MatLab Code for Simple Convex Minimization

Size: px
Start display at page:

Download "MatLab Code for Simple Convex Minimization"

Transcription

1 MatLab Code for Simple Convex Minimization, 1-8, 2017 Draft Version April 25, 2018 MatLab Code for Simple Convex Minimization James K. Peterson 1 * Abstract We look at MatLab code to solve a simple L 1 minimization. Keywords Convex Functions Subgradients MatLab Code 1 Department of Mathematical Sciences, Clemson University,Clemson, SC: petersj@clemson.edu *Corresponding author: petersj@clemson.edu 1. Introduction We are going to solve the cooling model project using ideas from convex analysis. Given data X,Y ) which consists of time and temperature pairs for a cooling liquid, we can fit a Newton cooling model to the data using a Least Squares minimization approach. We assume the temperature T is determined by a cooling model T (t) = A + (T 0 A)e kt. (1) where A is the room temperature where the data pairs have been collected. Let the variable U(t) be defined to be ( ) T (t) A U(t) = ln T 0 A Then, from Equation 1 we have U(t) = kt which is a linear relationship. From the data pairs, this means we want to find a value of k that gives model values A + (T 0 A)e kt i which are close to the measured temperature T i for all the data points. This is equivalent to finding a value of k so that U(t i ) = kt i is close to the value U(t i ) = T i A T 0 A for the data pairs. Let s assume there are N data pairs. Setting up a least squares error function LS we define E LS = N (A + (T 0 A)e kt i T i ) 2 i=1 and as discussed in Project Two, the optimal value of k is the one from the standard regression fit. The details of this derivation are in the writeup for Project Two. However, another way to find an optimal value of k is to use an L 1 error function E One defined by E One = N A + (T 0 A)e kt i T i i=1

2 MatLab Code for Simple Convex Minimization 2/8 Of course, we don t solve these problems as stated. Instead, we follow the ideas in the cooling project to define the auxiliary variable U and set up the errors: E One = E LS = N U i mt i i=1 N (U i mt i ) 2 i=1 Now let s write MatLab code to solve this. The least squares part is like before but the summed absolute error part uses the subdifferentials which is different. 2. The MatLab Implementation of the E One Minimization The MatLab code to solve the E LS minimization problem is discussed in the Project Two handout. Here we will show you the MatLab code to solve the minimization problem for L One which requires a subgradient approach. We know absolute minimum of the convex function E One occurs at an interior point p where 0 E One (p). Here is the code to find this point. Listing 1. LOne Minimization 1 f u n c t i o n [ mstar, E, Df, LSmstar, LSE ] = LOneEnergy (X,Y) % X = x d a t a % Y = y d a t a % mstar = o p t i m a l s l o p e f o r L One % E = o p t i m a l L One v a l u e 6 % LSmstar = o p t i m a l s l o p e f o r L Two % LSE = o p t i m a l L Two v a l u e % Df = s u b g r a d i e n t s a t t h e k n o t s % We assume t h e f i r s t X v a l u e i s z e r o % ( 0,Y( 1 ) ) d o e s n o t e f f e c t t h e e n e r g y f u n c t i o n s 11 [ n,m] = s i z e (X) ; X1 = X( 2 : n ) ; Y1 = Y( 2 : n ) ; Q = abs (Y1. / X1) ; W = s o r t (Z) ; 16 Z = X1. W; Energy Y1,m) sum ( abs (X1). abs (m Y1. / X1) ) ; Df = z e r o s ( n 1,2) ; [ n,m] = s i z e (X) ; f o r i = 1 : n 1 21 belowknot = 0. 0 ; aboveknot = 0. 0 ; f o r j = 1 : n 1 i f W( j ) < W( i ) belowknot = belowknot + X1( j ) ; 26 e l s e aboveknot = aboveknot X1( j ) ; c = belowknot+aboveknot ;

3 MatLab Code for Simple Convex Minimization 3/8 Df ( i, 1 ) = X1( i ) + c ; 31 Df ( i, 2 ) = X1( i ) + c ; mstar = 0. 0 ; f o r i = 1 : n 1 36 i f ( Df ( i, 1 ) < 0 && 0 < Df ( i, 2 ) ) % p r i n t o u t some d i a g n o s t i c s d i s p l a y ( i ) ; d i s p l a y ( Df ( i, 1 ) ) ; d i s p l a y ( Df ( i, 2 ) ) ; 41 mstar = Y1( i ) /X1( i ) ; break ; E = Energy (X1, Y1, mstar ) ; 46 % Compare t o LS LSEnergy Y1,m) sum ( (Y1 m. X1). ˆ 2 ) ; LSmstar = sum (X1. Y1) /sum (X1. X1) ; LSE = LSEnergy (X1, Y1, LSmstar ) ; f 1=s u b p l o t ( 2, 1, 1 ) ; 51 M = l i n s p a c e ( mstar , mstar , 3 1 ) ; PE = Energy (X1, Y1,M) ; p l o t ( f1,m, PE, o ) ; x l a b e l ( m ) ; y l a b e l ( E n e r g y ) ; 56 t i t l e ( L1 E n e r g y v e r s u s s l o p e ) ; f 2=s u b p l o t ( 2, 1, 2 ) ; M2 = l i n s p a c e ( LSmstar , LSmstar , 3 1 ) ; PLS = LSEnergy (X1, Y1,M2) ; p l o t ( f2,m2, PLS, + ) ; 61 x l a b e l ( m ) ; y l a b e l ( E n e r g y ) ; t i t l e ( L2 E n e r g y v e r s u s s l o p e ) ; Let s look at this sample data which is in the file FittingData.txt. Listing 2. Sample Data

