Uniform Convergence Examples

Size: px
Start display at page:

Download "Uniform Convergence Examples"

Transcription

1 Uniform Convergence Examples James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 13, 2017

2 Outline 1

3 Example Let (x n ) be the sequence of functions on [0, 1] defined by x n (t) = 2nt e nt2. Discuss pointwise and uniform convergence on [0, 1]. Solution First, it is easy to see the pointwise limit function is x(t) = 0 on [0, 1]. Is the convergence uniform? Let s begin by graphing some of these functions in Octave. The code is straightforward. 1 T = l i n s p a c e ( 0, 1, 5 1 ) ; f t, n ) 2 n t. / exp ( n t. ˆ 2 ) ; p l o t (T, f (T, 5 ),T, f (T, 1 0 ),T, f (T, 2 0 ),T, f (T, 3 0 ) ) ; x l a b e l ( t ) ; y l a b e l ( y ) ; t i t l e ( x_n ( t ) = 2 nt / e ^{ nt ^2} for n = 5,10,20 and 30 ) ; 6 l e g e n d ( x5, x10, x20, x30, location, north ) ;

4 Here you see a plot of x 5, x 10, x 20 and x 30 on the interval [0, 1]. You can clearly see the peaks of the functions are increasing with the maximums occuring closer and closer to 0.

5 Solution The derivative here, after some simplification, is x n(t) = 2n(1 2nt2 ) which e nt2 is zero at t = 0 and t = ±1/ 2n. The critical point at t = 0 is uninteresting and the maximum occurs at t n = 1/ 2n and has value 2n/e. Let s calculate x n x here. We have x n x = sup 2nt/e nt2 0 = 2n/e 0 t 1 For the convergence to be uniform, given ɛ > 0, we would have to be able to find N ɛ so that x n x < ɛ when n > N ɛ. Here that means we want 2n/e < ɛ when n > N ɛ. But for n > N ɛ, 2n/e. So this cannot be satisfied and the convergence is not uniform.

6 Now let s look at this same sequence on a new interval. Example Examine the convergence of the sequence x n (t) = 2nt e nt2 on [ 2, 2]. Solution We can graph some of the functions in this sequence on this new interval using the code below. T = l i n s p a c e ( 2,2,101) ; f t, n ) 2 n t. / exp ( n t. ˆ 2 ) ; p l o t (T, f (T, 5 ),T, f (T, 1 0 ),T, f (T, 2 0 ),T, f (T, 3 0 ),T, f (T, 5 0 ) ) ; 4 x l a b e l ( t ) ; y l a b e l ( y ) ; t i t l e ( x_n ( t ) = 2 nt / e ^{ nt ^2} on [ -2,2] ) ;

7 Here you see a plot of some of these functions on the interval [ 2, 2]. You can clearly see the peaks of the functions are increasing with the minimums and maximums occuring closer and closer to 0. The minimum occur at 1/ 2n with value 2n/e, while the maximums occur at 1/ 2n with value 2n/e.

8 Solution Now take a small positive number a and mentally imagine drawing a vertical line through previous picture at that point. The maximum s occur at 1/ 2n. If 1/ 2n <.1 or n > 50, the maximum values all occur before the value x =.1. We generate a plot for this as follows: (here we do not add the code for the axis labels etc.) T = l i n s p a c e ( , 0. 5, ) ; f t, n ) 2 n t. / exp ( n t. ˆ 2 ) ; p l o t (T, f (T, ),T, f (T, ),T, f (T, ) ) ; On the interval [0.1, 0.5], the functions have their maximum value at x n (0.1) =.2n/e.01n. Since.2n/e.01n 0 as n, we see given ɛ > 0, there is N ɛ so that.2n/e.01n < ɛ when n > N ɛ. You can see this behavior clearly in the next figure.

9

10 Solution There we graph x 500, x 700 and x 900 and you can easily see the value of these functions at 0.1 is decreasing. Hence, for n > N ɛ, x n 0 < ɛ unif and so we can say x n 0 on [.1, r] for any r > 0.1. A similar analysis works for any a > 0. In fact, if we looked at the other side, we would show x n unif 0 on any interval of the form [ r, a] with a > 0. Indeed, this convergence is uniform on any interval [c, d] as long as 0 [c, d].

