation with Electron Correlation Errors in HF Predictions: Binding Energies D e (kcal/mol) HF Expt

More information

OVERVIEW OF QUANTUM CHEMISTRY METHODS

OVERVIEW OF QUANTUM CHEMISTRY METHODS OVERVIEW OF QUANTUM CHEMISTRY METHODS Outline I Generalities Correlation, basis sets Spin II Wavefunction methods Hartree-Fock Configuration interaction Coupled cluster Perturbative methods III Density

More information

Other methods to consider electron correlation: Coupled-Cluster and Perturbation Theory

Other methods to consider electron correlation: Coupled-Cluster and Perturbation Theory Other methods to consider electron correlation: Coupled-Cluster and Perturbation Theory Péter G. Szalay Eötvös Loránd University Institute of Chemistry H-1518 Budapest, P.O.Box 32, Hungary szalay@chem.elte.hu

More information

Orbital dependent correlation potentials in ab initio density functional theory

Orbital dependent correlation potentials in ab initio density functional theory Orbital dependent correlation potentials in ab initio density functional theory noniterative - one step - calculations Ireneusz Grabowski Institute of Physics Nicolaus Copernicus University Toruń, Poland

More information

T. Helgaker, Department of Chemistry, University of Oslo, Norway. T. Ruden, University of Oslo, Norway. W. Klopper, University of Karlsruhe, Germany

T. Helgaker, Department of Chemistry, University of Oslo, Norway. T. Ruden, University of Oslo, Norway. W. Klopper, University of Karlsruhe, Germany 1 The a priori calculation of molecular properties to chemical accuarcy T. Helgaker, Department of Chemistry, University of Oslo, Norway T. Ruden, University of Oslo, Norway W. Klopper, University of Karlsruhe,

More information

Jack Simons, Henry Eyring Scientist and Professor Chemistry Department University of Utah

Jack Simons, Henry Eyring Scientist and Professor Chemistry Department University of Utah 1. Born-Oppenheimer approx.- energy surfaces 2. Mean-field (Hartree-Fock) theory- orbitals 3. Pros and cons of HF- RHF, UHF 4. Beyond HF- why? 5. First, one usually does HF-how? 6. Basis sets and notations

More information

Molecular properties in quantum chemistry

Molecular properties in quantum chemistry Molecular properties in quantum chemistry Monika Musiał Department of Theoretical Chemistry Outline 1 Main computational schemes for correlated calculations 2 Developmentoftheabinitiomethodsforthe calculation

More information

Introduction to Electronic Structure Theory

Introduction to Electronic Structure Theory CSC/PRACE Spring School in Computational Chemistry 2017 Introduction to Electronic Structure Theory Mikael Johansson http://www.iki.fi/~mpjohans Objective: To get familiarised with the, subjectively chosen,

More information

Electric properties of molecules

Electric properties of molecules Electric properties of molecules For a molecule in a uniform electric fielde the Hamiltonian has the form: Ĥ(E) = Ĥ + E ˆµ x where we assume that the field is directed along the x axis and ˆµ x is the

More information

Coupled Cluster Theory and Tensor Decomposition Techniques

Coupled Cluster Theory and Tensor Decomposition Techniques Coupled Cluster Theory and Tensor Decomposition Techniques Alexander A. Auer Atomistic Modelling Group Interface Chemistry and Surface Engineering Hierarchy of quantum chemical methods Analysis of orbitals

More information

Molecular Magnetic Properties

Molecular Magnetic Properties Molecular Magnetic Properties Trygve Helgaker Hylleraas Centre, Department of Chemistry, University of Oslo, Norway and Centre for Advanced Study at the Norwegian Academy of Science and Letters, Oslo,

More information

Molecular Magnetism. Magnetic Resonance Parameters. Trygve Helgaker

Molecular Magnetism. Magnetic Resonance Parameters. Trygve Helgaker Molecular Magnetism Magnetic Resonance Parameters Trygve Helgaker Centre for Theoretical and Computational Chemistry (CTCC), Department of Chemistry, University of Oslo, Norway Laboratoire de Chimie Théorique,

