Partial Fraction Decomposition Honors Precalculus Mr. Velazquez Rm. 254

Size: px
Start display at page:

Download "Partial Fraction Decomposition Honors Precalculus Mr. Velazquez Rm. 254"

Transcription

1 Partial Fraction Decomposition Honors Precalculus Mr. Velazquez Rm. 254

2 Adding and Subtracting Rational Expressions Recall that we can use multiplication and common denominators to write a sum or difference of two rational expressions (fractions): 5 x 2 4 x + 4 = 5 x + 4 x 2 x x 2 x 2 x + 4 = 5x x + 8 (x 2)(x + 4) = x + 28 (x 2)(x + 4) Usually this is done to simplify the expression, or to cancel out certain terms.

3 Reversing the Process Certain operations in Calculus will require us to reverse this process: x+12 (x 2)(x+4) is expressed as the sum of two fractions. Partial fraction x + 28 (x 2)(x + 4) = 5 x 2 + Partial fraction 4 x + 4 This is the partial fraction decomposition of x+12 (x 2)(x+4)

4 Partial Fraction Decomposition P x A sum or difference of partial fractions can be written in the form, Q x where functions P and Q have no common factors, and the degree (highest power) of Q is higher than the degree of P. 9x 2 9x + 6 (2x 1)(x + 2)(x 2) P x = 9x 2 9x + 6; degree = 2 Q x = (2x 1)(x + 2)(x 2); degree = 3

5 Four Cases of Partial Fraction Decomposition For a rational expression of the form P(x), we will consider Q(x) four different cases for the factors of the denominator: 1. Q(x) is a product of distinct linear factors. 2. Q(x) is a product of linear factors, some of which are repeated. 3. Q x has prime quadratic factors, none of which are repeated. 4. Q(x) has a repeated prime quadratic factor.

6 Case 1: Q(x) is a Product of Distinct Linear Factors This applies when the denominator Q(x) of the rational expression can be factored into linear expressions that are not repeated. Each linear factor in the denominator produces a partial fraction in the form of a constant over a linear factor. 9x 2 9x + 6 (2x 1)(x + 2)(x 2) = A 2x 1 + B x C x 2

7 Case 1: Q(x) is a Product of Distinct Linear Factors Example: Let us find the partial fraction decomposition of the expression shown below: x + 14 (x 4)(x + 2) = A x 4 + B x + 2 Step 1 is to write the expression as a sum of rational expressions, with each of its linear factors serving as the denominators, and constant terms in the numerator. Our goal here is to find A and B.

8 Case 1: Q(x) is a Product of Distinct Linear Factors Step 2: Multiply both sides by the denominator Q(x). (x 4)(x + 2) x + 14 x 4 x + 2 = (x 4)(x + 2) A x 4 + B x + 2 Using distribution on the right side will result in an equation with no more rational expressions. Simplify. x 4 x + 2 A x 4 x + 2 B x + 14 = + x 4 x + 2 x + 14 = x + 2 A + x 4 B x + 14 = Ax + 2A + Bx 4B

9 Case 1: Q(x) is a Product of Distinct Linear Factors Step 3: Rearrange the terms to identify the coefficients of the varying powers of x (in this case, there is only one power of x and a constant term). x + 14 = Ax + 2A + Bx 4B x + 14 = Ax + Bx + 2A 4B 1x + 14 = A + B x + (2A 4B) x term coefficient constant term These can be set up into a system of equations involving two variables, A and B.

10 Case 1: Q(x) is a Product of Distinct Linear Factors Step 4: Set up a system of equations, equating the coefficients and the constant terms. Solving this system will produce the values of A and B. 1x + 14 = A + B x + (2A 4B) A + B = 1 2A 4B = 14 A = B B + 1 4B = 14 2B + 2 4B = 14 6B = 12 B = 2, which means A = = 3

11 Case 1: Q(x) is a Product of Distinct Linear Factors Step 5: Plug your values for A and B back into the original expression. x + 14 (x 4)(x + 2) = A x 4 + B x + 2 = 3 x x + 2 Or, x+14 (x 4)(x+2) = 3 x 4 2 x+2

12 Try it Out! Use partial fraction decomposition to find A and B and confirm the result obtained earlier, shown below: x + 28 (x 2)(x + 4) = A x 2 + B x + 4

13 Try it Out! Use partial fraction decomposition to find A and B and C for the rational equation shown below: 4x x 9 x(x 1)(x + 3) = A x + B x 1 + C x + 3

14 Try it Out! / Extra Credit Use partial fraction decomposition to find A, B and C from the expression shown below: (Place in the bin for extra credit) 9x 2 9x + 6 (2x 1)(x + 2)(x 2) = A 2x 1 + B x C x 2

15 Case 2: Q(x) is a Product of Linear Factors Some of Which are Repeated This occurs when any of the factors in the denominator are raised to any power greater than 1. To decompose such expressions, we must create a series of terms for each power of the repeated factor. As before, Step 1 is to write it as a sum of partial fractions, only you must create a separate term for each power of the repeated factor. x 18 x x 3 2 = A x + B x 3 + C x 3 2 Since x 3 is raised to the 2 nd power, we need two terms to decompose the expression.

16 Case 2: Q(x) is a Product of Linear Factors Some of Which are Repeated Step 2: Multiply both sides by the denominator Q(x). x x 3 2 x 18 x x 3 2 = x x 3 2 A x + B x 3 + C x 3 2 Using distribution on the right side will result in an equation with no more rational expressions. Simplify. x 18 = x x 3 2 A x + x x 3 2 B x 3 + x x 3 2 C x 3 2 x 18 = A x Bx x 3 + Cx x 18 = Ax 2 6Ax + 9A + Bx 2 3Bx + Cx x 18 = Ax 2 + Bx 2 6Ax 3Bx + Cx + 9A