11 Now let s look at this same sequence on [.1, 2] analytically. We know the minimum of x n (t) occur at 1/ 2n with value 2n/e, while the maximum of x n (t) occurs at 1/ 2n with value 2n/e. There is an N so that n > N implies < 1/ 2n <.1; i.e. the maximum value before x =.1. It occurs before the interval [.1, 2]. Since on the right of the maximum, x n (t) decreases, this tells us the maximum of x n (t) on [.1, 2] is given by x n (.1). So sup x n (t) 0 = x n (.1) =.2n t [.1.2] e.01n and we see this goes to zero with n. So convergence is uniform on [.1, 2].

12 Example Examine the pointwise and uniform convergence of (x n ) where x n (t) = 3nt/e 4nt2 on intervals of R. Solution Work this out in class following the example just done. Use MatLab and blackboard sketches to see what is going on.

13 Example Examine the pointwise and uniform convergence of (x n ) where x n (t) = 2nt/e 3nt2 on intervals of R. Solution Work this out in class following the example just done. Use MatLab and blackboard sketches to see what is going on.

14 Homework Let x n be defined by x n (t) = { 0, 0 t 1/n n, 1/n < t < 2/n 0, 2/n t 1 Determine if (x n ) converges uniformly to its limit function Examine the pointwise and uniform convergence of (x n ) where x n (t) = 6nt/e 2nt2 on intervals of R. Do a careful analysis just like we have done for the other examples. Sketches are required!

Uniform Convergence Examples

Uniform Convergence Examples Uniform Convergence Examples James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 13, 2017 Outline More Uniform Convergence Examples Example

More information

Linear Systems of ODE: Nullclines, Eigenvector lines and trajectories

Linear Systems of ODE: Nullclines, Eigenvector lines and trajectories Linear Systems of ODE: Nullclines, Eigenvector lines and trajectories James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 6, 203 Outline

More information

Differentiating Series of Functions

Differentiating Series of Functions Differentiating Series of Functions James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 30, 017 Outline 1 Differentiating Series Differentiating

More information

Linear Systems of ODE: Nullclines, Eigenvector lines and trajectories

Linear Systems of ODE: Nullclines, Eigenvector lines and trajectories Linear Systems of ODE: Nullclines, Eigenvector lines and trajectories James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 6, 2013 Outline

More information

Uniform Convergence and Series of Functions

Uniform Convergence and Series of Functions Uniform Convergence and Series of Functions James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 7, 017 Outline Uniform Convergence Tests

More information

Integration and Differentiation Limit Interchange Theorems

Integration and Differentiation Limit Interchange Theorems Integration and Differentiation Limit Interchange Theorems James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University March 11, 2018 Outline 1 A More

More information

Fourier Sin and Cos Series and Least Squares Convergence

Fourier Sin and Cos Series and Least Squares Convergence Fourier and east Squares Convergence James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University May 7, 28 Outline et s look at the original Fourier sin

More information

Upper and Lower Bounds

Upper and Lower Bounds James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University August 30, 2017 Outline 1 2 s 3 Basic Results 4 Homework Let S be a set of real numbers. We

More information

Getting Started With The Predator - Prey Model: Nullclines

Getting Started With The Predator - Prey Model: Nullclines Getting Started With The Predator - Prey Model: Nullclines James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 28, 2013 Outline The Predator

More information

Dirchlet s Function and Limit and Continuity Arguments

Dirchlet s Function and Limit and Continuity Arguments Dirchlet s Function and Limit and Continuity Arguments James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University February 23, 2018 Outline 1 Dirichlet

More information

Solving systems of ODEs with Matlab

Solving systems of ODEs with Matlab Solving systems of ODEs with Matlab James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 20, 2013 Outline 1 Systems of ODEs 2 Setting Up

More information

Consequences of Continuity

Consequences of Continuity Consequences of Continuity James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 4, 2017 Outline 1 Domains of Continuous Functions 2 The

More information

Hölder s and Minkowski s Inequality

Hölder s and Minkowski s Inequality Hölder s and Minkowski s Inequality James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University September 1, 218 Outline Conjugate Exponents Hölder s

More information

Integration and Differentiation Limit Interchange Theorems

Integration and Differentiation Limit Interchange Theorems Integration and Differentiation Limit Interchange Theorems James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University March 11, 2018 Outline A More General

More information

Lower semicontinuous and Convex Functions

Lower semicontinuous and Convex Functions Lower semicontinuous and Convex Functions James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 6, 2017 Outline Lower Semicontinuous Functions