4 MatLab Code for Simple Convex Minimization 4/ We load this data and plot it as follows: Listing 3. Plotting Raw Data >> Data = l o a d ( F i t t i n g D a t a. t x t ) ; 2 >> X = Data ( :, 1 ) ; >> Y = Data ( :, 2 ) ; >> p l o t (X,Y) ; >> Data = l o a d ( F i t t i n g D a t a. t x t ) ; >> X = Data ( :, 1 ) ; 7 >> Y = Data ( :, 2 ) ; >> p l o t (X,Y) ; >> x l a b e l ( T i m e ) ; >> y l a b e l ( T e m p e r a t u r e ) ; >> t i t l e ( R a w D a t a ) ; We see the data in Figure 1. Figure 1. Sample Data

5 MatLab Code for Simple Convex Minimization 5/8 Then we run the minimization code: note the optimal k value is different for the E One and E LS minimizations. Note this run uses the raw data files X and Y and so is doing a different minimization than the one we do in the cooling project. This code performs both the least squares and the summed absolute value error on any data X and Y we give it. Listing 4. The Raw Data Models >> [ mstar, E, Df, LSmstar, LSE ] = LOneEnergy (X,Y) ; >> mstar mstar = >> LSmstar LSmstar = The code generates a nice picture of this in Figure 2. We focus on a small piece of the these respective energy function as otherwise the vertical scale is too large to let us see the minimum behavior well. We see the data in Figure 1. Figure 2. E One and E LS Minimization Results The returned variable Df contains the subgradient sets for each of the knot points in E One. Listing 5. Subgradients at the Knots

6 MatLab Code for Simple Convex Minimization 6/8 >> Df Df = Note knot 14 is the subgradient which contains 0 and so this is the location of the absolute minimum of E One. Of course, these results are not really what we want as they solve a different minimization problem than the cooling one. So now we need to apply this ideas to the cooling project. We need to create the right Y here. The code is this: Listing 6. Creating the right Y Data = l o a d ( F i t t i n g D a t a. t x t ) ; % g r a b t h e t i m e s X = Data ( :, 1 ) ; % g r a b t h e t e m p e r a t u r e s 5 Temp = Data ( :, 2 ) ; % s e t t h e ambient t e m p e r a t u r e A = ; % compute t h e t r a n s f o r m e d v a r i a b l e U % b u t c a l l i t Y 10 Y = l o g ( (Temp A). / ( Temp( 1 ) A) ) ; Now find the two models: Listing 7. Finding the two k values [ mstar, E, Df, LSmstar, LSE ] = LOneEnergy (X,Y) ; % g r a b t h e k v a l u e f o r t h e summed a b s o l u t e e r r o r mstar mstar = % g r a b t h e k v a l u e f o r t h e l e a s t s q u a r e s e r r o r LSmstar

7 MatLab Code for Simple Convex Minimization 7/8 LSmstar = We note these are quite close in value. Now compare the plots of raw data and the two models. The code will generate a plot of these m values. Save it for printing and then delete it as we want to generate plots for the new models now. Listing 8. Building the Two Models and Comparing % b u i l d t h e summed a b s o l u t e e r r o r model ModelL1 = A + (Temp( 1 ) A) exp ( mstar X) ; 3 % b u i l d t h e l e a s t s q u a r e s model ModelL2 = A + (Temp( 1 ) A) exp ( LSmstar X) ; % compare t h e p l o t s p l o t (X, Temp, X, ModelL1, X, ModelL2 ) ; We show the results in Figure 3. So after you generate this plot, save it for printing later. Figure 3. The Raw Data and the Two Models 3. Extra Credit You can earn up to 25 points in extra credit for Project Two by doing the folloing: Exercise 3.1 Completely explain the MatLab code you have been provided with here. You need to figure out what I am doing to calculate the subgradients.

8 MatLab Code for Simple Convex Minimization 8/8 Exercise 3.2 Use this code on the data from Project Two. You should get the same answer as the one you got when you did it by hand calculation.

Project Two. James K. Peterson. March 26, Department of Biological Sciences and Department of Mathematical Sciences Clemson University

Project Two. James K. Peterson. March 26, Department of Biological Sciences and Department of Mathematical Sciences Clemson University Project Two James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University March 26, 2019 Outline 1 Cooling Models 2 Estimating the Cooling Rate k 3 Typical

More information

Project Two. Outline. James K. Peterson. March 27, Cooling Models. Estimating the Cooling Rate k. Typical Cooling Project Matlab Session

Project Two. Outline. James K. Peterson. March 27, Cooling Models. Estimating the Cooling Rate k. Typical Cooling Project Matlab Session Project Two James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University March 27, 2018 Outline Cooling Models Estimating the Cooling Rate k Typical Cooling

More information

Newton s Cooling Model in Matlab and the Cooling Project!