17 Case 2: Q(x) is a Product of Linear Factors Some of Which are Repeated Step 3: Group the terms and factor. Identify the coefficients of the various powers of x again, in this case, there are only two terms on the left side, so this example will be easier x 18 = Ax 2 + Bx 2 6Ax 3Bx + Cx + 9A 0x 2 + 1x 18 = A + B x 2 + 6A 3B + C x + (9A) Step 4: Based on this, we can create a new system of equations, and solve. A + B = 0 6A 3B + C = 1 9A = 18 9A = 18 A = 2 A + B = B = 0 B = 2 6A 3B + C = C = C = 1 C = 5

18 Case 2: Q(x) is a Product of Linear Factors Some of Which are Repeated Step 5: Substitute these values into the original equation for A, B and C. x 18 x x 3 2 = A x + B x 3 + C x 3 2 x 18 x x 3 2 = 2 x + 2 x x 3 2

19 Try it Out! Find the partial fraction decomposition of the following expressions: x + 2 x x 1 2 x 2 x 1 2 (x + 1)

20 Case 3: Q(x) is a Product of Distinct Prime Quadratic Factors This occurs when any of the factors in the denominator are a quadratic expression that cannot be factored further. To decompose such expressions, one of the partial fractions we use must have a linear numerator. 3x x + 14 (x 2)(x 2 + 2x + 4) = A x 2 + Bx + C x 2 + 2x + 4 The numerator of this term must contain both B and C, along with an x.

21 Case 3: Q(x) is a Product of Distinct Prime Quadratic Factors This occurs when any of the factors in the denominator are a quadratic expression that cannot be factored further. To decompose such expressions, one of the partial fractions we use must have a linear numerator. Step 1: Rewrite the expression as the sum of partial fractions, one of which has a linear numerator. 3x x + 14 (x 2)(x 2 + 2x + 4) = A x 2 + Bx + C x 2 + 2x + 4 The numerator of this term must contain both B and C, along with an x.

22 Case 3: Q(x) is a Product of Distinct Prime Quadratic Factors Step 2: Multiply both sides by the denominator Q x. Simplify the right side. (x 2)(x 2 + 2x + 4) 3x x + 14 = x 2 x 2 + 2x + 4 3x x + 14 x 2 x 2 + 2x + 4 = (x 2)(x2 + 2x + 4) A x 2 + A x 2 + (x 2)(x2 + 2x + 4) 3x x + 14 = A x 2 + 2x (Bx + C)(x 2) 3x x + 14 = Ax 2 + 2Ax + 4A + Bx 2 2Bx + Cx 2C 3x x + 14 = Ax 2 + Bx 2 + 2Ax 2Bx + Cx + 4A 2C Step 3: Group terms together based on powers of x. 3x x + 14 = A + B x 2 + 2A 2B + C x + (4A 2C) Bx + C x 2 + 2x + 4 Bx + C x 2 + 2x + 4

23 Case 3: Q(x) is a Product of Distinct Prime Quadratic Factors Step 4: Create a system of equations for each coefficient and solve. 3x x + 14 = A + B x 2 + 2A 2B + C x + (4A 2C) A + B = 3 2A 2B + C = 17 4A 2C = 14 Multiplying the 2 nd equation by 2 and adding it to the third: 8A 4B = 48 Substituting the 1 st equation: 8A 4(3 A) = 48 8A A = 48 12A = 60 A = 5 A + B = 3 (5) + B = 3 B = 2 4A 2C = 14 4(5) 2C = 14 C = 3

24 Case 3: Q(x) is a Product of Distinct Prime Quadratic Factors Step 5: Substitute these values back into the original equation. 3x x + 14 (x 2)(x 2 + 2x + 4) = A x 2 + Bx + C x 2 + 2x + 4 3x x + 14 (x 2)(x 2 + 2x + 4) = 5 x 2 + 2x + 3 x 2 + 2x + 4

25 Case 4: Q(x) is a Product of Prime Quadratic Factors Some of Which are Repeated This occurs when any of the factors in the denominator are quadratic expressions that cannot be factored further, and are raised to a power greater than 1. To decompose such expressions, we must create a partial fraction for every ascending power of the quadratic factor, just as we did for Case 2. Step 1: Rewrite the expression as a sum of partial fractions. Make sure to include separate terms for each ascending power of any repeated quadratics. 5x 3 3x 2 + 7x 3 x = Ax + B x Cx + D x Since x is raised to the 2 nd power, we must separate it into two terms.

26 Case 4: Q(x) is a Product of Prime Quadratic Factors Some of Which are Repeated Step 2: Multiply both sides by the denominator Q x. Simplify the right side. x x3 3x 2 + 7x 3 x = x Ax + B x Cx + D x x 3 3x 2 + 7x 3 = x Ax + B x x Cx + D x x 3 3x 2 + 7x 3 = x Ax + B + (Cx + D) 5x 3 3x 2 + 7x 3 = Ax 3 + Bx 2 + Ax + B + Cx + D Step 3: Group terms together based on powers of x. 5x 3 3x 2 + 7x 3 = Ax 3 + Bx 2 + A + C x + (B + D)

27 Case 4: Q(x) is a Product of Prime Quadratic Factors Some of Which are Repeated Step 4: Create a system of equations for each coefficient, then solve. 5x 3 3x 2 + 7x 3 = Ax 3 + Bx 2 + A + C x + (B + D) A = 5 B = 3 A + C = 7 B + D = 3 We can see that even though this system has 4 equations and 4 variables, it is still quite easy to solve: We already know A = 5, and B = 3. Substituting these values into the other equations gives us C and D. A + C = 7 (5) + C = 7 C = 2 B + D = 3 ( 3) + D = 3 D = 0

28 Case 4: Q(x) is a Product of Prime Quadratic Factors Some of Which are Repeated Step 5: Substitute these values back into the original equation. 5x 3 3x 2 + 7x 3 x = Ax + B x Cx + D x x 3 3x 2 + 7x 3 x = 5x 3 x x x

29 Case 4: Q(x) is a Product of Prime Quadratic Factors Some of Which are Repeated Step 5: Substitute these values back into the original equation. 5x 3 3x 2 + 7x 3 x = Ax + B x Cx + D x x 3 3x 2 + 7x 3 x = 5x 3 x x x

30 Try it Out! Compute the partial fraction decomposition for the following expressions: 8x x 20 (x + 3)(x 2 + x + 2) 2x 3 + x + 3 x

31 EXTRA CREDIT Complete the following two problems and turn them into the bin for extra credit: 1. 7x 4 5x 2 6x x 2 x 12 (x 1)(x 2 + 1) HINT: Factor the denominator!