More information

The SIR Disease Model Trajectories and MatLab

The SIR Disease Model Trajectories and MatLab The SIR Disease Model Trajectories and MatLab James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 17, 2013 Outline Reviewing the SIR

More information

Project One: C Bump functions

Project One: C Bump functions Project One: C Bump functions James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 2, 2018 Outline 1 2 The Project Let s recall what the

More information

Consequences of Continuity

Consequences of Continuity Consequences of Continuity James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 4, 2017 Outline Domains of Continuous Functions The Intermediate

More information

Riemann Integration. James K. Peterson. February 2, Department of Biological Sciences and Department of Mathematical Sciences Clemson University

Riemann Integration. James K. Peterson. February 2, Department of Biological Sciences and Department of Mathematical Sciences Clemson University Riemann Integration James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University February 2, 2017 Outline 1 Riemann Sums 2 Riemann Sums In MatLab 3 Graphing

More information

Riemann Integration. Outline. James K. Peterson. February 2, Riemann Sums. Riemann Sums In MatLab. Graphing Riemann Sums

Riemann Integration. Outline. James K. Peterson. February 2, Riemann Sums. Riemann Sums In MatLab. Graphing Riemann Sums Riemann Integration James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University February 2, 2017 Outline Riemann Sums Riemann Sums In MatLab Graphing

More information

Predator - Prey Model Trajectories are periodic

Predator - Prey Model Trajectories are periodic Predator - Prey Model Trajectories are periodic James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 4, 2013 Outline 1 Showing The PP

More information

Dirchlet s Function and Limit and Continuity Arguments

Dirchlet s Function and Limit and Continuity Arguments Dirchlet s Function and Limit and Continuity Arguments James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 2, 2018 Outline Dirichlet

More information

Derivatives in 2D. Outline. James K. Peterson. November 9, Derivatives in 2D! Chain Rule

Derivatives in 2D. Outline. James K. Peterson. November 9, Derivatives in 2D! Chain Rule Derivatives in 2D James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 9, 2016 Outline Derivatives in 2D! Chain Rule Let s go back to

More information

Taylor Polynomials. James K. Peterson. Department of Biological Sciences and Department of Mathematical Sciences Clemson University

Taylor Polynomials. James K. Peterson. Department of Biological Sciences and Department of Mathematical Sciences Clemson University James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University September 24, 2013 Outline 1 First Order Approximation s Second Order Approximations 2 Approximation

More information

Predator - Prey Model Trajectories are periodic

Predator - Prey Model Trajectories are periodic Predator - Prey Model Trajectories are periodic James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 4, 2013 Outline Showing The PP Trajectories

More information

Matrices and Vectors

Matrices and Vectors Matrices and Vectors James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 11, 2013 Outline 1 Matrices and Vectors 2 Vector Details 3 Matrix

More information

More On Exponential Functions, Inverse Functions and Derivative Consequences

More On Exponential Functions, Inverse Functions and Derivative Consequences More On Exponential Functions, Inverse Functions and Derivative Consequences James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University January 10, 2019

More information

Mathematical Induction Again

Mathematical Induction Again Mathematical Induction Again James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University January 12, 2017 Outline Mathematical Induction Simple POMI Examples

More information

Runge - Kutta Methods for first and second order models

Runge - Kutta Methods for first and second order models Runge - Kutta Methods for first and second order models James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 3, 2013 Outline 1 Runge -

More information

Mathematical Induction Again

Mathematical Induction Again Mathematical Induction Again James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University January 2, 207 Outline Mathematical Induction 2 Simple POMI Examples

More information

Defining Exponential Functions and Exponential Derivatives and Integrals

Defining Exponential Functions and Exponential Derivatives and Integrals Defining Exponential Functions and Exponential Derivatives and Integrals James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University February 19, 2014

More information

Predator - Prey Model Trajectories and the nonlinear conservation law

Predator - Prey Model Trajectories and the nonlinear conservation law Predator - Prey Model Trajectories and the nonlinear conservation law James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 28, 2013 Outline

More information

Convergence of Sequences

Convergence of Sequences James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University September 5, 2018 Outline 1 2 Homework Definition Let (a n ) n k be a sequence of real numbers.

