Integration by Partial Fractions

Size: px
Start display at page:

Download "Integration by Partial Fractions"

Transcription

1 Integration by Partial Fractions 1. If f(x) = P(x) / Q(x) with P(x) and Q(x) polynomials AND Q(x) a higher order than P(x) AND Q(x) factorable in linear factors then we can rewrite f(x) as a sum of rational fractions with linear denominators, which are each integrable. 2. The numerator of each will be an unknown constant that we must solve for by adding the fractions and equating powers of x 3. If P(x) is a higher order, divide P(x) by Q(x). The remainder will be your "partial fraction" (this probably makes very little sense until you see an example!) Dec 8 1:02 AM ex) 2/(x+5) + 3/(x+1) Dec 8 1:02 AM 1

2 ex) 4/(x+1) + 2/(x 2) Dec 8 1:02 AM ex) 3x /(x+3) + 2/(x+1) Dec 8 1:02 AM 2

3 Try these 7/(x+4) + 8/(x 5) 3x^2+4x+1 + 1/(x+2) 2/(x+1) 2/(2x+5) + 1/(x+1) Dec 8 1:02 AM Exponential Growth and Decay The rate of change is proportional to the quantity. Example population growth is proportional to the current population change is mass of an isotope is proportional to the current mass c o is the quantity at time t = 0 k is the growth/decay constant given a growth k and c o, we can predict y(t) given (y 1, t 1 ) and (y 2, t 2 ), we can calculate k and c o y = c o e kt 3

4 y = c o e kt where c o = initial value k = growth constant t = time y = final amount This is the governing equation for exponential growth (k>0) and decay (k<0) ex) A colony of bacteria grows exponentially. If there are bacteria at time = 3 hours and bacteria at time = 5 hours, what is the growth constant? What was the number of bacteria at time t = 4 hours? Half Life Given a quantity that decays exponentially, the half life is the time it takes for the amount to be reduced to 1/2 the current amount The half life is NOT the decay constant, but we can determine k from the half life t 1/2! Given, y 1 = c o e kt What is the amount one half life later? 4

5 Polonium 210 has a half life of 138 days. What is the weight of a 10 gram sample after 414 days? How long does it take for the sample to decay to 1 mg? The mass of a nuclear isotope sample is 500 grams. 20 days later the mass of the sample is 415 grams. What is the half life of the isotope? What is the mass of the sample after 1 year? 5

6 Newtonian Cooling where S is the ambient temp, T is temp, t is time Cooling rate of a mass (solid or liquid) is proportional to the difference between the temperature of the mass and the ambient temperature. This is a "rough" model of conductive heat transfer there are multiple modes of heat transfer and many variables that affect the cooling rate!!! Ln(T S) = k t + c T S = c 1 e kt T o = S + c 1 e 0 c 1 = T o S T = S + (T o S) e kt T = S + c 1 e kt Suppose Fred s corpse was discovered in a motel room at midnight and its temperature was 80 o F. The temperature of the room is kept constant at 60 o. Two hours later the temperature of the corpse dropped to 75 o F. Find the time of Fred s death. 6

7 Exponential Growth and Decay The number of bacteria in a culture, N, grows at a rate of 2/5 y bacteria per hour, where t is hours. At time t = 0 hours, the number of bacteria was What is the number of bacteria at time t = 5 hours. A population of animals grows according to dy/dt = ky, where y is the number of animals, t is time in years, and k is a constant. If the population doubles every 10 years, what is the value of k? A puppy weighs 2.0 pounds at birth and 3.5 pounds 2 months later. If the weight of the puppy during the first 6 months increases at a rate proportional to its weight, what is the puppy's weight at 3 months? Polonium 210 has a half life of 138 days. What is the weight of a 10 gram sample after 414 days? How long does it take for the sample to decay to 1 mg? 7

8 The Voyager 1 spacecraft is powered by a Pu 238 radio isotope thermal generator which produced 470 watts of electricity at launch in Pu 238 has a half life of 87.7 years. a) How much power is Voyager 1 producing now? b) How much electrical energy, in Joules, has the Voyager 1 spacecraft produced? [1 Joule = 1 watt second] A cup of hot chocolate is initially 200 o F, and is set on a kitchen counter where the ambient air is 68 o. If the hot chocolate cools at a rate proportional to the difference of the hot chocolate s temperature and room temperature a) Write a differential equation that describes the cooling, in terms of the constant b) If the hot chocolate cools to 150 o F after 7 minutes, find the value of the constant k to the nearest thousandth c) Use your value of k to find how long it will take the hot chocolate to reach a temperature of 120 of. 8

9 Logistic Growth Remember exponential growth? dy/dx = ky as y increases, the rate of changes increases with no bound! would this accurately model the growth of a population over a long period of time? would population really grow without bound? in nature there are self limiting mechanism (food supply, increase in predators, disease, etc) logistic growth is a combination of exponential growth and a limiting factor on the rate of increase Logistic Growth Differential Equation exponential growth limiting term: as P > M, (M P) > 0 which limits the growth rate becomes negative if population exceeds M Solution is k is the growth constant M is the carrying capacity A is a constant, A = M/P o 1 9

10 The solution to the logistic equation comes from integration with partial fractions Extra Credit you do the rest! A population of fish, P, is described by the logistic model a) What is the carrying capacity? where t is in years. b) Write an expression for P if the initial population is 350 individuals. c) What is the population after 3 years? d) When is the population changing the fastest? e) What is the rate when the population changing the fastest? 10