PARTIAL FRACTION DECOMPOSITION. Mr. Velazquez Honors Precalculus

PARTIAL FRACTION DECOMPOSITION. Mr. Velazquez Honors Precalculus PARTIAL FRACTION DECOMPOSITION Mr. Velazquez Honors Precalculus ADDING AND SUBTRACTING RATIONAL EXPRESSIONS Recall that we can use multiplication and common denominators to write a sum or difference of

More information

Section 8.3 Partial Fraction Decomposition

Section 8.3 Partial Fraction Decomposition Section 8.6 Lecture Notes Page 1 of 10 Section 8.3 Partial Fraction Decomposition Partial fraction decomposition involves decomposing a rational function, or reversing the process of combining two or more

More information

Partial Fractions. (Do you see how to work it out? Substitute u = ax + b, so du = a dx.) For example, 1 dx = ln x 7 + C, x x (x 3)(x + 1) = a

Partial Fractions. (Do you see how to work it out? Substitute u = ax + b, so du = a dx.) For example, 1 dx = ln x 7 + C, x x (x 3)(x + 1) = a Partial Fractions 7-9-005 Partial fractions is the opposite of adding fractions over a common denominator. It applies to integrals of the form P(x) dx, wherep(x) and Q(x) are polynomials. Q(x) The idea

More information

Partial Fractions. Calculus 2 Lia Vas

Partial Fractions. Calculus 2 Lia Vas Calculus Lia Vas Partial Fractions rational function is a quotient of two polynomial functions The method of partial fractions is a general method for evaluating integrals of rational function The idea

More information

Integration of Rational Functions by Partial Fractions

Integration of Rational Functions by Partial Fractions Title Integration of Rational Functions by MATH 1700 MATH 1700 1 / 11 Readings Readings Readings: Section 7.4 MATH 1700 2 / 11 Rational functions A rational function is one of the form where P and Q are

More information

Simplifying Rational Expressions and Functions

Simplifying Rational Expressions and Functions Department of Mathematics Grossmont College October 15, 2012 Recall: The Number Types Definition The set of whole numbers, ={0, 1, 2, 3, 4,...} is the set of natural numbers unioned with zero, written

More information

Integration of Rational Functions by Partial Fractions

Integration of Rational Functions by Partial Fractions Title Integration of Rational Functions by Partial Fractions MATH 1700 December 6, 2016 MATH 1700 Partial Fractions December 6, 2016 1 / 11 Readings Readings Readings: Section 7.4 MATH 1700 Partial Fractions

More information

MATH 150 Pre-Calculus

MATH 150 Pre-Calculus MATH 150 Pre-Calculus Fall, 2014, WEEK 2 JoungDong Kim Week 2: 1D, 1E, 2A Chapter 1D. Rational Expression. Definition of a Rational Expression A rational expression is an expression of the form p, where

More information

Math Analysis Notes Mrs. Atkinson 1

Math Analysis Notes Mrs. Atkinson 1 Name: Math Analysis Chapter 7 Notes Day 6: Section 7-1 Solving Systems of Equations with Two Variables; Sections 7-1: Solving Systems of Equations with Two Variables Solving Systems of equations with two

More information

7x 5 x 2 x + 2. = 7x 5. (x + 1)(x 2). 4 x

7x 5 x 2 x + 2. = 7x 5. (x + 1)(x 2). 4 x Advanced Integration Techniques: Partial Fractions The method of partial fractions can occasionally make it possible to find the integral of a quotient of rational functions. Partial fractions gives us

More information

Updated: January 16, 2016 Calculus II 7.4. Math 230. Calculus II. Brian Veitch Fall 2015 Northern Illinois University

Updated: January 16, 2016 Calculus II 7.4. Math 230. Calculus II. Brian Veitch Fall 2015 Northern Illinois University Math 30 Calculus II Brian Veitch Fall 015 Northern Illinois University Integration of Rational Functions by Partial Fractions From algebra, we learned how to find common denominators so we can do something

More information

(x + 1)(x 2) = 4. x

(x + 1)(x 2) = 4. x dvanced Integration Techniques: Partial Fractions The method of partial fractions can occasionally make it possible to find the integral of a quotient of rational functions. Partial fractions gives us

More information

Partial Fractions. (Do you see how to work it out? Substitute u = ax+b, so du = adx.) For example, 1 dx = ln x 7 +C, x 7

Partial Fractions. (Do you see how to work it out? Substitute u = ax+b, so du = adx.) For example, 1 dx = ln x 7 +C, x 7 Partial Fractions -4-209 Partial fractions is the opposite of adding fractions over a common denominator. It applies to integrals of the form P(x) dx, wherep(x) and Q(x) are polynomials. Q(x) The idea

More information

Partial Fractions. June 27, In this section, we will learn to integrate another class of functions: the rational functions.

Partial Fractions. June 27, In this section, we will learn to integrate another class of functions: the rational functions. Partial Fractions June 7, 04 In this section, we will learn to integrate another class of functions: the rational functions. Definition. A rational function is a fraction of two polynomials. For example,

More information

Can there be more than one correct factorization of a polynomial? There can be depending on the sign: -2x 3 + 4x 2 6x can factor to either

Can there be more than one correct factorization of a polynomial? There can be depending on the sign: -2x 3 + 4x 2 6x can factor to either MTH95 Day 9 Sections 5.5 & 5.6 Section 5.5: Greatest Common Factor and Factoring by Grouping Review: The difference between factors and terms Identify and factor out the Greatest Common Factor (GCF) Factoring

More information

Quadratic Formula: - another method for solving quadratic equations (ax 2 + bx + c = 0)

Quadratic Formula: - another method for solving quadratic equations (ax 2 + bx + c = 0) In the previous lesson we showed how to solve quadratic equations that were not factorable and were not perfect squares by making perfect square trinomials using a process called completing the square.