Newton s Cooling Model in Matlab and the Cooling Project! Newton s Cooling Model in Matlab and the Cooling Project! James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University March 10, 2014 Outline Your Newton

More information

Solving systems of ODEs with Matlab

Solving systems of ODEs with Matlab Solving systems of ODEs with Matlab James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 20, 2013 Outline 1 Systems of ODEs 2 Setting Up

More information

The First Derivative and Second Derivative Test

The First Derivative and Second Derivative Test The First Derivative and Second Derivative Test James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University April 9, 2018 Outline 1 Extremal Values 2

More information

The First Derivative and Second Derivative Test

The First Derivative and Second Derivative Test The First Derivative and Second Derivative Test James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 8, 2017 Outline Extremal Values The

More information

Uniform Convergence Examples

Uniform Convergence Examples Uniform Convergence Examples James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 13, 2017 Outline 1 Example Let (x n ) be the sequence

More information

Solutions - Homework #2

Solutions - Homework #2 Solutions - Homework #2 1. Problem 1: Biological Recovery (a) A scatterplot of the biological recovery percentages versus time is given to the right. In viewing this plot, there is negative, slightly nonlinear

More information

Uniform Convergence Examples

Uniform Convergence Examples Uniform Convergence Examples James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 13, 2017 Outline More Uniform Convergence Examples Example

More information

Project One: C Bump functions

Project One: C Bump functions Project One: C Bump functions James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 2, 2018 Outline 1 2 The Project Let s recall what the

More information

The SIR Disease Model Trajectories and MatLab

The SIR Disease Model Trajectories and MatLab The SIR Disease Model Trajectories and MatLab James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 17, 2013 Outline Reviewing the SIR

More information

Mathematics 96 (3581) CA (Class Addendum) 4: Identity Properties Mt. San Jacinto College Menifee Valley Campus Spring 2013

Mathematics 96 (3581) CA (Class Addendum) 4: Identity Properties Mt. San Jacinto College Menifee Valley Campus Spring 2013 Mathematics 96 (8) CA (Class Addendum) 4: Identity Properties Mt. San Jacinto College Menifee Valley Campus Spring 0 Name This class handout is worth a maximum of five () points. It is due no later than

More information

Final Exam Review Part I: Unit IV Material

Final Exam Review Part I: Unit IV Material Final Exam Review Part I: Unit IV Material Math114 Department of Mathematics, University of Kentucky April 26, 2017 Math114 Lecture 37 1/ 11 Outline 1 Conic Sections Math114 Lecture 37 2/ 11 Outline 1

More information

18.01 Calculus Jason Starr Fall 2005

18.01 Calculus Jason Starr Fall 2005 Lecture 17. October 1, 005 Homework. Problem Set 5 Part I: (a) and (b); Part II: Problem 1. Practice Problems. Course Reader: 3F 1, 3F, 3F 4, 3F 8. 1. Ordinary differential equations. An ordinary differential

More information

Regression and Covariance

Regression and Covariance Regression and Covariance James K. Peterson Department of Biological ciences and Department of Mathematical ciences Clemson University April 16, 2014 Outline A Review of Regression Regression and Covariance

More information

Mathematics 96 (3581) CA (Class Addendum) 1: Commutativity Mt. San Jacinto College Menifee Valley Campus Spring 2013

Mathematics 96 (3581) CA (Class Addendum) 1: Commutativity Mt. San Jacinto College Menifee Valley Campus Spring 2013 Mathematics 96 (3581) CA (Class Addendum) 1: Commutativity Mt. San Jacinto College Menifee Valley Campus Spring 2013 Name This class handout is worth a maximum of five (5) points. It is due no later than

More information

Predator - Prey Model Trajectories and the nonlinear conservation law

Predator - Prey Model Trajectories and the nonlinear conservation law Predator - Prey Model Trajectories and the nonlinear conservation law James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 28, 2013 Outline

More information

6.5 Separable Differential Equations and Exponential Growth

6.5 Separable Differential Equations and Exponential Growth 6.5 2 6.5 Separable Differential Equations and Exponential Growth The Law of Exponential Change It is well known that when modeling certain quantities, the quantity increases or decreases at a rate proportional

More information

UTILIZING NEWTON S LAW OF COOLING TO CORROBORATE THE MPEMBA EFFECT

UTILIZING NEWTON S LAW OF COOLING TO CORROBORATE THE MPEMBA EFFECT UTILIZING NEWTON S LAW OF COOLING TO CORROBORATE THE MPEMBA EFFECT Eric Undergraduate, Junior University of Oklahoma Norman, Oklahoma 7319 1. INTRODUCTION Newton presented the Law of Cooling in a paper

More information

Solving differential equations (Sect. 7.4) Review: Overview of differential equations.

Solving differential equations (Sect. 7.4) Review: Overview of differential equations. Solving differential equations (Sect. 7.4 Previous class: Overview of differential equations. Exponential growth. Separable differential equations. Review: Overview of differential equations. Definition

More information

9.3: Separable Equations

9.3: Separable Equations 9.3: Separable Equations An equation is separable if one can move terms so that each side of the equation only contains 1 variable. Consider the 1st order equation = F (x, y). dx When F (x, y) = f (x)g(y),

More information

Advanced Protein Models again: adding regulation

Advanced Protein Models again: adding regulation Advanced Protein Models again: adding regulation James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University April 1, 2014 Outline 1 Simple Regulations

More information

Integration by Parts Logarithms and More Riemann Sums!