More information

6.2 Deeper Properties of Continuous Functions

6.2 Deeper Properties of Continuous Functions 6.2. DEEPER PROPERTIES OF CONTINUOUS FUNCTIONS 69 6.2 Deeper Properties of Continuous Functions 6.2. Intermediate Value Theorem and Consequences When one studies a function, one is usually interested in

More information

Riemann Sums. Outline. James K. Peterson. September 15, Riemann Sums. Riemann Sums In MatLab

Riemann Sums. Outline. James K. Peterson. September 15, Riemann Sums. Riemann Sums In MatLab Riemann Sums James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University September 15, 2013 Outline Riemann Sums Riemann Sums In MatLab Abstract This

More information

The First Derivative and Second Derivative Test

The First Derivative and Second Derivative Test The First Derivative and Second Derivative Test James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 8, 2017 Outline Extremal Values The

More information

The First Derivative and Second Derivative Test

The First Derivative and Second Derivative Test The First Derivative and Second Derivative Test James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University April 9, 2018 Outline 1 Extremal Values 2

More information

Bolzano Weierstrass Theorems I

Bolzano Weierstrass Theorems I Bolzano Weierstrass Theorems I James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University September 8, 2017 Outline The Bolzano Weierstrass Theorem Extensions

More information

5.5 Deeper Properties of Continuous Functions

5.5 Deeper Properties of Continuous Functions 5.5. DEEPER PROPERTIES OF CONTINUOUS FUNCTIONS 195 5.5 Deeper Properties of Continuous Functions 5.5.1 Intermediate Value Theorem and Consequences When one studies a function, one is usually interested

More information

Cable Convergence. James K. Peterson. May 7, Department of Biological Sciences and Department of Mathematical Sciences Clemson University

Cable Convergence. James K. Peterson. May 7, Department of Biological Sciences and Department of Mathematical Sciences Clemson University Cable Convergence James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University May 7, 2018 Outline 1 Fourier Series Convergence Redux 2 Fourier Series

More information

Convergence of Sequences

Convergence of Sequences Convergence of Sequences James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University February 12, 2018 Outline Convergence of Sequences Definition Let

More information

The Existence of the Riemann Integral

The Existence of the Riemann Integral The Existence of the Riemann Integral James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University September 18, 2018 Outline The Darboux Integral Upper

More information

Distributive property and its connection to areas

Distributive property and its connection to areas February 27, 2009 Distributive property and its connection to areas page 1 Distributive property and its connection to areas Recap: distributive property The distributive property says that when you multiply

More information

MATH 140B - HW 5 SOLUTIONS

MATH 140B - HW 5 SOLUTIONS MATH 140B - HW 5 SOLUTIONS Problem 1 (WR Ch 7 #8). If I (x) = { 0 (x 0), 1 (x > 0), if {x n } is a sequence of distinct points of (a,b), and if c n converges, prove that the series f (x) = c n I (x x n

More information

A Simple Protein Synthesis Model

A Simple Protein Synthesis Model A Simple Protein Synthesis Model James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University September 3, 213 Outline A Simple Protein Synthesis Model

More information

Constrained Optimization in Two Variables

Constrained Optimization in Two Variables in Two Variables James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 17, 216 Outline 1 2 What Does the Lagrange Multiplier Mean? Let

More information

Project Two. Outline. James K. Peterson. March 27, Cooling Models. Estimating the Cooling Rate k. Typical Cooling Project Matlab Session

Project Two. Outline. James K. Peterson. March 27, Cooling Models. Estimating the Cooling Rate k. Typical Cooling Project Matlab Session Project Two James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University March 27, 2018 Outline Cooling Models Estimating the Cooling Rate k Typical Cooling

More information

Project Two. James K. Peterson. March 26, Department of Biological Sciences and Department of Mathematical Sciences Clemson University

Project Two. James K. Peterson. March 26, Department of Biological Sciences and Department of Mathematical Sciences Clemson University Project Two James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University March 26, 2019 Outline 1 Cooling Models 2 Estimating the Cooling Rate k 3 Typical

More information

Hölder s and Minkowski s Inequality

Hölder s and Minkowski s Inequality Hölder s and Minkowski s Inequality James K. Peterson Deartment of Biological Sciences and Deartment of Mathematical Sciences Clemson University Setember 10, 2018 Outline 1 Conjugate Exonents 2 Hölder

More information

More Protein Synthesis and a Model for Protein Transcription Error Rates

More Protein Synthesis and a Model for Protein Transcription Error Rates More Protein Synthesis and a Model for Protein James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 3, 2013 Outline 1 Signal Patterns Example