More information

LIMITS AT INFINITY MR. VELAZQUEZ AP CALCULUS

LIMITS AT INFINITY MR. VELAZQUEZ AP CALCULUS LIMITS AT INFINITY MR. VELAZQUEZ AP CALCULUS RECALL: VERTICAL ASYMPTOTES Remember that for a rational function, vertical asymptotes occur at values of x = a which have infinite its (either positive or

More information

Mission 1 Simplify and Multiply Rational Expressions

Mission 1 Simplify and Multiply Rational Expressions Algebra Honors Unit 6 Rational Functions Name Quest Review Questions Mission 1 Simplify and Multiply Rational Expressions 1) Compare the two functions represented below. Determine which of the following

More information

Partial Fraction Decomposition

Partial Fraction Decomposition Partial Fraction Decomposition As algebra students we have learned how to add and subtract fractions such as the one show below, but we probably have not been taught how to break the answer back apart

More information

Chapter 2.7 and 7.3. Lecture 5

Chapter 2.7 and 7.3. Lecture 5 Chapter 2.7 and 7.3 Chapter 2 Polynomial and Rational Functions 2.1 Complex Numbers 2.2 Quadratic Functions 2.3 Polynomial Functions and Their Graphs 2.4 Dividing Polynomials; Remainder and Factor Theorems

More information

Welcome to Math Video Lessons. Stanley Ocken. Department of Mathematics The City College of New York Fall 2013

Welcome to Math Video Lessons. Stanley Ocken. Department of Mathematics The City College of New York Fall 2013 Welcome to Math 19500 Video Lessons Prof. Department of Mathematics The City College of New York Fall 013 An important feature of the following Beamer slide presentations is that you, the reader, move

More information

Core Mathematics 3 Algebra

Core Mathematics 3 Algebra http://kumarmathsweeblycom/ Core Mathematics 3 Algebra Edited by K V Kumaran Core Maths 3 Algebra Page Algebra fractions C3 The specifications suggest that you should be able to do the following: Simplify

More information

Section 2.4: Add and Subtract Rational Expressions

Section 2.4: Add and Subtract Rational Expressions CHAPTER Section.: Add and Subtract Rational Expressions Section.: Add and Subtract Rational Expressions Objective: Add and subtract rational expressions with like and different denominators. You will recall

More information

PARTIAL FRACTIONS AND POLYNOMIAL LONG DIVISION. The basic aim of this note is to describe how to break rational functions into pieces.

PARTIAL FRACTIONS AND POLYNOMIAL LONG DIVISION. The basic aim of this note is to describe how to break rational functions into pieces. PARTIAL FRACTIONS AND POLYNOMIAL LONG DIVISION NOAH WHITE The basic aim of this note is to describe how to break rational functions into pieces. For example 2x + 3 1 = 1 + 1 x 1 3 x + 1. The point is that

More information

Chapter 1D - Rational Expressions

Chapter 1D - Rational Expressions - Capter 1D Capter 1D - Rational Expressions Definition of a Rational Expression A rational expression is te quotient of two polynomials. (Recall: A function px is a polynomial in x of degree n, if tere

More information

Equations in Quadratic Form

Equations in Quadratic Form Equations in Quadratic Form MATH 101 College Algebra J. Robert Buchanan Department of Mathematics Summer 2012 Objectives In this lesson we will learn to: make substitutions that allow equations to be written

More information

How might we evaluate this? Suppose that, by some good luck, we knew that. x 2 5. x 2 dx 5

How might we evaluate this? Suppose that, by some good luck, we knew that. x 2 5. x 2 dx 5 8.4 1 8.4 Partial Fractions Consider the following integral. 13 2x (1) x 2 x 2 dx How might we evaluate this? Suppose that, by some good luck, we knew that 13 2x (2) x 2 x 2 = 3 x 2 5 x + 1 We could then

More information

SUMMER REVIEW PACKET. Name:

SUMMER REVIEW PACKET. Name: Wylie East HIGH SCHOOL SUMMER REVIEW PACKET For students entering Regular PRECALCULUS Name: Welcome to Pre-Calculus. The following packet needs to be finished and ready to be turned the first week of the

More information

Math123 Lecture 1. Dr. Robert C. Busby. Lecturer: Office: Korman 266 Phone :

Math123 Lecture 1. Dr. Robert C. Busby. Lecturer: Office: Korman 266 Phone : Lecturer: Math1 Lecture 1 Dr. Robert C. Busby Office: Korman 66 Phone : 15-895-1957 Email: rbusby@mcs.drexel.edu Course Web Site: http://www.mcs.drexel.edu/classes/calculus/math1_spring0/ (Links are case

More information

PARTIAL FRACTIONS AND POLYNOMIAL LONG DIVISION. The basic aim of this note is to describe how to break rational functions into pieces.

PARTIAL FRACTIONS AND POLYNOMIAL LONG DIVISION. The basic aim of this note is to describe how to break rational functions into pieces. PARTIAL FRACTIONS AND POLYNOMIAL LONG DIVISION NOAH WHITE The basic aim of this note is to describe how to break rational functions into pieces. For example 2x + 3 = + x 3 x +. The point is that we don

More information

4.5 Integration of Rational Functions by Partial Fractions

4.5 Integration of Rational Functions by Partial Fractions 4.5 Integration of Rational Functions by Partial Fractions From algebra, we learned how to find common denominators so we can do something like this, 2 x + 1 + 3 x 3 = 2(x 3) (x + 1)(x 3) + 3(x + 1) (x

More information

8.3 Partial Fraction Decomposition

8.3 Partial Fraction Decomposition 8.3 partial fraction decomposition 575 8.3 Partial Fraction Decomposition Rational functions (polynomials divided by polynomials) and their integrals play important roles in mathematics and applications,

More information

What you may need to do: 1. Formulate a quadratic expression or equation. Generate a quadratic expression from a description or diagram.