11 A biologist surveys a remote Canadian island and determines that there are 900 lemmings on the island and are reproducing with a growth factor of , and that the carrying capacity of the island is 1500 lemmings. If the number of lemmings follows a logistic model, how many lemmings are expected after 4 years. How long would it take for the population to reach 1450 lemmings? A rumor is spreading like wildfire at AHS (you supply the rumor). The rate at which the rumor spreads is proportional to the product of the number of students that have heard the rumor (more mouths = faster rate) and the number that have not heard the rumor (fewer people to tell = slower rate). a) If there are 2400 students at the high school, write a differential equation describing the rate of the spread of the rumor, in terms of a growth factor k, and the number of days, d, the rumor has been spreading. b) Find k if 10 students initially knew the rumor, and 2 days later 1/3 of the students knew. c) How long will it take for 80% of the students to hear the rumor? d) How long will it take for 95% of the students to hear the rumor? e) Was your model a logistic model? If so, what is the carrying capacity? f) Will a logistic model ever allow the population to exceed the carrying capacity?(explain) 11

Find the orthogonal trajectories for the family of curves. 9. The family of parabolas symmetric with respect to the x-axis and vertex at the origin.

Find the orthogonal trajectories for the family of curves. 9. The family of parabolas symmetric with respect to the x-axis and vertex at the origin. Exercises 2.4.1 Find the orthogonal trajectories for the family of curves. 1. y = Cx 3. 2. x = Cy 4. 3. y = Cx 2 + 2. 4. y 2 = 2(C x). 5. y = C cos x 6. y = Ce x 7. y = ln(cx) 8. (x + y) 2 = Cx 2 Find

More information

(a) If the half-life of carbon-14 is 5,730 years write the continuous growth formula.

(a) If the half-life of carbon-14 is 5,730 years write the continuous growth formula. Section 6.7: Exponential and Logarithmic Models In this text all application problems are going to be of the following form, where A 0 is the initial value, k is the growth/decay rate (if k > 0 it is growth,

More information

Find the orthogonal trajectories for the family of curves.

Find the orthogonal trajectories for the family of curves. Exercises, Section 2.4 Exercises 2.4.1 Find the orthogonal trajectories for the family of curves. 1. y = Cx 3. 2. x = Cy 4. 3. y = Cx 2 +2. 4. y 2 =2(C x). 5. y = C cos x 6. y = Ce x 7. y = ln(cx) 8. (x

More information

Chapter 11 Packet & 11.2 What is a Differential Equation and What are Slope Fields

Chapter 11 Packet & 11.2 What is a Differential Equation and What are Slope Fields Chapter 11 Packet 11.1 & 11. What is a Differential Equation and What are Slope Fields What is a differential equation? An equation that gives information about the rate of change of an unknown function

More information

Exponential Growth and Decay

Exponential Growth and Decay Exponential Growth and Decay Warm-up 1. If (A + B)x 2A =3x +1forallx, whatarea and B? (Hint: if it s true for all x, thenthecoe cients have to match up, i.e. A + B =3and 2A =1.) 2. Find numbers (maybe

More information

1. If (A + B)x 2A =3x +1forallx, whatarea and B? (Hint: if it s true for all x, thenthecoe cients have to match up, i.e. A + B =3and 2A =1.

1. If (A + B)x 2A =3x +1forallx, whatarea and B? (Hint: if it s true for all x, thenthecoe cients have to match up, i.e. A + B =3and 2A =1. Warm-up. If (A + B)x 2A =3x +forallx, whatarea and B? (Hint: if it s true for all x, thenthecoe cients have to match up, i.e. A + B =3and 2A =.) 2. Find numbers (maybe not integers) A and B which satisfy

More information

(x! 4) (x! 4)10 + C + C. 2 e2x dx = 1 2 (1 + e 2x ) 3 2e 2x dx. # 8 '(4)(1 + e 2x ) 3 e 2x (2) = e 2x (1 + e 2x ) 3 & dx = 1

(x! 4) (x! 4)10 + C + C. 2 e2x dx = 1 2 (1 + e 2x ) 3 2e 2x dx. # 8 '(4)(1 + e 2x ) 3 e 2x (2) = e 2x (1 + e 2x ) 3 & dx = 1 33. x(x - 4) 9 Let u = x - 4, then du = and x = u + 4. x(x - 4) 9 = (u + 4)u 9 du = (u 0 + 4u 9 )du = u + 4u0 0 = (x! 4) + 2 5 (x! 4)0 (x " 4) + 2 5 (x " 4)0 ( '( = ()(x - 4)0 () + 2 5 (0)(x - 4)9 () =

More information

3.8 Exponential Growth and Decay

3.8 Exponential Growth and Decay October 15, 2010 Population growth Population growth If y = f (t) is the number of individuals in a population of animals or humans at time t, then it seems reasonable to expect that the rate of growth

More information

Exponential Growth (Doubling Time)

Exponential Growth (Doubling Time) Exponential Growth (Doubling Time) 4 Exponential Growth (Doubling Time) Suppose we start with a single bacterium, which divides every hour. After one hour we have 2 bacteria, after two hours we have 2

More information

1 What is a differential equation

1 What is a differential equation Math 10B - Calculus by Hughes-Hallett, et al. Chapter 11 - Differential Equations Prepared by Jason Gaddis 1 What is a differential equation Remark 1.1. We have seen basic differential equations already

More information

Chapters 8.1 & 8.2 Practice Problems

Chapters 8.1 & 8.2 Practice Problems EXPECTED SKILLS: Chapters 8.1 & 8. Practice Problems Be able to verify that a given function is a solution to a differential equation. Given a description in words of how some quantity changes in time

More information

6.1 Antiderivatives and Slope Fields Calculus

6.1 Antiderivatives and Slope Fields Calculus 6. Antiderivatives and Slope Fields Calculus 6. ANTIDERIVATIVES AND SLOPE FIELDS Indefinite Integrals In the previous chapter we dealt with definite integrals. Definite integrals had limits of integration.

