ESTIMATION OF THE STRUCTURAL PARAMETERS IN THE GENERAL SEMI-LINEAR CREDIBILITY MODEL

Size: px
Start display at page:

Download "ESTIMATION OF THE STRUCTURAL PARAMETERS IN THE GENERAL SEMI-LINEAR CREDIBILITY MODEL"

Transcription

1 U.P.B. Sci Bull. Seies A Vol. 69 No. 4 7 ISSN 3-77 ESTIMATION OF THE STRUCTURAL PARAMETERS IN THE GENERAL SEMI-LINEAR CREDIBILITY MODEL Vigii ATANASIU O luce oigilă ce eziă şi lizeză esimoii meilo suculi di modelul de cedibilie semi-liiă imlicâd oieăţi memice comlice le vloilo medii codiţioe şi le coviţelo codiţioe. Deci eu ue olosi ezulele sueioe de cedibilie semiliiă obţiue i ces model vom oei esimoi uili i meilo de sucuă. Di uc de vedee cic ese evideţiă oiee civă de edelse ceso esimoi. A oigil e which eses d lyses he esimos o he sucul mees i he semi-lie cedibiliy model ivolvig comliced mhemicl oeies o codiiol execios d o codiiol covices. Thus o be ble o use he sueio semi-lie cedibiliy esuls obied i his model we will ovide useul esimos o he sucue mees. Fom he cicl oi o view he cive oey o he ubisedess o hese esimos is highlighed. Key wods: cocs ubised esimos sucue mees semi-lie cedibiliy heoy. AMS Subec Clssiicio: 6P5.. Ioducio I his icle we is give he geel semi-lie cedibiliy model see Secio which ivolves oly oe isoled coc. We deive he oiml lieized cedibiliy esime o he isk emium o his cse d we coside s licios o his esul: he secil semi-lie cedibiliy model obied om he geel semi-lie cedibiliy model o he oximio o μ θ -he e emium o coc wih isk mee θ -bsed o uiue oiml oximig ucio 3 he secil hiechicl semi-lie cedibiliy model. Lecue Mhemics Deme Acdemy o Ecoomic Sudies Buches ROMANIA

2 3 Vigii Asiu I us ou h his ocedue does o ovide us wih sisics comuble om he obsevios sice he esul ivolves ukow mees o he sucue ucio. To obi esimes o hese sucue mees o he geel semilie cedibiliy model we embed he coc i collecive o cocs ll ovidig ideede iomio o he sucue disibuio see Secio. We is deive he ubised esimos o he sucue mees o he secil semi-lie cedibiliy model. We close his secio givig s licio o his esimio he ubised esimos obied o he sucul mees o he geel semi-lie cedibiliy model. Secio The semi-lie cedibiliy model Coside iie seuece θ. + o dom vibles. Assume h o ixed θ he vibles. + e codiiolly ideede d ideiclly disibued codiiolly i.i.d. The vibles e obsevble d θ is he sucue vible. The vible + is cosideed s beig o ye obsevble. We ssume h ; + hve iie vice. Fo we ke he ucio o + we w o oecs. We use he oio: μ θ E. [ ] ; + This exessio does o deed o. Fo his model we deie he ollowig sucue mees: m E μ θ E E E. [ ] Cov [ μ θ μ θ ] [ ] θ { [ ]} [ ] { [ θ ]} E.3 b Cov.4 c Cov.5 [ ] d Cov μ.6 o. These exessios do o deed o +. The sucue mees e coeced by he ollowig elios: c + b.7 d b.8 o. This ollows om he covice elios obied i he obbiliy heoy whee hey e vey well-kow.

3 Esimio o he sucul mees i he geel semi-lie cedibiliy model 33 Jus s i he cse o cosideig lie combiios o he obsevble vibles hemselves we c lso obi o-homogeeous cedibiliy esimes kig s esimos he clss o lie combiios o give ucios o he obsevble vibles s show i he ollowig heoem: Theoem. Oiml o-homogeeous lieized esimos The lie combiio o d he dom vibles ; closes o μ θ E [ + ] d o + i he les sues sese euls: M z + m z m.9 whee z z. z is soluio o he lie sysem o euios: [ c + d ] z d o o he euivle lie sysem o euios: + b z b.. Alicios o Theoem.: Le us coside he cse o oe give ucio i ode o oxime μ θ. We omule he ollowig heoem. So o he secil whe Theoem. eds: Theoem. Oiml o-homogeeous lieized esimo The lie combiio o d he dom vibles closes o μ θ i he les sues sese euls: M z + m zm whee m E[ ] z d [ ] / c + d wih d Cov[ ' ] Cov[ ' ] Cov[ ] The esimo M o θ M +. + whee x z x + m z m...3 d ' ' ; c..4 μ o Theoem. c be dislyed s:.5 Le us oge ow bou his sucue o d look o y ucio θ. I e cosideed oly ucios such such h.5 is closes o μ h hs iie vice he he oiml oximig ucio esuls om he ollowig heoem:

4 34 Vigii Asiu Theoem.3 Oiml oximig ucio o uiue oiml ucio +. + is closes o μ θ d o + i he les sues sese i d oly i is soluio o he euio: g E [ ] E[ ].6 Mi E g + Poo: we hve o solve he ollowig miimizio oblem: + g. g.7 Suose h deoes he soluio o his oblem he we coside: + αh h biy like i viiol clculus. Le: {[ ] } wih ϕ α E [. αh. αh ] Clely o o be oiml ' {[ ][ h +. + h ]} { } +.8 ϕ so o evey choice o h : E +..9 mus hold. This c be ewie s: E [ h h h ]. o: E h E + E. [ { [ ] [ ]}] Becuse his euio hs o be sisied o evey choice o he ucio h oe obis he exessio i bckes i. mus be ideicl o zeo which oves.6. The ollowig exmle is licio o Theoem.3: I. + c oly ke he vlues. d P +. + [ ] μ θ d o o: he is closes o + i he les sues sese i d oly i o is soluio o he lie sysem: +. Ideed: : P E ; E P Iseig hese exessios o: ; [ ] P [ ] E [ ] d [ ].6 leds o 3 The secil hiechicl semi-lie cedibiliy heoy is ohe licio o he secil semi-lie cedibiliy heoy. E io

5 Esimio o he sucul mees i he geel semi-lie cedibiliy model 35 Like i Jewell s hiechicl model we coside oolio o cocs which c be boke u io P secos ech seco cosisig o k gous o cocs. Ised o esimig: + μ θ θ E θ θ he ue e isk emium o he coc [ + ] θ E[ θ ] ν + he ue e isk emium o he seco we ow esime: θ θ E[ θ θ ] θ E[ θ ] + μ he ue e isk emium o he coc + ν + he ue e isk emium o he seco whee P d k. I semi-lie cedibiliy heoy he ollowig clss P k o esimos is cosideed: + α i i α whee. i e ucios give i dvce. Le us coside he cse o oe give ucio i ode o oxime + o ν θ d μ θ θ. We omule he ollowig heoem: Theoem.4 Hiechicl semi-lie cedibiliy Usig he sme oios s ioduced o he hiechicl model o Jewell d deoig s s d s s oe obis he ollowig les sues esimes o he ue e isk emiums: ν θ m z m + z μ θ θ m z m + z zw w w w z 3. k whee: w zw w z w. d /[ c + w. d]. z. he cedibiliy co o coc level wih: d Cov ' d Cov ' ' c Cov V d: z z. D /[ C + z. D] he cedibiliy co seco level wih: D Cov w ' w D Cov w ' ' w C Cov V. w w w Remk. -he lie combiio o d he dom vibles P k closes o + d o ν θ i he les sues sese euls ν θ d he lie combiio o d he dom vibles P k sues sese euls μ θ θ. closes o μ θ θ i he les