More information

Convergence of Fourier Series

Convergence of Fourier Series MATH 454: Analysis Two James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University April, 8 MATH 454: Analysis Two Outline The Cos Family MATH 454: Analysis

More information

Fourier Sin and Cos Series and Least Squares Convergence

Fourier Sin and Cos Series and Least Squares Convergence Fourier Sin and Cos Series and east Squares Convergence James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University December 4, 208 Outline Sin and Cos

More information

Riemann Integration Theory

Riemann Integration Theory Riemann Integration Theory James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University February 3, 2017 Outline 1 Uniform Partition Riemann Sums 2 Refinements

More information

Matrix Solutions to Linear Systems of ODEs

Matrix Solutions to Linear Systems of ODEs Matrix Solutions to Linear Systems of ODEs James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 3, 216 Outline 1 Symmetric Systems of

More information

Constrained Optimization in Two Variables

Constrained Optimization in Two Variables Constrained Optimization in Two Variables James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 17, 216 Outline Constrained Optimization

More information

The Limit Inferior and Limit Superior of a Sequence

The Limit Inferior and Limit Superior of a Sequence The Limit Inferior and Limit Superior of a Sequence James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University February 13, 2018 Outline The Limit Inferior

More information

Runge - Kutta Methods for first order models

Runge - Kutta Methods for first order models Runge - Kutta Methods for first order models James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 30, 2013 Outline 1 Runge - Kutte Methods

More information

Math 104: Homework 7 solutions

Math 104: Homework 7 solutions Math 04: Homework 7 solutions. (a) The derivative of f () = is f () = 2 which is unbounded as 0. Since f () is continuous on [0, ], it is uniformly continous on this interval by Theorem 9.2. Hence for

More information

Geometric Series and the Ratio and Root Test

Geometric Series and the Ratio and Root Test Geometric Series and the Ratio and Root Test James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University September 5, 2018 Outline 1 Geometric Series

More information

Proofs Not Based On POMI

Proofs Not Based On POMI s Not Based On POMI James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University February 1, 018 Outline Non POMI Based s Some Contradiction s Triangle

More information

General Power Series

General Power Series General Power Series James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University March 29, 2018 Outline Power Series Consequences With all these preliminaries

More information

Lecture Notes 3 Convergence (Chapter 5)

Lecture Notes 3 Convergence (Chapter 5) Lecture Notes 3 Convergence (Chapter 5) 1 Convergence of Random Variables Let X 1, X 2,... be a sequence of random variables and let X be another random variable. Let F n denote the cdf of X n and let

More information

Runge - Kutta Methods for first order models

Runge - Kutta Methods for first order models Runge - Kutta Methods for first order models James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 30, 2013 Outline Runge - Kutte Methods

More information

MA 1125 Lecture 15 - The Standard Normal Distribution. Friday, October 6, Objectives: Introduce the standard normal distribution and table.

MA 1125 Lecture 15 - The Standard Normal Distribution. Friday, October 6, Objectives: Introduce the standard normal distribution and table. MA 1125 Lecture 15 - The Standard Normal Distribution Friday, October 6, 2017. Objectives: Introduce the standard normal distribution and table. 1. The Standard Normal Distribution We ve been looking at

More information

Solving Linear Systems of ODEs with Matlab

Solving Linear Systems of ODEs with Matlab Solving Linear Systems of ODEs with Matlab James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 27, 2013 Outline Linear Systems Numerically

More information

Newton s Cooling Model in Matlab and the Cooling Project!

Newton s Cooling Model in Matlab and the Cooling Project! Newton s Cooling Model in Matlab and the Cooling Project! James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University March 10, 2014 Outline Your Newton

More information

Advanced Protein Models

Advanced Protein Models Advanced Protein Models James. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University March 27, 2014 Outline Advanced Protein Models The Bound Fraction Transcription

More information

Complex Numbers. James K. Peterson. September 19, Department of Biological Sciences and Department of Mathematical Sciences Clemson University

Complex Numbers. James K. Peterson. September 19, Department of Biological Sciences and Department of Mathematical Sciences Clemson University Complex Numbers James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University September 19, 2013 Outline 1 Complex Numbers 2 Complex Number Calculations

More information

Complex Numbers. Outline. James K. Peterson. September 19, Complex Numbers. Complex Number Calculations. Complex Functions

Complex Numbers. Outline. James K. Peterson. September 19, Complex Numbers. Complex Number Calculations. Complex Functions Complex Numbers James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University September 19, 2013 Outline Complex Numbers Complex Number Calculations Complex

More information

Lecture 5b: Starting Matlab

Lecture 5b: Starting Matlab Lecture 5b: Starting Matlab James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University August 7, 2013 Outline 1 Resources 2 Starting Matlab 3 Homework

More information

Advanced Protein Models

Advanced Protein Models Advanced Protein Models James. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University March 27, 2014 Outline 1 Advanced Protein Models 2 The Bound Fraction

More information

The Method of Undetermined Coefficients.