What you may need to do: 1. Formulate a quadratic expression or equation. Generate a quadratic expression from a description or diagram. Dealing with a quadratic What it is: A quadratic expression is an algebraic expression containing an x 2 term, as well as possibly an x term and/or a number, but nothing else - eg, no x 3 term. The general

More information

MAT01B1: Integration of Rational Functions by Partial Fractions

MAT01B1: Integration of Rational Functions by Partial Fractions MAT01B1: Integration of Rational Functions by Partial Fractions Dr Craig 1 August 2018 My details: Dr Andrew Craig acraig@uj.ac.za Consulting hours: Monday 14h40 15h25 Thursday 11h20 12h55 Friday 11h20

More information

B.3 Solving Equations Algebraically and Graphically

B.3 Solving Equations Algebraically and Graphically B.3 Solving Equations Algebraically and Graphically 1 Equations and Solutions of Equations An equation in x is a statement that two algebraic expressions are equal. To solve an equation in x means to find

More information

Complex Numbers: Definition: A complex number is a number of the form: z = a + bi where a, b are real numbers and i is a symbol with the property: i

Complex Numbers: Definition: A complex number is a number of the form: z = a + bi where a, b are real numbers and i is a symbol with the property: i Complex Numbers: Definition: A complex number is a number of the form: z = a + bi where a, b are real numbers and i is a symbol with the property: i 2 = 1 Sometimes we like to think of i = 1 We can treat

More information

HONORS GEOMETRY Summer Skills Set

HONORS GEOMETRY Summer Skills Set HONORS GEOMETRY Summer Skills Set Algebra Concepts Adding and Subtracting Rational Numbers To add or subtract fractions with the same denominator, add or subtract the numerators and write the sum or difference

More information

SOLUTIONS FOR PROBLEMS 1-30

SOLUTIONS FOR PROBLEMS 1-30 . Answer: 5 Evaluate x x + 9 for x SOLUTIONS FOR PROBLEMS - 0 When substituting x in x be sure to do the exponent before the multiplication by to get (). + 9 5 + When multiplying ( ) so that ( 7) ( ).

More information

Spring Nikos Apostolakis

Spring Nikos Apostolakis Spring 07 Nikos Apostolakis Review of fractions Rational expressions are fractions with numerator and denominator polynomials. We need to remember how we work with fractions (a.k.a. rational numbers) before

More information

Lesson 7.1 Polynomial Degree and Finite Differences

Lesson 7.1 Polynomial Degree and Finite Differences Lesson 7.1 Polynomial Degree and Finite Differences 1. Identify the degree of each polynomial. a. 3x 4 2x 3 3x 2 x 7 b. x 1 c. 0.2x 1.x 2 3.2x 3 d. 20 16x 2 20x e. x x 2 x 3 x 4 x f. x 2 6x 2x 6 3x 4 8

More information

Integration of Rational Functions by Partial Fractions

Integration of Rational Functions by Partial Fractions Integration of Rational Functions by Partial Fractions Part 2: Integrating Rational Functions Rational Functions Recall that a rational function is the quotient of two polynomials. x + 3 x + 2 x + 2 x

More information

Section September 6, If n = 3, 4, 5,..., the polynomial is called a cubic, quartic, quintic, etc.

Section September 6, If n = 3, 4, 5,..., the polynomial is called a cubic, quartic, quintic, etc. Section 2.1-2.2 September 6, 2017 1 Polynomials Definition. A polynomial is an expression of the form a n x n + a n 1 x n 1 + + a 1 x + a 0 where each a 0, a 1,, a n are real numbers, a n 0, and n is a

More information

Math 10860, Honors Calculus 2

Math 10860, Honors Calculus 2 Math 10860, Honors Calculus 2 Worksheet/Information sheet on partial fractions March 8 2018 This worksheet (or rather, information sheet with a few questions) takes you through the method of partial fractions

More information

REAL WORLD SCENARIOS: PART IV {mostly for those wanting 114 or higher} 1. If 4x + y = 110 where 10 < x < 20, what is the least possible value of y?

REAL WORLD SCENARIOS: PART IV {mostly for those wanting 114 or higher} 1. If 4x + y = 110 where 10 < x < 20, what is the least possible value of y? REAL WORLD SCENARIOS: PART IV {mostly for those wanting 114 or higher} REAL WORLD SCENARIOS 1. If 4x + y = 110 where 10 < x < 0, what is the least possible value of y? WORK AND ANSWER SECTION. Evaluate

More information

( ) c. m = 0, 1 2, 3 4

( ) c. m = 0, 1 2, 3 4 G Linear Functions Probably the most important concept from precalculus that is required for differential calculus is that of linear functions The formulas you need to know backwards and forwards are:

More information

MULTIPLYING TRINOMIALS

MULTIPLYING TRINOMIALS Name: Date: 1 Math 2 Variable Manipulation Part 4 Polynomials B MULTIPLYING TRINOMIALS Multiplying trinomials is the same process as multiplying binomials except for there are more terms to multiply than

More information

7.4: Integration of rational functions

7.4: Integration of rational functions A rational function is a function of the form: f (x) = P(x) Q(x), where P(x) and Q(x) are polynomials in x. P(x) = a n x n + a n 1 x n 1 + + a 0. Q(x) = b m x m + b m 1 x m 1 + + b 0. How to express a

More information

Lesson 5b Solving Quadratic Equations

Lesson 5b Solving Quadratic Equations Lesson 5b Solving Quadratic Equations In this lesson, we will continue our work with Quadratics in this lesson and will learn several methods for solving quadratic equations. The first section will introduce

More information

Today. Polynomials. Secret Sharing.

Today. Polynomials. Secret Sharing. Today. Polynomials. Secret Sharing. A secret! I have a secret! A number from 0 to 10. What is it? Any one of you knows nothing! Any two of you can figure it out! Example Applications: Nuclear launch: need

More information

Due: Wed Jan :01 PM MST. Question Instructions Read today's Notes and Learning Goals

Due: Wed Jan :01 PM MST. Question Instructions Read today's Notes and Learning Goals 31 asic: Partial Fractions I (10943953) Due: Wed Jan 24 2018 12:01 PM MST Question 1 2 3 4 5 6 7 8 9 10 11 Instructions Read today's Notes and Learning Goals 1. Question Details fa15 Partial Frac Intro

More information

Factoring Trinomials of the Form ax 2 + bx + c, a 1

Factoring Trinomials of the Form ax 2 + bx + c, a 1 Factoring Trinomials of the Form ax 2 + bx + c, a 1 When trinomials factor, the resulting terms are binomials. To help establish a procedure for solving these types of equations look at the following patterns.