6 36 Vigii Asiu Remk. -i should be oed h he soluio.9 o he lieized cedibiliy oblem oly yields sisics comuble om he obsevios i he sucue mees e kow. Geelly howeve he sucue ucio U is o kow. The he esimo s i sds is o sisic. Is iees is meely heoeicl bu i will be he bsis o uhe esuls o semi-lie cedibiliy. I he ollowig secio we coside diee cocs ech wih he sme sucue mees so we c esime hese uiies usig he sisics o he diee cocs. Secio 3 Pmee esimio The esimo obied i he evious secio coied sucue mees. I his secio we ssume he sucue mees e ukow so he exessios o hese seudo- esimos e o loge sisics. Bu sice he cocs e embedded i collecive o ideicl cocs we ow hve moe h oe obsevio vilble o he isk mee θ so we c elce he ukow sucue mees by esimes. So ow h we embedded he see coc i collecive o ideicl cocs i is ossible o give ubised esimos o hese uiies. I should be oed h he oximio o + o o μ θ bsed o uiue oiml oximig ucio is lwys bee h he oe uished i Secio bsed o escibed oximig ucios.. The useuless o he le oximio is h i is esy o ly sice i is suicie o kow esimes o he mees b eig i he cedibiliy cos z. I his secio we give some ubised esimos o he mees. Fo his uose we coside k cocs k k ideede d ideiclly disibued dom vecos d ' θ. θ o k. The coc idexed is dom veco cosisig o dom sucue mee θ d obsevios. whee k. Fo evey coc k d o θ ixed he vibles. e codiiolly ideede d ideiclly disibued. Hee we will oly deive esimos o he ollowig mees: m E[ ]. E{ Cov[ ]}. b Cov{ E[ ] E[ ]}.3 Oe c ove he ollowig heoem o hold. Theoem. Ubised esimos o sucue mees Le:

7 Esimio o he sucul mees i he geel semi-lie cedibiliy model 37 k k k m.4 k.. k.5 b k k. k. k.6 he: E m m E E b b.7 We close his secio givig s licio o his esimio he ubised esimos obied o he sucul mees o he geel semilie cedibiliy model. A licio o Theoem.: The esimos k m.8 k k k. k..9 k b... k k k e ubised esimos o he coesodig sucue mees i.e.: E m m E E b b. Ideed we hve: k k k E m E[ ] m m m. k k k see.3. So he veiicio o he is euliy. is edily eomed. Remk Noe h he usul deiiios o he sucue mees ly wih θ elcig θ d elcig so: m E μ θ E E E.3 b [ ] { [ ]} [ ] { Cov[ ]} [ μ θ μ θ ] Cov{ E[ ] E[ ]} [ ] E.4 Cov.5 c Cov.6 Nex: k E E.. k

8 38 Vigii Asiu [ Cov. k E E. Cov. E. E + + Cov.. + E. E. Bu: Cov Cov[ ] k Cov + E E ' ' b see.8 ' becuse: + b see.9 ' o ' we hve: Cov[ ' ] E[ Cov ' θ ] + Cov[ E θ E θ ] E{ E θ E θ E θ }+ + Cov '.7 [ ' ] [ ] [ ' ] E{ E[ θ ] E[ θ ] E[ θ ] E[ [ μ θ μ θ ] ' ' ]} + b b.8 o we hve: Cov E Cov θ + Cov E θ { [ ]} [ ] ] + b [ E.9 Cov ' δ ' + b. Nex: E E [ ] m. E [ ] E m. Also we hve: Cov. Cov ' δ ' + b + b ' ' Cov. + b.3 Nex: E. E m m m.4 Cov. Cov ' δ ' + b. + b ' ' see he clculios om.3.

9 Esimio o he sucul mees i he geel semi-lie cedibiliy model 39 Cov. + b.5 Nex: E. E m m m.6 d: Cov.. Cov ' δ ' + b + b ' ' Cov.. + b.7 Iseig d.7 i.7 oe obis: k E [ b m m b m m k + b m m + + b + m m ] s ws o be ove see Filly we hve: E b k Cov.. + E. E. Cov. k k E. E Cov. E E. + k k k + Cov + E E k k k k.8 Bu: Cov.. + b.9 see.7 Nex: k k Cov. ' ' ' ' Cov δ δ + b k k ' ' k ' ' + b becuse: k k ' ' ' ' Cov ' ' Cov ' ' ' δ + ' b see. ' δ ' δ ' + b.3 see.3 '

10 4 Vigii Asiu whee: Cov ' ' E[ Cov ' ' ] + Cov[ E E ' ' ] E [ E ' ' E E ' ' ] + Cov[ E E ' ' ] E[ E E ' ' - E E ' ' ] + E. θ i ' Cov ' ' '.3 d: Cov. + b.3 k k k Nex: k k Cov. Cov ' ' δ ' δ ' + b k k ' ' k ' ' + b k k see.3. Cov. + b.33 k k k Nex: k k k k Cov Cov ' ' δ ' δ ' k k k ' ' k ' ' + b + b k k Cov + b.34 k k k k Also we hve: E. m.35 see.6. E. m.36 see.4. k E E E km m k k.37 k k see

11 Esimio o he sucul mees i he geel semi-lie cedibiliy model 4 k E E E km m k k.38 k k see Iseig he vlues o he covices d o he execios see d.38 i.8 ovides us wih he desied esuls. Ideed: k E b + b + m m + b k k k + b m m + + b + m m k k k s ws o be ove see 4. Coclusios b m m k This e comlees he soluio o he semi-lie cedibiliy model i cse o o homogeeous lie esimo o + o wh mous o he sme o μ θ. I view o he ssumio bou he ideedece o cocs i migh come s suise h he emium o coc ivolves esuls om ohe cocs. A close look his ssumio evels h his is so becuse he ohe cocs ovide ddiiol iomio o he sucue disibuio. Fo his eso he clim igues o ohe cocs co be igoed whe esimig he mees eig i he semi-lie cedibiliy esime o coc. I his icle he semi-lie cedibiliy model is eied by he ioducio o he isoled coc i collecive o cocs ll ovidig ideede iomio o he sucue disibuio. Bu sice he cocs e embedded i collecive o ideicl cocs we ow hve moe h oe obsevio vilble o he isk mee θ so we c esime hese sucul mees i he semilie cedibiliy model usig he sisics o he diee cocs. The bove wo heoems show h i is ossible o give ubised esimos o hese uiies he oolio chceisics i we embed he see coc i collecive o ideicl cocs. The icle cois desciio o he semilie cedibiliy model behid heeogeeous oolio ivolvig udelyig isk mee o he idividul isks. Sice hese isks c ow o loge be ssumed o be ideede mhemicl oeies o codiiol execios d o codiiol covices become useul. The oigil model ivolvig oly oe coc cois he bsics o ll uhe semi-lie cedibiliy models. I he eied semi-lie cedibiliy model oolio o cocs is sudied o be ble o use he semi-lie cedibiliy esuls. Theeoe he mi uose o his e is o ge ubised esimos o he oolio chceisics. The mhemicl heoy ovides he mes o clcule useul esimos o he sucue mees. Fom he cicl oi o view he oey o ubisedess o hese esimos is vey elig d vey +

12 4 Vigii Asiu cive. The c h i is bsed o comliced mhemics ivolvig codiiol execios codiiol covices d viiol clculus eeds o bohe he use moe h i does whe he lies sisicl ools like discimioy lysis scoig models SAS d GLIM. These echiues c be lied by ybody o his ow ield o edevo be i ecoomics medicie o isuce. R E F E R E N C E S []. Asiu V. Coibuios o he cedibiliy heoy Docol Disseio Uivesiy o Buches-Fculy o Mhemics. []. Asiu V. U model de cedibilie Revis Sudii şi Ceceăi de Clcul Ecoomic şi Cibeeică Ecoomică II [3]. Gooves M.J. Ks R. V Heewde Buwelickx T. Isuce Seies volume 3 Eecive Acuil Mehods Uivesiy o Amsedm The Nehelds 99. [4]. Peikäie T. Dyki C.D.Pesoe M. Pcicl Risk Theoy o Acuies Uivesié Pieé e Mie Cuie 99. [5]. Sud B. A Ioducio o No-Lie Isuce Mhemics Veöelichuge des Isius ü Vesicheugswissesch de Uivesiä Mheim Bd 8 VVW Klsuhe 99.