More information

Convergence properties of the coupled-cluster method: the accurate calculation of molecular properties for light systems

Convergence properties of the coupled-cluster method: the accurate calculation of molecular properties for light systems 1 Convergence properties of the coupled-cluster method: the accurate calculation of molecular properties for light systems T. Helgaker Centre for Theoretical and Computational Chemistry, Department of

More information

Q-Chem 5: Facilitating Worldwide Scientific Breakthroughs

Q-Chem 5: Facilitating Worldwide Scientific Breakthroughs Q-Chem 5: Facilitating Worldwide Scientific Breakthroughs Founded in 1993, Q-Chem strives to bring its customers state-ofthe-art methods and algorithms for performing quantum chemistry calculations. Cutting-edge

More information

Building a wavefunction within the Complete-Active. Cluster with Singles and Doubles formalism: straightforward description of quasidegeneracy

Building a wavefunction within the Complete-Active. Cluster with Singles and Doubles formalism: straightforward description of quasidegeneracy Building a wavefunction within the Complete-Active Active-Space Coupled-Cluster Cluster with Singles and Doubles formalism: straightforward description of quasidegeneracy Dmitry I. Lyakh (Karazin Kharkiv

More information

Advanced Electronic Structure Theory Density functional theory. Dr Fred Manby

Advanced Electronic Structure Theory Density functional theory. Dr Fred Manby Advanced Electronic Structure Theory Density functional theory Dr Fred Manby fred.manby@bris.ac.uk http://www.chm.bris.ac.uk/pt/manby/ 6 Strengths of DFT DFT is one of many theories used by (computational)

More information

Electron Correlation Methods

Electron Correlation Methods Electron Correlation Methods HF method: electron-electron interaction is replaced by an average interaction E HF c = E 0 E HF E 0 exact ground state energy E HF HF energy for a given basis set HF E c

More information

Molecular Magnetic Properties. The 11th Sostrup Summer School. Quantum Chemistry and Molecular Properties July 4 16, 2010

Molecular Magnetic Properties. The 11th Sostrup Summer School. Quantum Chemistry and Molecular Properties July 4 16, 2010 1 Molecular Magnetic Properties The 11th Sostrup Summer School Quantum Chemistry and Molecular Properties July 4 16, 2010 Trygve Helgaker Centre for Theoretical and Computational Chemistry, Department

More information

The calculation of the universal density functional by Lieb maximization

The calculation of the universal density functional by Lieb maximization The calculation of the universal density functional by Lieb maximization Trygve Helgaker, Andy Teale, and Sonia Coriani Centre for Theoretical and Computational Chemistry (CTCC), Department of Chemistry,

More information

NWChem: Coupled Cluster Method (Tensor Contraction Engine)

NWChem: Coupled Cluster Method (Tensor Contraction Engine) NWChem: Coupled Cluster Method (Tensor Contraction Engine) Why CC is important?! Correlation effects are important!! CC is size-extensive theory: can be used to describe dissociation processes.! Higher-order

More information

COUPLED-CLUSTER CALCULATIONS OF GROUND AND EXCITED STATES OF NUCLEI

COUPLED-CLUSTER CALCULATIONS OF GROUND AND EXCITED STATES OF NUCLEI COUPLED-CLUSTER CALCULATIONS OF GROUND AND EXCITED STATES OF NUCLEI Marta Włoch, a Jeffrey R. Gour, a and Piotr Piecuch a,b a Department of Chemistry,Michigan State University, East Lansing, MI 48824 b

More information

Importing ab-initio theory into DFT: Some applications of the Lieb variation principle

Importing ab-initio theory into DFT: Some applications of the Lieb variation principle Importing ab-initio theory into DFT: Some applications of the Lieb variation principle Trygve Helgaker, Andy Teale, and Sonia Coriani Centre for Theoretical and Computational Chemistry (CTCC), Department

More information

Local Approaches to the Simulation of Electron Correlation in complex systems

Local Approaches to the Simulation of Electron Correlation in complex systems Local Approaches to the Simulation of Electron Correlation in complex systems Martin Schütz Institut für Physikalische und Theoretische Chemie, Universität Regensburg Universitätsstraße 31, D-93040 Regensburg