The Method of Undetermined Coefficients. The Method of Undetermined Coefficients. James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University May 24, 2017 Outline 1 Annihilators 2 Finding The

More information

Proofs Not Based On POMI

Proofs Not Based On POMI s Not Based On POMI James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University February 12, 2018 Outline 1 Non POMI Based s 2 Some Contradiction s 3

More information

HOMEWORK 1 SOLUTIONS

HOMEWORK 1 SOLUTIONS HOMEWORK 1 SOLUTIONS MATH 170A Problem 0.1. Watkins 1.1.9 Solution. When I ran the program, my ratios were 8.74, 4.02, and 4.29. Since matrix-vector multiplication is O(n 2 ), I would expect doubling the

More information

Geometric Series and the Ratio and Root Test

Geometric Series and the Ratio and Root Test Geometric Series and the Ratio and Root Test James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University September 5, 2017 Outline Geometric Series The

More information

Functional Analysis F3/F4/NVP (2005) Homework assignment 3

Functional Analysis F3/F4/NVP (2005) Homework assignment 3 Functional Analysis F3/F4/NVP (005 Homework assignment 3 All students should solve the following problems: 1. Section 4.8: Problem 8.. Section 4.9: Problem 4. 3. Let T : l l be the operator defined by

More information

Outline. Additional Nonlinear Systems. Abstract. Finding Equilibrium Points Numerically. Newton s Method

Outline. Additional Nonlinear Systems. Abstract. Finding Equilibrium Points Numerically. Newton s Method Outline Finding Equilibrium Points Numerically Additional Nonlinear Systems James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University June 13, 2017

More information

Integration by Parts Logarithms and More Riemann Sums!

Integration by Parts Logarithms and More Riemann Sums! Integration by Parts Logarithms and More Riemann Sums! James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University September 16, 2013 Outline 1 IbyP with

More information

Exam 2 Study Guide: MATH 2080: Summer I 2016

Exam 2 Study Guide: MATH 2080: Summer I 2016 Exam Study Guide: MATH 080: Summer I 016 Dr. Peterson June 7 016 First Order Problems Solve the following IVP s by inspection (i.e. guessing). Sketch a careful graph of each solution. (a) u u; u(0) 0.

More information

5.5 Deeper Properties of Continuous Functions

5.5 Deeper Properties of Continuous Functions 200 CHAPTER 5. LIMIT AND CONTINUITY OF A FUNCTION 5.5 Deeper Properties of Continuous Functions 5.5.1 Intermediate Value Theorem and Consequences When one studies a function, one is usually interested

More information

ECE 301 Fall 2011 Division 1. Homework 1 Solutions.

ECE 301 Fall 2011 Division 1. Homework 1 Solutions. ECE 3 Fall 2 Division. Homework Solutions. Reading: Course information handout on the course website; textbook sections.,.,.2,.3,.4; online review notes on complex numbers. Problem. For each discrete-time

More information

Extreme Values and Positive/ Negative Definite Matrix Conditions

Extreme Values and Positive/ Negative Definite Matrix Conditions Extreme Values and Positive/ Negative Definite Matrix Conditions James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 8, 016 Outline 1

More information

Constructing Potential Energy Diagrams

Constructing Potential Energy Diagrams potential ENERGY diagrams Visual Quantum Mechanics Teac eaching Guide ACTIVITY 2 Constructing Potential Energy Diagrams Goal In this activity, you will explore energy diagrams for magnets in repulsive

More information

Exam 2 Solutions October 12, 2006

Exam 2 Solutions October 12, 2006 Math 44 Fall 006 Sections and P. Achar Exam Solutions October, 006 Total points: 00 Time limit: 80 minutes No calculators, books, notes, or other aids are permitted. You must show your work and justify