More information

Applications of First Order Differential Equation

Applications of First Order Differential Equation Dr Mansoor Alshehri King Saud University MATH204-Differential Equations Center of Excellence in Learning and Teaching 1 / 39 Orthogonal Trajectories How to Find Orthogonal Trajectories Growth and Decay

More information

Chapter 6: Messy Integrals

Chapter 6: Messy Integrals Chapter 6: Messy Integrals Review: Solve the following integrals x 4 sec x tan x 0 0 Find the average value of 3 1 x 3 3 Evaluate 4 3 3 ( x 1), then find the area of ( x 1) 4 Section 6.1: Slope Fields

More information

5.5 Partial Fractions & Logistic Growth

5.5 Partial Fractions & Logistic Growth 5.5 Partial Fractions & Logistic Growth Many things that grow exponentially cannot continue to do so indefinitely. This is a good thing. Imagine if human population growth went unchecked: we d have people

More information

CALCULUS BC., where P is the number of bears at time t in years. dt (a) Given P (i) Find lim Pt.

CALCULUS BC., where P is the number of bears at time t in years. dt (a) Given P (i) Find lim Pt. CALCULUS BC WORKSHEET 1 ON LOGISTIC GROWTH NAME Do not use your calculator. 1. Suppose the population of bears in a national park grows according to the logistic differential equation 5P 0.00P, where P

More information

( + ) 3. AP Calculus BC Chapter 6 AP Exam Problems. Antiderivatives. + + x + C. 2. If the second derivative of f is given by f ( x) = 2x cosx

( + ) 3. AP Calculus BC Chapter 6 AP Exam Problems. Antiderivatives. + + x + C. 2. If the second derivative of f is given by f ( x) = 2x cosx Chapter 6 AP Eam Problems Antiderivatives. ( ) + d = ( + ) + 5 + + 5 ( + ) 6 ( + ). If the second derivative of f is given by f ( ) = cos, which of the following could be f( )? + cos + cos + + cos + sin

More information

February 03, 2017 WARMUP!!

February 03, 2017 WARMUP!! WARMUP!! Find the general solution to the logistic differential equation below. Your answer should be in the form P = f(t). Keep in mind that k and L are constants. (Hint: you might need to use partial

More information

Limited Growth (Logistic Equation)

Limited Growth (Logistic Equation) Chapter 2, Part 2 2.4. Applications Orthogonal trajectories Exponential Growth/Decay Newton s Law of Cooling/Heating Limited Growth (Logistic Equation) Miscellaneous Models 1 2.4.1. Orthogonal Trajectories

More information

1. Under certain conditions the number of bacteria in a particular culture doubles every 10 seconds as shown by the graph below.

1. Under certain conditions the number of bacteria in a particular culture doubles every 10 seconds as shown by the graph below. Exponential Functions Review Packet (from November Questions) 1. Under certain conditions the number of bacteria in a particular culture doubles every 10 seconds as shown by the graph below. 8 7 6 Number

More information

Math 1120, Section 6 Calculus Test 3

Math 1120, Section 6 Calculus Test 3 November 15, 2012 Name The total number of points available is 158 Throughout this test, show your work Using a calculator to circumvent ideas discussed in class will generally result in no credit In general

More information

First Order Differential Equations

First Order Differential Equations First Order Differential Equations CHAPTER 7 7.1 7.2 SEPARABLE DIFFERENTIAL 7.3 DIRECTION FIELDS AND EULER S METHOD 7.4 SYSTEMS OF FIRST ORDER DIFFERENTIAL Slide 1 Exponential Growth The table indicates

More information

f x 3x 5x g x 2x 4x Name Date Class 2 nd Six Weeks Review 2016 PreAP PreCalculus Graphing calculators allowed on this portion. 1.

f x 3x 5x g x 2x 4x Name Date Class 2 nd Six Weeks Review 2016 PreAP PreCalculus Graphing calculators allowed on this portion. 1. Name Date Class nd Si Weeks Review 016 PreAP PreCalculus Graphing calculators allowed on this portion. 1. Find all roots of f 5 7 by using the quadratic formula.. Find all roots of g 4 1 by completing

More information

Chapter 4.2: Exponential & Logistic Modeling

Chapter 4.2: Exponential & Logistic Modeling Chapter 4.2: Exponential & Logistic Modeling For real-life applications, our independent variable is usually time, t. Example 1: Start with an initial value of $100. Assuming this amount increases by 30%

More information

8.2 Logistic Functions

8.2 Logistic Functions 8.2 Logistic Functions NOTES Write your questions here! You start with 2 rabbits. Find -Rabbit population grows exponentially at a constant of 1.4 -Rabbit population doubles every month -Rabbit population

More information

7.1 Exponential Functions

7.1 Exponential Functions 7.1 Exponential Functions 1. What is 16 3/2? Definition of Exponential Functions Question. What is 2 2? Theorem. To evaluate a b, when b is irrational (so b is not a fraction of integers), we approximate

More information

8.3 Partial Fraction Decomposition

8.3 Partial Fraction Decomposition 8.3 partial fraction decomposition 575 8.3 Partial Fraction Decomposition Rational functions (polynomials divided by polynomials) and their integrals play important roles in mathematics and applications,

More information

Applications of Exponential Functions in the Modeling of Physical Phenomenon

Applications of Exponential Functions in the Modeling of Physical Phenomenon Applications of Exponential Functions in the Modeling of Physical Phenomenon by Cesar O. Aguilar Department of Mathematics SUNY Geneseo Many real-world quantities of interest undergo changes that can be

More information

FUNCTIONS PRACTICE. If one Jumbo Burger costs 2.15, what is the cost, in pence, of one regular coke?