More information

Chapter 2 Quantum chemistry using auxiliary field Monte Carlo

Chapter 2 Quantum chemistry using auxiliary field Monte Carlo Chapter 2 Quantum chemistry using auxiliary field Monte Carlo 1. The Hubbard-Stratonovich Transformation 2. Neuhauser s shifted contour 3. Calculation of forces and PESs 4. Multireference AFMC 5. Examples

More information

Theoretical and Computational Studies of Interstellar C2nH and SiC2m+1H. Ryan Fortenberry

Theoretical and Computational Studies of Interstellar C2nH and SiC2m+1H. Ryan Fortenberry Theoretical and Computational Studies of Interstellar C2nH and SiC2m+1H Ryan Fortenberry 1 Introduction Astrobiology Pillars of Creation Titan Interstellar Spectra DIBs 1.0 SiC3H Comparison Spectrum 0.8

More information

( R)Ψ el ( r;r) = E el ( R)Ψ el ( r;r)

( R)Ψ el ( r;r) = E el ( R)Ψ el ( r;r) Born Oppenheimer Approximation: Ĥ el ( R)Ψ el ( r;r) = E el ( R)Ψ el ( r;r) For a molecule with N electrons and M nuclei: Ĥ el What is E el (R)? s* potential surface Reaction Barrier Unstable intermediate

More information

4 Post-Hartree Fock Methods: MPn and Configuration Interaction

4 Post-Hartree Fock Methods: MPn and Configuration Interaction 4 Post-Hartree Fock Methods: MPn and Configuration Interaction In the limit of a complete basis, the Hartree-Fock (HF) energy in the complete basis set limit (ECBS HF ) yields an upper boundary to the

More information

The Accurate Calculation of Molecular Energies and Properties: A Tour of High-Accuracy Quantum-Chemical Methods

The Accurate Calculation of Molecular Energies and Properties: A Tour of High-Accuracy Quantum-Chemical Methods 1 The Accurate Calculation of Molecular Energies and Properties: A Tour of High-Accuracy Quantum-Chemical Methods T. Helgaker Centre for Theoretical and Computational Chemistry Department of Chemistry,

More information

NWChem: Coupled Cluster Method (Tensor Contraction Engine)

NWChem: Coupled Cluster Method (Tensor Contraction Engine) NWChem: Coupled Cluster Method (ensor Contraction Engine) What we want to solve H Ψ = E Ψ Many Particle Systems Molecular/Atomic Physics, Quantum Chemistry (electronic Schrödinger equations) Solid State

More information

Ab initio calculations for potential energy surfaces. D. Talbi GRAAL- Montpellier

Ab initio calculations for potential energy surfaces. D. Talbi GRAAL- Montpellier Ab initio calculations for potential energy surfaces D. Talbi GRAAL- Montpellier A theoretical study of a reaction is a two step process I-Electronic calculations : techniques of quantum chemistry potential

More information

High-level Quantum Chemistry Methods and Benchmark Datasets for Molecules

High-level Quantum Chemistry Methods and Benchmark Datasets for Molecules High-level Quantum Chemistry Methods and Benchmark Datasets for Molecules Markus Schneider Fritz Haber Institute of the MPS, Berlin, Germany École Polytechnique Fédérale de Lausanne, Switzerland دانشگاه

More information

Using BLIS for tensor computations in Q-Chem

Using BLIS for tensor computations in Q-Chem Using BLIS for tensor computations in Q-Chem Evgeny Epifanovsky Q-Chem BLIS Retreat, September 19 20, 2016 Q-Chem is an integrated software suite for modeling the properties of molecular systems from first

More information

QUANTUM CHEMISTRY PROJECT 3: ATOMIC AND MOLECULAR STRUCTURE

QUANTUM CHEMISTRY PROJECT 3: ATOMIC AND MOLECULAR STRUCTURE Chemistry 460 Fall 2017 Dr. Jean M. Standard November 1, 2017 QUANTUM CHEMISTRY PROJECT 3: ATOMIC AND MOLECULAR STRUCTURE OUTLINE In this project, you will carry out quantum mechanical calculations of