More information

Derivatives and the Product Rule

Derivatives and the Product Rule Derivatives and the Product Rule James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University January 28, 2014 Outline 1 Differentiability 2 Simple Derivatives

More information

Lesson 12: Position of an Accelerating Object as a Function of Time

Lesson 12: Position of an Accelerating Object as a Function of Time Lesson 12: Position of an Accelerating Object as a Function of Time 12.1 Hypothesize (Derive a Mathematical Model) Recall the initial position and clock reading data from the previous lab. When considering

More information

1.2 Functions and Their Properties Name:

1.2 Functions and Their Properties Name: 1.2 Functions and Their Properties Name: Objectives: Students will be able to represent functions numerically, algebraically, and graphically, determine the domain and range for functions, and analyze

More information

More Least Squares Convergence and ODEs

More Least Squares Convergence and ODEs More east Squares Convergence and ODEs James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University April 12, 219 Outline Fourier Sine and Cosine Series

More information

Regression and Covariance

Regression and Covariance Regression and Covariance James K. Peterson Department of Biological ciences and Department of Mathematical ciences Clemson University April 16, 2014 Outline A Review of Regression Regression and Covariance

More information

Section 3.4 Normal Distribution MDM4U Jensen

Section 3.4 Normal Distribution MDM4U Jensen Section 3.4 Normal Distribution MDM4U Jensen Part 1: Dice Rolling Activity a) Roll two 6- sided number cubes 18 times. Record a tally mark next to the appropriate number after each roll. After rolling

More information

Qualitative Analysis of Tumor-Immune ODE System

Qualitative Analysis of Tumor-Immune ODE System of Tumor-Immune ODE System L.G. de Pillis and A.E. Radunskaya August 15, 2002 This work was supported in part by a grant from the W.M. Keck Foundation 0-0 QUALITATIVE ANALYSIS Overview 1. Simplified System

More information

MatLab Code for Simple Convex Minimization

MatLab Code for Simple Convex Minimization MatLab Code for Simple Convex Minimization, 1-8, 2017 Draft Version April 25, 2018 MatLab Code for Simple Convex Minimization James K. Peterson 1 * Abstract We look at MatLab code to solve a simple L 1

More information

Advanced Protein Models again: adding regulation

Advanced Protein Models again: adding regulation Advanced Protein Models again: adding regulation James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University April 1, 2014 Outline 1 Simple Regulations

More information

AP Calculus Worksheet: Chapter 2 Review Part I

AP Calculus Worksheet: Chapter 2 Review Part I AP Calculus Worksheet: Chapter 2 Review Part I 1. Given y = f(x), what is the average rate of change of f on the interval [a, b]? What is the graphical interpretation of your answer? 2. The derivative

More information

Math 651 Introduction to Numerical Analysis I Fall SOLUTIONS: Homework Set 1

Math 651 Introduction to Numerical Analysis I Fall SOLUTIONS: Homework Set 1 ath 651 Introduction to Numerical Analysis I Fall 2010 SOLUTIONS: Homework Set 1 1. Consider the polynomial f(x) = x 2 x 2. (a) Find P 1 (x), P 2 (x) and P 3 (x) for f(x) about x 0 = 0. What is the relation

More information

Mathematical Induction

Mathematical Induction Mathematical Induction James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University January 12, 2017 Outline Introduction to the Class Mathematical Induction

More information

Daily Lessons and Assessments for AP* Calculus AB, A Complete Course Page 119 Mark Sparks 2012

Daily Lessons and Assessments for AP* Calculus AB, A Complete Course Page 119 Mark Sparks 2012 Unit # Understanding the Derivative Homework Packet f ( h) f ( Find lim for each of the functions below. Then, find the equation of the tangent line to h 0 h the graph of f( at the given value of. 1. f

More information

Homework 11. Solutions

Homework 11. Solutions Homework 11. Solutions Problem 2.3.2. Let f n : R R be 1/n times the characteristic function of the interval (0, n). Show that f n 0 uniformly and f n µ L = 1. Why isn t it a counterexample to the Lebesgue

More information

The Derivative of a Function

The Derivative of a Function The Derivative of a Function James K Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University March 1, 2017 Outline A Basic Evolutionary Model The Next Generation

More information

Notes on uniform convergence

Notes on uniform convergence Notes on uniform convergence Erik Wahlén erik.wahlen@math.lu.se January 17, 2012 1 Numerical sequences We begin by recalling some properties of numerical sequences. By a numerical sequence we simply mean

More information