). So the estimators mainly considered here are linear

). So the estimators mainly considered here are linear 6 Ioic Ecooică (4/7 Moe Geel Cedibiliy Models Vigii ATANASIU Dee o Mheics Acdey o Ecooic Sudies e-il: vigii_siu@yhooco This couicio gives soe exesios o he oigil Bühl odel The e is devoed o sei-lie cedibiliy

More information

Degree of Approximation of Fourier Series

Degree of Approximation of Fourier Series Ieaioal Mahemaical Foum Vol. 9 4 o. 9 49-47 HIARI Ld www.m-hiai.com h://d.doi.og/.988/im.4.49 Degee o Aoimaio o Fouie Seies by N E Meas B. P. Padhy U.. Misa Maheda Misa 3 ad Saosh uma Naya 4 Deame o Mahemaics

More information

BINOMIAL THEOREM OBJECTIVE PROBLEMS in the expansion of ( 3 +kx ) are equal. Then k =

BINOMIAL THEOREM OBJECTIVE PROBLEMS in the expansion of ( 3 +kx ) are equal. Then k = wwwskshieduciocom BINOMIAL HEOREM OBJEIVE PROBLEMS he coefficies of, i e esio of k e equl he k /7 If e coefficie of, d ems i e i AP, e e vlue of is he coefficies i e,, 7 ems i e esio of e i AP he 7 7 em

More information

LIPSCHITZ ESTIMATES FOR MULTILINEAR COMMUTATOR OF MARCINKIEWICZ OPERATOR

LIPSCHITZ ESTIMATES FOR MULTILINEAR COMMUTATOR OF MARCINKIEWICZ OPERATOR Reseh d ouiios i heis d hei Siees Vo. Issue Pges -46 ISSN 9-699 Puished Oie o Deee 7 Joi Adei Pess h://oideiess.e IPSHITZ ESTIATES FOR UTIINEAR OUTATOR OF ARINKIEWIZ OPERATOR DAZHAO HEN Dee o Siee d Ioio

More information

The Complete Graph: Eigenvalues, Trigonometrical Unit-Equations with associated t-complete-eigen Sequences, Ratios, Sums and Diagrams

The Complete Graph: Eigenvalues, Trigonometrical Unit-Equations with associated t-complete-eigen Sequences, Ratios, Sums and Diagrams The Complee Gph: Eigevlues Tigoomeicl Ui-Equios wih ssocied -Complee-Eige Sequeces Rios Sums d Digms Pul ugus Wie* Col Lye Jessop dfdeemi Je dewusi bsc The complee gph is ofe used o veify cei gph heoeicl

More information

The sphere of radius a has the geographical form. r (,)=(acoscos,acossin,asin) T =(p(u)cos v, p(u)sin v,q(u) ) T.

The sphere of radius a has the geographical form. r (,)=(acoscos,acossin,asin) T =(p(u)cos v, p(u)sin v,q(u) ) T. Che 5. Dieeil Geome o Sces 5. Sce i meic om I 3D sce c be eeseed b. Elici om z =. Imlici om z = 3. Veco om = o moe geel =z deedig o wo mees. Emle. he shee o dis hs he geoghicl om =coscoscossisi Emle. he

More information

Suggested Solution for Pure Mathematics 2011 By Y.K. Ng (last update: 8/4/2011) Paper I. (b) (c)

Suggested Solution for Pure Mathematics 2011 By Y.K. Ng (last update: 8/4/2011) Paper I. (b) (c) per I. Le α 7 d β 7. The α d β re he roos o he equio, such h α α, β β, --- α β d αβ. For, α β For, α β α β αβ 66 The seme is rue or,. ssume Cosider, α β d α β y deiiio α α α α β or some posiive ieer.

More information

Duration Notes 1. To motivate this measure, observe that the duration may also be expressed as. a a T a

Duration Notes 1. To motivate this measure, observe that the duration may also be expressed as. a a T a Duio Noes Mculy defied he duio of sse i 938. 2 Le he sem of pymes cosiuig he sse be,,..., d le /( + ) deoe he discou fco. he Mculy's defiiio of he duio of he sse is 3 2 D + 2 2 +... + 2 + + + + 2... o

More information

Generalized Fibonacci-Type Sequence and its Properties

Generalized Fibonacci-Type Sequence and its Properties Geelized Fibocci-Type Sequece d is Popeies Ompsh Sihwl shw Vys Devshi Tuoil Keshv Kuj Mdsu (MP Idi Resech Schol Fculy of Sciece Pcific Acdemy of Highe Educio d Resech Uivesiy Udipu (Rj Absc: The Fibocci

More information

Week 8 Lecture 3: Problems 49, 50 Fourier analysis Courseware pp (don t look at French very confusing look in the Courseware instead)

Week 8 Lecture 3: Problems 49, 50 Fourier analysis Courseware pp (don t look at French very confusing look in the Courseware instead) Week 8 Lecure 3: Problems 49, 5 Fourier lysis Coursewre pp 6-7 (do look Frech very cofusig look i he Coursewre ised) Fourier lysis ivolves ddig wves d heir hrmoics, so i would hve urlly followed fer he

More information

Parameter Estimation and Hypothesis Testing of Two Negative Binomial Distribution Population with Missing Data

Parameter Estimation and Hypothesis Testing of Two Negative Binomial Distribution Population with Missing Data Avlble ole wwwsceceeccom Physcs Poce 0 475 480 0 Ieol Cofeece o Mecl Physcs Bomecl ee Pmee smo Hyohess es of wo Neve Boml Dsbuo Poulo wh Mss D Zhwe Zho Collee of MhemcsJl Noml UvesyS Ch zhozhwe@6com Absc

More information

Available online at J. Math. Comput. Sci. 2 (2012), No. 4, ISSN:

Available online at   J. Math. Comput. Sci. 2 (2012), No. 4, ISSN: Available olie a h://scik.og J. Mah. Comu. Sci. 2 (22), No. 4, 83-835 ISSN: 927-537 UNBIASED ESTIMATION IN BURR DISTRIBUTION YASHBIR SINGH * Deame of Saisics, School of Mahemaics, Saisics ad Comuaioal

More information

Supplement: Gauss-Jordan Reduction

Supplement: Gauss-Jordan Reduction Suppleme: Guss-Jord Reducio. Coefficie mri d ugmeed mri: The coefficie mri derived from sysem of lier equios m m m m is m m m A O d he ugmeed mri derived from he ove sysem of lier equios is [ ] m m m m

More information

The Nehari Manifold for a Class of Elliptic Equations of P-laplacian Type. S. Khademloo and H. Mohammadnia. afrouzi

The Nehari Manifold for a Class of Elliptic Equations of P-laplacian Type. S. Khademloo and H. Mohammadnia. afrouzi Wold Alied cieces Joal (8): 898-95 IN 88-495 IDOI Pblicaios = h x g x x = x N i W whee is a eal aamee is a boded domai wih smooh boday i R N 3 ad< < INTRODUCTION Whee s ha is s = I his ae we ove he exisece