More information

Fragmentation methods

Fragmentation methods Fragmentation methods Scaling of QM Methods HF, DFT scale as N 4 MP2 scales as N 5 CC methods scale as N 7 What if we could freeze the value of N regardless of the size of the system? Then each method

More information

Molecular Magnetic Properties

Molecular Magnetic Properties Molecular Magnetic Properties Trygve Helgaker Centre for Theoretical and Computational Chemistry Department of Chemistry, University of Oslo, Norway The 12th Sostrup Summer School Quantum Chemistry and

More information

Bridging Scales Through Wavefunction Analysis

Bridging Scales Through Wavefunction Analysis Bridging Scales Through Wavefunction Analysis Felix Plasser Institute for Theoretical Chemistry, University of Vienna Excited States Bridging Scales Marseille, November 7 10, 2016 F. Plasser Wavefunction

More information

Basis sets for electron correlation

Basis sets for electron correlation Basis sets for electron correlation Trygve Helgaker Centre for Theoretical and Computational Chemistry Department of Chemistry, University of Oslo, Norway The 12th Sostrup Summer School Quantum Chemistry

More information

Lecture 5: More about one- Final words about the Hartree-Fock theory. First step above it by the Møller-Plesset perturbation theory.

Lecture 5: More about one- Final words about the Hartree-Fock theory. First step above it by the Møller-Plesset perturbation theory. Lecture 5: More about one- determinant wave functions Final words about the Hartree-Fock theory. First step above it by the Møller-Plesset perturbation theory. Items from Lecture 4 Could the Koopmans theorem

More information

Chemistry 3502/4502. Final Exam Part I. May 14, 2005

Chemistry 3502/4502. Final Exam Part I. May 14, 2005 Chemistry 3502/4502 Final Exam Part I May 14, 2005 1. For which of the below systems is = where H is the Hamiltonian operator and T is the kinetic-energy operator? (a) The free particle (e) The

More information

Erin E. Dahlke and Donald G. Truhlar *

Erin E. Dahlke and Donald G. Truhlar * Prepared for JCTC April 20, 2007 Electrostatically Embedded Many-Body Correlation Energy, with Applications to the Calculation of Accurate Second-Order MØller-Plesset Perturbation Theory Energies for Large

More information

TDDFT in Chemistry and Biochemistry III

TDDFT in Chemistry and Biochemistry III TDDFT in Chemistry and Biochemistry III Dmitrij Rappoport Department of Chemistry and Chemical Biology Harvard University TDDFT Winter School Benasque, January 2010 Dmitrij Rappoport (Harvard U.) TDDFT

More information

Introduction to Computational Chemistry: Theory

Introduction to Computational Chemistry: Theory Introduction to Computational Chemistry: Theory Dr Andrew Gilbert Rm 118, Craig Building, RSC andrew.gilbert@anu.edu.au 3023 Course Lectures Introduction Hartree Fock Theory Basis Sets Lecture 1 1 Introduction

More information

Jack Simons, Henry Eyring Scientist and Professor Chemistry Department University of Utah

Jack Simons, Henry Eyring Scientist and Professor Chemistry Department University of Utah 1. Born-Oppenheimer approx.- energy surfaces 2. Mean-field (Hartree-Fock) theory- orbitals 3. Pros and cons of HF- RHF, UHF 4. Beyond HF- why? 5. First, one usually does HF-how? 6. Basis sets and notations

More information

Introduction to Computational Quantum Chemistry: Theory

Introduction to Computational Quantum Chemistry: Theory Introduction to Computational Quantum Chemistry: Theory Dr Andrew Gilbert Rm 118, Craig Building, RSC 3108 Course Lectures 2007 Introduction Hartree Fock Theory Configuration Interaction Lectures 1 Introduction

More information

New Frontiers in Nuclear Structure Theory

New Frontiers in Nuclear Structure Theory New Frontiers in Nuclear Structure Theory From Realistic Interactions to the Nuclear Chart Robert Roth Institut für Kernphysik Technical University Darmstadt Overview Motivation Nucleon-Nucleon Interactions

More information

Triple excitations in the coupled-cluster method. Application to atomic properties.