FUNCTIONS PRACTICE. If one Jumbo Burger costs 2.15, what is the cost, in pence, of one regular coke? FUNCTIONS PRACTICE 1. At Jumbo s Burger Bar, Jumbo burgers cost J each and regular cokes cost C each. Two Jumbo burgers and three regular cokes cost 5.95. Write an equation to show this. If one Jumbo Burger

More information

Modeling with Differential Equations

Modeling with Differential Equations Modeling with Differential Equations 1. Exponential Growth and Decay models. Definition. A quantity y(t) is said to have an exponential growth model if it increases at a rate proportional to the amount

More information

Exponential and Logarithmic Functions. Copyright Cengage Learning. All rights reserved.

Exponential and Logarithmic Functions. Copyright Cengage Learning. All rights reserved. Exponential and Logarithmic Functions Copyright Cengage Learning. All rights reserved. 4.6 Modeling With Exponential And Logarithmic Functions Copyright Cengage Learning. All rights reserved. Objectives

More information

Aim: How do we prepare for AP Problems on limits, continuity and differentiability? f (x)

Aim: How do we prepare for AP Problems on limits, continuity and differentiability? f (x) Name AP Calculus Date Supplemental Review 1 Aim: How do we prepare for AP Problems on limits, continuity and differentiability? Do Now: Use the graph of f(x) to evaluate each of the following: 1. lim x

More information

Fundamentals of Mathematics (MATH 1510)

Fundamentals of Mathematics (MATH 1510) Fundamentals of Mathematics () Instructor: Email: shenlili@yorku.ca Department of Mathematics and Statistics York University February 3-5, 2016 Outline 1 growth (doubling time) Suppose a single bacterium

More information

Lecture 7: Sections 2.3 and 2.4 Rational and Exponential Functions. Recall that a power function has the form f(x) = x r where r is a real number.

Lecture 7: Sections 2.3 and 2.4 Rational and Exponential Functions. Recall that a power function has the form f(x) = x r where r is a real number. L7-1 Lecture 7: Sections 2.3 and 2.4 Rational and Exponential Functions Recall that a power function has the form f(x) = x r where r is a real number. f(x) = x 1/2 f(x) = x 1/3 ex. Sketch the graph of

More information

Pre-Calculus Final Exam Review Units 1-3

Pre-Calculus Final Exam Review Units 1-3 Pre-Calculus Final Exam Review Units 1-3 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Find the value for the function. Find f(x - 1) when f(x) = 3x

More information

Warm Up #5: Exponential Growth and Decay: The more you, the more you or, the you have, the less you.

Warm Up #5: Exponential Growth and Decay: The more you, the more you or, the you have, the less you. Warm Up #5: Honors Precalculus Unit 2 Lesson 5 & 6 Unit #2: Logarithms Topic: Exponential Growth and Decay Objective: SWBAT solve exponential growth and decay problems by using logarithms. CALCULATOR ALLOWED

More information

Name Date Period. Worksheet 5.5 Partial Fractions & Logistic Growth Show all work. No calculator unless stated. Multiple Choice

Name Date Period. Worksheet 5.5 Partial Fractions & Logistic Growth Show all work. No calculator unless stated. Multiple Choice Name Date Period Worksheet 5.5 Partial Fractions & Logistic Growth Show all work. No calculator unless stated. Multiple Choice 1. The spread of a disease through a community can be modeled with the logistic

More information

Population Changes at a Constant Percentage Rate r Each Time Period

Population Changes at a Constant Percentage Rate r Each Time Period Concepts: population models, constructing exponential population growth models from data, instantaneous exponential growth rate models, logistic growth rate models. Population can mean anything from bacteria

More information

Course Outcome Summary

Course Outcome Summary Course Information: Algebra 2 Description: Instruction Level: 10-12 Total Credits: 2.0 Prerequisites: Textbooks: Course Topics for this course include a review of Algebra 1 topics, solving equations, solving

More information

Study Island. 1. The table below represents a linear situation. x f(x)

Study Island. 1. The table below represents a linear situation. x f(x) Study Island Copyright 2014 Edmentum - All rights reserved. 4. A company is holding a dinner reception in a hotel ballroom. The graph represents the total cost of the ballroom rental and dinner. 1. The

More information

weebly.com/ Core Mathematics 3 Exponentials and Natural Logarithms

weebly.com/ Core Mathematics 3 Exponentials and Natural Logarithms http://kumarmaths. weebly.com/ Core Mathematics 3 Exponentials and Natural Logarithms Core Maths 3 Exponentials and natural Logarithms Page 1 Ln and Exponentials C3 Content By the end of this unit you

More information

Section 6.3. x m+1 x m = i n x m, (6.3.1)

Section 6.3. x m+1 x m = i n x m, (6.3.1) Difference Equations to Differential Equations Section 6.3 Models of Growth and Decay In this section we will look at several applications of the exponential and logarithm functions to problems involving

More information

(a) Show that (5) The function f is defined by. (b) Differentiate g(x) to show that g '(x) = (3) (c) Find the exact values of x for which g '(x) = 1

(a) Show that (5) The function f is defined by. (b) Differentiate g(x) to show that g '(x) = (3) (c) Find the exact values of x for which g '(x) = 1 Q1. The function f is defined by (a) Show that (5) The function g is defined by (b) Differentiate g(x) to show that g '(x) = (c) Find the exact values of x for which g '(x) = 1 (Total 12 marks) Q2. (a)

More information

Write the equation of the given line in slope-intercept form and match with the correct alternate form. 10. A