More information

Generalisation on the Zeros of a Family of Complex Polynomials

Generalisation on the Zeros of a Family of Complex Polynomials Ieol Joul of hemcs esech. ISSN 976-584 Volume 6 Numbe 4. 93-97 Ieol esech Publco House h://www.house.com Geelso o he Zeos of Fmly of Comlex Polyomls Aee sgh Neh d S.K.Shu Deme of hemcs Lgys Uvesy Fdbd-

More information

Transient Solution of the M/M/C 1 Queue with Additional C 2 Servers for Longer Queues and Balking

Transient Solution of the M/M/C 1 Queue with Additional C 2 Servers for Longer Queues and Balking Jourl of Mhemics d Sisics 4 (): 2-25, 28 ISSN 549-3644 28 Sciece ublicios Trsie Soluio of he M/M/C Queue wih Addiiol C 2 Servers for Loger Queues d Blkig R. O. Al-Seedy, A. A. El-Sherbiy,,2 S. A. EL-Shehwy

More information

Fractional Fourier Series with Applications

Fractional Fourier Series with Applications Aeric Jourl o Couiol d Alied Mheics 4, 4(6): 87-9 DOI: 593/jjc446 Frciol Fourier Series wih Alicios Abu Hd I, Khlil R * Uiversiy o Jord, Jord Absrc I his er, we iroduce coorble rciol Fourier series We

More information

Physics 232 Exam I Feb. 13, 2006

Physics 232 Exam I Feb. 13, 2006 Phsics I Fe. 6 oc. ec # Ne..5 g ss is ched o hoizol spig d is eecuig siple hoic oio. The oio hs peiod o.59 secods. iiil ie i is oud o e 8.66 c o he igh o he equiliiu posiio d oig o he le wih eloci o sec.

More information

One of the common descriptions of curvilinear motion uses path variables, which are measurements made along the tangent t and normal n to the path of

One of the common descriptions of curvilinear motion uses path variables, which are measurements made along the tangent t and normal n to the path of Oe of he commo descipios of cuilie moio uses ph ibles, which e mesuemes mde log he ge d oml o he ph of he picles. d e wo ohogol xes cosideed sepely fo eey is of moio. These coodies poide ul descipio fo

More information

Mathematical Statistics

Mathematical Statistics 7 75 Ode Sttistics The ode sttistics e the items o the dom smple ed o odeed i mitude om the smllest to the lest Recetl the impotce o ode sttistics hs icesed owi to the moe equet use o opmetic ieeces d

More information

Some Embedding Theorems and Properties of Riesz Potentials

Some Embedding Theorems and Properties of Riesz Potentials meica Joual o ahemaics ad Saisics 3 3(6) 445-453 DOI 593/jajms336 Some Embeddig Theoems ad Poeies o iesz Poeials ahim zaev * Fuad N liyev 3 Isiue o ahemaics ad echaics o Naioal cademy o Scieces o zebaija;

More information

Summary: Binomial Expansion...! r. where

Summary: Binomial Expansion...! r. where Summy: Biomil Epsio 009 M Teo www.techmejcmth-sg.wes.com ) Re-cp of Additiol Mthemtics Biomil Theoem... whee )!!(! () The fomul is ville i MF so studets do ot eed to memoise it. () The fomul pplies oly

More information

On Certain Classes of Analytic and Univalent Functions Based on Al-Oboudi Operator

On Certain Classes of Analytic and Univalent Functions Based on Al-Oboudi Operator Boig Itetiol Joul o t Miig, Vol, No, Jue 0 6 O Ceti Clsses o Alytic d Uivlet Fuctios Bsed o Al-Oboudi Opeto TV Sudhs d SP Viylkshmi Abstct--- Followig the woks o [, 4, 7, 9] o lytic d uivlet uctios i this

More information

MATH 118 HW 7 KELLY DOUGAN, ANDREW KOMAR, MARIA SIMBIRSKY, BRANDEN LASKE

MATH 118 HW 7 KELLY DOUGAN, ANDREW KOMAR, MARIA SIMBIRSKY, BRANDEN LASKE MATH 118 HW 7 KELLY DOUGAN, ANDREW KOMAR, MARIA SIMBIRSKY, BRANDEN LASKE Prt 1. Let be odd rime d let Z such tht gcd(, 1. Show tht if is qudrtic residue mod, the is qudrtic residue mod for y ositive iteger.

More information

On Some Integral Inequalities of Hardy-Type Operators

On Some Integral Inequalities of Hardy-Type Operators Advces i Pue Mhemics, 3, 3, 69-64 h://d.doi.og/.436/m.3.3778 Pulished Olie Ocoe 3 (h://www.sci.og/joul/m) O Some Iegl Ieuliies of Hdy-Tye Oeos Ruf Kmilu, Omolehi Joseh Olouju, Susi Oloye Akeem Deme of

More information

ON BILATERAL GENERATING FUNCTIONS INVOLVING MODIFIED JACOBI POLYNOMIALS

ON BILATERAL GENERATING FUNCTIONS INVOLVING MODIFIED JACOBI POLYNOMIALS Jourl of Sciece d Ars Yer 4 No 227-6 24 ORIINAL AER ON BILATERAL ENERATIN FUNCTIONS INVOLVIN MODIFIED JACOBI OLYNOMIALS CHANDRA SEKHAR BERA Muscri received: 424; Acceed er: 3524; ublished olie: 3624 Absrc

More information

PROGRESSION AND SERIES

PROGRESSION AND SERIES INTRODUCTION PROGRESSION AND SERIES A gemet of umbes {,,,,, } ccodig to some well defied ule o set of ules is clled sequece Moe pecisely, we my defie sequece s fuctio whose domi is some subset of set of

More information

FRACTIONAL MELLIN INTEGRAL TRANSFORM IN (0, 1/a)

FRACTIONAL MELLIN INTEGRAL TRANSFORM IN (0, 1/a) Ieol Jol o Se Reeh Pblo Volme Ie 5 y ISSN 5-5 FRACTIONAL ELLIN INTEGRAL TRANSFOR IN / S.. Kh R..Pe* J.N.Slke** Deme o hem hh Aemy o Egeeg Al-45 Pe I oble No.: 98576F No.: -785759 Eml-mkh@gml.om Deme o

More information

Technical Appendix for Inventory Management for an Assembly System with Product or Component Returns, DeCroix and Zipkin, Management Science 2005.

Technical Appendix for Inventory Management for an Assembly System with Product or Component Returns, DeCroix and Zipkin, Management Science 2005. Techc Appedx fo Iveoy geme fo Assemy Sysem wh Poduc o Compoe eus ecox d Zp geme Scece 2005 Lemm µ µ s c Poof If J d µ > µ he ˆ 0 µ µ µ µ µ µ µ µ Sm gumes essh he esu f µ ˆ > µ > µ > µ o K ˆ If J he so

More information

Homework 5 for BST 631: Statistical Theory I Solutions, 09/21/2006

Homework 5 for BST 631: Statistical Theory I Solutions, 09/21/2006 Homewok 5 fo BST 63: Sisicl Theoy I Soluions, 9//6 Due Time: 5:PM Thusy, on 9/8/6. Polem ( oins). Book olem.8. Soluion: E = x f ( x) = ( x) f ( x) + ( x ) f ( x) = xf ( x) + xf ( x) + f ( x) f ( x) Accoing

More information

We will begin by supplying the proof to (a).