Triple excitations in the coupled-cluster method. Application to atomic properties. Triple excitations in the coupled-cluster method. Application to atomic properties. Sergey G. Porsev 1 and Andrei Derevianko 2 1 Petersburg Nuclear Physics Institute Gatchina, Russia 2 University of Nevada

More information

Material Surfaces, Grain Boundaries and Interfaces: Structure-Property Relationship Predictions

Material Surfaces, Grain Boundaries and Interfaces: Structure-Property Relationship Predictions Material Surfaces, Grain Boundaries and Interfaces: Structure-Property Relationship Predictions Susan B. Sinnott Department of Materials Science and Engineering Penn State University September 16, 2016

More information

MODERN ELECTRONIC STRUCTURE THEORY: Electron Correlation

MODERN ELECTRONIC STRUCTURE THEORY: Electron Correlation 5.61 Physical Chemistry Lecture #30 1 MODERN ELECTRONIC STRUCTURE THEORY: Electron Correlation In the previous lecture, we covered all the ingredients necessary to choose a good atomic orbital basis set.

More information

Density Functional Theory

Density Functional Theory Chemistry 380.37 Fall 2015 Dr. Jean M. Standard October 28, 2015 Density Functional Theory What is a Functional? A functional is a general mathematical quantity that represents a rule to convert a function

More information

Kevin Driver 1 Shuai Zhang 1 Burkhard Militzer 1 R. E. Cohen 2.

Kevin Driver 1 Shuai Zhang 1 Burkhard Militzer 1 R. E. Cohen 2. Quantum Monte Carlo Simulations of a Single Iron Impurity in MgO Kevin Driver 1 Shuai Zhang 1 Burkhard Militzer 1 R. E. Cohen 2 1 Department of Earth & Planetary Science University of California, Berkeley

More information

CE 530 Molecular Simulation

CE 530 Molecular Simulation 1 CE 530 Molecular Simulation Lecture 14 Molecular Models David A. Kofke Department of Chemical Engineering SUNY Buffalo kofke@eng.buffalo.edu 2 Review Monte Carlo ensemble averaging, no dynamics easy

More information

Glenn T. Seaborg and the Modern Periodic Table of Elements. V. Pershina GSI, Darmstadt, Germany

Glenn T. Seaborg and the Modern Periodic Table of Elements. V. Pershina GSI, Darmstadt, Germany Glenn T. Seaborg and the Modern Periodic Table of Elements V. Pershina GSI, Darmstadt, Germany Glenn T. Seaborg (1912-1999) 1997 [www.allperiodictables.com] Periodic Table of Dimitri I. Mendeleev Dimitri

More information

Introduction to Vibrational Spectroscopy

Introduction to Vibrational Spectroscopy Introduction to Vibrational Spectroscopy Harmonic oscillators The classical harmonic oscillator The uantum mechanical harmonic oscillator Harmonic approximations in molecular vibrations Vibrational spectroscopy

More information

1. Transition dipole moment

1. Transition dipole moment 1. Transition dipole moment You have measured absorption spectra of aqueous (n=1.33) solutions of two different chromophores (A and B). The concentrations of the solutions were the same. The absorption

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Calculations predict a stable molecular crystal of N 8 : Barak Hirshberg a, R. Benny Gerber a,b, and Anna I. Krylov c a Institute of Chemistry and The Fritz Haber Center for Molecular Dynamics, The Hebrew

More information

Electronic structure theory: Fundamentals to frontiers. VI. Analysis and more.