Write the equation of the given line in slope-intercept form and match with the correct alternate form. 10. A Slope & y-intercept Class Work Identify the slope and y-intercept for each equation 1. y = 3x 4 2. y = 2x 3. y = 7 m = 3 b = 4 m = 2 b = 0 m = 0 b = 7 4. x = 5 5. y = 0 6. y 3 = 4(x + 6) m = undef b =

More information

Chapter 8: Exponential Astonishment Lecture notes Math 1030 Section B

Chapter 8: Exponential Astonishment Lecture notes Math 1030 Section B Section B.1: Doubling Time Definition of doubling time The time required for each doubling in exponential growth is called the doubling time. After a time t, an exponentially growing quantity with a doubling

More information

1) Synthetic Division: The Process. (Ruffini's rule) 2) Remainder Theorem 3) Factor Theorem

1) Synthetic Division: The Process. (Ruffini's rule) 2) Remainder Theorem 3) Factor Theorem J.F. Antona 1 Maths Dep. I.E.S. Jovellanos 1) Synthetic Division: The Process (Ruffini's rule) 2) Remainder Theorem 3) Factor Theorem 1) Synthetic division. Ruffini s rule Synthetic division (Ruffini s

More information

Write the equation of the given line in slope-intercept form and match with the correct alternate form. 10. A

Write the equation of the given line in slope-intercept form and match with the correct alternate form. 10. A Slope & y-intercept Class Work Identify the slope and y-intercept for each equation 1. y = 3x 4 2. y = 2x 3. y = 7 4. x = 5 5. y = 0 6. y 3 = 4(x + 6) 7. y + 2 = 1 (x + 6) 8. 2x + 3y = 9 9. 4x 7y = 14

More information

The final is comprehensive (8-9 pages). There will be two pages on ch 9.

The final is comprehensive (8-9 pages). There will be two pages on ch 9. Closing Wed: HW_9A,9B (9.3/4,3.8) Final: Sat, Dec. 9 th, 1:30-4:20, KANE 130 Assigned seats, for your seat go to: catalyst.uw.edu/gradebook/aloveles/102715 The final is comprehensive (8-9 pages). There

More information

Chapter 11 Logarithms

Chapter 11 Logarithms Chapter 11 Logarithms Lesson 1: Introduction to Logs Lesson 2: Graphs of Logs Lesson 3: The Natural Log Lesson 4: Log Laws Lesson 5: Equations of Logs using Log Laws Lesson 6: Exponential Equations using

More information

Unit #16 : Differential Equations

Unit #16 : Differential Equations Unit #16 : Differential Equations Goals: To introduce the concept of a differential equation. Discuss the relationship between differential equations and slope fields. Discuss Euler s method for solving

More information

Honors Advanced Algebra Chapter 8 Exponential and Logarithmic Functions and Relations Target Goals

Honors Advanced Algebra Chapter 8 Exponential and Logarithmic Functions and Relations Target Goals Honors Advanced Algebra Chapter 8 Exponential and Logarithmic Functions and Relations Target Goals By the end of this chapter, you should be able to Graph exponential growth functions. (8.1) Graph exponential

More information

Simplifying Rational Expressions and Functions

Simplifying Rational Expressions and Functions Department of Mathematics Grossmont College October 15, 2012 Recall: The Number Types Definition The set of whole numbers, ={0, 1, 2, 3, 4,...} is the set of natural numbers unioned with zero, written

More information

DIFFERENTIATION RULES

DIFFERENTIATION RULES 3 DIFFERENTIATION RULES DIFFERENTIATION RULES 3.8 Exponential Growth and Decay In this section, we will: Use differentiation to solve real-life problems involving exponentially growing quantities. EXPONENTIAL

More information

MATH 3A FINAL REVIEW

MATH 3A FINAL REVIEW MATH 3A FINAL REVIEW Guidelines to taking the nal exam You must show your work very clearly You will receive no credit if we do not understand what you are doing 2 You must cross out any incorrect work

More information

Exponential and Logarithmic Equations

Exponential and Logarithmic Equations OpenStax-CNX module: m49366 1 Exponential and Logarithmic Equations OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 In this section,

More information

First Order Differential Equations

First Order Differential Equations Chapter 2 First Order Differential Equations Introduction Any first order differential equation can be written as F (x, y, y )=0 by moving all nonzero terms to the left hand side of the equation. Of course,

More information

Algebra 2 Honors. Logs Test Review

Algebra 2 Honors. Logs Test Review Algebra 2 Honors Logs Test Review Name Date Let ( ) = ( ) = ( ) =. Perform the indicated operation and state the domain when necessary. 1. ( (6)) 2. ( ( 3)) 3. ( (6)) 4. ( ( )) 5. ( ( )) 6. ( ( )) 7. (

More information

Duncan. Q = m. C p. T. Q = heat (Joules) m = mass (g) C p = specific heat capacity (J/g.o C) T = change in temp. ( o C)

Duncan. Q = m. C p. T. Q = heat (Joules) m = mass (g) C p = specific heat capacity (J/g.o C) T = change in temp. ( o C) HEAT ENERGY NOTES SECTION (A): phase(s) of matter = SECTION (B): phase(s) of matter = energy difference at same temp = temp is called the SECTION (C): phase(s) of matter = SECTION (D): phase(s) of matter

More information

Closing Wed: HW_9A,9B (9.3/4,3.8) Final: Sat, June 3 th, 1:30-4:20, ARC 147

Closing Wed: HW_9A,9B (9.3/4,3.8) Final: Sat, June 3 th, 1:30-4:20, ARC 147 Closing Wed: HW_9A,9B (9.3/4,3.8) Final: Sat, June 3 th, 1:30-4:20, ARC 147 New material for the final, be able to: Solve separable diff. eq.. Use initial conditions & constants. Be able to set up the

More information

Math 137 Exam #3 Review Guide

Math 137 Exam #3 Review Guide Math 7 Exam # Review Guide The third exam will cover Sections.-.6, 4.-4.7. The problems on this review guide are representative of the type of problems worked on homework and during class time. Do not

More information

Section 6.8 Exponential Models; Newton's Law of Cooling; Logistic Models

Section 6.8 Exponential Models; Newton's Law of Cooling; Logistic Models Section 6.8 Exponential Models; Newton's Law of Cooling; Logistic Models 197 Objective #1: Find Equations of Populations that Obey the Law of Uninhibited Growth. In the last section, we saw that when interest

More information

Solving differential equations (Sect. 7.4) Review: Overview of differential equations.