We will begin by supplying the proof to (a). (The solutios of problem re mostly from Jeffrey Mudrock s HWs) Problem 1. There re three sttemet from Exmple 5.4 i the textbook for which we will supply proofs. The sttemets re the followig: () The spce

More information

Physics 201, Lecture 5

Physics 201, Lecture 5 Phsics 1 Lecue 5 Tod s Topics n Moion in D (Chp 4.1-4.3): n D Kinemicl Quniies (sec. 4.1) n D Kinemics wih Consn Acceleion (sec. 4.) n D Pojecile (Sec 4.3) n Epeced fom Peiew: n Displcemen eloci cceleion

More information

Existence Of Solutions For Nonlinear Fractional Differential Equation With Integral Boundary Conditions

Existence Of Solutions For Nonlinear Fractional Differential Equation With Integral Boundary Conditions Reserch Ivey: Ieriol Jourl Of Egieerig Ad Sciece Vol., Issue (April 3), Pp 8- Iss(e): 78-47, Iss(p):39-6483, Www.Reserchivey.Com Exisece Of Soluios For Nolier Frciol Differeil Equio Wih Iegrl Boudry Codiios,

More information

Physics 232 Exam II Mar. 28, 2005

Physics 232 Exam II Mar. 28, 2005 Phi 3 M. 8, 5 So. Se # Ne. A piee o gl, ide o eio.5, h hi oig o oil o i. The oil h ide o eio.4.d hike o. Fo wh welegh, i he iile egio, do ou ge o eleio? The ol phe dieee i gie δ Tol δ PhDieee δ i,il δ

More information

Reinforcement learning

Reinforcement learning CS 75 Mchine Lening Lecue b einfocemen lening Milos Huskech milos@cs.pi.edu 539 Senno Sque einfocemen lening We wn o len conol policy: : X A We see emples of bu oupus e no given Insed of we ge feedbck

More information

Calculus 241, section 12.2 Limits/Continuity & 12.3 Derivatives/Integrals notes by Tim Pilachowski r r r =, with a domain of real ( )

Calculus 241, section 12.2 Limits/Continuity & 12.3 Derivatives/Integrals notes by Tim Pilachowski r r r =, with a domain of real ( ) Clculu 4, econ Lm/Connuy & Devve/Inel noe y Tm Plchow, wh domn o el Wh we hve o : veco-vlued uncon, ( ) ( ) ( ) j ( ) nume nd ne o veco The uncon, nd A w done wh eul uncon ( x) nd connuy e he componen

More information

Reinforcement Learning

Reinforcement Learning Reiforceme Corol lerig Corol polices h choose opiml cios Q lerig Covergece Chper 13 Reiforceme 1 Corol Cosider lerig o choose cios, e.g., Robo lerig o dock o bery chrger o choose cios o opimize fcory oupu

More information

ONE RANDOM VARIABLE F ( ) [ ] x P X x x x 3

ONE RANDOM VARIABLE F ( ) [ ] x P X x x x 3 The Cumulive Disribuio Fucio (cd) ONE RANDOM VARIABLE cd is deied s he probbiliy o he eve { x}: F ( ) [ ] x P x x - Applies o discree s well s coiuous RV. Exmple: hree osses o coi x 8 3 x 8 8 F 3 3 7 x

More information

f(x) dx with An integral having either an infinite limit of integration or an unbounded integrand is called improper. Here are two examples dx x x 2

f(x) dx with An integral having either an infinite limit of integration or an unbounded integrand is called improper. Here are two examples dx x x 2 Impope Inegls To his poin we hve only consideed inegls f() wih he is of inegion nd b finie nd he inegnd f() bounded (nd in fc coninuous ecep possibly fo finiely mny jump disconinuiies) An inegl hving eihe

More information

Parametric Methods. Autoregressive (AR) Moving Average (MA) Autoregressive - Moving Average (ARMA) LO-2.5, P-13.3 to 13.4 (skip

Parametric Methods. Autoregressive (AR) Moving Average (MA) Autoregressive - Moving Average (ARMA) LO-2.5, P-13.3 to 13.4 (skip Pmeti Methods Autoegessive AR) Movig Avege MA) Autoegessive - Movig Avege ARMA) LO-.5, P-3.3 to 3.4 si 3.4.3 3.4.5) / Time Seies Modes Time Seies DT Rdom Sig / Motivtio fo Time Seies Modes Re the esut

More information

We show that every analytic function can be expanded into a power series, called the Taylor series of the function.

We show that every analytic function can be expanded into a power series, called the Taylor series of the function. 10 Lectue 8 We show tht evey lytic fuctio c be expded ito powe seies, clled the Tylo seies of the fuctio. Tylo s Theoem: Let f be lytic i domi D & D. The, f(z) c be expessed s the powe seies f( z) b (

More information

() t. () t r () t or v. ( t) () () ( ) = ( ) or ( ) () () () t or dv () () Section 10.4 Motion in Space: Velocity and Acceleration

() t. () t r () t or v. ( t) () () ( ) = ( ) or ( ) () () () t or dv () () Section 10.4 Motion in Space: Velocity and Acceleration Secion 1.4 Moion in Spce: Velociy nd Acceleion We e going o dive lile deepe ino somehing we ve ledy inoduced, nmely () nd (). Discuss wih you neighbo he elionships beween posiion, velociy nd cceleion you

More information

ME 141. Engineering Mechanics

ME 141. Engineering Mechanics ME 141 Engineeing Mechnics Lecue 13: Kinemics of igid bodies hmd Shhedi Shkil Lecue, ep. of Mechnicl Engg, UET E-mil: sshkil@me.bue.c.bd, shkil6791@gmil.com Websie: eche.bue.c.bd/sshkil Couesy: Veco Mechnics

More information

INFINITE SERIES. ,... having infinite number of terms is called infinite sequence and its indicated sum, i.e., a 1

INFINITE SERIES. ,... having infinite number of terms is called infinite sequence and its indicated sum, i.e., a 1 Appedix A.. Itroductio As discussed i the Chpter 9 o Sequeces d Series, sequece,,...,,... hvig ifiite umber of terms is clled ifiite sequece d its idicted sum, i.e., + + +... + +... is clled ifite series

More information

SOME REMARKS ON HORIZONTAL, SLANT, PARABOLIC AND POLYNOMIAL ASYMPTOTE

SOME REMARKS ON HORIZONTAL, SLANT, PARABOLIC AND POLYNOMIAL ASYMPTOTE D I D A C T I C S O F A T H E A T I C S No (4) 3 SOE REARKS ON HORIZONTAL, SLANT, PARABOLIC AND POLYNOIAL ASYPTOTE Tdeusz Jszk Abstct I the techg o clculus, we cosde hozotl d slt symptote I ths ppe the

More information

ABSOLUTE INDEXED SUMMABILITY FACTOR OF AN INFINITE SERIES USING QUASI-F-POWER INCREASING SEQUENCES

ABSOLUTE INDEXED SUMMABILITY FACTOR OF AN INFINITE SERIES USING QUASI-F-POWER INCREASING SEQUENCES Available olie a h://sciog Egieeig Maheaics Lees 2 (23) No 56-66 ISSN 249-9337 ABSLUE INDEED SUMMABILIY FACR F AN INFINIE SERIES USING QUASI-F-WER INCREASING SEQUENCES SKAIKRAY * RKJAI 2 UKMISRA 3 NCSAH

More information

Physics 232 Exam I Feb. 14, 2005

Physics 232 Exam I Feb. 14, 2005 Phsics I Fe., 5 oc. ec # Ne..5 g ss is ched o hoizol spig d is eecuig siple hoic oio wih gul eloci o dissec. gie is i ie i is oud o e 8 c o he igh o he equiliiu posiio d oig o he le wih eloci o.5 sec..