Electronic structure theory: Fundamentals to frontiers. VI. Analysis and more. Electronic structure theory: Fundamentals to frontiers. VI. Analysis and more. MARTIN HEAD-GORDON Department of Chemistry, University of California, Berkeley, and, Chemical Sciences Division, Lawrence

More information

Density Func,onal Theory (Chapter 6, Jensen)

Density Func,onal Theory (Chapter 6, Jensen) Chem 580: DFT Density Func,onal Theory (Chapter 6, Jensen) Hohenberg- Kohn Theorem (Phys. Rev., 136,B864 (1964)): For molecules with a non degenerate ground state, the ground state molecular energy and

More information

The Rigorous Calculation of Molecular Properties to Chemical Accuracy. T. Helgaker, Department of Chemistry, University of Oslo, Norway

The Rigorous Calculation of Molecular Properties to Chemical Accuracy. T. Helgaker, Department of Chemistry, University of Oslo, Norway 1 The Rigorous Calculation of Molecular Properties to Chemical Accuracy T. Helgaker, Department of Chemistry, University of Oslo, Norway A. C. Hennum and T. Ruden, University of Oslo, Norway S. Coriani,

More information

Exchange-Correlation Functional

Exchange-Correlation Functional Exchange-Correlation Functional Aiichiro Nakano Collaboratory for Advanced Computing & Simulations Depts. of Computer Science, Physics & Astronomy, Chemical Engineering & Materials Science, and Biological

More information

High Accuracy Local Correlation Methods: Computer Aided Implementation

High Accuracy Local Correlation Methods: Computer Aided Implementation High Accuracy Local Correlation Methods: Computer Aided Implementation Marcel Nooijen Alexander Auer Princeton University University of Waterloo USA Canada So Hirata, PNNL Supported by: NSF ITR (Information

More information

QUANTUM CHEMISTRY PROJECT 3: PARTS B AND C

QUANTUM CHEMISTRY PROJECT 3: PARTS B AND C Chemistry 460 Fall 2017 Dr. Jean M. Standard November 6, 2017 QUANTUM CHEMISTRY PROJECT 3: PARTS B AND C PART B: POTENTIAL CURVE, SPECTROSCOPIC CONSTANTS, AND DISSOCIATION ENERGY OF DIATOMIC HYDROGEN (20

More information

Electronic structure theory: Fundamentals to frontiers. 2. Density functional theory

Electronic structure theory: Fundamentals to frontiers. 2. Density functional theory Electronic structure theory: Fundamentals to frontiers. 2. Density functional theory MARTIN HEAD-GORDON, Department of Chemistry, University of California, and Chemical Sciences Division, Lawrence Berkeley

More information

The frequency-dependent Sternheimer equation in TDDFT

The frequency-dependent Sternheimer equation in TDDFT The frequency-dependent Sternheimer equation in TDDFT A new look into an old equation Miguel A. L. Marques 1 Centre for Computational Physics, University of Coimbra, Portugal 2 European Theoretical Spectroscopy

More information

Quantum Monte Carlo methods

Quantum Monte Carlo methods Quantum Monte Carlo methods Lubos Mitas North Carolina State University Urbana, August 2006 Lubos_Mitas@ncsu.edu H= 1 2 i i 2 i, I Z I r ii i j 1 r ij E ion ion H r 1, r 2,... =E r 1, r 2,... - ground

More information

Chemistry 3502/4502. Final Exam Part I. May 14, 2005

Chemistry 3502/4502. Final Exam Part I. May 14, 2005 Advocacy chit Chemistry 350/450 Final Exam Part I May 4, 005. For which of the below systems is = where H is the Hamiltonian operator and T is the kinetic-energy operator? (a) The free particle

More information

Extended Wavefunction Analysis for Multireference Methods

Extended Wavefunction Analysis for Multireference Methods Extended Wavefunction Analysis for Multireference Methods Felix Plasser González Research Group Institute for Theoretical Chemistry, University of Vienna, Austria Vienna, 1 st April 2016 Introduction Analysis

More information

The adiabatic connection

The adiabatic connection The adiabatic connection Trygve Helgaker, Andy Teale, and Sonia Coriani Centre for Theoretical and Computational Chemistry (CTCC), Department of Chemistry, University of Oslo, Norway Dipartimento di Scienze

More information

4πε. me 1,2,3,... 1 n. H atom 4. in a.u. atomic units. energy: 1 a.u. = ev distance 1 a.u. = Å