Integration by Parts Logarithms and More Riemann Sums! Integration by Parts Logarithms and More Riemann Sums! James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University September 16, 2013 Outline 1 IbyP with

More information

Honors Algebra 2 ~ Spring 2014 Unit 6 ~ Chapter 8 Name Unit 6: Exponential & Logarithmic Functions NC Objectives: DAY DATE LESSON ASSIGNMENT

Honors Algebra 2 ~ Spring 2014 Unit 6 ~ Chapter 8 Name Unit 6: Exponential & Logarithmic Functions NC Objectives: DAY DATE LESSON ASSIGNMENT Honors Algebra ~ Spring 0 Unit ~ Chapter 8 Name Unit : Eponential & Logarithmic Functions NC Objectives:.0 Simplify and perform operations with rational eponents and logarithms to solve problems..0 Us

More information

A population is modeled by the differential equation

A population is modeled by the differential equation Math 2, Winter 2016 Weekly Homework #8 Solutions 9.1.9. A population is modeled by the differential equation dt = 1.2 P 1 P ). 4200 a) For what values of P is the population increasing? P is increasing

More information

Lecture 5b: Starting Matlab

Lecture 5b: Starting Matlab Lecture 5b: Starting Matlab James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University August 7, 2013 Outline 1 Resources 2 Starting Matlab 3 Homework

More information

Parametric Equations, Function Composition and the Chain Rule: A Worksheet

Parametric Equations, Function Composition and the Chain Rule: A Worksheet Parametric Equations, Function Composition and the Chain Rule: A Worksheet Prof.Rebecca Goldin Oct. 8, 003 1 Parametric Equations We have seen that the graph of a function f(x) of one variable consists

More information

2. (12 points) Find an equation for the line tangent to the graph of f(x) =

2. (12 points) Find an equation for the line tangent to the graph of f(x) = November 23, 2010 Name The total number of points available is 153 Throughout this test, show your work Throughout this test, you are expected to use calculus to solve problems Graphing calculator solutions

More information

CE 365K Exercise 1: GIS Basemap for Design Project Spring 2014 Hydraulic Engineering Design

CE 365K Exercise 1: GIS Basemap for Design Project Spring 2014 Hydraulic Engineering Design CE 365K Exercise 1: GIS Basemap for Design Project Spring 2014 Hydraulic Engineering Design The purpose of this exercise is for you to construct a basemap in ArcGIS for your design project. You may execute

More information

Notes on numerical solution of differential equations

Notes on numerical solution of differential equations Notes on numerical solution of differential equations Some definitions, for those who don t know: A differential equation is any equation that relates a thing to its derivatives. For instance, Newton s

More information

MATH 1231 MATHEMATICS 1B Calculus Section 2: - ODEs.

MATH 1231 MATHEMATICS 1B Calculus Section 2: - ODEs. MATH 1231 MATHEMATICS 1B 2007. For use in Dr Chris Tisdell s lectures: Tues 11 + Thur 10 in KBT Calculus Section 2: - ODEs. 1. Motivation 2. What you should already know 3. Types and orders of ODEs 4.

More information

University of Connecticut Department of Mathematics

University of Connecticut Department of Mathematics University of Connecticut Department of Mathematics Math 1131 Sample Exam 2 Fall 2015 Name: Instructor Name: Section: TA Name: Discussion Section: This sample exam is just a guide to prepare for the actual

More information

HMS-5000 Manual. Product Name: HMS-5000 Hall Effect Measurement System with variable temperature from 80K to 350K. - Manual version: ver 5.

HMS-5000 Manual. Product Name: HMS-5000 Hall Effect Measurement System with variable temperature from 80K to 350K. - Manual version: ver 5. HMS-5000 Manual Product Name: HMS-5000 Hall Effect Measurement System with variable temperature from 80K to 350K - Manual version: ver 5.01- www.ecopia21.co.kr - Table of contents - 1. Hardware Installation

More information

Math , Spring 2010: Exam 2 Solutions 1. #1.) /5 #2.) /15 #3.) /20 #4.) /10 #5.) /10 #6.) /20 #7.) /20 Total: /100

Math , Spring 2010: Exam 2 Solutions 1. #1.) /5 #2.) /15 #3.) /20 #4.) /10 #5.) /10 #6.) /20 #7.) /20 Total: /100 Math 231.04, Spring 2010: Exam 2 Solutions 1 NAME: Math 231.04 Exam 2 Solutions #1.) /5 #2.) /15 #3.) /20 #4.) /10 #5.) /10 #6.) /20 #7.) /20 Total: /100 Instructions: There are 5 pages and a total of

More information

Math 370 Exam 2 Review Name

Math 370 Exam 2 Review Name Math 70 Exam 2 Review Name Be sure to complete these problems before the review session. 10 of these questions will count as a quiz in Learning Catalytics. Round 1 will be individual. Round 2 will be in

More information

Chapter 3 Exponential and Logarithmic Functions

Chapter 3 Exponential and Logarithmic Functions Chapter 3 Exponential and Logarithmic Functions Overview: 3.1 Exponential Functions and Their Graphs 3.2 Logarithmic Functions and Their Graphs 3.3 Properties of Logarithms 3.4 Solving Exponential and

More information

Taylor Polynomials. James K. Peterson. Department of Biological Sciences and Department of Mathematical Sciences Clemson University

Taylor Polynomials. James K. Peterson. Department of Biological Sciences and Department of Mathematical Sciences Clemson University James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University September 24, 2013 Outline 1 First Order Approximation s Second Order Approximations 2 Approximation

More information

Another enormous super-family of functions are exponential functions.