Solving differential equations (Sect. 7.4) Review: Overview of differential equations. Solving differential equations (Sect. 7.4 Previous class: Overview of differential equations. Exponential growth. Separable differential equations. Review: Overview of differential equations. Definition

More information

All living organisms are limited by factors in the environment

All living organisms are limited by factors in the environment All living organisms are limited by factors in the environment Monday, October 30 POPULATION ECOLOGY Monday, October 30 POPULATION ECOLOGY Population Definition Root of the word: The word in another language

More information

K.ee# growth of the population 's. Ky! LECTURE: 3-8EXPONENTIAL GROWTH AND DECAY. yco2=c. dd = C. ekt. decreasing. population. Population at time to

K.ee# growth of the population 's. Ky! LECTURE: 3-8EXPONENTIAL GROWTH AND DECAY. yco2=c. dd = C. ekt. decreasing. population. Population at time to LECTURE: 38EXPONENTIAL GROWTH AND DECAY In many natural phenomena a quantity grows or decays at a rate proportional to their size Suppose y f(t is the number of individuals in a population at time t Given

More information

MATH 151, Fall 2013, Week 10-2, Section 4.5, 4.6

MATH 151, Fall 2013, Week 10-2, Section 4.5, 4.6 MATH 151, Fall 2013, Week 10-2, Section 4.5, 4.6 Recall the derivative of logarithmic and exponential functions. Theorem 1 (ln x) = (ln f(x)) = (log a x) = (log a f(x)) = Theorem 2 (a x ) = (a f(x) ) =

More information

Chapter 6A Solving Exponential and Logarithmic Equations. Solve x+5 = x = 9 x x 2 = x 4. 5 x = 18

Chapter 6A Solving Exponential and Logarithmic Equations. Solve x+5 = x = 9 x x 2 = x 4. 5 x = 18 Fry Texas A&M University!! Math 150!! Chapter 6!! Fall 2014! 1 Chapter 6A Solving Exponential and Logarithmic Equations Solve 1. 4 3x+5 = 16 2. 3 x = 9 x+5 3. 8 x 2 = 1 4 5 9 x 4. 5 x = 18 Fry Texas A&M

More information

MATH 140 Practice Final Exam Semester 20XX Version X

MATH 140 Practice Final Exam Semester 20XX Version X MATH 140 Practice Final Exam Semester 20XX Version X Name ID# Instructor Section Do not open this booklet until told to do so. On the separate answer sheet, fill in your name and identification number

More information

INTERNET MAT 117. Solution for the Review Problems. (1) Let us consider the circle with equation. x 2 + 2x + y 2 + 3y = 3 4. (x + 1) 2 + (y + 3 2

INTERNET MAT 117. Solution for the Review Problems. (1) Let us consider the circle with equation. x 2 + 2x + y 2 + 3y = 3 4. (x + 1) 2 + (y + 3 2 INTERNET MAT 117 Solution for the Review Problems (1) Let us consider the circle with equation x 2 + y 2 + 2x + 3y + 3 4 = 0. (a) Find the standard form of the equation of the circle given above. (i) Group

More information

Inverse Functions. Definition 1. The exponential function f with base a is denoted by. f(x) = a x

Inverse Functions. Definition 1. The exponential function f with base a is denoted by. f(x) = a x Inverse Functions Definition 1. The exponential function f with base a is denoted by f(x) = a x where a > 0, a 1, and x is any real number. Example 1. In the same coordinate plane, sketch the graph of

More information

33. The gas law for an ideal gas at absolute temperature T (in. 34. In a fish farm, a population of fish is introduced into a pond

33. The gas law for an ideal gas at absolute temperature T (in. 34. In a fish farm, a population of fish is introduced into a pond SECTION 3.8 EXPONENTIAL GROWTH AND DECAY 2 3 3 29. The cost, in dollars, of producing x yards of a certain fabric is Cx 1200 12x 0.1x 2 0.0005x 3 (a) Find the marginal cost function. (b) Find C200 and

More information

2. (10 points) Find an equation for the line tangent to the graph of y = e 2x 3 at the point (3/2, 1). Solution: y = 2(e 2x 3 so m = 2e 2 3

2. (10 points) Find an equation for the line tangent to the graph of y = e 2x 3 at the point (3/2, 1). Solution: y = 2(e 2x 3 so m = 2e 2 3 November 24, 2009 Name The total number of points available is 145 work Throughout this test, show your 1 (10 points) Find an equation for the line tangent to the graph of y = ln(x 2 +1) at the point (1,

More information

Core Mathematics 3 Exponentials and Natural Logarithms

Core Mathematics 3 Exponentials and Natural Logarithms Edexcel past paper questions Core Mathematics 3 Exponentials and Natural Logarithms Edited by: K V kumaran Email: kvkumaran@gmail.com Core Maths 3 Exponentials and natural Logarithms Page Ln and Exponentials