4πε. me 1,2,3,... 1 n. H atom 4. in a.u. atomic units. energy: 1 a.u. = ev distance 1 a.u. = Å H atom 4 E a me =, n=,,3,... 8ε 0 0 π me e e 0 hn ε h = = 0.59Å E = me (4 πε ) 4 e 0 n n in a.u. atomic units E = r = Z n nao Z = e = me = 4πε = 0 energy: a.u. = 7. ev distance a.u. = 0.59 Å General results

More information

Advanced Electronic Structure Theory Density functional theory. Dr Fred Manby

Advanced Electronic Structure Theory Density functional theory. Dr Fred Manby Advanced Electronic Structure Theory Density functional theory Dr Fred Manby fred.manby@bris.ac.uk http://www.chm.bris.ac.uk/pt/manby/ Course overview This is a course about density functional theory (DFT)

More information

The Nuclear Many Body Problem Lecture 4. Coupled Cluster theory and its application to medium sized nuclei.

The Nuclear Many Body Problem Lecture 4. Coupled Cluster theory and its application to medium sized nuclei. The Nuclear Many Body Problem Lecture 4 Coupled Cluster theory and its application to medium sized nuclei. Extending the Ab Initio program beyond the lightest nuclei. Need a theory which scales softly

More information

UNEDF- PACK FOREST. RODNEY J. BARTLETT Quantum Theory Project, Departments of Chemistry and Physics University of Florida, Gainesville, Florida USA

UNEDF- PACK FOREST. RODNEY J. BARTLETT Quantum Theory Project, Departments of Chemistry and Physics University of Florida, Gainesville, Florida USA UNEDF- PACK FOREST Ab-initio dft: The seamless connection with wave-function theory June 25, 2008 RODNEY J. BARTLETT Quantum Theory Project, Departments of Chemistry and Physics University of Florida,

More information

Theoretical Photochemistry WiSe 2017/18

Theoretical Photochemistry WiSe 2017/18 Theoretical Photochemistry WiSe 2017/18 Lecture 7 Irene Burghardt (burghardt@chemie.uni-frankfurt.de) http://www.theochem.uni-frankfurt.de/teaching/ Theoretical Photochemistry 1 Topics 1. Photophysical

More information

Special 5: Wavefunction Analysis and Visualization

Special 5: Wavefunction Analysis and Visualization Special 5: Wavefunction Analysis and Visualization Felix Plasser Institute for Theoretical Chemistry, University of Vienna COLUMBUS in China Tianjin, October 10 14, 2016 F. Plasser Wavefunction Analysis

More information

Introduction to multiconfigurational quantum chemistry. Emmanuel Fromager

Introduction to multiconfigurational quantum chemistry. Emmanuel Fromager Institut de Chimie, Strasbourg, France Page 1 Emmanuel Fromager Institut de Chimie de Strasbourg - Laboratoire de Chimie Quantique - Université de Strasbourg /CNRS M2 lecture, Strasbourg, France. Notations

More information

METHODS FOR TREATING SOLVENT EFFECTS AND INTERMOLECULAR FORCES. Mark S. Gordon Iowa State University Ames Laboratory

METHODS FOR TREATING SOLVENT EFFECTS AND INTERMOLECULAR FORCES. Mark S. Gordon Iowa State University Ames Laboratory METHODS FOR TREATING SOLVENT EFFECTS AND INTERMOLECULAR FORCES Mark S. Gordon Iowa State University Ames Laboratory OUTLINE Solvation Methods Explicit vs. implicit methods Explicit Methods TIP3P, TIP4P

More information

Calculations of band structures

Calculations of band structures Chemistry and Physics at Albany Planning for the Future Calculations of band structures using wave-function based correlation methods Elke Pahl Centre of Theoretical Chemistry and Physics Institute of

More information

Ab initio treatment of electron correlations in polymers: Lithium hydride

Ab initio treatment of electron correlations in polymers: Lithium hydride JOURNAL OF CHEMICAL PHYSICS VOLUME 112, NUMBER 10 8 MARCH 2000 Ab initio treatment of electron correlations in polymers: Lithium hydride chain and beryllium hydride polymer Ayjamal Abdurahman a) Max-Planck-Institut