Another enormous super-family of functions are exponential functions. Hartfield College Algebra (Version 2018 - Thomas Hartfield) Unit FIVE Page - 1 - of 39 Topic 37: Exponential Functions In previous topics we ve discussed power functions, n functions of the form f x x,

More information

Math 34B. Practice Exam, 3 hrs. March 15, 2012

Math 34B. Practice Exam, 3 hrs. March 15, 2012 Math 34B Practice Exam, 3 hrs March 15, 2012 9.3.4c Compute the indefinite integral: 10 x+9 dx = 9.3.4c Compute the indefinite integral: 10 x+9 dx = = 10 x 10 9 dx = 10 9 10 x dx = 10 9 e ln 10x dx 9.3.4c

More information

Consequences of Continuity

Consequences of Continuity Consequences of Continuity James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 4, 2017 Outline 1 Domains of Continuous Functions 2 The

More information

Chapter 13 - Chemical Kinetics II. Integrated Rate Laws Reaction Rates and Temperature

Chapter 13 - Chemical Kinetics II. Integrated Rate Laws Reaction Rates and Temperature Chapter 13 - Chemical Kinetics II Integrated Rate Laws Reaction Rates and Temperature Reaction Order - Graphical Picture A ->Products Integrated Rate Laws Zero Order Reactions Rate = k[a] 0 = k (constant

More information

Ex. 1. Find the general solution for each of the following differential equations:

Ex. 1. Find the general solution for each of the following differential equations: MATH 261.007 Instr. K. Ciesielski Spring 2010 NAME (print): SAMPLE TEST # 2 Solve the following exercises. Show your work. (No credit will be given for an answer with no supporting work shown.) Ex. 1.

More information

dy dt 2tk y = 0 2t k dt

dy dt 2tk y = 0 2t k dt LESSON 7: DIFFERENTIAL EQUATIONS SEPARATION OF VARIABLES (I) MATH 6020 FALL 208 ELLEN WELD Example. Find y(t) such that where y(0) = and y() = e 2/7.. Solutions to In-Class Examples 2tk y = 0 Solution:

More information

Section 5.6. Applications and Models: Growth and Decay; Compound

Section 5.6. Applications and Models: Growth and Decay; Compound Section 5.6 Applications and Models: Growth and Decay; Compound Interest Exponential Growth A quantity that experiences exponential growth will increase according to the equation P(t) = P 0 e kt t is the

More information

Mathematics 134 Calculus 2 With Fundamentals Exam 4 Solutions for Review Sheet Sample Problems April 26, 2018

Mathematics 134 Calculus 2 With Fundamentals Exam 4 Solutions for Review Sheet Sample Problems April 26, 2018 Mathematics 3 Calculus 2 With Fundamentals Exam Solutions for Review Sheet Sample Problems April 26, 28 Sample problems Note: The actual exam will be considerably shorter than the following list of questions

More information

7) Important properties of functions: homogeneity, homotheticity, convexity and quasi-convexity

7) Important properties of functions: homogeneity, homotheticity, convexity and quasi-convexity 30C00300 Mathematical Methods for Economists (6 cr) 7) Important properties of functions: homogeneity, homotheticity, convexity and quasi-convexity Abolfazl Keshvari Ph.D. Aalto University School of Business

More information

1 What is a differential equation

1 What is a differential equation Math 10B - Calculus by Hughes-Hallett, et al. Chapter 11 - Differential Equations Prepared by Jason Gaddis 1 What is a differential equation Remark 1.1. We have seen basic differential equations already

More information

AerE 344: Undergraduate Aerodynamics and Propulsion Laboratory. Lab Instructions. Pressure Measurements in a de Laval Nozzle

AerE 344: Undergraduate Aerodynamics and Propulsion Laboratory. Lab Instructions. Pressure Measurements in a de Laval Nozzle AerE 344: Undergraduate Aerodynamics and ropulsion Laboratory Lab Instructions Lab #0: ressure easurements in a de Laval Nozzle Instructor: Dr. Hui Hu Department of Aerospace Engineering Iowa State University

More information

Section 2.2 Solutions to Separable Equations

Section 2.2 Solutions to Separable Equations Section. Solutions to Separable Equations Key Terms: Separable DE Eponential Equation General Solution Half-life Newton s Law of Cooling Implicit Solution (The epression has independent and dependent variables

More information

Basic Probability Reference Sheet

Basic Probability Reference Sheet February 27, 2001 Basic Probability Reference Sheet 17.846, 2001 This is intended to be used in addition to, not as a substitute for, a textbook. X is a random variable. This means that X is a variable

More information

Today: 5.4 General log and exp functions (continued) Warm up:

Today: 5.4 General log and exp functions (continued) Warm up: Today: 5.4 General log and exp functions (continued) Warm up: log a (x) =ln(x)/ ln(a) d dx log a(x) = 1 ln(a)x 1. Evaluate the following functions. log 5 (25) log 7 p 7 log4 8 log 4 2 2. Di erentiate the

More information

Red Sox - Yankees. Baseball can not get more exciting than these games. Physics 121, April 17, Kinetic theory of gases.