More information

The shortest path between two truths in the real domain passes through the complex domain. J. Hadamard

The shortest path between two truths in the real domain passes through the complex domain. J. Hadamard Complex Analysis R.G. Halbud R.Halbud@ucl.ac.uk Depamen of Mahemaics Univesiy College London 202 The shoes pah beween wo uhs in he eal domain passes hough he complex domain. J. Hadamad Chape The fis fundamenal

More information

Ultrahigh Frequency Generation in GaAs-type. Two-Valley Semiconductors

Ultrahigh Frequency Generation in GaAs-type. Two-Valley Semiconductors Adv. Sudies Theo. Phys. Vol. 3 9 o. 8 93-98 lhigh Fequecy Geeio i GAs-ype Two-Vlley Seicoducos.. sov. K. Gsiov A. Z. Phov d A.. eiel Bu Se ivesiy 3 Z. Khlilov s. Az 48 Bu ciy- Physicl siue o he Azebij

More information

Supplementary Information

Supplementary Information Supplemeay Ifomaio No-ivasive, asie deemiaio of he coe empeaue of a hea-geeaig solid body Dea Ahoy, Daipaya Saka, Aku Jai * Mechaical ad Aeospace Egieeig Depame Uivesiy of Texas a Aligo, Aligo, TX, USA.

More information

Lecture 3 summary. C4 Lecture 3 - Jim Libby 1

Lecture 3 summary. C4 Lecture 3 - Jim Libby 1 Lecue su Fes of efeece Ivce ude sfoos oo of H wve fuco: d-fucos Eple: e e - µ µ - Agul oeu s oo geeo Eule gles Geec slos cosevo lws d Noehe s heoe C4 Lecue - Lbb Fes of efeece Cosde fe of efeece O whch

More information

Quality control. Final exam: 2012/1/12 (Thur), 9:00-12:00 Q1 Q2 Q3 Q4 Q5 YOUR NAME

Quality control. Final exam: 2012/1/12 (Thur), 9:00-12:00 Q1 Q2 Q3 Q4 Q5 YOUR NAME Qulity contol Finl exm: // (Thu), 9:-: Q Q Q3 Q4 Q5 YOUR NAME NOTE: Plese wite down the deivtion of you nswe vey clely fo ll questions. The scoe will be educed when you only wite nswe. Also, the scoe will

More information

Rotations.

Rotations. oons j.lbb@phscs.o.c.uk To s summ Fmes of efeence Invnce une nsfomons oon of wve funcon: -funcons Eule s ngles Emple: e e - - Angul momenum s oon geneo Genec nslons n Noehe s heoem Fmes of efeence Conse

More information

On computing two special cases of Gauss hypergeometric function

On computing two special cases of Gauss hypergeometric function O comuig wo secil cses of Guss hyergeomeric fucio Mohmmd Msjed-Jmei Wolfrm Koef b * Derme of Mhemics K.N.Toosi Uiversiy of Techology P.O.Bo 65-68 Tehr Ir E-mil: mmjmei@u.c.ir mmjmei@yhoo.com b* Isiue of

More information

EE757 Numerical Techniques in Electromagnetics Lecture 9

EE757 Numerical Techniques in Electromagnetics Lecture 9 EE757 uericl Techiques i Elecroeics Lecure 9 EE757 06 Dr. Mohed Bkr Diereil Equios Vs. Ierl Equios Ierl equios ke severl ors e.. b K d b K d Mos diereil equios c be epressed s ierl equios e.. b F d d /

More information

Science Advertisement Intergovernmental Panel on Climate Change: The Physical Science Basis 2/3/2007 Physics 253

Science Advertisement Intergovernmental Panel on Climate Change: The Physical Science Basis   2/3/2007 Physics 253 Science Adeisemen Inegoenmenl Pnel on Clime Chnge: The Phsicl Science Bsis hp://www.ipcc.ch/spmfeb7.pdf /3/7 Phsics 53 hp://www.fonews.com/pojecs/pdf/spmfeb7.pdf /3/7 Phsics 53 3 Sus: Uni, Chpe 3 Vecos

More information

Extension of Hardy Inequality on Weighted Sequence Spaces

Extension of Hardy Inequality on Weighted Sequence Spaces Jourl of Scieces Islic Reublic of Ir 20(2): 59-66 (2009) Uiversiy of ehr ISS 06-04 h://sciecesucir Eesio of Hrdy Iequliy o Weighed Sequece Sces R Lshriour d D Foroui 2 Dere of Mheics Fculy of Mheics Uiversiy

More information

How to prove the Riemann Hypothesis

How to prove the Riemann Hypothesis Scholrs Journl of Phsics, Mhemics nd Sisics Sch. J. Phs. Mh. S. 5; (B:5-6 Scholrs Acdemic nd Scienific Publishers (SAS Publishers (An Inernionl Publisher for Acdemic nd Scienific Resources *Corresonding

More information

4.8 Improper Integrals

4.8 Improper Integrals 4.8 Improper Inegrls Well you ve mde i hrough ll he inegrion echniques. Congrs! Unforunely for us, we sill need o cover one more inegrl. They re clled Improper Inegrls. A his poin, we ve only del wih inegrls

More information

ON PRODUCT SUMMABILITY OF FOURIER SERIES USING MATRIX EULER METHOD

ON PRODUCT SUMMABILITY OF FOURIER SERIES USING MATRIX EULER METHOD Ieriol Jourl o Advces i Egieerig & Techology Mrch IJAET ISSN: 3-963 N PRDUCT SUMMABILITY F FURIER SERIES USING MATRIX EULER METHD BPPdhy Bii Mlli 3 UMisr d 4 Mhedr Misr Depre o Mheics Rold Isiue o Techology

More information

Spectrum of The Direct Sum of Operators. 1. Introduction

Spectrum of The Direct Sum of Operators. 1. Introduction Specu of The Diec Su of Opeaos by E.OTKUN ÇEVİK ad Z.I.ISMILOV Kaadeiz Techical Uivesiy, Faculy of Scieces, Depae of Maheaics 6080 Tabzo, TURKEY e-ail adess : zaeddi@yahoo.co bsac: I his wok, a coecio

More information

Eigenfunction Expansion. For a given function on the internal a x b the eigenfunction expansion of f(x):

Eigenfunction Expansion. For a given function on the internal a x b the eigenfunction expansion of f(x): Eigefuctio Epsio: For give fuctio o the iterl the eigefuctio epsio of f(): f ( ) cmm( ) m 1 Eigefuctio Epsio (Geerlized Fourier Series) To determie c s we multiply oth sides y Φ ()r() d itegrte: f ( )

More information

Addition & Subtraction of Polynomials

Addition & Subtraction of Polynomials Addiion & Sucion of Polynomil Addiion of Polynomil: Adding wo o moe olynomil i imly me of dding like em. The following ocedue hould e ued o dd olynomil 1. Remove enhee if hee e enhee. Add imil em. Wie

More information

On Absolute Indexed Riesz Summability of Orthogonal Series

On Absolute Indexed Riesz Summability of Orthogonal Series Ieriol Jourl of Couiol d Alied Mheics. ISSN 89-4966 Volue 3 Nuer (8). 55-6 eserch Idi Pulicios h:www.riulicio.co O Asolue Ideed iesz Suiliy of Orhogol Series L. D. Je S. K. Piry *. K. Ji 3 d. Sl 4 eserch

More information

Available online Journal of Scientific and Engineering Research, 2018, 5(10): Research Article

Available online   Journal of Scientific and Engineering Research, 2018, 5(10): Research Article vilble online www.jse.com Jounl of Scienific n Engineeing Resech, 8, 5():5-58 Resech icle ISSN: 94-6 CODEN(US): JSERBR Soluion of he Poblem of Sess-Sin Se of Physiclly Non-Line Heeiily Plsic Infinie Ple