More information

Basic Equation Solving Strategies

Basic Equation Solving Strategies Basic Equation Solving Strategies Case 1: The variable appears only once in the equation. (Use work backwards method.) 1 1. Simplify both sides of the equation if possible.. Apply the order of operations

More information

Algebra I Unit Report Summary

Algebra I Unit Report Summary Algebra I Unit Report Summary No. Objective Code NCTM Standards Objective Title Real Numbers and Variables Unit - ( Ascend Default unit) 1. A01_01_01 H-A-B.1 Word Phrases As Algebraic Expressions 2. A01_01_02

More information

Systems of Equations and Inequalities. College Algebra

Systems of Equations and Inequalities. College Algebra Systems of Equations and Inequalities College Algebra System of Linear Equations There are three types of systems of linear equations in two variables, and three types of solutions. 1. An independent system

More information

5.4 - Quadratic Functions

5.4 - Quadratic Functions Fry TAMU Spring 2017 Math 150 Notes Section 5.4 Page! 92 5.4 - Quadratic Functions Definition: A function is one that can be written in the form f (x) = where a, b, and c are real numbers and a 0. (What

More information

UNIT 3 INTEGRATION 3.0 INTRODUCTION 3.1 OBJECTIVES. Structure

UNIT 3 INTEGRATION 3.0 INTRODUCTION 3.1 OBJECTIVES. Structure Calculus UNIT 3 INTEGRATION Structure 3.0 Introduction 3.1 Objectives 3.2 Basic Integration Rules 3.3 Integration by Substitution 3.4 Integration of Rational Functions 3.5 Integration by Parts 3.6 Answers

More information

Roots are: Solving Quadratics. Graph: y = 2x 2 2 y = x 2 x 12 y = x 2 + 6x + 9 y = x 2 + 6x + 3. real, rational. real, rational. real, rational, equal

Roots are: Solving Quadratics. Graph: y = 2x 2 2 y = x 2 x 12 y = x 2 + 6x + 9 y = x 2 + 6x + 3. real, rational. real, rational. real, rational, equal Solving Quadratics Graph: y = 2x 2 2 y = x 2 x 12 y = x 2 + 6x + 9 y = x 2 + 6x + 3 Roots are: real, rational real, rational real, rational, equal real, irrational 1 To find the roots algebraically, make

More information

8.4 Partial Fractions

8.4 Partial Fractions 8.4 1 8.4 Partial Fractions Consider the following integral. (1) 13 2x x 2 x 2 dx How might we evaluate this? Suppose that, by some good luck, we knew that (2) 13 2x x 2 x 2 = 3 x 2 5 x+1 We could then

More information

A quadratic expression is a mathematical expression that can be written in the form 2

A quadratic expression is a mathematical expression that can be written in the form 2 118 CHAPTER Algebra.6 FACTORING AND THE QUADRATIC EQUATION Textbook Reference Section 5. CLAST OBJECTIVES Factor a quadratic expression Find the roots of a quadratic equation A quadratic expression is

More information

Algebra I. Book 2. Powered by...

Algebra I. Book 2. Powered by... Algebra I Book 2 Powered by... ALGEBRA I Units 4-7 by The Algebra I Development Team ALGEBRA I UNIT 4 POWERS AND POLYNOMIALS......... 1 4.0 Review................ 2 4.1 Properties of Exponents..........

More information

Examples 2: Composite Functions, Piecewise Functions, Partial Fractions

Examples 2: Composite Functions, Piecewise Functions, Partial Fractions Examples 2: Composite Functions, Piecewise Functions, Partial Fractions September 26, 206 The following are a set of examples to designed to complement a first-year calculus course. objectives are listed

More information

Solutions to Exercises, Section 2.5

Solutions to Exercises, Section 2.5 Instructor s Solutions Manual, Section 2.5 Exercise 1 Solutions to Exercises, Section 2.5 For Exercises 1 4, write the domain of the given function r as a union of intervals. 1. r(x) 5x3 12x 2 + 13 x 2

More information

A. Incorrect! Perform inverse operations to find the solution. B. Correct! Add 1 to both sides of the equation then divide by 2 to get x = 5.

A. Incorrect! Perform inverse operations to find the solution. B. Correct! Add 1 to both sides of the equation then divide by 2 to get x = 5. Test-Prep Math - Problem Drill 07: The Multi-Step Equations Question No. 1 of 10 1. Solve: 2x 1 = 9 Question #01 (A) 4 (B) 5 (C) 1/5 (D) -5 (E) 0 B. Correct! Add 1 to both sides of the equation then divide

More information

Exam 1. (2x + 1) 2 9. lim. (rearranging) (x 1 implies x 1, thus x 1 0

Exam 1. (2x + 1) 2 9. lim. (rearranging) (x 1 implies x 1, thus x 1 0 Department of Mathematical Sciences Instructor: Daiva Pucinskaite Calculus I January 28, 2016 Name: Exam 1 1. Evaluate the it x 1 (2x + 1) 2 9. x 1 (2x + 1) 2 9 4x 2 + 4x + 1 9 = 4x 2 + 4x 8 = 4(x 1)(x

More information

Math 1320, Section 10 Quiz IV Solutions 20 Points

Math 1320, Section 10 Quiz IV Solutions 20 Points Math 1320, Section 10 Quiz IV Solutions 20 Points Please answer each question. To receive full credit you must show all work and give answers in simplest form. Cell phones and graphing calculators are

More information

Dear Future Pre-Calculus Students,

Dear Future Pre-Calculus Students, Dear Future Pre-Calculus Students, Congratulations on your academic achievements thus far. You have proven your academic worth in Algebra II (CC), but the challenges are not over yet! Not to worry; this

More information

The greatest common factor, or GCF, is the largest factor that two or more terms share.