Red Sox - Yankees. Baseball can not get more exciting than these games. Physics 121, April 17, Kinetic theory of gases. Red Sox - Yankees. Baseball can not get more exciting than these games. Physics 121, April 17, 2008. Kinetic theory of gases. http://eml.ou.edu/physics/module/thermal/ketcher/idg4.avi Physics 121. April

More information

Linear Regression Linear Regression with Shrinkage

Linear Regression Linear Regression with Shrinkage Linear Regression Linear Regression ith Shrinkage Introduction Regression means predicting a continuous (usually scalar) output y from a vector of continuous inputs (features) x. Example: Predicting vehicle

More information

Integration by Partial Fractions

Integration by Partial Fractions Integration by Partial Fractions 1. If f(x) = P(x) / Q(x) with P(x) and Q(x) polynomials AND Q(x) a higher order than P(x) AND Q(x) factorable in linear factors then we can rewrite f(x) as a sum of rational

More information

Module 6: Methods of Point Estimation Statistics (OA3102)

Module 6: Methods of Point Estimation Statistics (OA3102) Module 6: Methods of Point Estimation Statistics (OA3102) Professor Ron Fricker Naval Postgraduate School Monterey, California Reading assignment: WM&S chapter 9.6-9.7 Revision: 1-12 1 Goals for this Module

More information

Interpolation APPLIED PROBLEMS. Reading Between the Lines FLY ROCKET FLY, FLY ROCKET FLY WHAT IS INTERPOLATION? Figure Interpolation of discrete data.

Interpolation APPLIED PROBLEMS. Reading Between the Lines FLY ROCKET FLY, FLY ROCKET FLY WHAT IS INTERPOLATION? Figure Interpolation of discrete data. WHAT IS INTERPOLATION? Given (x 0,y 0 ), (x,y ), (x n,y n ), find the value of y at a value of x that is not given. Interpolation Reading Between the Lines Figure Interpolation of discrete data. FLY ROCKET

More information

Exponential Growth (Doubling Time)

Exponential Growth (Doubling Time) Exponential Growth (Doubling Time) 4 Exponential Growth (Doubling Time) Suppose we start with a single bacterium, which divides every hour. After one hour we have 2 bacteria, after two hours we have 2

More information

Advanced Protein Models

Advanced Protein Models Advanced Protein Models James. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University March 27, 2014 Outline 1 Advanced Protein Models 2 The Bound Fraction

More information

Runge - Kutta Methods for first and second order models

Runge - Kutta Methods for first and second order models Runge - Kutta Methods for first and second order models James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 3, 2013 Outline 1 Runge -

More information

Linear Regression Linear Regression with Shrinkage

Linear Regression Linear Regression with Shrinkage Linear Regression Linear Regression ith Shrinkage Introduction Regression means predicting a continuous (usually scalar) output y from a vector of continuous inputs (features) x. Example: Predicting vehicle

More information

Math 160 Final Exam Info and Review Exercises

Math 160 Final Exam Info and Review Exercises Math 160 Final Exam Info and Review Exercises Fall 2018, Prof. Beydler Test Info Will cover almost all sections in this class. This will be a 2-part test. Part 1 will be no calculator. Part 2 will be scientific

More information

1,3. f x x f x x. Lim. Lim. Lim. Lim Lim. y 13x b b 10 b So the equation of the tangent line is y 13x

1,3. f x x f x x. Lim. Lim. Lim. Lim Lim. y 13x b b 10 b So the equation of the tangent line is y 13x 1.5 Topics: The Derivative lutions 1. Use the limit definition of derivative (the one with x in it) to find f x given f x 4x 5x 6 4 x x 5 x x 6 4x 5x 6 f x x f x f x x0 x x0 x xx x x x x x 4 5 6 4 5 6

More information

Chapter 1 Indices & Standard Form

Chapter 1 Indices & Standard Form Chapter 1 Indices & Standard Form Section 1.1 Simplifying Only like (same letters go together; same powers and same letter go together) terms can be grouped together. Example: a 2 + 3ab + 4a 2 5ab + 10

More information

Parametric Estimating Handbook 4 th Edition

Parametric Estimating Handbook 4 th Edition Parametric Cost Estimating Training Track For The Parametric Estimating Handbook 4 th Edition Noordwijk The Netherlands 2008 1 www.ispa-cost.org 2 Session 4 Parametric Cost Estimating Training Track Session

More information

1. Review of Lecture level factors Homework A 2 3 experiment in 16 runs with no replicates

1. Review of Lecture level factors Homework A 2 3 experiment in 16 runs with no replicates Lecture 3.1 1. Review of Lecture 2.2 2-level factors Homework 2.2.1 2. A 2 3 experiment 3. 2 4 in 16 runs with no replicates Lecture 3.1 1 2 k Factorial Designs Designs with k factors each at 2 levels

More information

Separable Differential Equations

Separable Differential Equations Separable Differential Equations MATH 6 Calculus I J. Robert Buchanan Department of Mathematics Fall 207 Background We have previously solved differential equations of the forms: y (t) = k y(t) (exponential

More information

Welcome to Chemistry 376

Welcome to Chemistry 376 CHM 376 Spring 2014 Welcome to Chemistry 376 This course will give you a chance to explore the experimental world of physical chemistry. In each of six experiments you will study how simple physical models,

More information

HMS-5000 Manual. Product Name: HMS-5000 Hall Effect Measurement System with variable temperature from 80K to 350K. - Manual version: ver 5.

HMS-5000 Manual. Product Name: HMS-5000 Hall Effect Measurement System with variable temperature from 80K to 350K. - Manual version: ver 5. HMS-5000 Manual Product Name: HMS-5000 Hall Effect Measurement System with variable temperature from 80K to 350K - Manual version: ver 5.01- www.ecopia21.co.kr - Table of contents - 1. Hardware Installation

More information

An Introduction to Matlab

An Introduction to Matlab An Introduction to Matlab James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University August 25, 2013 Outline Starting Matlab Matlab Vectors and Functions

More information

Differential Equations & Separation of Variables

Differential Equations & Separation of Variables Differential Equations & Separation of Variables SUGGESTED REFERENCE MATERIAL: As you work through the problems listed below, you should reference Chapter 8. of the recommended textbook (or the equivalent

More information

Exponential Functions Concept Summary See pages Vocabulary and Concept Check.