More information

Math-3 Lesson 8-7. b) ph problems c) Sound Intensity Problems d) Money Problems e) Radioactive Decay Problems. a) Cooling problems

Math-3 Lesson 8-7. b) ph problems c) Sound Intensity Problems d) Money Problems e) Radioactive Decay Problems. a) Cooling problems Math- Lesson 8-7 Unit 5 (Part-) Notes 1) Solve Radical Equations ) Solve Eponential and Logarithmic Equations ) Check for Etraneous solutions 4) Find equations for graphs of eponential equations 5) Solve

More information

CHAPTER 4: Polynomial and Rational Functions

CHAPTER 4: Polynomial and Rational Functions MAT 171 Precalculus Algebra Dr. Claude Moore Cape Fear Community College CHAPTER 4: Polynomial and Rational Functions 4.1 Polynomial Functions and Models 4.2 Graphing Polynomial Functions 4.3 Polynomial

More information

MATH 1014 N 3.0 W2015 APPLIED CALCULUS II - SECTION P. Perhaps the most important of all the applications of calculus is to differential equations.

MATH 1014 N 3.0 W2015 APPLIED CALCULUS II - SECTION P. Perhaps the most important of all the applications of calculus is to differential equations. MATH 1014 N 3.0 W2015 APPLIED CALCULUS II - SECTION P Stewart Chapter 9 Differential Equations Perhaps the most important of all the applications of calculus is to differential equations. 9.1 Modeling

More information

Materials: Hw #9-6 answers handout; Do Now and answers overhead; Special note-taking template; Pair Work and answers overhead; hw #9-7

Materials: Hw #9-6 answers handout; Do Now and answers overhead; Special note-taking template; Pair Work and answers overhead; hw #9-7 Pre-AP Algebra 2 Unit 9 - Lesson 7 Compound Interest and the Number e Objectives: Students will be able to calculate compounded and continuously compounded interest. Students know that e is an irrational

More information

Exponential Growth and Decay

Exponential Growth and Decay Exponential Growth and Decay 2-4-2005 In certain situations, the rate at which a thing grows or decreases is proportional to the amount present. When a substance undergoes radioactive decay, the release

More information

Lecture 5: Equilibrium solutions and stability. 1 Mathematical models of population dynamics

Lecture 5: Equilibrium solutions and stability. 1 Mathematical models of population dynamics Lecture 5: Equilibrium solutions and stability 1 Mathematical models of population namics The stu of populations namics is a big application of differential equations that we have been waiting to discuss

More information

INTERNET MAT 117 Review Problems. (1) Let us consider the circle with equation. (b) Find the center and the radius of the circle given above.

INTERNET MAT 117 Review Problems. (1) Let us consider the circle with equation. (b) Find the center and the radius of the circle given above. INTERNET MAT 117 Review Problems (1) Let us consider the circle with equation x 2 + y 2 + 2x + 3y + 3 4 = 0. (a) Find the standard form of the equation of the circle given above. (b) Find the center and

More information

Euler s Method and Logistic Growth (BC Only)

Euler s Method and Logistic Growth (BC Only) Euler s Method Students should be able to: Approximate numerical solutions of differential equations using Euler s method without a calculator. Recognize the method as a recursion formula extension of

More information

Modeling with differential equations

Modeling with differential equations Mathematical Modeling Lia Vas Modeling with differential equations When trying to predict the future value, one follows the following basic idea. Future value = present value + change. From this idea,

More information

CHAPTER 6. Exponential Functions

CHAPTER 6. Exponential Functions CHAPTER 6 Eponential Functions 6.1 EXPLORING THE CHARACTERISTICS OF EXPONENTIAL FUNCTIONS Chapter 6 EXPONENTIAL FUNCTIONS An eponential function is a function that has an in the eponent. Standard form:

More information

Simplifying Radical Expressions

Simplifying Radical Expressions Simplifying Radical Expressions Product Property of Radicals For any real numbers a and b, and any integer n, n>1, 1. If n is even, then When a and b are both nonnegative. n ab n a n b 2. If n is odd,

More information

Practice 6-1: Exponential Equations

Practice 6-1: Exponential Equations Name Class Date Practice 6-1: Exponential Equations Which of the following are exponential functions? For those that are exponential functions, state the initial value and the base. For those that are

More information

ANOTHER FIVE QUESTIONS:

ANOTHER FIVE QUESTIONS: No peaking!!!!! See if you can do the following: f 5 tan 6 sin 7 cos 8 sin 9 cos 5 e e ln ln @ @ Epress sin Power Series Epansion: d as a Power Series: Estimate sin Estimate MACLAURIN SERIES ANOTHER FIVE

More information

An equation of the form y = ab x where a 0 and the base b is a positive. x-axis (equation: y = 0) set of all real numbers

An equation of the form y = ab x where a 0 and the base b is a positive. x-axis (equation: y = 0) set of all real numbers Algebra 2 Notes Section 7.1: Graph Exponential Growth Functions Objective(s): To graph and use exponential growth functions. Vocabulary: I. Exponential Function: An equation of the form y = ab x where

More information

Ch. 9: Be able to 1. Solve separable diff. eq. 2. Use initial conditions & constants. 3. Set up and do ALL the applied problems from homework.