The greatest common factor, or GCF, is the largest factor that two or more terms share. Unit, Lesson Factoring Recall that a factor is one of two or more numbers or expressions that when multiplied produce a given product You can factor certain expressions by writing them as the product of

More information

Chapter 4. Remember: F will always stand for a field.

Chapter 4. Remember: F will always stand for a field. Chapter 4 Remember: F will always stand for a field. 4.1 10. Take f(x) = x F [x]. Could there be a polynomial g(x) F [x] such that f(x)g(x) = 1 F? Could f(x) be a unit? 19. Compare with Problem #21(c).

More information

Chapter 9 Notes SN AA U2C9

Chapter 9 Notes SN AA U2C9 Chapter 9 Notes SN AA U2C9 Name Period Section 2-3: Direct Variation Section 9-1: Inverse Variation Two variables x and y show direct variation if y = kx for some nonzero constant k. Another kind of variation

More information

Solution: f( 1) = 3 1)

Solution: f( 1) = 3 1) Gateway Questions How to Evaluate Functions at a Value Using the Rules Identify the independent variable in the rule of function. Replace the independent variable with big parenthesis. Plug in the input

More information

Solving Quadratic Equations

Solving Quadratic Equations Solving Quadratic Equations MATH 101 College Algebra J. Robert Buchanan Department of Mathematics Summer 2012 Objectives In this lesson we will learn to: solve quadratic equations by factoring, solve quadratic

More information

Solving Equations with the Quadratic Formula

Solving Equations with the Quadratic Formula 0 Solving Equations with the Quadratic Formula In this chapter, you will have the opportunity to practice solving equations using the quadratic formula. In Chapter 17, you practiced using factoring to

More information

Math 3 Variable Manipulation Part 3 Polynomials A

Math 3 Variable Manipulation Part 3 Polynomials A Math 3 Variable Manipulation Part 3 Polynomials A 1 MATH 1 & 2 REVIEW: VOCABULARY Constant: A term that does not have a variable is called a constant. Example: the number 5 is a constant because it does

More information

We say that a polynomial is in the standard form if it is written in the order of decreasing exponents of x. Operations on polynomials:

We say that a polynomial is in the standard form if it is written in the order of decreasing exponents of x. Operations on polynomials: R.4 Polynomials in one variable A monomial: an algebraic expression of the form ax n, where a is a real number, x is a variable and n is a nonnegative integer. : x,, 7 A binomial is the sum (or difference)

More information

MATH 103 Pre-Calculus Mathematics Test #3 Fall 2008 Dr. McCloskey Sample Solutions

MATH 103 Pre-Calculus Mathematics Test #3 Fall 2008 Dr. McCloskey Sample Solutions MATH 103 Pre-Calculus Mathematics Test #3 Fall 008 Dr. McCloskey Sample Solutions 1. Let P (x) = 3x 4 + x 3 x + and D(x) = x + x 1. Find polynomials Q(x) and R(x) such that P (x) = Q(x) D(x) + R(x). (That

More information

Partial Fractions. Combining fractions over a common denominator is a familiar operation from algebra: 2 x 3 + 3

Partial Fractions. Combining fractions over a common denominator is a familiar operation from algebra: 2 x 3 + 3 Partial Fractions Combining fractions over a common denominator is a familiar operation from algebra: x 3 + 3 x + x + 3x 7 () x 3 3x + x 3 From the standpoint of integration, the left side of Equation

More information

PARTIAL FRACTIONS. Introduction

PARTIAL FRACTIONS. Introduction Introduction PARTIAL FRACTIONS Writing any given proper rational expression of one variable as a sum (or difference) of rational expressions whose denominators are in the simplest forms is called the partial

More information

MATH 2400 LECTURE NOTES: POLYNOMIAL AND RATIONAL FUNCTIONS. Contents 1. Polynomial Functions 1 2. Rational Functions 6

MATH 2400 LECTURE NOTES: POLYNOMIAL AND RATIONAL FUNCTIONS. Contents 1. Polynomial Functions 1 2. Rational Functions 6 MATH 2400 LECTURE NOTES: POLYNOMIAL AND RATIONAL FUNCTIONS PETE L. CLARK Contents 1. Polynomial Functions 1 2. Rational Functions 6 1. Polynomial Functions Using the basic operations of addition, subtraction,

More information

Warm-Up. Use long division to divide 5 into

Warm-Up. Use long division to divide 5 into Warm-Up Use long division to divide 5 into 3462. 692 5 3462-30 46-45 12-10 2 Warm-Up Use long division to divide 5 into 3462. Divisor 692 5 3462-30 46-45 12-10 2 Quotient Dividend Remainder Warm-Up Use

More information

MATH 250 REVIEW TOPIC 3 Partial Fraction Decomposition and Irreducible Quadratics. B. Decomposition with Irreducible Quadratics

MATH 250 REVIEW TOPIC 3 Partial Fraction Decomposition and Irreducible Quadratics. B. Decomposition with Irreducible Quadratics Math 250 Partial Fraction Decomposition Topic 3 Page MATH 250 REVIEW TOPIC 3 Partial Fraction Decomposition and Irreducible Quadratics I. Decomposition with Linear Factors Practice Problems II. A. Irreducible

More information

P.5 Solving Equations

P.5 Solving Equations PRC Ch P_5.notebook P.5 Solving Equations What you should learn How to solve linear equations How to solve quadratic equations equations How to solve polynomial equations of degree three or higher How

More information

Algebra II (Common Core) Summer Assignment Due: September 11, 2017 (First full day of classes) Ms. Vella

Algebra II (Common Core) Summer Assignment Due: September 11, 2017 (First full day of classes) Ms. Vella 1 Algebra II (Common Core) Summer Assignment Due: September 11, 2017 (First full day of classes) Ms. Vella In this summer assignment, you will be reviewing important topics from Algebra I that are crucial

More information

SNAP Centre Workshop. Solving Systems of Equations

SNAP Centre Workshop. Solving Systems of Equations SNAP Centre Workshop Solving Systems of Equations 35 Introduction When presented with an equation containing one variable, finding a solution is usually done using basic algebraic manipulation. Example