Exponential Functions Concept Summary See pages Vocabulary and Concept Check. Vocabulary and Concept Check Change of Base Formula (p. 548) common logarithm (p. 547) exponential decay (p. 524) exponential equation (p. 526) exponential function (p. 524) exponential growth (p. 524)

More information

Dept. of Materials Science and Engineering. Electrical Properties Of Materials

Dept. of Materials Science and Engineering. Electrical Properties Of Materials Problem Set 12 Solutions See handout "Part 4: Heterojunctions MOS Devices" (slides 9-18) Using the Boise State Energy Band Diagram program, build the following structure: Gate material: 5nm p + -Poly Si

More information

Riemann Integration. James K. Peterson. February 2, Department of Biological Sciences and Department of Mathematical Sciences Clemson University

Riemann Integration. James K. Peterson. February 2, Department of Biological Sciences and Department of Mathematical Sciences Clemson University Riemann Integration James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University February 2, 2017 Outline 1 Riemann Sums 2 Riemann Sums In MatLab 3 Graphing

More information

HW#1. Unit 4B Logarithmic Functions HW #1. 1) Which of the following is equivalent to y=log7 x? (1) y =x 7 (3) x = 7 y (2) x =y 7 (4) y =x 1/7

HW#1. Unit 4B Logarithmic Functions HW #1. 1) Which of the following is equivalent to y=log7 x? (1) y =x 7 (3) x = 7 y (2) x =y 7 (4) y =x 1/7 HW#1 Name Unit 4B Logarithmic Functions HW #1 Algebra II Mrs. Dailey 1) Which of the following is equivalent to y=log7 x? (1) y =x 7 (3) x = 7 y (2) x =y 7 (4) y =x 1/7 2) If the graph of y =6 x is reflected

More information

Chapter 6 The Atom Study Guide

Chapter 6 The Atom Study Guide Chapter 6 The Atom Study Guide Read pages 118-125 Look at all words in bold or colored print Look at the paragraph summaries on the sides Section 6.1 Fundamental Particles and Forces Vocabulary Definition

More information

Lab #8: The Unbalanced Wheel

Lab #8: The Unbalanced Wheel Lab #8: The Unbalanced Wheel OBJECTIVE Use observations to calculate the radius of gyration of a wheel. Apply energy models to the dynamics of an unbalanced rotating wheel. Learn new computing skills.

More information

Hiro Shimoyama 1 Charge of an Electron. Name ID Signature. Partners. Date Section

Hiro Shimoyama 1 Charge of an Electron. Name ID Signature. Partners. Date Section Hiro Shimoyama 1 harge of an Electron Name ID Signature Partners Date Section Exercise caution when you turn on the power supply. If the circuit is implemented wrongly, some of elements will be burned.

More information

MATH 408N PRACTICE MIDTERM 1

MATH 408N PRACTICE MIDTERM 1 02/0/202 Bormashenko MATH 408N PRACTICE MIDTERM Show your work for all the problems. Good luck! () (a) [5 pts] Solve for x if 2 x+ = 4 x Name: TA session: Writing everything as a power of 2, 2 x+ = (2

More information

Graded and supplementary homework, Math 2584, Section 4, Fall 2017

Graded and supplementary homework, Math 2584, Section 4, Fall 2017 Graded and supplementary homework, Math 2584, Section 4, Fall 2017 (AB 1) (a) Is y = cos(2x) a solution to the differential equation d2 y + 4y = 0? dx2 (b) Is y = e 2x a solution to the differential equation

More information

Riemann Integration. Outline. James K. Peterson. February 2, Riemann Sums. Riemann Sums In MatLab. Graphing Riemann Sums

Riemann Integration. Outline. James K. Peterson. February 2, Riemann Sums. Riemann Sums In MatLab. Graphing Riemann Sums Riemann Integration James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University February 2, 2017 Outline Riemann Sums Riemann Sums In MatLab Graphing

More information

Chill Out: How Hot Objects Cool

Chill Out: How Hot Objects Cool Chill Out: How Hot Objects Cool Activity 17 When you have a hot drink, you know that it gradually cools off. Newton s law of cooling provides us with a model for cooling. It states that the temperature

More information

Overhead lines. 110 kv wood tower with guy wires

Overhead lines. 110 kv wood tower with guy wires Overhead lines a) ja b) 0 kv wood poles c) free standing 0 kv metal tower with I-strings d) free standing 440 kv metal tower with V-strings e) 400 kv metal tower with guy wires 0 kv wood tower with guy

More information

Consequences of Continuity

Consequences of Continuity Consequences of Continuity James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 4, 2017 Outline Domains of Continuous Functions The Intermediate

More information

Lecture 2 Simple Linear Regression STAT 512 Spring 2011 Background Reading KNNL: Chapter 1

Lecture 2 Simple Linear Regression STAT 512 Spring 2011 Background Reading KNNL: Chapter 1 Lecture Simple Linear Regression STAT 51 Spring 011 Background Reading KNNL: Chapter 1-1 Topic Overview This topic we will cover: Regression Terminology Simple Linear Regression with a single predictor

More information

CSCE 155N Fall Homework Assignment 2: Stress-Strain Curve. Assigned: September 11, 2012 Due: October 02, 2012

CSCE 155N Fall Homework Assignment 2: Stress-Strain Curve. Assigned: September 11, 2012 Due: October 02, 2012 CSCE 155N Fall 2012 Homework Assignment 2: Stress-Strain Curve Assigned: September 11, 2012 Due: October 02, 2012 Note: This assignment is to be completed individually - collaboration is strictly prohibited.