Ch. 9: Be able to 1. Solve separable diff. eq. 2. Use initial conditions & constants. 3. Set up and do ALL the applied problems from homework. Closing Wed: HW9A, 9B (9.3, 9.4) Final: March 10 th, 1:30-4:20 in KANE 210 Comprehensive (8-10 pages). There will be two pages on ch 9. Ch. 9: Be able to 1. Solve separable diff. eq. 2. Use initial conditions

More information

Regents Exam Questions A2.S.7: Exponential Regression

Regents Exam Questions A2.S.7: Exponential Regression A2.S.7: Exponential Regression: Determine the function for the regression model, using appropriate technology, and use the regression function to interpolate/extrapolate from data 1 A cup of soup is left

More information

LESSON #59 - LINEAR FUNCTIONS AND MODELING COMMON CORE ALGEBRA II

LESSON #59 - LINEAR FUNCTIONS AND MODELING COMMON CORE ALGEBRA II 1 LESSON #59 - LINEAR FUNCTIONS AND MODELING COMMON CORE ALGEBRA II A linear function is any pattern where the function increases or decreases by the same numerical constant per unit. It is a function

More information

q = m. C p. T q = heat (Joules) m = mass (g) C p = specific heat (J/g.o C) T = change in temp. ( o C) UNIT 11 - SOLIDS, LIQUIDS, & PHASE CHANGES

q = m. C p. T q = heat (Joules) m = mass (g) C p = specific heat (J/g.o C) T = change in temp. ( o C) UNIT 11 - SOLIDS, LIQUIDS, & PHASE CHANGES HEAT ENERGY NOTES UNIT 11 - SOLIDS, LIQUIDS, & PHASE CHANGES SECTION (A): same temp or change? SECTION (B): same temp or change? temp is called the energy difference at same temp = SECTION (C): same temp

More information

Partial Fraction Decomposition Honors Precalculus Mr. Velazquez Rm. 254

Partial Fraction Decomposition Honors Precalculus Mr. Velazquez Rm. 254 Partial Fraction Decomposition Honors Precalculus Mr. Velazquez Rm. 254 Adding and Subtracting Rational Expressions Recall that we can use multiplication and common denominators to write a sum or difference

More information

Solutions. .5 = e k k = ln(.5) Now that we know k we find t for which the exponential function is = e kt

Solutions. .5 = e k k = ln(.5) Now that we know k we find t for which the exponential function is = e kt MATH 1220-03 Exponential Growth and Decay Spring 08 Solutions 1. (#15 from 6.5.) Cesium 137 and strontium 90 were two radioactive chemicals released at the Chernobyl nuclear reactor in April 1986. The

More information

Math Want to have fun with chapter 4? Find the derivative. 1) y = 5x2e3x. 2) y = 2xex - 2ex. 3) y = (x2-2x + 3) ex. 9ex 4) y = 2ex + 1

Math Want to have fun with chapter 4? Find the derivative. 1) y = 5x2e3x. 2) y = 2xex - 2ex. 3) y = (x2-2x + 3) ex. 9ex 4) y = 2ex + 1 Math 160 - Want to have fun with chapter 4? Name Find the derivative. 1) y = 52e3 2) y = 2e - 2e 3) y = (2-2 + 3) e 9e 4) y = 2e + 1 5) y = e - + 1 e e 6) y = 32 + 7 7) y = e3-1 5 Use calculus to find

More information

Horizontal and Vertical Asymptotes from section 2.6

Horizontal and Vertical Asymptotes from section 2.6 Horizontal and Vertical Asymptotes from section 2.6 Definition: In either of the cases f(x) = L or f(x) = L we say that the x x horizontal line y = L is a horizontal asymptote of the function f. Note:

More information

Lesson 4. Exit Ticket Sample Solutions. explicit formula. b. for and

Lesson 4. Exit Ticket Sample Solutions. explicit formula. b. for and Exit icket Sample Solutions. Write the first three terms in the following geometric sequences. hen write the explicit formula. a. for and,, b. for and,, or,,.. Write an explicit formula for the geometric

More information

HW#1. Unit 4B Logarithmic Functions HW #1. 1) Which of the following is equivalent to y=log7 x? (1) y =x 7 (3) x = 7 y (2) x =y 7 (4) y =x 1/7

HW#1. Unit 4B Logarithmic Functions HW #1. 1) Which of the following is equivalent to y=log7 x? (1) y =x 7 (3) x = 7 y (2) x =y 7 (4) y =x 1/7 HW#1 Name Unit 4B Logarithmic Functions HW #1 Algebra II Mrs. Dailey 1) Which of the following is equivalent to y=log7 x? (1) y =x 7 (3) x = 7 y (2) x =y 7 (4) y =x 1/7 2) If the graph of y =6 x is reflected

More information

SPS Mathematical Methods Lecture #7 - Applications of First-order Differential Equations

SPS Mathematical Methods Lecture #7 - Applications of First-order Differential Equations 1. Linear Models SPS 2281 - Mathematical Methods Lecture #7 - Applications of First-order Differential Equations (a) Growth and Decay (b) Half-life of Radioactive (c) Carbon Dating (d) Newton s Law of

More information

Population Changes at a Constant Percentage Rate r Each Time Period

Population Changes at a Constant Percentage Rate r Each Time Period Concepts: population models, constructing exponential population growth models from data, instantaneous exponential growth rate models. Population can mean anything from bacteria in a petri dish, amount

More information

Chapter 6 Differential Equations and Mathematical Modeling. 6.1 Antiderivatives and Slope Fields

Chapter 6 Differential Equations and Mathematical Modeling. 6.1 Antiderivatives and Slope Fields Chapter 6 Differential Equations and Mathematical Modeling 6. Antiderivatives and Slope Fields Def: An equation of the form: = y ln x which contains a derivative is called a Differential Equation. In this

More information

Math Reviewing Chapter 4

Math Reviewing Chapter 4 Math 80 - Reviewing Chapter Name If the following defines a one-to-one function, find the inverse. ) {(-, 8), (, 8), (-, -)} Decide whether or not the functions are inverses of each other. ) f() = + 7;

More information