More information

Lecture Models for heavy-ion collisions (Part III): transport models. SS2016: Dynamical models for relativistic heavy-ion collisions

Lecture Models for heavy-ion collisions (Part III): transport models. SS2016: Dynamical models for relativistic heavy-ion collisions Lecture Models for heavy-ion collisions (Part III: transport models SS06: Dynamical models for relativistic heavy-ion collisions Quantum mechanical description of the many-body system Dynamics of heavy-ion

More information

Wave function methods for the electronic Schrödinger equation

Wave function methods for the electronic Schrödinger equation Wave function methods for the electronic Schrödinger equation Zürich 2008 DFG Reseach Center Matheon: Mathematics in Key Technologies A7: Numerical Discretization Methods in Quantum Chemistry DFG Priority

More information

Convergence of many-body wavefunction expansions using a plane wave basis: From the homogeneous electron gas to the solid state

Convergence of many-body wavefunction expansions using a plane wave basis: From the homogeneous electron gas to the solid state Convergence of many-body wavefunction expansions using a plane wave basis: From the homogeneous electron gas to the solid state TCM Electronic Structure Discussion Group James Shepherd (CUC3, Alavi Group)

More information

The Electronic Structure of Dye- Sensitized TiO 2 Clusters from Many- Body Perturbation Theory

The Electronic Structure of Dye- Sensitized TiO 2 Clusters from Many- Body Perturbation Theory The Electronic Structure of Dye- Sensitized TiO 2 Clusters from Many- Body Perturbation Theory Noa Marom Center for Computational Materials Institute for Computational Engineering and Sciences The University

More information

QUANTUM CHEMISTRY FOR TRANSITION METALS

QUANTUM CHEMISTRY FOR TRANSITION METALS QUANTUM CHEMISTRY FOR TRANSITION METALS Outline I Introduction II Correlation Static correlation effects MC methods DFT III Relativity Generalities From 4 to 1 components Effective core potential Outline

More information

Quantum Chemistry Methods

Quantum Chemistry Methods 1 Quantum Chemistry Methods T. Helgaker, Department of Chemistry, University of Oslo, Norway The electronic Schrödinger equation Hartree Fock theory self-consistent field theory basis functions and basis

More information

Supplementary Figure 1. Potential energy, volume, and molecular distribution of the

Supplementary Figure 1. Potential energy, volume, and molecular distribution of the 1 2 3 4 5 6 7 8 Supplementary Figure 1. Potential energy, volume, and molecular distribution of the organic substrates prepared by MD simulation. (a) Change of the density and total potential energy of

More information

Acidic Water Monolayer on Ruthenium(0001)

Acidic Water Monolayer on Ruthenium(0001) Acidic Water Monolayer on Ruthenium(0001) Youngsoon Kim, Eui-seong Moon, Sunghwan Shin, and Heon Kang Department of Chemistry, Seoul National University, 1 Gwanak-ro, Seoul 151-747, Republic of Korea.

More information

Walter Kohn was awarded with the Nobel Prize in Chemistry in 1998 for his development of the density functional theory.

Walter Kohn was awarded with the Nobel Prize in Chemistry in 1998 for his development of the density functional theory. Walter Kohn was awarded with the Nobel Prize in Chemistry in 1998 for his development of the density functional theory. Walter Kohn receiving his Nobel Prize from His Majesty the King at the Stockholm

More information

Introduction to density-functional theory. Emmanuel Fromager

Introduction to density-functional theory. Emmanuel Fromager Institut de Chimie, Strasbourg, France Page 1 Emmanuel Fromager Institut de Chimie de Strasbourg - Laboratoire de Chimie Quantique - Université de Strasbourg /CNRS M2 lecture, Strasbourg, France. Institut

More information

The frequency-dependent Sternheimer equation in TDDFT

The frequency-dependent Sternheimer equation in TDDFT The frequency-dependent Sternheimer equation in TDDFT A new look into an old equation Miguel A. L. Marques 1 Centre for Computational Physics, University of Coimbra, Portugal 2 LPMCN, Université Claude

More information