More information

ERROR ESTIMATES FOR APPROXIMATING THE FOURIER TRANSFORM OF FUNCTIONS OF BOUNDED VARIATION

ERROR ESTIMATES FOR APPROXIMATING THE FOURIER TRANSFORM OF FUNCTIONS OF BOUNDED VARIATION ERROR ESTIMATES FOR APPROXIMATING THE FOURIER TRANSFORM OF FUNCTIONS OF BOUNDED VARIATION N.S. BARNETT, S.S. DRAGOMIR, AND G. HANNA Absrc. I his pper we poi ou pproximio for he Fourier rsform for fucios

More information

6.2 Improving Our 3-D Graphics Pipeline

6.2 Improving Our 3-D Graphics Pipeline 6.2. IMPROVING OUR 3-D GRAPHICS PIPELINE 8 6.2 Impovig Ou 3-D Gaphics Pipelie We iish ou basic 3D gaphics pipelie wih he implemeaio o pespecive. beoe we do his, we eview homogeeous coodiaes. 6.2. Homogeeous

More information

UNIT V: Z-TRANSFORMS AND DIFFERENCE EQUATIONS. Dr. V. Valliammal Department of Applied Mathematics Sri Venkateswara College of Engineering

UNIT V: Z-TRANSFORMS AND DIFFERENCE EQUATIONS. Dr. V. Valliammal Department of Applied Mathematics Sri Venkateswara College of Engineering UNIT V: -TRANSFORMS AND DIFFERENCE EQUATIONS D. V. Vllimml Deptmet of Applied Mthemtics Si Vektesw College of Egieeig TOPICS:. -Tsfoms Elemet popeties.. Ivese -Tsfom usig ptil fctios d esidues. Covolutio

More information

SOLUTIONS ( ) ( )! ( ) ( ) ( ) ( )! ( ) ( ) ( ) ( ) n r. r ( Pascal s equation ). n 1. Stepanov Dalpiaz

SOLUTIONS ( ) ( )! ( ) ( ) ( ) ( )! ( ) ( ) ( ) ( ) n r. r ( Pascal s equation ). n 1. Stepanov Dalpiaz STAT UIU Pctice Poblems # SOLUTIONS Stepov Dlpiz The followig e umbe of pctice poblems tht my be helpful fo completig the homewo, d will liely be vey useful fo studyig fo ems...-.-.- Pove (show) tht. (

More information

The Central Limit Theorems for Sums of Powers of Function of Independent Random Variables

The Central Limit Theorems for Sums of Powers of Function of Independent Random Variables ScieceAsia 8 () : 55-6 The Ceal Limi Theoems fo Sums of Poes of Fucio of Idepede Radom Vaiables K Laipapo a ad K Neammaee b a Depame of Mahemaics Walailak Uivesiy Nakho Si Thammaa 86 Thailad b Depame of

More information

Eurasian International Center of Theoretical Physics, Eurasian National University, Astana , Kazakhstan

Eurasian International Center of Theoretical Physics, Eurasian National University, Astana , Kazakhstan Joul o Mhems d sem ee 8 8 87-95 do: 765/59-59/8 D DAVID PUBLIHIG E Loled oluos o he Geeled +-Dmesol Ldu-Lsh Equo Gulgssl ugmov Ao Mul d Zh gdullev Eus Ieol Cee o Theoel Phss Eus ol Uves As 8 Khs As: I

More information

f(t)dt 2δ f(x) f(t)dt 0 and b f(t)dt = 0 gives F (b) = 0. Since F is increasing, this means that

f(t)dt 2δ f(x) f(t)dt 0 and b f(t)dt = 0 gives F (b) = 0. Since F is increasing, this means that Uiversity of Illiois t Ur-Chmpig Fll 6 Mth 444 Group E3 Itegrtio : correctio of the exercises.. ( Assume tht f : [, ] R is cotiuous fuctio such tht f(x for ll x (,, d f(tdt =. Show tht f(x = for ll x [,

More information

For this purpose, we need the following result:

For this purpose, we need the following result: 9 Lectue Sigulities of omplex Fuctio A poit is clled sigulity of fuctio f ( z ) if f ( z ) is ot lytic t the poit. A sigulity is clled isolted sigulity of f ( z ), if f ( z ) is lytic i some puctued disk

More information

(II.G) PRIME POWER MODULI AND POWER RESIDUES

(II.G) PRIME POWER MODULI AND POWER RESIDUES II.G PRIME POWER MODULI AND POWER RESIDUES I II.C, we used the Chiese Remider Theorem to reduce cogrueces modulo m r i i to cogrueces modulo r i i. For exmles d roblems, we stuck with r i 1 becuse we hd

More information

( a n ) converges or diverges.

( a n ) converges or diverges. Chpter Ifiite Series Pge of Sectio E Rtio Test Chpter : Ifiite Series By the ed of this sectio you will be ble to uderstd the proof of the rtio test test series for covergece by pplyig the rtio test pprecite

More information

Maximum likelihood estimate of phylogeny. BIOL 495S/ CS 490B/ MATH 490B/ STAT 490B Introduction to Bioinformatics April 24, 2002

Maximum likelihood estimate of phylogeny. BIOL 495S/ CS 490B/ MATH 490B/ STAT 490B Introduction to Bioinformatics April 24, 2002 Mmm lkelhood eme of phylogey BIO 9S/ S 90B/ MH 90B/ S 90B Iodco o Bofomc pl 00 Ovevew of he pobblc ppoch o phylogey o k ee ccodg o he lkelhood d ee whee d e e of eqece d ee by ee wh leve fo he eqece. he

More information

How to Prove the Riemann Hypothesis Author: Fayez Fok Al Adeh.

How to Prove the Riemann Hypothesis Author: Fayez Fok Al Adeh. How o Prove he Riemnn Hohesis Auhor: Fez Fok Al Adeh. Presiden of he Srin Cosmologicl Socie P.O.Bo,387,Dmscus,Sri Tels:963--77679,735 Emil:hf@scs-ne.org Commens: 3 ges Subj-Clss: Funcionl nlsis, comle

More information

Some Integral Mean Estimates for Polynomials

Some Integral Mean Estimates for Polynomials Iteatioal Mathematical Foum, Vol. 8, 23, o., 5-5 HIKARI Ltd, www.m-hikai.com Some Itegal Mea Estimates fo Polyomials Abdullah Mi, Bilal Ahmad Da ad Q. M. Dawood Depatmet of Mathematics, Uivesity of Kashmi

More information

LOCUS 1. Definite Integration CONCEPT NOTES. 01. Basic Properties. 02. More Properties. 03. Integration as Limit of a Sum

LOCUS 1. Definite Integration CONCEPT NOTES. 01. Basic Properties. 02. More Properties. 03. Integration as Limit of a Sum LOCUS Defiie egrio CONCEPT NOTES. Bsic Properies. More Properies. egrio s Limi of Sum LOCUS Defiie egrio As eplied i he chper iled egrio Bsics, he fudmel heorem of clculus ells us h o evlue he re uder

More information

Review for the Midterm Exam.