More information

The first two give solutions x = 0 (multiplicity 2), and x = 3. The third requires the quadratic formula:

The first two give solutions x = 0 (multiplicity 2), and x = 3. The third requires the quadratic formula: Precalculus:.4 Miscellaneous Equations Concepts: Factoring Higher Degree Equations, Equations Involving Square Roots, Equations with Rational Exponents, Equations of Quadratic Type, Equations Involving

More information

5.3. Polynomials and Polynomial Functions

5.3. Polynomials and Polynomial Functions 5.3 Polynomials and Polynomial Functions Polynomial Vocabulary Term a number or a product of a number and variables raised to powers Coefficient numerical factor of a term Constant term which is only a

More information

Linear Models Review

Linear Models Review Linear Models Review Vectors in IR n will be written as ordered n-tuples which are understood to be column vectors, or n 1 matrices. A vector variable will be indicted with bold face, and the prime sign

More information

Techniques of Integration

Techniques of Integration Chapter 8 Techniques of Integration 8. Trigonometric Integrals Summary (a) Integrals of the form sin m x cos n x. () sin k+ x cos n x = ( cos x) k cos n x (sin x ), then apply the substitution u = cos

More information

Calculus II. Monday, March 13th. WebAssign 7 due Friday March 17 Problem Set 6 due Wednesday March 15 Midterm 2 is Monday March 20

Calculus II. Monday, March 13th. WebAssign 7 due Friday March 17 Problem Set 6 due Wednesday March 15 Midterm 2 is Monday March 20 Announcements Calculus II Monday, March 13th WebAssign 7 due Friday March 17 Problem Set 6 due Wednesday March 15 Midterm 2 is Monday March 20 Today: Sec. 8.5: Partial Fractions Use partial fractions to

More information

Polynomial Functions

Polynomial Functions Polynomial Functions Polynomials A Polynomial in one variable, x, is an expression of the form a n x 0 a 1 x n 1... a n 2 x 2 a n 1 x a n The coefficients represent complex numbers (real or imaginary),

More information

Physical Chemistry - Problem Drill 02: Math Review for Physical Chemistry

Physical Chemistry - Problem Drill 02: Math Review for Physical Chemistry Physical Chemistry - Problem Drill 02: Math Review for Physical Chemistry No. 1 of 10 1. The Common Logarithm is based on the powers of 10. Solve the logarithmic equation: log(x+2) log(x-1) = 1 (A) 1 (B)

More information

4.8 Partial Fraction Decomposition

4.8 Partial Fraction Decomposition 8 CHAPTER 4. INTEGRALS 4.8 Partial Fraction Decomposition 4.8. Need to Know The following material is assumed to be known for this section. If this is not the case, you will need to review it.. When are

More information

Adding and Subtracting Polynomials

Adding and Subtracting Polynomials Adding and Subtracting Polynomials Polynomial A monomial or sum of monomials. Binomials and Trinomial are also polynomials. Binomials are sum of two monomials Trinomials are sum of three monomials Degree

More information

Mathematics 136 Calculus 2 Everything You Need Or Want To Know About Partial Fractions (and maybe more!) October 19 and 21, 2016

Mathematics 136 Calculus 2 Everything You Need Or Want To Know About Partial Fractions (and maybe more!) October 19 and 21, 2016 Mathematics 36 Calculus 2 Everything You Need Or Want To Know About Partial Fractions (and maybe more!) October 9 and 2, 206 Every rational function (quotient of polynomials) can be written as a polynomial

More information

MTH 1310, SUMMER 2012 DR. GRAHAM-SQUIRE. A rational expression is just a fraction involving polynomials, for example 3x2 2

MTH 1310, SUMMER 2012 DR. GRAHAM-SQUIRE. A rational expression is just a fraction involving polynomials, for example 3x2 2 MTH 1310, SUMMER 2012 DR. GRAHAM-SQUIRE SECTION 1.2: PRECALCULUS REVIEW II Practice: 3, 7, 13, 17, 19, 23, 29, 33, 43, 45, 51, 57, 69, 81, 89 1. Rational Expressions and Other Algebraic Fractions A rational

More information

Lesson 21 Not So Dramatic Quadratics

Lesson 21 Not So Dramatic Quadratics STUDENT MANUAL ALGEBRA II / LESSON 21 Lesson 21 Not So Dramatic Quadratics Quadratic equations are probably one of the most popular types of equations that you ll see in algebra. A quadratic equation has

More information

MAT30S Grade 10 Review Mr. Morris

MAT30S Grade 10 Review Mr. Morris GRADE 11 PRECALCULUS REVIEW OF GRADE 10 The following Grade 10 concepts should be reviewed for Grade 11 Precal: 1. Slopes of the Graphs of Linear Functions 2. Powers and Roots 3. Simplifying Radicals 4.

More information

Multiplication of Polynomials

Multiplication of Polynomials Summary 391 Chapter 5 SUMMARY Section 5.1 A polynomial in x is defined by a finite sum of terms of the form ax n, where a is a real number and n is a whole number. a is the coefficient of the term. n is

More information

There are two main properties that we use when solving linear equations. Property #1: Additive Property of Equality

There are two main properties that we use when solving linear equations. Property #1: Additive Property of Equality Chapter 1.1: Solving Linear and Literal Equations Linear Equations Linear equations are equations of the form ax + b = c, where a, b and c are constants, and a zero. A hint that an equation is linear is

More information

Solutions to Exercises, Section 2.4

Solutions to Exercises, Section 2.4 Instructor s Solutions Manual, Section 2.4 Exercise 1 Solutions to Exercises, Section 2.4 Suppose p(x) = x 2 + 5x + 2, q(x) = 2x 3 3x + 1, s(x) = 4x 3 2. In Exercises 1 18, write the indicated expression

More information

Twitter: @Owen134866 www.mathsfreeresourcelibrary.com Prior Knowledge Check 1) Factorise each polynomial: a) x 2 6x + 5 b) x 2 16 c) 9x 2 25 2) Simplify the following algebraic fractions fully: a) x 2

More information