More information

Sociology 593 Exam 1 February 17, 1995

Sociology 593 Exam 1 February 17, 1995 Sociology 593 Exam 1 February 17, 1995 I. True-False. (25 points) Indicate whether the following statements are true or false. If false, briefly explain why. 1. A researcher regressed Y on. When he plotted

More information

Practice Questions for Final Exam - Math 1060Q - Fall 2014

Practice Questions for Final Exam - Math 1060Q - Fall 2014 Practice Questions for Final Exam - Math 1060Q - Fall 01 Before anyone asks, the final exam is cumulative. It will consist of about 50% problems on exponential and logarithmic functions, 5% problems on

More information

x k+1 = x k + α k p k (13.1)

x k+1 = x k + α k p k (13.1) 13 Gradient Descent Methods Lab Objective: Iterative optimization methods choose a search direction and a step size at each iteration One simple choice for the search direction is the negative gradient,

More information

R = J/mole K = cal/mole K = N A k B ln k = ( E a /RT) + ln A

R = J/mole K = cal/mole K = N A k B ln k = ( E a /RT) + ln A Chemistry 134 Prof. Jason Kahn Your Name: University of Maryland, College Park Your SID #: General Chemistry and Energetics Exam I (100 points) You have 53 minutes for this exam. Your Section # or time:

More information

Probability Theory: Statistics 530 Final Take Home Exam (Steele: Fall 2012)

Probability Theory: Statistics 530 Final Take Home Exam (Steele: Fall 2012) Probability Theory: Statistics 530 Final Take Home Exam (Steele: Fall 2012) Instructions. You may consult any books or articles that you find useful. If you use a result that is not from our text, attach

More information

Student name: Student ID: TA s name and/or section: MATH 3B (Butler) Midterm II, 20 February 2009

Student name: Student ID: TA s name and/or section: MATH 3B (Butler) Midterm II, 20 February 2009 Student name: Student ID: TA s name and/or section: MATH 3B (Butler) Midterm II, 0 February 009 This test is closed book and closed notes. No calculator is allowed for this test. For full credit show all

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Civil and Environmental Engineering

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Civil and Environmental Engineering MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Civil and Environmental Engineering 1.017/1.010 Computing and Data Analysis for Environmental Applications / Uncertainty in Engineering Problem Set 9:

More information

Using Recursion in Models and Decision Making: Recursion Using Rate of Change IV.C Student Activity Sheet 5: Newton s Law of Cooling

Using Recursion in Models and Decision Making: Recursion Using Rate of Change IV.C Student Activity Sheet 5: Newton s Law of Cooling Have you ever noticed that a container of cold liquid, such as a glass of iced tea, creates condensation on the outside of the container? Or that a cup of hot coffee does not always stay hot? What happened

More information

Primal/Dual Decomposition Methods

Primal/Dual Decomposition Methods Primal/Dual Decomposition Methods Daniel P. Palomar Hong Kong University of Science and Technology (HKUST) ELEC5470 - Convex Optimization Fall 2018-19, HKUST, Hong Kong Outline of Lecture Subgradients

More information

Chapter 3 Exponential and Logarithmic Functions

Chapter 3 Exponential and Logarithmic Functions Chapter 3 Exponential and Logarithmic Functions Overview: 3.1 Exponential Functions and Their Graphs 3.2 Logarithmic Functions and Their Graphs 3.3 Properties of Logarithms 3.4 Solving Exponential and

More information

Solutions - Homework #2

Solutions - Homework #2 45 Scatterplot of Abundance vs. Relative Density Parasite Abundance 4 35 3 5 5 5 5 5 Relative Host Population Density Figure : 3 Scatterplot of Log Abundance vs. Log RD Log Parasite Abundance 3.5.5.5.5.5

More information

Background Knowledge: Students should be familiar with characteristics and formation of sedimentary, metamorphic and igneous rocks.

Background Knowledge: Students should be familiar with characteristics and formation of sedimentary, metamorphic and igneous rocks. 8 th grade Standard III, Objective 2 Title: Rock Cycle Activity Description: Students will follow a rock as it travels through the rock cycle. They will model the movement of earth materials by rolling

More information

Closing Wed: HW_9A,9B (9.3/4,3.8) Final: Sat, June 3 th, 1:30-4:20, ARC 147

Closing Wed: HW_9A,9B (9.3/4,3.8) Final: Sat, June 3 th, 1:30-4:20, ARC 147 Closing Wed: HW_9A,9B (9.3/4,3.8) Final: Sat, June 3 th, 1:30-4:20, ARC 147 New material for the final, be able to: Solve separable diff. eq.. Use initial conditions & constants. Be able to set up the

More information

Labor Supply and the Two-Step Estimator

Labor Supply and the Two-Step Estimator Labor Supply and the Two-Step Estimator James J. Heckman University of Chicago Econ 312 This draft, April 7, 2006 In this lecture, we look at a labor supply model and discuss various approaches to identify

More information