Review for the Midterm Exam. Review for he iderm Exm Rememer! Gross re e re Vriles suh s,, /, p / p, r, d R re gross res 2 You should kow he disiio ewee he fesile se d he udge se, d kow how o derive hem The Fesile Se Wihou goverme

More information

Mathematics 805 Final Examination Answers

Mathematics 805 Final Examination Answers . 5 poins Se he Weiersrss M-es. Mhemics 85 Finl Eminion Answers Answer: Suppose h A R, nd f n : A R. Suppose furher h f n M n for ll A, nd h Mn converges. Then f n converges uniformly on A.. 5 poins Se

More information

1. Solve by the method of undetermined coefficients and by the method of variation of parameters. (4)

1. Solve by the method of undetermined coefficients and by the method of variation of parameters. (4) 7 Differeial equaios Review Solve by he mehod of udeermied coefficies ad by he mehod of variaio of parameers (4) y y = si Soluio; we firs solve he homogeeous equaio (4) y y = 4 The correspodig characerisic

More information

_ J.. C C A 551NED. - n R ' ' t i :. t ; . b c c : : I I .., I AS IEC. r '2 5? 9

_ J.. C C A 551NED. - n R ' ' t i :. t ; . b c c : : I I .., I AS IEC. r '2 5? 9 C C A 55NED n R 5 0 9 b c c \ { s AS EC 2 5? 9 Con 0 \ 0265 o + s ^! 4 y!! {! w Y n < R > s s = ~ C c [ + * c n j R c C / e A / = + j ) d /! Y 6 ] s v * ^ / ) v } > { ± n S = S w c s y c C { ~! > R = n

More information

Module 4. Signal Representation and Baseband Processing. Version 2 ECE IIT, Kharagpur

Module 4. Signal Representation and Baseband Processing. Version 2 ECE IIT, Kharagpur Module 4 Sigl Represettio d Bsed Processig Versio ECE IIT, Khrgpur Lesso 5 Orthogolity Versio ECE IIT, Khrgpur Ater redig this lesso, you will ler out Bsic cocept o orthogolity d orthoormlity; Strum -

More information

Math 2414 Homework Set 7 Solutions 10 Points

Math 2414 Homework Set 7 Solutions 10 Points Mah Homework Se 7 Soluios 0 Pois #. ( ps) Firs verify ha we ca use he iegral es. The erms are clearly posiive (he epoeial is always posiive ad + is posiive if >, which i is i his case). For decreasig we

More information

David Randall. ( )e ikx. k = u x,t. u( x,t)e ikx dx L. x L /2. Recall that the proof of (1) and (2) involves use of the orthogonality condition.

David Randall. ( )e ikx. k = u x,t. u( x,t)e ikx dx L. x L /2. Recall that the proof of (1) and (2) involves use of the orthogonality condition. ! Revised April 21, 2010 1:27 P! 1 Fourier Series David Radall Assume ha u( x,) is real ad iegrable If he domai is periodic, wih period L, we ca express u( x,) exacly by a Fourier series expasio: ( ) =

More information

Induction. Induction and Recursion. Induction is a very useful proof technique

Induction. Induction and Recursion. Induction is a very useful proof technique Iductio Iductio is vey useul poo techique Iductio d Recusio CSC-59 Discete Stuctues I compute sciece, iductio is used to pove popeties o lgoithms Iductio d ecusio e closely elted Recusio is desciptio method

More information

e t dt e t dt = lim e t dt T (1 e T ) = 1

e t dt e t dt = lim e t dt T (1 e T ) = 1 Improper Inegrls There re wo ypes of improper inegrls - hose wih infinie limis of inegrion, nd hose wih inegrnds h pproch some poin wihin he limis of inegrion. Firs we will consider inegrls wih infinie

More information

x a y n + b = 1 0<b a, n > 0 (1.1) x 1 - a y = b 0<b a, n > 0 (1.1') b n sin 2 + cos 2 = 1 x n = = cos 2 6 Superellipse (Lamé curve)

x a y n + b = 1 0<b a, n > 0 (1.1) x 1 - a y = b 0<b a, n > 0 (1.1') b n sin 2 + cos 2 = 1 x n = = cos 2 6 Superellipse (Lamé curve) 6 Supeellipse (Lmé cuve) 6. Equtios of supeellipse A supeellipse (hoizotlly log) is epessed s follows. Implicit Equtio y + b 0 0 (.) Eplicit Equtio y b - 0 0 (.') Whe 3, b, the supeellipses fo

More information

Lecture 6: October 16, 2017

Lecture 6: October 16, 2017 Ifomatio ad Codig Theoy Autum 207 Lectue: Madhu Tulsiai Lectue 6: Octobe 6, 207 The Method of Types Fo this lectue, we will take U to be a fiite uivese U, ad use x (x, x 2,..., x to deote a sequece of

More information

«A first lesson on Mathematical Induction»

«A first lesson on Mathematical Induction» Bcgou ifotio: «A fist lesso o Mtheticl Iuctio» Mtheticl iuctio is topic i H level Mthetics It is useful i Mtheticl copetitios t ll levels It hs bee coo sight tht stuets c out the poof b theticl iuctio,

More information

International Mathematical Forum, Vol. 9, 2014, no. 13, HIKARI Ltd,

International Mathematical Forum, Vol. 9, 2014, no. 13, HIKARI Ltd, Ieol Mhemcl oum Vol. 9 4 o. 3 65-6 HIKARI Ld www.m-h.com hp//d.do.o/.988/m.4.43 Some Recuece Relo ewee he Sle Doule d Tple Mome o Ode Sc om Iveed mm Duo d hceo S. M. Ame * ollee o Scece d Hume Quwh Shq

More information

Caputo Equations in the frame of fractional operators with Mittag-Leffler kernels

Caputo Equations in the frame of fractional operators with Mittag-Leffler kernels nvenon Jounl o Reseh Tehnoloy n nneen & Mnemen JRTM SSN: 455-689 wwwjemom Volume ssue 0 ǁ Ooe 08 ǁ PP 9-45 Cuo uons n he me o onl oeos wh M-ele enels on Qn Chenmn Hou* Ynn Unvesy Jln Ynj 00 ASTRACT: n

More information

Chapter 7. Kleene s Theorem. 7.1 Kleene s Theorem. The following theorem is the most important and fundamental result in the theory of FA s:

Chapter 7. Kleene s Theorem. 7.1 Kleene s Theorem. The following theorem is the most important and fundamental result in the theory of FA s: Chpte 7 Kleene s Theoem 7.1 Kleene s Theoem The following theoem is the most impotnt nd fundmentl esult in the theoy of FA s: Theoem 6 Any lnguge tht cn e defined y eithe egul expession, o finite utomt,

More information

SUMMATION OF INFINITE SERIES REVISITED

SUMMATION OF INFINITE SERIES REVISITED SUMMATION OF INFINITE SERIES REVISITED I several aricles over he las decade o his web page we have show how o sum cerai iiie series icludig he geomeric series. We wa here o eed his discussio o he geeral

More information

F.Y. Diploma : Sem. II [CE/CR/CS] Applied Mathematics

F.Y. Diploma : Sem. II [CE/CR/CS] Applied Mathematics F.Y. Diplom : Sem. II [CE/CR/CS] Applied Mhemics Prelim Quesio Pper Soluio Q. Aemp y FIVE of he followig : [0] Q. () Defie Eve d odd fucios. [] As.: A fucio f() is sid o e eve fucio if f() f() A fucio

More information

Graphing Review Part 3: Polynomials

Graphing Review Part 3: Polynomials Grphig Review Prt : Polomils Prbols Recll, tht the grph of f ( ) is prbol. It is eve fuctio, hece it is smmetric bout the bout the -is. This mes tht f ( ) f ( ). Its grph is show below. The poit ( 0,0)

More information

Comparing Different Estimators for Parameters of Kumaraswamy Distribution

Comparing Different Estimators for Parameters of Kumaraswamy Distribution Compaig Diffee Esimaos fo Paamees of Kumaaswamy Disibuio ا.م.د نذير عباس ابراهيم الشمري جامعة النهرين/بغداد-العراق أ.م.د نشات جاسم محمد الجامعة التقنية الوسطى/بغداد- العراق Absac: This pape deals wih compaig

More information

Surds, Indices, and Logarithms Radical

Surds, Indices, and Logarithms Radical MAT 6 Surds, Idices, d Logrithms Rdicl Defiitio of the Rdicl For ll rel, y > 0, d ll itegers > 0, y if d oly if y where is the ide is the rdicl is the rdicd. Surds A umber which c be epressed s frctio

More information